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Abstract:  

Depending on the requirements, the design of a product may result in very different 

solutions. Topological optimization is a mathematical tool that can be used to obtain lighter 

parts without decreasing their stiffness. As the optimized part shapes are often too complex 

to be manufacturable, additive manufacturing is generally used. Usually, the topological 

optimization is performed on a single part. However, for a product, the decreasing of mass 

and inertia in each individual part has an impact on the loads applied onto all the parts of 

the system. Moreover, different paths can be used to optimize a product, e.g. optimizing all 

the parts simultaneously or part after part. Therefore, the aim of this paper is to propose, 

based on a case study, some optimization principles to find the best optimization path to 

design an additively manufactured product. In order to do this, the concept of topological 

optimization loops is first proposed. Then, several optimization paths are compared. In 

comparison with a usual single topological optimization, the proposed method leads to an 

additional gain in mass of up to 35% for the case study. Finally, some optimization 

principles are suggested to choose the most adapted path according to the designer 

objectives.  

Keywords: Product design; Topological optimization; Additive manufacturing 

Introduction and motivations 

A mechanical system design must fulfill the functional needs which are commonly, for example: 

the product must be light; the product must withstand mechanical stresses ... In order to meet 

these expectations, topological optimization (TO) can be used (Bendsøe, 1995), but generally 

leads to an unmanufacturable design concept using conventional processes. Thus, as the shapes 

may be very complex (Barbieri et al., 2017), the choice of additive manufacturing (AM) to 

manufacture topological optimized parts is often wise (Liu et al., 2018). In recent years, many 

additive manufacturing processes have been developed. Layer by layer, shape by shape or line 
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by line, these fairly recent processes allow the material to be deposited where it is needed 

(Brackett et al., 2011; Thompson et al., 2016).  

Multiple studies have shown the gains of the TO on the re-design of a part by comparing it with 

that obtained for conventional processes. Thus (Hällgren et al., 2016; Ren & Galjaard, 2015) 

proposed the re-design of an existing conventional manufactured part for AM. The results show 

a very significant gain on the final part mass as well as on the buy-to-fly ratio, while maintaining 

stable and efficient mechanical behaviour. Global design methods for AM using TO have been 

developed such as those proposed by (Ponche et al., 2014; Vayre et al., 2012), but published 

design methods often remain applied to a single mechanical part, with few articles dealing with 

the design optimization of a product. However, when topological optimization is used for 

mechanical assembly, the boundary conditions are modified by the decrease in the mass and 

inertia of the optimized parts, thus opening a way to perform an additional optimization.  

The purpose of this article is to address to the following four issues: 

(1) How to take into account the new boundary conditions during the topological 

optimization of a multicomponent-product? 

(2) By which part(s) should the optimization start?  

(3) Does this choice have an influence on the result?  

(4) And if so, would it be possible to establish optimization principles? 

To answer these questions, this article first introduces an organization chart presenting a method 

of loop optimization in order to take into account new boundary conditions. Then, different paths 

for managing the impact of inertia are shown. The impact of the choice of design space at each 

step of this iterative scheme is also discussed. Finally, a path ranking taking into account the 

objectives of the designer is proposed and some optimization principles are suggested.  

Previous methods of design for additive manufacturing (DfAM) using topology 

optimization 

Generalities on topology optimization 

According to (Guo & Cheng, 2010) topology optimization “aims to find the optimal way of 

material distribution in the structure”.  

A simple and generic formulation of an optimization problem can be written as follows (Zhou et 

al., 2004) : 

𝑚𝑖𝑛Γ∈Ω 𝑓(Γ) 

 Subject to 𝑐(Γ) ≥ 0 Equation (1) 

With: 

 Γ variable 

 Ω predefined design domain 

 𝑓(Γ) objective function  

 𝑐(Γ) constraint function  

Many TO algorithms exist like ground structures or genetic algorithms, each of them having 

different advantages and drawbacks (Tang & Zhao, 2016). Thanks to its simplicity and nice 

results, the SIMP model (Simple Isotropic Material with Penalization) is implemented in 

numerous commercial finite element codes for topology design (Eschenauer & Olhoff, 2001; 



Kim et al., 2002; Saadlaoui et al., 2017) and adapted for additive manufactured part design 

(Aremu et al., 2010; Krishna et al., 2017).  

