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Abstract: This paper is concerned with quantitative estimates for the Navier–Stokes
equations. First we investigate the relation of quantitative bounds to the behavior of
critical norms near a potential singularity with Type I bound ‖u‖L∞

t L3,∞
x

≤ M . Namely,

we show that if T ∗ is a first blow-up time and (0, T ∗) is a singular point then

‖u(·, t)‖L3(B0(R)) ≥ C(M) log
( 1

T ∗ − t

)
, R = O((T ∗ − t)

1
2−).

We demonstrate that this potential blow-up rate is optimal for a certain class of potential
non-zero backward discretely self-similar solutions. Second, we quantify the result of
Seregin (Commun Math Phys 312(3):833–845, 2012), which says that if u is a smooth
finite-energy solution to the Navier–Stokes equations on R

3 × (0, 1) with

sup
n

‖u(·, t(n))‖L3(R3) < ∞ and t(n) ↑ 1,

then u does not blow-up at t = 1. To prove our results we develop a new strategy for
proving quantitative bounds for the Navier–Stokes equations. This hinges on local-in-
space smoothing results (near the initial time) established by Jia and Šverák (2014),
together with quantitative arguments using Carleman inequalities given by Tao (2019).
Moreover, the technology developed here enables us in particular to give a quantitative
bound for the number of singular points in a Type I blow-up scenario.

1. Introduction

In this paper,we consider the three-dimensional incompressibleNavier–Stokes equations

∂t u − �u + u · ∇u + ∇ p = 0, ∇ · u = 0 (1)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-021-04122-x&domain=pdf
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on R
3 × (0, T ) where T ∈ (0,∞], supplemented with an initial condition u(·, 0) =

u0(x). It is well known that this system of equations is invariant with respect to the
following rescaling

(uλ(x, t), pλ(x, t), u0λ(x)) := (λu(λx, λ2t), λ2 p(λx, λ2t), λu0(λx)), λ > 0. (2)

The question as towhether or not finite-energy solutions1,with divergence-free Schwartz
class initial data, remain smooth for all times is a Millennium Prize problem [14]. The
first necessary conditions for such a solution to lose smoothness or to ‘blow-up’ at time
T ∗ > 02 were given in the seminal paper of Leray [27]. In particular, in [27] it is shown
that if T ∗ is a first blow-up time of u then we necessarily have

‖u(·, t)‖L p(R3) ≥ C(p)

(T ∗ − t)
1
2 (1− 3

p )
, for p ∈ (3,∞]. (3)

The L3(R3) norm is scale-invariant or ‘critical’3 with respect to the Navier–Stokes
rescaling. Its role in the regularity theory of the Navier–Stokes equations is much more
subtle than that of the subcritical L p(R3) norms with 3 < p ≤ ∞. In particular, it is
demonstrated by an elementary scaling argument in [4]4 that if the set of finite-energy
solutions to the Navier–Stokes equations (with Schwartz class initial data) that blows-up
is non-empty, there cannot exist an universal function f : (0,∞) → (0,∞) such that
the following analogue of (3) holds true:

lim
s→0+

f (s) = ∞, (4)

and for all T ∗ > 0, if u is a finite-energy solution to the Navier–Stokes equations (with
Schwartz class initial data) that first blows-up at T ∗ > 0 then u necessarily satisfies

‖u(·, t)‖L3(R3) ≥ f (T ∗ − t) (5)

for all t ∈ [0, T ∗).
In the celebrated paper [13] of Escauriaza, Seregin and Šverák, it was shown that if

a finite-energy solution u first blows-up at T ∗ > 0 then necessarily

lim sup
t↑T ∗

‖u(·, t)‖L3(R3) = ∞. (6)

The proof in [13] is by contradiction. A rescaling procedure or ‘zoom-in’ is performed5

using (2) and a compactness argument is applied. This gives a non-zero limit solution to
the Navier–Stokes equations that vanishes at the final moment in time. The contradiction
is achieved by showing that the limit function must be zero by applying a Liouville
type theorem based on backward uniqueness for parabolic operators satisfying certain
differential inequalities. By now there are many generalizations of (6) to cases of other
critical norms. See, for example, [12,16,35,50].

1 See the definition of a finite-energy solution in Sect. 1.4 ‘Notations’.
2 See Sect. 1.4 for a definition.
3 See Sect. 1.4 for a definition.
4 The argument in [4] is in turn taken from the talk given by G. Seregin. ‘A certain necessary condition of

possible blow up for the Navier–Stokes equations’. APDE seminar, University of Sussex, 03 March 2014.
5 It is worth noting that [13] appears to be the first instance where arguments involving ‘zooming in’ and

passage to a limit have been applied to the Navier–Stokes equations.
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Let us mention the arguments in [13] and the aforementioned works are by contra-
diction and hence are qualitative. It is worth noting that the result in [13], together
with a proof by contradiction based on the ‘persistence of singularities’ lemma in
[36] (specifically Lemma 2.2 in [36]), gives the following. Namely, that there exists
an F : (0,∞) → (0,∞) such that if u is a finite-energy solution to the Navier–Stokes
equations then

‖u‖L∞(0,1;L3(R3)) < ∞ ⇒ ‖u‖L∞(R3×( 12 ,1)) ≤ F
(‖u‖L∞(0,1;L3(R3))

)
. (7)

Such an argument is obtained by a compactness method and gives no explicit6 infor-
mation about F . In a remarkable recent development [47], Tao used a new approach
to provide the first explicit quantitative estimates for solutions of the Navier–Stokes
equations belonging to the critical space L∞(0, T ; L3(R3)). As a consequence of these
quantitative estimates, Tao showed in [47] that if a finite-energy solution u first blows-up
at T ∗ > 0 then for some absolute constant c > 0

lim sup
t↑T ∗

‖u(·, t)‖L3(R3)(
log log log 1

T ∗−t

)c = ∞. (8)

Since there cannot exist f such that (4)–(5) holds true, at first sight (8) may seem
somewhat surprising, though it is not conflicting with such a fact. Notice that

‖u(·, t)‖L3(R3)(
log log log 1

T ∗−t

)c

is not invariant with respect to the Navier–Stokes scaling (2) but is slightly supercritical7

due to the presence of the logarithmic denominator. Let us also mention that prior to
Tao’s paper [47], in the presence of axial symmetry, a different slightly supercritical
regularity criteria was obtained in [34].

The contribution of our present paper is to develop a new strategy for proving quantita-
tive estimates (see Propositions 2.1 and 2.2) for the Navier–Stokes equations, which then
enables us to build upon Tao’s work [47] to quantify critical norms. Our first Theorem
involves applying the backward propagation of concentration stated in Proposition 2.1
below to give a new necessary condition for solutions to the Navier–Stokes equations
to possess a Type I blow-up. In the case of a Type I blow-up at T ∗ the nonlinearity in
(2) is heuristically balanced with the diffusion. Despite this, it remains a long standing
open problem whether or not Type I blow-ups can be ruled out when M is large. Let us
now state our first theorem.

Theorem A. (rate of blow-up, Type I). There exists a universal constant M0 ∈ [1,∞)

such that for all M ≥ M0 the following holds true.
Assume that u is a mild solution to the Navier–Stokes equations on R

3 ×[0, T ∗) with
u ∈ L∞

loc([0, T ∗); L∞(R3)).
Assume in addition that (0, T ∗) is a Type I blow-up, i.e.

(1) ‖u‖L∞
t L3,∞

x (R3×(0,T ∗)) ≤ M,8

6 Throughout this paper we will sometimes use the terminology ‘effective’ bounds to describe an explicit
quantitative bound. An abstract quantitative bound will sometimes be referred to as ‘non-effective’.

7 See Sect. 1.4 for a definition.
8 Under these assumptions and by interpolation, we infer that u is a ‘smooth solution with sufficient decay’

in the sense of the definition in Sect. 1.4. This enables us to satisfy the hypothesis needed in Sects. 5–7.
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(2) u has a singular point at (x, t) = (0, T ∗). In particular u /∈ L∞
x,t (Q(0,T ∗)(r)) for all

sufficiently small r > 0.

Then the above assumptions imply that there exists SB P (M) ∈ (0, 1
4 ]9 such that for any

t ∈ ( T ∗
2 , T ∗) and

R ∈
(
2

√
T ∗ − t

SB P (M)
, eM1022√

T ∗
)

(9)

we have
∫

|x |<R

|u(x, t)|3dx ≥
log
(

R2

M802|T ∗−t |
)

exp(exp(M1025))
. (10)

This theorem is proved in Sect. 2.2 below. Notice that in Theorem A, not only is the

rate new but also the fact that the L3 norm blows up on a ball of radius O((T ∗ − t)
1
2−)

around any Type I singularity. Previously in [28] (specifically Theorem 1.3 in [28]), it
was shown that if a solution blows up (without Type I bound) then the L3 norm blows
up on certain non-explicit concentrating sets.