The SIMP material model covers the complete range of density values from 0 to 1 (Bendsøe, 

1995; Bendsøe & Sigmund, 1999; Rozvany et al., 1992; Zhou & Rozvany, 1991), i.e. the TO 

result is a density distribution. Thus, according to the formulation of minimum compliance, the 

density  is introduced as a continuous variable (such as 0≤≤1), like a porous material with 

microscale voids. To achieve a 0/1 density distribution, the method assumes that the stiffness of 

the i-th element is determined by: 

𝐸𝑖(Γ) = 𝜌𝑖
𝑝(Γ). 𝐸∗  Equation (2) 

Where 𝐸∗ is the full stiffness of the isotropic material, 𝜌𝑖(Γ) the density of the i-th element and 𝑝 

the penalty factor (1 ≤ 𝑝 ≤ 4). Its role is to penalize intermediate density (𝑝 ≥ 3 is usually 

required). 

In order to get closer to the real structural behaviour, several researchers have recently proposed 

improvements in the SIMP model (Chu et al., 2019; Micheletti et al., 2019; Zhang et al., 2018). 

Design for AM using TO 

According to (Pradel et al., 2018), during the design process for additive manufacturing, one step 

must be the structure optimization. Applying the SIMP model - used throughout this article - 

with a commercial software (Optistruct from Altair) implies following the workflow detailed in 

Figure 1.  

For (Rodrigue & Rivette, 2010), the design space (DS) is the volume in which the material can 

be assigned during the optimization. (Tang & Zhao, 2014) defined the design space as the 

volumes which are used to bind the functional shapes and assist them in fulfilling their functional 

roles. As advised by (Goelke, 2016), the DS should be the largest one, allowing  “to explore 

leading into the most design improvement opportunities”.  

Functional shapes (FS) are defined as surfaces which can fulfill some functional requests (Tang 

& Zhao, 2014). They can be surfaces needed for connecting joints, or where loads are applied.  

A non-design space (NDS), even though part of the optimization problem, will not be modified 

during the optimization (Altair University, 2015). The use of NDS is optional when performing 

the optimization. NDS is: 

 used to give volume to functional shapes, 

 used to represent standard parts like bearings or the minimum thickness of fluid channels. 

The DS and optional NDS are integrated into the optimization software. Boundary conditions, 

load steps (defined for each stage of the part or of the product life), the material, optimization 

objective and constraints are defined to obtain the material density distribution.  

The TO result, which is a density distribution, has to be interpreted. Thus, some parameters have 

to be chosen by the designers (M.-H. Hsu & Hsu, 2005; Y.-L. Hsu et al., 2001) leading to a 

particular result (Morretton et al., 2019). The parameters are, for example, the design space 

definition, the density threshold, or the penalty factor. 



 

Figure 1. Traditional topology optimization workflow 

 

Numerous articles or industrial applications illustrate design for AM by exploiting TO. For 

example (Tomlin & Meyer, 2011) demonstrated that different DS and NDS lead to different 

design and mechanical behaviour of a bracket. (Walton & Moztarzadeh, 2017) realized an 

optimised rear upright manufactured by electron beam melting. More recently (Munk et al., 

2019) used topology optimization to find the minimum weight structures for a land gear. 

Topological optimization of a multi-component product 

As previously said, most of the AM articles have been written about the design of a single part 

(Barbieri et al., 2017; Han, 2017; Hodonou et al., 2019; Mancuso et al., 2019; Munk et al., 2019; 

Obaton et al., 2015; Ren & Galjaard, 2015; Tomlin & Meyer, 2011; Walton & Moztarzadeh, 

2017), whereas the design optimization of additively manufactured multi-component products 

has rarely been studied. (Rodrigue & Rivette, 2010) designed a planetary gear system. After a 

step of parts consolidation, a topological optimization was carried out on each rigid body. The 

purpose of the study conducted by (Sossou et al., 2018) was to manufacture additively a non-

assembly topologically optimized vice. The necessary clearance and the most adapted orientation 

were chosen before applying a TO on each part. (Orquéra et al., 2017) studied a multi-

component system (an oscillating cylinder engine). The goal of this study was to functionally 

improve the engine by using AM capabilities. To achieve this, TO was applied on each 

component together with functional improvements of the joints.  
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Figure 2. Comparison between one usual TO and multiple TO considering new BC on a multi-component design 

Generally, mechanical systems are products whose parts have relative motions. Some parts and 

connecting joints undergo inertia loads. Topological optimization of moving parts allows to 

lightweight them and thus to reduce the loads due to inertia. For example, in the Figure 2, the 

part 1’ which is the topologically optimized part 1, gives new boundary conditions (BC) on the 

part 2’. So, part 2’ may be lighter with a new TO. The so optimized part denoted 2’’ has an 

impact on the BC of the optimized part 3’ which can be optimized again, and so on. 

In light of this clearly observable research gap, the purpose of this article is to consider mass and 

inertia decrease in the designing of an optimized multi-component product. 

Method 

Optimization paths 

The first step of the method is to determine the first part or set of parts that has to be optimized. 

As this optimization sequence planning may influence the design, different optimization paths 

have to be identified and compared according to certain criteria. 

The criteria would correspond to data relative to the mechanical behaviour (denoted Mb) of the 

system. It can be, for example, the mass of the system. For a pump or a propulsion system, the 

input or output torque may be the selected data. Following this general idea, different 

optimization paths can be identified, directly linked to the chosen criteria or not, as for instance: 

 

Path 1- The part whose inertia (or mass) has the greatest impact on the mechanical behaviour is 

optimized first, 

Path 2- Beginning the optimization with the part that has a parameter involved in the highest 

number of equations related to the mechanical behaviour, 

Path 3- All parts are optimized simultaneously, 

Path 4- Realizing derivate paths, for example mixing Path 1 with Path 2, 



Path 5- The part that has the most connecting joints to the other parts of the system is optimized 

first. 

 

To determine which part has the greatest impact on the feature Mb, the reduced sensibility 

coefficient S* (Petit & Maillet, 2008) is used as shown in the Equation (3). 

S∗(𝑀𝑏/𝐶𝑖) =  𝐶𝑖 .
𝜕𝑀𝑏

∂ 𝐶𝑖
  Equation (3) 

Mb represents the mechanical feature and Ci the characteristic of the part i. The part whose 

characteristic leads to maximize S∗(𝑀𝑏/𝐶𝑖) is optimised first for the Path 1. 

For the Path 2, the static or dynamic mechanical equations have to be written in order to 

determine which part has a parameter involved in the highest number of equations. For the Path 

5, connecting joints have to be counted. 

In a next section three paths and two derivate one are applied to a case study in order to estimate 

the influence of the path choice. 

Optimization impact estimation 

The optimization impact estimation consists of estimating the need for a new topological 

optimization. For instance, in the Figure 2, the product has an output torque T0. After the first TO 

the new torque is T1. If both torques are identical or almost identical, further optimization is not 

useful. On the contrary if they are not identical, a new TO is necessary. An important issue is to 

decide from which T1 value should a new TO be realized.  

For this purpose, the mechanical behaviour ratio (denoted RMb) is proposed and calculated 

according to Equation (4). 

𝑅𝑀𝑏 =
𝑀𝑏𝐿−1

𝑀𝑏𝐿
  Equation (4) 

𝑀𝑏𝐿−1 and 𝑀𝑏𝐿 are the respective values of the mechanical behaviour criteria, previously chosen 

by the designer, before and after the optimization. L (for loop) corresponds to the number of the 

considered TO loops. A parameter ε called convergence coefficient is also established. If the 

result of the RMb ratio is lower than 1-ε or higher than 1+ε, the impact is estimated as significant. 

So, new iterations have to be done while the mechanical ratio does not belong to [1-ε, 1+ε]. The 

lower ε is, the more the impact of TO on the mechanical behaviour is taken into account. But this 

will influence the number of loops and therefore the calculation time. In this article, the impact 

of the ε value is discussed based on a case study.  



 

Figure 3. Topological optimization loop (TOL) organization chart considering inertia and mass decrease 

The topological optimization loop 

Based on the previous explanations, a organization chart showing the concept of Topological 

Optimisation Loop (TOL) for a multi-component is proposed in Figure 3. 

Depending on the path choice, the TOL is applied first on the part which should be first 

optimised (for paths 1, 2 and 5), or on all the parts simultaneously for the path 3.  