TheNavier–Stokes scaling symmetry (2) plays a role in considering blow-up ansatzes
having certain symmetry properties. In [27], Leray suggested the blow-up ansatz of
backward self-similar solutions10, which are invariant with respect to the Navier–Stokes
rescaling. Although the existence of non-zero backward self-similar solutions to the
Navier–Stokes equations has been ruled out under general circumstances in [32] and [48],
the existence of non-zero backward discretely self-similar solutions remains open. This
was first stated as an open problem in [49]. Here we say that u is a backward discretely
self-similar solution (λ-DSS) if there exists λ ∈ (1,∞) such that u(x, t) = λu(λx, λ2t)
for all (x, t) ∈ R

3 × (−∞, 0). As a corollary to Theorem A, we show that if there
exists a non-zero λ-DSS (having certain decay properties which we will specify), then
the localized blow-up rate (10) in Theorem A is optimal.

Corollary 1.1 Suppose u : R3 × (−∞, 0) → R
3 is a non-zero λ-DSS to the Navier–

Stokes equations such that

u ∈ C∞(R3 × (−∞, 0)) ∩ C((−∞, 0); L p(R3)), (11)

for some p ∈ [3,∞). There exists M > 1 and SB P (M) ∈ (0, 1
4 ] (see Theorem A) such

that the following holds true. Namely, for all t ∈ (−∞, 0) and

R ∈
(
2

√ −t

SB P (M)
,∞
)

we have

4π M3 log
2R2

|t | ≥
∫

|x |<R
|u(x, t)|3dx ≥

log( R2

M802|t | )
exp(exp(M1025))

. (12)

9 Note that SB P (M) = S∗(M) where S∗(M) is defined in [6, Theorem 1]. Observing p.1520 of [6], one
can infer that SB P (M) ∼ M−30. Thus, the interval in (9) makes sense.
10 See Sect. 1.4 for a definition.
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This corollary is proved in Sect. 2.2 below.
In [13], it is shown that if u is a finite-energy solution to the Navier–Stokes equations

in C∞(R3 × (0, 1)), with Schwartz initial data, then

‖u‖L∞((0,1);L3(R3)) < ∞ (13)

implies that u does not blow-up at time 1 (namely u ∈ L∞
t,loc((0, 1]; L∞(R3))). In [37],

Seregin refined the assumption (13) to

sup
n

‖u(·, t(n))‖L3(R3) < ∞ with t(n) ↑ 1. (14)

Seregin’s result implies that if u is a finite-energy solution that first loses smoothness at
T ∗ > 0 then

lim
t↑T ∗ ‖u(·, t)‖L3(R3) = ∞. (15)

This result has been further refined to other wider critical spaces and to domains other
than R3. See, for example, [1–3,7,29]. All these arguments are qualitative and achieved
by contradiction and compactness arguments. It is interesting to note that in contrast to
(7) it is not known11, even abstractly, if there exists a G : (0,∞) → (0,∞) such that if u
is a finite-energy solution of the Navier–Stokes equations belonging to C∞(R3 × (0, 1])
then

sup
n

‖u(·, t(n))‖L3(R3) < ∞ with t(n) ↑ 1 ⇒ ‖u(·, 1)‖L∞(R3) ≤ G
(
sup

n
‖u(·, t(n))‖L3(R3)

)
.

(16)

In our second main theorem, we apply Proposition 2.2 to fully quantify Seregin’s
result in [37], which generalizes Theorem 1.2 in [47]. Now let us state our second
theorem.

Theorem B. (main quantitative estimate, time slices; quantification of Seregin’s result)
There exists a universal constant M1 ∈ [1,∞) such that the following holds true. Let
M ∈ [M1,∞). We define M� by12

M� := exp
( L∗M5

2

)
, (17)

for an appropriate constant L∗ ∈ (0,∞). Let (u, p) be a finite-energy C∞(R3×(−1, 0))
solution to the Navier–Stokes equations (1) on R

3 × [−1, 0]13. Assume that there exists
t(k) ∈ [−1, 0) such that

t(k) ↑ 0 with sup
k

‖u(·, t(k))‖L3(R3) ≤ M. (18)

11 Assume for contradiction that (16) does not hold. Then we have a sequence of solutions (uk )k∈N such
that ‖u(k)(·, 1)‖L∞(R3) ↑ ∞ and, for each k, a sequence of associated time slices tk

(n)
↑ 1 such that

supn,k ‖u(k)(·, tk
(n)

)‖L3(R3) = M < ∞. The main block for the contradiction argument to go through is

that the sequence (tk
(n)

)n∈N may be different for distinct indices k.
12 In particular, M� is chosen such that the following is true. If (u, p) is a suitable finite-energy solution

(defined in Sect. 1.4 ‘Notations’) to Navier–Stokes on R
3 × [0, T ) with L3 initial data ‖u0‖L3(R3) ≤ M ,

then w := u − et�u0 satisfies ‖w(·, t)‖2
L2(R3)

+
t∫
0

∫
R3

|∇w|2dxdt ′ ≤ (M�)4t
1
2 for t ∈ (0, T ) and M larger

than a universal constant. See Lemma 3.3.
13 Notice that smoothness is needed here to have the energy inequality starting from every time tk , and not

for almost every t ′ ∈ (−1, 0), see (43) as would be the case if (u, p) was just a suitable finite-energy solution.
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Select any “well-separated” subsequence (still denoted t(k)) such that

sup
k

−t(k+1)
−t(k)

< exp(−2(M�)1223). (19)

Then for
j := �exp(exp((M�)1224))� + 1, (20)

we have the bound

‖u‖
L∞
(
R3×
( t( j+1)

4 ,0
)) ≤ C1M−23

(−t( j+1))
1
2

, (21)

for a universal constant C1 ∈ (0,∞).

This theorem is proved in Sect. 2.2 below.

Further applications. Section 4 contains three further applications of the technology
developed in the present paper: (i) Proposition 4.1, a regularity criteria based on an effec-
tive14 relative smallness condition in the Type I setting, (ii) Corollary 4.3, an effective
bound for the number of singular points in a Type I blow-up scenario, (iii) Proposi-
tion 4.4, a regularity criteria based on an effective relative smallness condition on the
L3 norm at initial and final time. Non-effective quantitative bounds of the above results
were previously obtained by compactness methods: for (ii) see [12, Theorem 2], for (iii)
see [2, Theorem 4.1 (i)].

1.1. Comparison to previous literature and novelty of our results. Theorems A and B
in this paper follow from new quantitative estimates for the Navier–Stokes equations
(Propositions 2.1 and 2.2), which build upon recent breakthrough work by Tao in [47].
In particular, Tao shows that for classical15 solutions to the Navier–Stokes equations

‖u‖L∞
t L3

x (R3×(0,1)) ≤ A ⇒ ‖u(·, t)‖L∞(R3) ≤ exp(exp(exp(AC )))t−
1
2 for 0 < t ≤ 1.

(22)
Before describing our contribution, we first find it instructive to outline Tao’s approach
in [47].

Fundamental to Tao’s approach for showing (22) is the following fact16 (see Section
6 in [47]). There exists a universal constant ε0 such that if u is a classical solution to the
Navier–Stokes equations with

‖u‖L∞
t L3

x (R3×(0,1)) ≤ A (23)

and N−1‖PN u‖L∞
x,t (R

3×( 12 ,1)) < ε0 for all N ≥ N∗, (24)

then ‖u‖L∞
x,t (R

3×( 78 ,1)) can be estimated explicitly in terms of A and N∗. Related obser-
vations were made previously in [11], but in a slightly different context and without the
bounds explicitly stated.

With this perspective, Tao’s aim is the following:

14 See footnote 6 for the definition of ‘effective’ bounds.
15 In [47], these are solutions that are smooth in R

3 × (0, 1) and such that all derivatives of u and p lie in
L∞

t L2
x (R3 × (0, 1)).

16 Let ϕ ∈ C∞
0 (B0(1))with ϕ ≡ 1 on B0(

1
2 ). The Littlewood-Paley projection PN is defined for any N > 0

by P̂N f (ξ) :=
(
ϕ(

ξ
N ) − ϕ(

2ξ
N )
)

f̂ (ξ).
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Tao’s goal: Under the scale-invariant assumption (23), if (24) fails for ε0 = A−C

and N = N0, what is an upper bound for N0?