As explained in the topology optimization workflow (Figure 1), a design space and an optional 

non-design space are CAD designed for each “p” part and integrated into the optimization 

software. They are denoted by (𝐷𝑆 + 𝑁𝐷𝑆)𝐿=1,𝑝𝜖[1,𝑛] for the first loop. L and n are respectively 

the loop and the part number. Boundary conditions, load steps, material, optimization objective 

and constraints are also initially defined. 

The first loop is a classic application of the topological optimization (using the TO workflow 

shown in Figure 1). The result is a material density distribution. After interpretation, a new 

CAD-design of the part is used as the design space (with the same non-design space as before, as 

explained in a next section) for the next loop. Denoted (𝐷𝑆 +  𝑁𝐷𝑆)𝐿=2,𝑝∈[1,𝑛] , it now has a new 

mass and inertia which impact the other parts. 

As explained previously, if the result of the RMb ratio is lower than 1-ε or higher than 1+ε, the 

impact is estimated as significant. So, new iterations have to be done. Although this new 

organization chart is helpful to optimize a multi-component product, it should be noted that it has 

to be applied part by part.  
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Discussion about the design space 

Generally the design space is chosen as the least restrictive to allow the software to find the 

optimum solution. So, normally the DS volume has to be the largest one. At the end of the first 

loop of the TO, as explained before, the mass and inertia are decreased so the loads intensities 

are smaller than those of the first TO loop. A second TO has to be done in which two DS may be 

used: 

 the result of the first loop, 

 the initial design space. 

In order to allow more possibilities for the software, it seems wise to impose the new boundary 

conditions on the initial design space. But, because the loads are lower, using the initial design 

space leads to a mass higher than using the DS re-designed from the previous TO result, as 

shown in Figure 4.  

 

Figure 4. Impact of the design space choice for the second loop 

 

The algorithm decreases the mass and verifies if the constraints are violated or not, until they are 

validated (see Figure 4). Moreover, if the first optimization loop gives a density distribution 

result under consequent loads, this same result will necessarily withstand the new lower loads. 

So using the DS of the previous loop has a great probability of converging with a lower mass and 

a shorter calculation time.  

In conclusion, for the first TO the design space should be the least restrictive as possible. Then, 

for the next loops, using the previous DS with lower loads achieves better results.  

Optimization path principle for the designers  

Each path will lead to a specific result with a CPU time, a total mass, an estimation of the 

mechanical feature, etc. The main purpose of this article is, based on the paths results, to suggest 

optimization path principles in order to help designers to choose the best path considering their 

design objective. 

Hence, in the next section different paths, using the TOL, are applied to a case study in order to 

make some comparisons, to assess the improvement of the system (thanks to the presented 

method) and to conclude on the optimization path principle. 



Case study 

System presentation 

The subject of this case study is a robot arm tool holder of a sharpening machine proposed by 

(Bône et al., 1984). As shown in Figure 5, it is composed of a rotating support 1 on which is 

mounted a pivoting arm 2. The tool holder 3 has a cylindrical joint along z2 with the arm 2.  

 

Figure 5. Case study: robot arm (Bône et al., 1984) 

 

In order to simplify and target the objectives of the study, the following assumptions are made: 

friction and thermal effects are not considered. 

In this study, only one case, placing the robot in a rather critical case is considered. The position 

of the arm 2 is constant and equal to 𝛽 = 0 rad. The study data are:  

 The rotating support has an acceleration equal to �̈�(𝑡) =
𝜋

6
 rad/s², 

 Acceleration (and brake) inertia value are considered at t = 2 s, 

 The distances HG and OH are equal to 0.2 m and the tool rotation speed is equal to zero, 

 All parts are in common steel (Young modulus E = 210000 MPa; density = 7.8 kg/dm3; 

Poisson ratio = 0.3; Rpe = 210 MPa), 

 A safety factor is applied (s = 2). 

Design spaces and non-design spaces were CAD designed for each part, as shown in Figure 6. 

The total mass of the non-optimized robot is equal to 16.2 kg and needs a torque to turn around 

z0 equal to 634 N.mm. 

 

Figure 6. (a) Robot arm CAD designed; (b) Support; (c), Pivoting arm; (d) Tool. Design spaces are in green, and non-design spaces in orange. 

(t) 

𝛼(𝑡) 

(a) Robot arm (b) Part 1 (c) Part 2 (d) Part 3 



Cross-sections of each part with loads and boundary conditions are shown in Figure 7. 

 

Figure 7. Boundary conditions applied on (a) Part 1, (b) Part 2, (c) Part 3 

Paths identification 

During its work, the robotic structure is permanently subjected to several types of loads like the 

grinding forces, or the inertial forces of moving masses (Mejri et al., 2016). The deflections of 

the structure under these loads are a source of defects for the grinding work that should be 

minimized. That is why the objective of this study is to use the TOL in order to reduce inertia. 

Three optimization paths are first proposed:  

(1) The part whose inertia (or mass) has the greatest impact on the mechanical behaviour is 

optimized first. 

(2) Beginning the TOL with the part that has a parameter involved in the highest number of 

equations. 

(3) All parts are optimized simultaneously.  

The input torque T01 (see Equation (8) in the appendix) is chosen to be the mechanical behaviour 

data Mb used for the comparison of the several optimization paths. 

The mathematical model used is proposed by (Bône et al., 1984). Tij and Fij represent 

respectively the torque and the force between part i and part j. Ip(L,m) depicts the inertia of part p 

at point L around the axle m. All the equations are located in the appendix. 

As shown in Table 1, the component 3 impacts the highest number of equations.  

The input torque (see Equation (8) in the appendix) has been evaluated for initial characteristics. 

To determine which part has the highest impact, the reduced sensibility coefficient S* of the 

Equation (3) is determined for each characteristic as shown in Table 2. The mass of arm 2 has 

the most important influence on the torque T01. 

Table 1. Feature which impacts the highest number of mechanical equations 

Feature 
Number of equations 

using the feature 
Concerned equations 

I1(O,zo) (kg.m²) 1 T01 

I2(H,x2) (kg.m²) 2 T12;T01 

I2(H,z2) (kg.m²) 2 T12;T01 

m2 (kg) 2 F12;T01 

m3 (kg) 4 F23;F12;T12;T01 

I3(G,x3) (kg.m²) 2 T12;T01 

I3(G,z2) (kg.m²) 3 T23;T12;T01 

Table 2. Inertia and mass sensibility evaluation 

Characteristic Ci m
2
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3
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S∗(𝑇01/𝐶𝑖) =  𝐶𝑖 .
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Figure 8. The three paths studied to optimize the product 



To summarize, the first Path begins with part 2, and the second Path 2 with part 3. Figure 8 

graphically summarizes the three paths. 

For this study, the convergence coefficient ε is imposed at 0.1. The results are compared in terms 

of robot total mass, input torque T01, and time used by the software to perform all the topological 

optimization iterations.  

Other paths can be derived from these first three, like the two other possibilities shown in Figure 

9. Path 4 is inspired from both Path 1 and Path 2, and consists in applying the TOL on parts 2 

and 3 simultaneously and then on part 1. 

As the mass of part 3 can be neglected, it has been chosen to not optimize this part in Path 5.  

  

 

Figure 9. Derived paths to optimize the product 

 



Details of the topological optimization paths 

The topological optimization and CAD software used are respectively Optistruct and Inspire 

from Altair. 

For each component, the TO objective is to minimize the mass with stress and displacement 

constraints. A static displacement constraint has been defined at points A, B and C for each part 

(the points are visible in Figure 7). This total displacement must not exceed 0.3 mm. For parts 1 

and 2, (x1, zo) is used as a symmetric plane (the axle is visible in the Figure 5). The tool holder 3 

turns around the axle z2. As the loads follow the same direction, a circular repetition around the 

axle (7 repetitions) has been imposed. 

It was determined to set the optimization parameters to 3 for the penalty factor and 6 for the 

related sensitivity filter called “mindim”. The mesh size is equal to 2 mm (except for part 3 due 

to its smaller size, where the mesh size is equal to 1 mm).  

Finally, all the topological optimizations were performed on the same cluster. It is composed of 

two processors Xeon E5-2690/v2, each using ten cores of 25 Mo L3 with a frequency equal to 3 

GHz. The RAM memory is equal to 256 Go. 

Path 1: beginning with the most influential part (part 2) 

The results are summarized in Table 3. 