In [47] (Theorem5.1 in [47]), it is shown that N0 � exp exp exp(AC ), which implies (22)
by means of the quantitative regularity mechanism (24) with N∗ = 2N0. We emphasize
that since the regularity mechanism (24) is global: all quantitative estimates obtained in
this way are in terms of globally defined quantities.

The strategy in [47] for showing Tao’s goal with N0 � exp(exp(exp(AC ))) can be
summarized in four steps.We refer the reader to the Introduction in [47] for more details.

1) Frequency bubbles of concentration (Proposition 3.2 in [47]).
Suppose ‖u‖L∞

t L3
x (R3×(t0−T,t0)) ≤ A is such that

N−1
0 |PN0u(x0, t0)| > A−C . (25)

Then for all n ∈ N there exists Nn > 0, (xn, tn) ∈ R
3 × (t0 − T, tn−1) such that

N−1
n |PNn u(xn, tn)| > A−C (26)

with
xn = x0 + O((t0 − tn)

1
2 ), Nn ∼ |t0 − tn|− 1

2 . (27)

2) Localized lower bounds on vorticity (p. 37 in [47]). For certain scales S > 0 and
an ‘epoch of regularity’ IS ⊂ [t0 − S, t0 − A−α S], where the solution enjoys ‘good’
quantitative estimates on R

3 × IS (in terms of A and S), Tao shows the following: the
previous step and ‖u‖L∞

t L3
x (R3×[t0−T,t0]) ≤ A imply

∫

Bx0 (Aβ S
1
2 )

|ω(x, t)|2dx ≥ A−γ S− 1
2 for all t ∈ IS . (28)

Here, α, β and γ are positive universal constants.

3) Lower bound on the L3 norm at the final moment in time t0 (p.37-40 in [47]).Using
quantitative versions of the Carleman inequalities in [13] (Propositions 4.2–4.3 in [47]),
Tao shows that the lower bounds in step 2 can be transferred to a lower bound on the L3

norm of u at the final moment of time t0. The applicability of the Carleman inequalities
to the vorticity equation requires the ‘epochs of regularity’ in the previous step and the
existence of ‘good spatial annuli’ where the solution enjoys good quantitative estimates.
Specifically, Tao shows that step 2 on IS implies

∫

RS≤|x−x0|≤R′
S

|u(x, t0)|3dx ≥ exp(− exp(AC )). (29)

4) Conclusion: summing scales to bound T N 2
0 . Letting S vary for certain permissible

S, the annuli in (29) become disjoint. The sum of (29) over such disjoint permissible
annuli is bounded above by ‖u(·, t0)‖L3(R3) and the lower bound due to the summing of
scales is exp(− exp(AC )) log(T N 2

0 ). This gives the desired bound on N0, namely

T N 2
0 � exp(exp(exp(AC ))).
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Let us emphasize once more that the approach in [47] produces quantitative estimates
involving globally defined quantities, since the quantitative regularity mechanism (24)
is inherently global. We would also like to emphasize that the fact that ‖u‖L∞

t L3
x

< A is
crucial for showing steps 1-2 in the above strategy.

The goal of the present paper is to develop a new robust strategy for obtaining new
quantitative estimates of the Navier–Stokes equations, which are then applied to obtain
Theorems A and B. The main novelty (which we explain in more detail below) is that
our strategy allows us to obtain local quantitative estimates and even applies to certain
situations where we are outside the regime of quantitative scale-invariant controls. For
simplicity, we will outline the strategy for the case when ‖u‖L∞

t L3,∞
x (R3×(t0−T,t0))

≤ M ,
before remarking on this strategy for cases without such a quantitative scale-invariant
control (Theorem B).

Fundamental to our strategy is the use of local-in-space smoothing near the initial
time for the Navier–Stokes equations pioneered by Jia and Šverák in [20] (see also [6] for
extensions to critical cases). In particular, the result of [20], together with rescaling argu-
ments from [6], implies the following. If u : R3×[t0−T, t0] → R

3 is a smooth solution
with sufficient decay17 of the Navier–Stokes equations and ‖u‖L∞

t L3,∞
x (R3×(t0−T,t0))

≤
M , then ∫

Bx0 (4
√

S�(M)
−1

(t0−t∗0 )
1
2 )

|ω(x, t∗0 )|2dx ≤ M2
√

S�(M)

(t0 − t∗0 )
1
2

(30)

for a time t∗0 ∈ (t0 − T, t0) implies that

‖u‖
L∞

x,t

(
Bx0 (

1
2

√
S�(M)

−1
(t0−t∗0 )

1
2 )×(

3
4 (t0−t∗0 )+t∗0 ,t0)

)
(31)

can be estimated explicitly in terms of M and t0− t∗0 . Here, S�(M) = C M−100 is defined
in (76).

With this perspective, the aim of our strategy is the following

Our goal: If (30) fails for t∗0 = t ′0, what is a lower bound for t0 − t ′0?
This is the main aim of Proposition 2.1. Taking s0 such that t0 − t ′0 ≥ 2T s0, we can then
apply (30)–(31) with t∗0 = t0 − T s0. One might think of the main goal of our strategy
as a physical space analogy to Tao’s goal with

N0 ∼ |t0 − t ′0|−
1
2 .

In contrast to (24), the regularity mechanism (30)–(31) produces quantitative estimates
that are in terms of locally defined quantities, which is crucial for obtaining the localized
results as in Theorem A. Our strategy for obtaining a lower bound of t0 − t ′0 (see
Proposition 2.1) can be summarized in three steps; see also Fig. 1.

1) Backward propagation of vorticity concentration (Lemma 3.1).
Let ‖u‖L∞

t L3,∞
x (R3×(t0−T,t0))

≤ M . Suppose t ′0 ∈ (t0 − T, t0) is not too close to t0 − T
and is such that

∫

Bx0 (4
√

S�(M)
−1

(t0−t ′0)
1
2 )

|ω(x, t ′0)|2dx >
M2
√

S�(M)

(t0 − t ′0)
1
2

. (32)

17 In this paper, ‘smooth solution with sufficient decay’ always denotes the notion described in Sect. 1.4.
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T ∗

t0

t′′0

(0, T ∗) singular point

t′0

box of quantitative control of L∞ norm

initial concentration of enstrophy

box of

paraboloid of concentration of L3 and L∞ norms

zone of backward concentration of enstrophy

Fig. 1. Zones of concentration and quantitative regularity

We show that for all t ′′0 ∈ (t0 − T, t ′0), such that t0 − t ′′0 is sufficiently large compared to
t0 − t ′0 (in other words t ′′0 is well-separated from t ′0), we have

∫

Bx0 (4
√

S�(M)
−1

(t0−t ′′0 )
1
2 )

|ω(x, t ′′0 )|2dx >
M2
√

S�(M)

(t0 − t ′′0 )
1
2

. (33)

We refer the reader to Lemma 3.1 for precise statements for the rescaled/translated
situation R

3 × (t0 − T, t0) = R
3 × (−1, 0).

2) Lower bound on localized L3 norm at the final moment in time t0. Using the
previous step, together with the same arguments as [47] involving quantitative Carleman
inequalities, we show that for certain permissible annuli that

∫

R≤|x−x0|≤R′
|u(x, t0)|3dx ≥ exp(− exp(MC )). (34)

We wish to mention that the role of the Type I bound is to show the solution u obeys
good quantitative estimates in certain space-time regions, which is needed to apply the
Carleman inequalities to the vorticity equation.

3) Conclusion: summing scales to bound t0 − t ′0 from below. Summing (34) over
all permissible disjoint annuli finally gives us the desired lower bound for t0 − t ′0 in
Proposition 2.1. We note that the localized L3 norm of u at time t0 plays a distinct role
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to that of Type I condition described in the previous step. Its sole purpose is to bound the
number of permissible disjoint annuli that can be summed, which in turn gives the lower
bound of t0 − t ′0. Together with the assumed global Type I assumption, this is essentially
why the lower bound in Theorem A on the localized L3 norm near a Type I singularity
is a single logarithm and holds at pointwise times.

Although the above relates to the case of Proposition 2.1 and Theorem A where

‖u‖L∞
t L3,∞

x (R3×(t0−T,t0))
≤ M,

we stress that the above strategy (with certain adjustments) is robust enough to apply to
certain settings without a quantitative Type I control (Theorem B).

Recall thatTheoremB is concernedwith quantitative estimates onu : R3×(−1, 0) →
R
3, where we assume

t(k) ↑ 0 with sup
k

‖u(·, t(k))‖L3(R3) ≤ M. (35)

First we remark that the local quantitative regularity statement (30)–(31) remains true
(with t∗0 replaced by tk) if u is a C∞(R3 × (−1, 0]) finite-energy solution and the Type
I condition is replaced by the weaker assumption that ‖u(·, t(k))‖L3(R3) ≤ M . Our goal
then becomes the following

Our second goal: If (30) fails for t∗0 = t j (with t0 = 0 and T = 1), what is an upper
bound for j?