Table 3. Optimization results for Path 1 

 

TOL on 

part 2 

TOL on 

part 3 

TOL on 

part 1 

Initial mass (g) 8000 1264 6970 

Loop number loop1 loop2 loop1 loop2 loop1 loop2 

RMb 2.12 1.05 2.43 1.04 1.23 1.02 

Re-design mass value (g) 1055 768 274 246 1466 1130 

Torque T01 (N.mm) 299 285 117 112 91 89 

Loop time (h:min) 8:37 0:26 19:28 0:45 8:58 1:02 

Total time (h:min) 39:19 

 

 TOL on part 2 

The first loop has converged and all constraints have been satisfied after 44 iterations. With the 

initial design space, the input torque T01 is equal to 634 N.mm. The first optimization loop 

decreases this value to 299 N.mm. The resulting ratio equal to 2.12 has exceeded the limits 

specified in the previous section. So, a new loop is performed. 

As explained previously, the design space used for the second loop is the result of the first loop. 

The second loop has converged and all constraints have been satisfied after 39 iterations. The 

ratio between the previous and new mechanical behaviour, equal to 1.05, is within the limits 

specified in the previous section. The optimization loops for part 2 have thus been finished. It 

can be noted that the re-design mass value is 12% less than the re-design mass value result with 

the initial design space, confirming the conclusions of the previous section. Then, new loads 

induced by mass and inertia of part 2 at the end of loop 2 are mandatory for the TOL of part 3. 

 TOL on part 3  

The first loop generates a ratio RMb equal to 2.43, which is beyond the limits. The ratio of the 

second loop remains within the limits.  

 TOL on part 1  



The ratio RMb required two loops to be within the limits. 

Path 2: beginning with the component which impacts the highest quantity of equations 

(part 3) 

All optimization loops have converged and all constraints have been satisfied. Taking into 

account the mechanical behaviour ratio, each part has required two loops, as shown in Table 4. 

For each part, the design space obtained after the first loop is used for the second loop. 

Table 4. Optimization results for path 2  

 

TOL on 

part 3 

TOL on 

part 2 

TOL on 

part 1 

Initial mass (g) 1264 8000 6970 

Loop number loop1 loop2 loop1 loop2 loop1 loop2 

RMb 1.36 1.01 3.84 1.08 1.23 1.04 

Re-design mass value (g) 274 246 926 749 1434 912 

Torque T01 (N.mm) 466 461 120 112 91 88 

Loop time (h:min) 19:28 0:45 10:20 0:32 7:48 1:09 

Total time (h:min) 40:04 

Path 3: all parts simultaneously optimized 

The results of Path 3 are summarized in Table 5. To obtain a value of RMb within the boundaries, 

three loops are necessary.  

Table 5. Optimization results for path 3 

 
Initial Loop 1 Loop 2 Loop 3 

RMb   5.74 1.20 1.07 

TOL on part 1. Mass (g) 6970 1616 1287 1133 

TOL on part 2. Mass (g) 8000 1055 801 735 

TOL on part 3. Mass (g) 1264 274 246 234 

Torque T01 (N.mm) 634 110 92 86 

Total time (h:min) 20:54 

Results analysis 

Comparison of the results 

As presented before, the results are different for each path. Figure 10 shows the re-designed 

products for each path and the results are summarized and compared in Table 6. 

Without the TOL proposed previously, only one TO loop would have been performed. To verify 

the gains made by performing TOL, Table 6 shows the differences between a single topological 

optimization and the TOL results. Results prove that TOL produces significant gains in mass 

compared with one TO loop, and this, within the same amount of time in both instances. 

Table 6. Results of each path and comparison between using a single topological optimization and using the TOL 

  
Optimization 

without TOL Path 1 Path 2 Path 3 Path 4 Path 5 
Gain between Path 3 

and without TOL 

Torque T01 (N.mm) 110 89 88 86 89 91 22% 

Total mass (g) 2945 2143 1906 2102 1925 2668 29% 

Total time (h:min) 19:28 39:19 40:04 20:54 28:37 18:52 -7% 

Number of loops  1 2 2 3 2 2  

 



 

Figure 10. Robot arm optimized using the TOL for each path 

It can be noted that the complex shapes of the robot arm so obtained cannot be manufactured by 

conventional processes. Using the Analytic Hierarchy Process (AHP) method proposed by 

(Mançanares et al., 2015), a powder bed fusion (PBF) process should be used as the most 

adapted AM process. 

The total time is lower for Path 3 compared with Paths 1 and 2. Indeed, as the parts have been 

simultaneously optimized, the total CPU time is not the sum of the software time for each part 

optimization, but the sum of the maximum CPU time for each loop, as explained in Figure 11.  

 

Figure 11. Comparison of the CPU times for the different paths 

About the convergence coefficient ε 

The convergence coefficient used for this case study is equal to 0.1. This means that the TOL 

scheme is ended if the mechanical behaviour of the new loop exceeds plus or minus 10% of the 
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previous one. The results of the different paths show that this value is wise and gives good 

results with few iterations.  

Choosing a convergence coefficient close to zero will drastically increase the quantity of loops 

without effective results. Moreover, the low decrease in loads during the next iterations will 

reduce the potential gain at each new iteration. 

On the contrary, choosing a high coefficient of convergence will reduce the quantity of loops, 

but the results may not be optimum. For example, using ε equal to 0.3 for the third path leads to 

only two loops (Table 7) but with a total robot mass increased by 11%. Likewise, the input 

torque has increased by 7%. In return, there is only a 3% savings in time. 

Table 7. Impact of the convergence coefficient for Path 3 

Path 3 ε=0.3 ε=0.1 ε=0.05 

Torque T01 (N.mm) 92 86 85 

Total mass (g) 2334 2102 2051 

Total time (h:min) 20:15 20:54 21:05 

Number of loops 2 3 4 

 

Figure 12 shows changes in the total mass and the RMb ratio as a function of the loop number for 

the path 3. The lower ε is, the more the RMb and the total mass tend towards an asymptotic 

(RMb=1 in orange on the graph in Figure 12). However, there is a significant gain when the slope 

is high. In conclusion, it is necessary to choose a reasonable value of ε to obtain a significant 

gain without loss of time. Thus it seems that the convergence coefficient should be included in 

the range [0.1; 0.2]. 

 

Figure 12. Mass and RMb evolution as a function of the number of loops for the Path 3 

Principles to select a path for an additively manufactured multi-component product 

optimization  

Each path has led to different results. Considering the designer objectives, the choice of the path 

can be different. A classification of the paths is suggested in Table 8. 

First, it can be noticed that Path 1 has nearly no advantage. On the contrary, Path 3 seems to 

have the best numbers, especially to lead to the lowest input torque. Path 4 has one tenth of a 

gram more than Path 2; this is low enough to equalize them. Both enable the greatest decrease in 

mass. Lastly, if saving time is the primary objective, Path 5 has to be used. 
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Table 8. Ranking of the paths considering the objectives of the designer 

 The objective is to reduce the 

 mass torque time 

Path 1 3 3 4 

Path 2 1 2 5 

Path 3 2 1 2 

Path 4 1 3 3 

Path 5 4 4 1 

1 represents the best path, 5 represents the worst. 

 

Thanks to these results, the most effective path can be chosen to achieve the designer objectives. 

For this reason, three optimization principles can be concluded (for mechanisms without a 

closed-loop kinematic chain and to minimize the mass with stress as objective and displacement 

as constraints): 

(1) To optimize a product with a minimum use of time: 

 The part(s) with the least influence on the mechanical behaviour must not be optimized. 

 The most influential part has to be optimized first. 

(2) To optimize a product in order to obtain the best mechanical behaviour: 

 All parts which impact the mechanical behaviour have to be optimized simultaneously. 

(3) To optimize a product in order to obtain the lowest mass: 

 The part whose mass is involved in the highest number of equations has to be optimized 

first. 

 To reduce the length of time, the heaviest parts can be optimized simultaneously. 

Conclusion 

The case study presented in this article has resulted in the design of an optimized robot arm.  

More generally, the topological optimization loop (TOL) concept proposed in this article takes 

into account the decrease in mass and inertia during the topological optimization of a mechanical 

product. Even if the topology of the results may differ a little, the presented method is not 

software dependent. Indeed, the TO loop can be applied in the same way and the conclusions 

will be identical. 