In this setting ‘1) Backward propagation of vorticity concentration’ still remains
valid if a sufficiently well-separated subsequence of t(k) is taken (see Lemma 3.3 and
Proposition 2.2). To show thiswe use energy estimates in [40] for solutions to theNavier–
Stokes equations with L3(R3) initial data. Such estimates are also central to gain good
quantitative control of the solution in certain space-time regions, which are required for
applying the quantitative Carleman inequalities. The price one pays in this setting (when
compared to the estimates in [47]), is a gain of an additional exponential in the estimates.
The reason is the control on the energy of u(·, t) − et�u0 ( with u0 ∈ L3(R3)) requires
the use of Gronwall’s lemma.

In the strategy in [47] the lower bound on vorticity (28), which is needed for getting
a lower bound on the localized L3 norm at t0 via quantitative Carleman inequalities, is
obtained from the frequency bubbles of concentration. In order for this transfer of scale-
invariant information to take place, it appears essential that the solution has a quantitative
scale-invariant control such as ‖u‖L∞

t L3
x

≤ A. In our strategy, we instead work directly
with quantities involving vorticity (similar to (28)), which are tailored for the immediate
use of quantitative Carleman inequalities. In this way, we crucially avoid any need to
transfer scale-invariant information, giving our strategy a certain degree of robustness.

1.2. Final Remarks and Comments. We give some heuristics about the quantitative
estimates of the form

‖u‖L∞(R3×( 12 ,1)) ≤ G(‖u‖X ) (36)

that one can expect for the Navier–Stokes equations, when a finite-energy solution u
solution belongs to certain normed spaces X ⊂ L1((0, 1); Y ), where Y is a Banach
space contained in S ′(R3).
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1.2.1. Subcritical case Consider a space X ⊂ S ′(R3 × (0, 1)) whose norm ‖ · ‖X is
subcritical18 (for example L5+δ

x,t (R3 × (0, 1)) with δ > 0). If u is a finite-energy solution
with a finite subcritical norm on R

3 × (0, 1), then it is known that u must belong to
C∞(R3 × (0, 1]). See, for example, [24]. Moreover, one typically has a quantitative
estimate of the form (36) with

G(x) = cxβ with β > 0.

To demonstrate this, consider u belong to L5+δ
x,t (R3×(0, 1)). An application of Caffarelli,

Kohn and Nirenberg’s result [9] (see also Proposition 6.1) gives that (36) holds true with

G(x) ∼ x
δ+5
δ . Such a quantitative estimate is invariant with respect to the Navier–Stokes

scaling (2). In this context, one could also gain similar quantitative estimates based on
parabolic bootstrap arguments applied to the vorticity equation

∂tω − �ω = ω · ∇u − u · ∇ω, ω = ∇ × u (37)

as was done by Serrin in [42].

1.2.2. Critical case In the subcritical norm case, we saw that seeking estimates of the
form (36) that are invariant with respect to the scaling (2), gives a suitable candidate for
G that can be realised. The case when the norm ‖ · ‖X is critical is more subtle, since a
scaling argument does not provide a suitable candidate for G. We first mention that the
case of sufficiently small critical norms, for example

‖u‖L5(R3×(0,1)) < ε0, (38)

is essentially of a similar category to the subcritical case (though a scaling argument is
not applicable). Indeed, a similar argument outlined as before (based on [9], see also
Proposition 6.1) gives that in this case we have (36) with G(x) ∼ x . This is consistent
with the fact that solutions with small scale-invariant norms exhibit similar behaviour
to the linear system and hence are typically expected to satisfy linear estimates.
For obtaining quantitative estimates of the form (36) when the scale-invariant norm is
large, it is less clear what the candidate for G might be. This seems to be the case even
for large global scale-invariant norms that exhibit smallness at small local scales19 (for
example L5(R3 × (0, 1))). Such local smallness properties have been utilized to prove
qualitative regularity by essentially linear methods. See [45], for example.
For the case of a smooth finite-energy solution u having finite scale-invariant L5(R3 ×
(0, 1)) norm, one way to obtain quantitative estimates20 is to consider the vorticity
equation (37) with initial vorticity ω0 ∈ L2(R3). Performing an energy estimate yields
for t ∈ [0, 1]

‖ω(·, t)‖2L2(R3)
+ 2

t∫

0

∫

R3

|∇ω|2dxdt ′ = ‖ω0‖2L2(R3)
+ 2

t∫

0

∫

R3

(ω · ∇u) · ωdxdt ′, (39)

18 See Sect. 1.4 for a definition.
19 In particular, u ∈ L5(R3 × (0, 1)) ⇒ limr↓0 ‖u‖L5(B0(r)×(1−r2,1)) = 0.
20 For very similar computations, see (for example) Chapter 11 of [26] and references therein.



728 T. Barker and C. Prange

where the second term in right-hand side is due to the vortex stretching term ω · ∇u in
(37). For the case that u ∈ L5(R3 × (0, 1)), application of Hölder’s inequality, Sobolev
embedding theorems and Young’s inequality lead to

‖ω(·, t)‖2L2(R3)
+

t∫

0

∫

R3

|∇ω|2dxdt ′ ≤ ‖ω0‖2L2(R3)
+ C

t∫

0

‖u(·, t ′)‖5L5(R3)
‖ω(·, t ′)‖2L2(R3)

dt ′. (40)

Gronwall’s lemma, followed by arguments similar to the subcritical case, yields

‖u‖L∞(R3×( 12 ,1)) � ‖ω‖2L∞(0,1;L2(R3))
≤ ‖ω0‖2L2(R3)

exp(‖u‖5L5(R3×(0,1))). (41)

Though this is not exactly of the form (36), a slightly different argument gives that for any
finite-energy solution u in L5(R3×(0, 1))we get that (36) holdswithG(x) ∼ exp(Cx5).
In particular, this can be achieved using Lq energy estimates in [31], the pigeonhole
principle and reasoning in the previous subsection.

The above argument (39)–(41) shows that being able to substantially improve upon
G(x) ∼ exp(Cx5) would most likely require the utilization of a nonlinear mechanism
that reduces the influence of the vortex stretching term ω ·∇u in (37). It seems plausible
that the discovery of such amechanismwould have implications for the regularity theory
of the Navier–Stokes equations.

1.3. Outline of the paper. In each of the Sects. 2–7, we distinguish between caseswhere:
(i) one assumes a Type I control on the solution and (ii) one assumes a control on the
velocity field on time slices only.

In Sect. 2, we state our main quantitative estimates (Propositions 2.1 and 2.2) and
we demonstrate how these statements imply the main results of this paper: Theorem A,
Corollary 1.1 and Theorem B. Section 3 is devoted to the proof of Propositions 2.1
and 2.2. Section 4 contains three further applications of the technology developed in
the present paper, in particular Corollary 4.3 concerning a quantitative bound for the
number of singularities in a Type I blow-up scenario. In Sect. 5, we quantify Jia and
Šverák’s results regarding local-in-space short-time smoothing, which is a main tool for
proving the quantitative estimates in Sect. 3. The main result in Sect. 5 is Theorem 5.1.
In Sect. 6, we give a new proof of Tao’s result that solutions possess ‘quantitative annuli
of regularity’, which is required for proving our main propositions in Sect. 3. The central
results in Sect. 6 are Lemmas 6.6 and 6.8. Section 7 is concerned with the utilization of
arguments from the papers of Leray and Tao to show existence of quantitative epochs of
regularity (Lemmas 7.3 and 7.5). In “Appendix A” we recall known results about mild
solutions and local energy solutions, and we give pressure formulas. In “Appendix B”,
we recall the quantitative Carleman inequalities proven by Tao.

At this point we find it useful to give the high-level structure of the proofs of the
main results, Theorems A and B, stated in the Introduction. These results are proved
in Sect. 2.2 so as to emphasize the link stated in Sect. 2.1 between concentration and
quantitative regularity estimates.

The proof of Theorem A relies on the combination (as is showed in Fig. 1) of the
quantitative bound in the Type I case (Proposition 2.1) on the one hand, with concen-
tration estimates near a potential singularity for the local L3 norm ( [6]) and for the
L∞ norm (Corollary 5.3) on the other hand. The proof of Theorem B directly follows
from the quantitative bound in the time slice case (Proposition 2.2) and local-in-space
smoothing results (Theorem 5.1).
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Hence, the core of the paper are the proofs of the main quantitative estimates, Propo-
sition 2.1 and Proposition 2.2. Their proofs in Sect. 3 rely on:

• backward propagation of concentration stated inLemma3.1 (Type I) andLemma3.3
(time slice) via quantitative local-in-space short-time smoothing stated in Theo-
rem 5.1 and Remark 5.2,

• large-scale propagation of concentration via quantitative unique continuation in
epochs of regularity,

• forwardpropagationof concentrationvia quantitative backwarduniqueness in annuli
of regularity

• and summing of scales.

The auxiliary tools of quantitative annuli of regularity are proved in Sect. 6 and of
quantitative epochs of regularity are proved in Sect. 7. The Carleman inequalities for
quantitative unique continuation and quantitative backward uniqueness are taken directly
from Tao’s paper [47] and stated in “Appendix B”.

1.4. Notations. In order to make it easier to locate the statements of the results, we have
adopted the following convention. The two main theorems of the paper are Theorems A
and Theorem B. They are located in the Introduction. The other theorems, propositions,
corollaries and remarks are numbered as ‘a.b’, where a is the section number and b the
ordinal number of the statement in that section.

1.4.1. Universal constants For universal constants in the statements of propositions and
lemmas associated to the Type I case (specifically Proposition 2.1 and Lemma 3.1), we
adopt the convention of a superscript �. For universal constants in the statements of
propositions and lemmas associated to the time slices case (specifically Proposition 2.2
and Lemma 3.3), we adopt the convention of a superscript �.

In Lemmas 3.1, 3.3 and Sect. 5, we track the numerical constants arising. Elsewhere
in this paper, we adopt the convention that C denotes a positive universal constant which
may vary from line to line.

We use the notation X � Y , which means that there exists a positive universal
constant C such that X ≤ CY.

In several places in this paper (notably the Introduction, Sect. 3 and “Appendix B”)
the notation C is used to denote a positive universal constant and −C denotes a negative
universal constant.

Whenever we refer to a quantity (M for example) being ‘sufficiently large’, we
understand this as M being larger than some universal constant that can (in principle)
be specified.

1.4.2. Vectors and domains For a vector a, ai denotes the i th component of a.
For (x, t) ∈ R

4 and r > 0 we denote Bx (r) := {y ∈ R
3 : |y − x | < r} and

Q(x,t)(r) := Br (x)× (t − r2, t). Here, | · | denotes the Euclidean metric. As is usual, for
a, b ∈ R

3, (a⊗b)αβ = aαbβ , and for A, B ∈ M3(R), A : B = Aαβ Bαβ . Here and in the
whole paper we use Einstein’s convention on repeated indices. For F : � ⊆ R

3 → R
3,

we define ∇F ∈ M3(R) by (∇F(x))αβ := ∂β Fα .

Let us stress that in Sect. 5 only we use cubes instead of balls: Bx (r) = x +(−r, r)3.
This is for computational convenience, since we track numerical constants in Sect. 5.We
emphasize that the results in Sect. 5 hold for spherical balls too, with certain universal
constants adjusted.
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1.4.3. Blow-up point, criticality We say that a solution u to the Navier–Stokes equations
first blows-up at T ∗ > 0 if

u ∈ L∞
loc((0, T ∗), L∞(R3))

but

u /∈ L∞
loc((0, T ∗]; L∞(R3)).

We say (X, ‖ · ‖X ) ⊂ S ′(R3) is critical if u0 ∈ X ⇒ u0λ(x) := λu0(λx) ∈ X with
X norm equal to that of u0.

A quantity F(u, p) ∈ [0,∞) is said to be subcritical if, for the rescaling (2), there
existsα > 0 such that F(uλ, pλ) = λα F(u, p), critical if we have F(uλ, pλ) = F(u, p)

and supercritical if we have F(uλ, pλ) = λ−β F(u, p) for some β > 0.

1.4.4. Mild, suitable and finite-energy solutions to the Navier–Stokes equations Through-
out this paper, we refer to u : R3 ×[0, T ] → R

3 as a mild solution of the Navier–Stokes
equations (1) if u ∈ ∩t<T L2((0, t1); L2

uloc(R
3)) and if it satisfies the Duhamel formula:

u(x, t) = et�u(·, 0) +
t∫

0

P∂i e
(t−s)�ui (·, s)u j (·, s)ds,

for all t ∈ [0, T ]. Here, et� is the heat semigroup, P is the projection onto divergence-
free vector fields. A mild solution on [0, T ∗) is a function that is a mild solution on
[0, T ] for any T ∈ (0, T ∗).

We say that u is a smooth solution with sufficient decay on the interval [0, T ∗] if u
is smooth on the epoch (0, T ) for any T < T ∗ and belongs to L∞((0, T ); L4(R3)) ∩
L∞((0, T ); L5(R3)). Furthermore usingLemma2.4 in [19], it gives thatu coincideswith
all local energy solutions (we refer to the final paragraph of Sect. 1.4.4 for a definition),
with initial data u(·, s), onR3 × (s, T ∗) for any 0 < s < T ∗. The framework of ‘smooth
solutions with sufficient decay’ is needed to apply Theorem A to the setting of Corollary
1.1, where the solution is not of finite energy. A mild solution with Schwartz class initial
data andmaximal time of existence T ∗ will be such a solution, and so TheoremA applies
to that setting. Notice that smoothness is needed here in order to get estimate (10) for
all t in the ad hoc interval.

We say u is a finite-energy solution or a Leray-Hopf solution to the Navier–Stokes
equations on (0, T ) if u ∈ Cw([0, T ]; L2

σ (R3)) ∩ L2(0, T ; Ḣ1(R3)) and if it satisfies
the global energy inequality

‖u(·, t)‖2L2(R3)
+ 2

t∫

0

∫

R3

|∇u|2dxdt ′ ≤ ‖u(·, 0)‖2L2(R3)
.

Let � ⊆ R
3. We say that (u, p) is a suitable weak solution to the Navier–Stokes

equations (1) in � × (T1, T ) if it fulfills the properties described in [38] (Definition 6.1
p.133 in [38]).

We say that (u, p) is a suitable finite-energy solution to the Navier–Stokes equations
on R3 × (T1, T ) if it is a solution to (1) in the sense of distributions and

• u ∈ Cw([T1, T ]; L2
σ (R3)) ∩ L2

t (T1, T ; Ḣ1(R3)),
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• it satisfies the global energy inequality

‖u(·, t)‖2L2 + 2

t∫

T1

∫

R3

|∇u|2dyds ≤ ‖u(·, T1)‖2L2 for all t ∈ [T1, T ], (42)

• (u, p) is a suitable weak solution on B1(x) × (T1, T ) for all x ∈ R
3.

It is known, see for instance [2], that the above defining properties of a suitable finite-
energy solution imply that there exists � ⊂ [T1, T ] with full Lebesgue measure |�| =
T − T1 such that

‖u(·, t)‖2L2 + 2

t∫

t ′

∫

R3

|∇u|2dyds ≤ ‖u(·, t ′)‖2L2 and ‖∇u(·, t ′)‖L2 < ∞,

for all t ∈ [t ′, T ] and t ′ ∈ �. (43)

Finally, let us give the definition of a local energy solution to the Navier–Stokes equa-
tions. Notice that these solutions are sometimes described in the literature as ‘Lemarié-
Rieusset solutions’ or ‘Leray solutions’. They were conceived by Lemarié-Rieusset in
[25]. In our paper, whenever we refer to ‘local energy solutions’, we mean in the sense
of Definition 2.1 in [19]. Notice, in particular, that suitable finite-energy solutions are
local energy solutions.