To perform an optimization on a multi-component product, the topological optimizations may be 

applied on the parts in different orders. Several optimization paths have been tested, leading to 

different results. Finally, for the case study examined in this report, using the TOL framework 

together with the best optimization path leads to an additional 35% gain in mass in comparison 

with a single topological optimization. Integrating the TOL framework in a Design for Additive 

Manufacturing (DfAM) method, will provide a rational and helpful tool for obtaining a 

mechanical system in which: 

 material savings is achieved, 

 the mass is lower, 

 the dynamic behaviour is better, 

 the joints between rigid bodies withstand lower loads, 

 the input power can be decreased… 



The choice of the design space for the successive optimization loops has also been studied. 

Using the density distribution result of the previous loop as the new design space seems to 

improve the results. 

Finally, as the choice of the path must be made to achieve the designer objectives, three 

optimization principles have been stated, depending on the objective: minimizing the calculation 

time, obtaining the best mechanical behaviour or obtaining the lowest mass. Thus, following 

these recommendations will help designers to optimize a multi-component product. 

The presented method is a convenient tool to design static or dynamic systems. However, it must 

be used for multi-component products in which mass and inertia have an impact on the 

mechanical behaviour. To complete this research, future work should focus on studying complex 

systems with closed-loop kinematic chains. Another perspective could be to conduct a similar 

study for other TO objectives and constraints. 

 

Appendix 

In this section the equations used for the case study are detailed. As explained previously, the 

mathematical model used is proposed by (Bône et al., 1984). Tij and Fij represent respectively the 

torque and the force applied between part i and part j. Ip(L,m) depicts inertia of part p at point L 

around axis m (Figure 5). 

(�⃗�0, �⃗�1) = (�⃗�0, �⃗�1) = 𝛼 Equation (5) 

(𝑧0, 𝑧2) = (�⃗�1, �⃗�2) = 𝛽 Equation (6) 

(�⃗�2, �⃗�3) = (�⃗�1, �⃗�3) = 𝛾 Equation (7) 

𝑇01 =
𝑑

𝑑𝑡
[{𝐼1(𝑂,𝑧0) + (𝐼2(𝐻,�⃗�2) + 𝐼3(𝐺,�⃗�3)). 𝑠𝑖𝑛²𝛽 + (𝐼2(𝐻,𝑧2) + 𝐼3(𝐺,𝑧2)). 𝑐𝑜𝑠²𝛽 +

𝑚2. ℎ² + 𝑚3. (ℎ + 𝑟. 𝑠𝑖𝑛𝛽)²}. �̇� + 𝐼3(𝐺,𝑧2). �̇�. 𝑐𝑜𝑠𝛽] Equation (8) 

𝑇12 = (𝐼2(𝐻,�⃗⃗�2) + 𝐼3(𝐺,�⃗�3) + 𝑚3. 𝑟2). �̈� + {(𝐼2(𝐻,𝑧2) + 𝐼3(𝐺,𝑧2) − 𝐼2(𝐻,�⃗�2) − 𝐼3(𝐺,�⃗�3)). �̇�. 𝑐𝑜𝑠𝛽 +

𝐼3(𝐺,𝑧2). �̇�}. �̇�. 𝑠𝑖𝑛𝛽 − 𝑚3. 𝑟. [(ℎ + 𝑟. 𝑠𝑖𝑛𝛽). �̇�2. 𝑐𝑜𝑠𝛽 + 𝑔. 𝑠𝑖𝑛𝛽] Equation (9) 

𝑇23 =
𝑑

𝑑𝑡
[𝐼3(𝐺,𝑧2). (�̇� + �̇�. 𝑐𝑜𝑠𝛽)] Equation (10) 

𝐹23 = 𝑚3. [𝑔. 𝑐𝑜𝑠𝛽 − 𝑟. �̇�2 − (ℎ + 𝑟. 𝑠𝑖𝑛𝛽). �̇�2. 𝑠𝑖𝑛𝛽] Equation (11) 

𝐹21 = (�̈�. 𝑡)2. ℎ. (
3.𝑚2

2
+ 2. 𝑚3) Equation (12) 

𝑂𝐻⃗⃗⃗⃗⃗⃗⃗ = ℎ. �⃗�1 Equation (13) 

𝐻𝐺⃗⃗⃗⃗⃗⃗⃗ = 𝑟. 𝑧2 Equation (14) 

h and r are constant.x 
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