1.4.5. Lorentz spaces For a measurable subset � ⊆ R
d and a measurable function

f : � → R we define

d f,�(α) := μ({x ∈ � : | f (x)| > α}), (44)

where μ denotes the Lebesgue measure. The Lorentz space L p,q(�), with p ∈ [1,∞),
q ∈ [1,∞], is the set of all measurable functions g on � such that the quasinorm
‖g‖L p,q (�) is finite. The quasinorm is defined by

‖g‖L p,q (�) :=
(

p

∞∫

0

αqdg,�(α)
q
p

dα

α

) 1
q
, (45)

‖g‖L p,∞(�) := sup
α>0

αdg,�(α)
1
p . (46)

Notice that for p ∈ (1,∞) and q ∈ [1,∞] there exists a norm, which is equivalent to
the quasinorm defined above, for which L p,q(�) is a Banach space. For p ∈ [1,∞) and
1 ≤ q1 < q2 ≤ ∞, we have the following continuous embeddings

L p,q1(�) ↪→ L p,q2(�) (47)

and the inclusion is strict.
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2. Main Quantitative Estimates

2.1. Quantitative estimates in the Type I and time slices case.

Proposition 2.1 (main quantitative estimate, Type I). There exists a universal constant
M2 ∈ [1,∞) such that the following holds. Let M ∈ [M2,∞), t0 ∈ R and T ∈ (0,∞).
There exists S�(M) ∈ (0, 1

4 ], such that the following holds. Let (u, p) be a smooth
solution with sufficient decay21 to the Navier–Stokes equations (1) in I = [t0 − T, t0],
which satisfies

‖u‖L∞
t L3,∞

x (R3×(t0−T,t0))
≤ M. (48)

and for fixed λ ∈ (0, exp(M1023))

∫

B0(λT
1
2 )

|u(x, t0)|3dx ≥ 3

2
exp(− exp(M1024)). (49)

Then for

−sλ := C�λ2

16
M−749 exp

{
− 4M1023 exp(exp(M1024))

∫

B0(λT
1
2 )

|u(x, t0)|3 dx

}
, (50)

we have the bound
∫

B0(4
√

S�
−1

(−sλT )
1
2 )

|ω(x, t0 + sλT )|2 dx ≤ M2(−sλT )−
1
2

√
S� (51)

and the bound

‖u‖
L∞
(

B0

(
C2T

1
2 M50(−sλ)

1
2
)
×
( sλT

4 +t0,t0
)) ≤ C1M−23

(−sλ)
1
2 T

1
2

, (52)

for universal constants C1, C2 ∈ (0,∞). Here C� and S�(M) are the constants given
by Lemma 3.1. Recall that we have S�(M) = C M−100.

Figure 1 illustrates Proposition 2.1.

Proposition 2.2 (main quantitative estimate, time slices). There exists a universal con-
stant M1 ∈ [1,∞) such that the following holds. Let M ∈ [M1,∞). We define M�

by (17). Let (u, p) be a C∞(R3 × (−1, 0)) finite-energy solution to the Navier–Stokes
equations (1) in I = [−1, 0]. Assume that there exists t(k) ∈ [−1, 0) such that

t(k) ↑ 0 with sup
k

‖u(·, t(k))‖L3(R3) ≤ M. (53)

Select any “well-separated” subsequence (still denoted t(k)) such that

sup
k

−t(k+1)
−t(k)

< exp
(
−2(M�)1223

)
. (54)

21 See Sect. 1.4. Notice that by this definition u is bounded up to t0.
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For this well-separated subsequence, assume that there exists j +1 such that the vorticity
concentrates at time t( j+1) in the following sense

∫

B0(4
√

S�
−1

(−t( j+1))
1
2 )

|ω(x, t( j+1))|2 dx > M2(−t( j+1))
− 1

2

√
S�, (55)

where S�(M) ∈ (0, 1
4 ] is as in Lemma 3.3. Then, we have the following upper bound on

j:
j ≤ exp(exp((M�)1224)) (56)

Here S�(M) is the constant given by Lemma 3.3.

2.2. Proofs of the main results. In this section we prove the main results stated in the
Introduction. We refer to the end of Sect. 1.3 for a high-level explanation of the structure
of the proofs.

Proof of Theorem A. Take M ≥ max(M2, M6) ≥ 1. Here, M2 being from Proposi-
tion 2.1 and M6 being fromCorollary 5.3. Bymeans of a scaling argument, it is sufficient
to prove Theorem A with T ∗ = 1. In particular, we fix

t ∈
(1
2
, 1
)

and (57)

R ∈
(
2

√
1 − t

SB P (M)
, eM1022

)
(58)

and assume the contrapositive of (10) with T ∗ = 1. Namely, we assume

∫

|x |<R

|u(x, t)|3dx <
log
(

R2

M802|1−t |
)

exp(exp(M1025))
. (59)

First we note that [6] (specifically Theorem 1 in [6]; see also [21, Corollary 1.2]),
together with assumptions (1)–(2) in the statement of Theorem A (with T ∗ = 1) imply
that there exist SB P (M) and γuniv > 0 such that

∫

B0

(
2
√

1−s
SB P (M)

)
|u(x, s)|3dx ≥ γ 3

univ for all s ∈ (0, 1). (60)

Next define λ := R√
t
. Then by (57)–(58), we see that

λ ∈ (0,
√
2eM1022

). (61)

Furthermore, (60) implies that for M sufficiently large, we have
∫

B0(t
1
2 λ)

|u(x, t)|3dx ≥ 3
2 exp(− exp(M1024)). (62)
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Considering u on R
3 × [0, t] and observing Proposition 2.1, we see that (62) implies

that the assumption (49) is satisfied with T := t and t0 := t . Furthermore, we have
that for M sufficiently large λ ∈ (0, exp(M1023)). Hence, we can apply Proposition 2.1.
Namely by (52) we see that for

−sλ := C�λ2

16
M−749 exp

{
− 4M1023 exp(exp(M1024))

∫

B0(R)

|u(x, t)|3 dx

}
,

we have the bound

‖u(·, t)‖
L∞
(

B0

(
C2t

1
2 M50(−sλ)

1
2
)) ≤ C1M−23

(−sλ)
1
2 t

1
2

. (63)

Using that (0, 1) is a singular point of u, the Type I bound on u and Corollary 5.3, we
see that there exists a universal constant Cuniv such that

‖u(·, t)‖
L∞
(

B0

(
2M50
Cuniv

(1−t)
1
2
)) >

Cuniv M−49

(1 − t)
1
2

. (64)

The assumption (59) implies that for M sufficiently large, we have the following lower
bound for −sλ:

−sλ ≥ C�

16
M53|1 − t |. (65)

Now, (63) and (65) (together with the fact that t > 1
2 ) imply that

‖u(·, t)‖
L∞
(

B0

(
C22

− 1
2 M50( C�

16 M53|1−t |) 12
)) ≤ 2

1
2 C1M−23

( 16

C�M53|1 − t |
) 1

2
.

For M sufficiently large, this contradicts (64). Hence, (59) cannot hold. ��
Proof of Corollary 1.1. From [10] (specificallyTheorem1.1 in [10]), there exists M > 1
such that

|u(x, t)| ≤ M

|x | + √−t
for all (x, t) ∈ (R3 × (−∞, 0]) \ {(0, 0)}. (66)

Integration of this then immediately gives the upper bound of (12), which in fact holds
true for t ∈ (−1, 0). Next, note that (66) implies

‖u‖L∞
t L3,∞

x (R3×(−∞,0)) ≤ M. (67)

We also remark that since u is non-zero and λ-DSS we must have

u /∈ L∞
x,t (Q(0,0)(r)) for all sufficiently small r. (68)

Indeed, suppose for contradiction that u ∈ L∞
x,t (Q(0,0)(r)) then for any (x, t) ∈ R

3 ×
(−∞, 0) we have (λ−k x, λ−2k t) ∈ Q(0,0)(r) for all sufficiently large k. Using that u is
λ-DSS we have

|u(x, t)| = |λ−ku(λ−k x, λ−2k t)| ≤ λ−k‖u‖L∞(Q(0,0)(r)) ↓ 0.
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From this point onward we fix

t ∈ (−∞, 0) and R ∈
(
2

√ −t

SB P (M)
,∞
)
.

Here, SB P (M) is as in Theorem A. Our aim is to show that with these choices (66)–(68)
imply (12). First, given the fixed choices of R and t above, we take any large T ∗ such
that

T ∗ > −2t (69)

and

R ∈
(
2

√ −t

SB P (M)
, eM1022√

T ∗
)
. (70)

Let us now consider the translated solution in time uT ∗ : R3 × [0, T ∗] → R
3 defined

by

uT ∗(x, s) := u(x, s − T ∗).

Then (67)–(68) imply that

‖uT ∗‖L∞
t L3,∞

x (R3×(0,T ∗)) ≤ M (71)

and
uT ∗ /∈ L∞

x,t (Q(0,T ∗)(r)) for all sufficiently small r. (72)

Furthermore, (69)–(70) imply that for s := T ∗ + t we have

s ∈
(T ∗

2
, T ∗) and

R ∈
(
2

√
T ∗ − s

SB P (M)
, eM1022√

T ∗
)

.

The above allows us to apply Theorem A to uT ∗ to obtain

∫

|x |<R

|uT ∗(x, s)|3dx ≥
log
(

R2

M802|T ∗−s|
)

exp(exp(M1025))
.

This then reduces to the desired lower bound in (12). The upper bound in (12) trivially
follows from directly integrating (66). ��
Proof of Theorem B. ApplyingProposition2.2we see that for j = �exp(exp((M�)1224))�+
1 we have the contrapositive of (55). In particular,

∫

B0(4
√

S�
−1

(−t( j+1))
1
2 )

|ω(x, t( j+1))|2 dx < M2(−t( j+1))
− 1

2

√
S�.

Almost identical arguments to those utilized in the proof of Lemma 3.1, except using
the bound (177) instead of (178), give

‖u‖
L∞
(

B0

(
C2M50(−t( j+1))

1
2
)
×
( t( j+1)

4 ,0
)) ≤ C1M−23

(−t( j+1))
1
2

.
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Since all estimates are independent of the spatial point where (55) occurs, we conclude
that

‖u‖
L∞
(
R3×
( t( j+1)

4 ,0
)) ≤ C1M−23

(−t( j+1))
1
2

.

This concludes the proof of the theorem. ��

3. Proofs of the Main Quantitative Estimates

3.1. Backward propagation of concentration. Here we state two pivotal results. These
are concerned with backward propagation of concentration in the Type I case and in the
time slices case. Figure 1 illustrates Lemma 3.1 below.

Lemma 3.1 (backward propagation of concentration, Type I). There exist two universal
constants C� ∈ (0, 1

16 ), M3 ∈ [1,∞) such that the following holds. For all M ∈
[M3,∞), there exists S�(M) ∈ (0, 1

4 ], such that the following holds. Let (u, p) be a
‘smooth solution with sufficient decay’22 of the Navier–Stokes equations (1) in I =
[−1, 0] satisfying the Type I bound (48). Assume that there exists t ′0 ∈ [−1, 0) such that
t ′0 is not too close to −1 in the sense

0 < −t ′0 < C�M−548

and such that the vorticity concentrates at time t ′0 in the following sense

∫

B0(4
√

S�
−1

(−t ′0)
1
2 )

|ω(x, t ′0)|2 dx > M2(−t ′0)−
1
2

√
S�. (73)

Then, the vorticity concentrates in the following sense
∫

B0(4
√

S�
−1

(−t ′′0 )
1
2 )

|ω(x, t ′′0 )|2 dx > M2(−t ′′0 )−
1
2

√
S� (74)

at any well-separated backward time t ′′0 ∈ [−1, t ′0] such that

−t ′0
−t ′′0

< C�M−548. (75)

Here S�(M) is defined explicitly by (76) and we have S�(M) = C M−100.

Proof of Lemma 3.1. The proof is by contraposition. It relies on Theorem 5.1 below
about local-in-space short-time smoothing. We define S� ∈ (0, 1

4 ] in the following way:

S� = S�(M) := S∗
(
Cweak M, 32CSob(1 + Cellip)Cweak M

)
, (76)

22 See Sect. 1.4.
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where S∗ is the function defined in Theorem 5.1 (see also the formula (209)), CSob ∈
(0,∞) is the best constant in the Sobolev embedding H1(B0(2)) ⊂ L6(B0(2)) and
Cellip ∈ (0,∞) is the best constant in the estimate

‖∇U (·, 0)‖L2(B0(2)) ≤ Cellip
(‖�(·, 0)‖L2(B0(4)) + ‖U (·, 0)‖L2(B0(4))

)
(77)

for weak solutions to

−�U (·, 0) = ∇ × �(·, 0) in B0(4).

Furthermore, Cweak ∈ [1,∞) is a universal constant from the embedding L3,∞(R3) ⊂
L2

uloc(R
3). See, for example, Lemma 6.2 in Bradshaw and Tsai’s paper [8].

Assume that
∫

B0(4
√

S�
−1

(−t ′′0 )
1
2 )

|ω(x, t ′′0 )|2 dx ≤ M2(−t ′′0 )−
1
2

√
S�

at a given time t ′′0 ∈ [−1, 0). Let r := √
S�

−1
(−t ′′0 )

1
2 and rescale in the following way

U (y, s) := ru(r y, r2s + t ′′0 ), �(y, s) := r2ω(r y, r2s + t ′′0 ). We have

‖U (·, 0)‖L6(B0(2)) ≤ CSob
(‖U (·, 0)‖L2(B0(2)) + ‖∇U (·, 0)‖L2(B0(2))

)

≤ CSob(1 + Cellip)
(‖U (·, 0)‖L2(B0(4)) + ‖�(·, 0)‖L2(B0(4))

)

≤ CSob(1 + Cellip)(8
3
2 + 1)Cweak M

≤ 32CSob(1 + Cellip)Cweak M. (78)

Here we used the scale-invariant bound (48) and the embedding L3,∞(R3) ⊂ L2
uloc(R

3).
Taking M ≥ M3 sufficiently large, we now apply the bound (178) with Cweak M and
N := 32CSob(1 + Cellip)Cweak M . Then for any well-separated time t ′0 satisfying (75),
we have using C� ∈ (0, 1

16 ) and (75), that −t ′0 < 1
16 (−t ′′0 ). Therefore, we have t ′0 ∈

(t ′′0 + 15
16 S�r2, t ′′0 + S�r2), hence
∫

B0(4
√

S�
−1

(−t ′0)
1
2 )

|ω(x, t ′0)|2 dx ≤ sup
t∈(t ′′0 +

15
16 S�r2,t ′′0 +S�r2)

∫

B0(4
√

S�
−1

(−t ′0)
1
2 )

|ω(x, t)|2 dx

≤ sup
t∈(t ′′0 +

15
16 S�r2,t ′′0 +S�r2)

∫

B0(
1
4

√
S�

−1
(−t ′′0 )

1
2 )

|ω(x, t)|2 dx

≤ r−1 sup
s∈( 1516 S�,S�)

∫

B0(
1
4 )

|�(y, s)|2 dx

≤ C M65N 161(−t ′′0 )−
1
2

≤ C M226(−t ′′0 )−
1
2 .

The conclusion follows then from (75) for a well chosen universal constantC� ∈ (0, 1
16 ).��
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A variant of the proof of Lemma 3.1 gives the following concentration result for the
enstrophy near a Type I singularity.

Lemma 3.2 (Concentration of the enstrophy). For all sufficiently large M ∈ [1,∞),
let S�(M) ∈ (0, 1

4 ] be the constant defined by (76). Let (u, p) be a suitable finite-
energy solution23 of the Navier–Stokes equations (1) in I = [−1, 0] satisfying the Type
I bound (48). Assume that the space-time point (0, 0) is a singularity for u. Then, for all
t ′ ∈ �, where � is a full measure subset of [−1, 0) defined in Sect. 1.4.4, the vorticity
concentrates in the following sense

∫

B0(4
√

S�
−1

(−t ′)
1
2 )

|ω(x, t ′)|2 dx > M2(−t ′)−
1
2

√
S�. (79)

Proof of Lemma 3.2. Indeed, if (79) does not hold, one takes r = √
S�

−1
(−t ′) 1

2 and
performs the rescaling U (y, s) = ru(r y, r2s + t ′), �(y, s) = r2ω(r y, r2s + t ′). The
same reasoning as in Lemma 3.1 gives that we can apply the bound (177) with Cweak M
and N = 32CSob(1 + Cellip)Cweak M (see also (78)). This gives

‖u‖
L∞(B0(

1
2

√
S�

−1
(−t ′)

1
2 )×( 14 t ′,0))

≤ C∗M8N 19
√

S�

(−t ′) 1
2

≤ C M−23

(−t ′) 1
2

.

This contradicts the assumption that (0, 0) is a singular point of u. ��
Lemma 3.3 (backward propagation of concentration, time slices). There exists a uni-
versal constant M4 ∈ [1,∞) such that the following holds true. Let M ∈ [M4,∞). We
define M� by (17). Fix any α ≥ M� and let t ′0, t ′′0 ∈ [−1, 0) be such that

t ′′0
α1051

< t ′0 < 0. (80)

There exists S�(M) ∈ (0, 1
4 ], such that the following holds. Let (u, p) be a C∞(R3 ×

(−1, 0)) finite-energy solution of the Navier–Stokes equations (1) in I = [−1, 0] satis-
fying

‖u(·, t ′0)‖L3 ≤ M and ‖u(·, t ′′0 )‖L3 ≤ M. (81)

Suppose further that the vorticity concentrates at time t ′0 in the following sense
∫

B0(4
√

S�
−1

(−t ′0)
1
2 )

|ω(x, t ′0)|2 dx > M2(−t ′0)−
1
2

√
S�. (82)

The above assumptions imply that for any s0 ∈ [t ′′0 ,
t ′′0

8α201 ] the vorticity concentrates in
the following sense

∫

B0(4(−s0)
1
2 α106)

|ω(x, s0)|2 dx >
(M + 1)2

(−s0)
1
2 α106

. (83)

Here S�(M) = C M−100.

23 See Sect. 1.4.
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Proof. Theproof belowusesTheorem5.1 andRemark5.2. For s ∈ [t ′′0 , 0]wedecompose
u as

u(·, s) = e(s−t ′′0 )�u(·, t ′′0 ) + V (·, s). (84)

We then have

‖e(s−t ′′0 )�u(·, t ′′0 )‖L3
x

≤ M. (85)

‖e(s−t ′′0 )�u(·, t ′′0 )‖L4
x

≤ C M

(s0 − t ′′0 )
1
8

. (86)

Furthermore, arguments from [17] imply that

‖e(t−t ′′0 )�u(·, t ′′0 )‖L5(R3×(t ′′0 ,∞)) ≤ C M (87)

Moreover, similar arguments as those used in Proposition 2.2 of [40]24 yield that for
s ∈ [t ′′0 , 0]

‖V (·, s)‖2L2
x
+

s∫

t ′′0

∫

R3

|∇V |2dxdt

≤ C

s∫

t ′′0

∫

R3

|e(t−t ′′0 )�u(·, t ′′0 )|4dxdt + C

s∫

t ′′0

‖V (·, t)‖2L2
x
‖e(t−t ′′0 )�u(·, t ′′0 )‖5L5

x
dt.

Using (85)–(87) and Gronwall’s lemma, we infer (for M larger than some universal
constant) that

‖V (·, s)‖2L2
x
+

s∫

t ′′0

∫

R3

|∇V (x, t)|2dxdt ≤ C(M�)4(s − t ′′0 )
1
2 .

Here M� is defined by (17) for an appropriate universal constant L∗ ∈ (0,∞) coming

from the Gronwall estimate. In particular, using that s ∈ [t ′′0 ,
t ′′0

8α201 ] we have

‖V (·, s)‖2L2
x

≤ C8
1
2 α101(M�)4(−s)

1
2 < α106(−s)

1
2 . (88)

Here, we used the fact that α ≥ M�.
From now on the proof is by contraposition. We assume that for a given t ′′0 ∈ [−1, 0)

there exists s0 ∈ [t ′′0 ,
t ′′0

8α201 ] such that

∫

B0(4α106(−s0)
1
2 )

|ω(x, s0)|2dx ≤ (M + 1)2

(−s0)
1
2 α106

. (89)

Define
λ := (−s0)

1
2 α106 (90)

24 Based on the energy method, Sobolev embedding, Hölder’s inequality and Young’s inequality.
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and rescale to get Uλ : R3 × (0, α−212) → R
3 and Pλ : R3 × (0, α−212) → R. Here,

Uλ(y, t) := λu(λy, λ2t + s0) and Pλ(y, t) := λ2 p(λy, λ2t + s0). (91)

Using (85) and (88), we see that

‖Uλ(y, 0)‖L2
uloc

≤ CLeb M + 1. (92)

Here, CLeb ∈ [1,∞) is a universal constant from the embedding L3(R3) ⊂ L2
uloc(R

3).
Furthermore, defining �λ = ∇ × Uλ, we see that (89) implies that

∫

B0(4)

|�λ(y, 0)|2dy ≤ (M + 1)2. (93)

Similarly to Lemma 3.1, we define

S� = S�(M) := S∗
(
CLeb M + 1, 32CSob(1 + Cellip)(CLeb M + 1)

)

where S∗ is the constant defined in Theorem 5.1, CSob ∈ (0,∞) is the best constant
in the Sobolev embedding H1(B0(2)) ⊂ L6(B0(2)) and Cellip ∈ (0,∞) is the best
constant in the estimate

‖∇U (·, 0)‖L2(B0(2)) ≤ Cellip
(‖�(·, 0)‖L2(B0(4)) + ‖U (·, 0)‖L2(B0(4))

)

for weak solutions to

−�U (·, 0) = ∇ × �(·, 0) in B0(4).

Next notice that from (17), if we have for M sufficiently large

α−212 < (M�)−212 < (1 + M)−101 < S�.

Using (92)–(93), together with a similar reasoning to Lemma 3.1, we can apply Theo-
rem 5.1 with M ≥ M4 being sufficiently large. Specifically, we apply Remark 5.2 with
β = α−212. This gives

‖∇Uλ‖L∞
t L2

x (B0(
1
6 )×( 255256α−212,α−212))

≤ Cuniv M4α265. (94)

This implies that

‖∇u‖2
L∞

t L2
x

(
B0

(
(−s0)

1
2 α106

6

)
×( s0

256 ,0
))

≤ C2
univ M8α424

(−s0)
1
2

. (95)

Using that s0 < t ′0 < 0 and that S�(M) = C M−100, we have for M sufficiently large
that

B0(4
√

S�
−1

(−t ′0)
1
2 ) ⊂ B0(

1
6 (−s0)

1
2 (M�)106).



Quantitative Regularity for the Navier–Stokes Equations... 741

So for s0
256 < t ′0, we see that (95) implies that

∫

B0(4
√

S�
−1

(−t ′0)
1
2 )

|ω(x, t ′0)|2dx ≤ C2
univ M8α424

(−s0)
1
2

≤ M8α525

(−t ′′0 )
1
2

.

Here, we used s0 ∈ [t ′′0 ,
t ′′0

8α201 ]. Thus,
∫

B0(4
√

S�
−1

(−t ′0)
1
2 )

|ω(x, t ′0)|2dx ≤ M2(−t ′0)−
1
2

√
S� × α525M6

√
S�

(−t ′0
−t ′′0

) 1
2
.

Now,

α525M6

√
S�

(−t ′0
−t ′′0

) 1
2 ≤ Cuniv M56α525

(−t ′0
−t ′′0

) 1
2
.

Therefore, since (80) holds, we get the conclusion. ��

3.2. Proof of the main quantitative estimate in the Type I case. This part is devoted to the
proof of Proposition 2.1. The proof of Proposition 2.1 uses Lemma 3.1, Corollary 6.7,
Lemma 7.3 and the Carleman inequalities in “Appendix B”. Following Tao [47], the
idea of the proof is to transfer the concentration of the enstrophy at times t ′′0 far away
in the past to large-scale lower bounds for the enstrophy at time t0. This is done in Step
1-3 below. The last step, Step 4 below, consists in transferring the lower bound on the
enstrophy at time t0 to a lower bound for the L3 norm at time t0 and summing appropriate
scales. The assumption (49) at the final time t0 is critical.

Without loss of generality, we now take t0 = 0. We also assume that T = 1. The
general statement is obtained by scaling. Let M ∈ [M3,∞) where M3 is a constant in
Lemma 3.1. In the course of the proof we will need to take M larger, always larger than
universal constants. Let u : R

3 × [−1, 0] → R
3 be a ‘smooth solution with sufficient

decay’25 of the Navier–Stokes equations (1) in I = [−1, 0] satisfying the Type I bound
(48). Assume that there exists t ′0 ∈ [−1, 0) such that t ′0 is not too close to −1 in the
sense26

0 < −t ′0 <
C�

8
M−749

and such that the vorticity concentrates at time t ′0 in the following sense
∫

B0(4
√

S�
−1

(−t ′0)
1
2 )

|ω(x, t ′0)|2 dx > M2(−t ′0)−
1
2

√
S�, (96)

where we recall that S� = C M−100. Lemma 3.1 then implies that
∫

B0(4
√

S�
−1

(−t ′′)
1
2 )

|ω(x, t ′′)|2 dx > M2(−t ′′)−
1
2

√
S�. (97)

25 See Sect. 1.4.
26 The number M−749 in the right hand side is required by (106).
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at any well-separated backward time t ′′ ∈ [−1, t ′0] such that27

1

C�
M548t ′0 > t ′′. (98)

The rest of the proof relies on the Carleman inequalities of Proposition B.1 and Propo-
sition B.2. These are the tools used to transfer the concentration information (97) from

the time t ′′ to time 0 and from the small scales B0(4
√

S�
−1

(−t ′′) 1
2 ) to large scales.

Step 1: quantitative unique continuation. The purpose of this step is to prove the
following estimate:

T
1
2
1 e

− C M149R2
T1 �

− T1
2∫

−T1

∫

B0(2R)\B0(R/2)

|ω(x, t)|2 dxdt, (99)

for all T1 and R such that

2

C�
M548(−t ′0) < T1 ≤ 1

2
and R ≥ M100

(T1
2

) 1
2
. (100)

Let t ′′0 ≥ − 1
2 be such that (98) is satisfied with t ′′ = t ′′0

2 . Let T1 := −t ′′0 and I1 :=
(t ′′0 , t ′′0 + T1

2 ) = (−T1,− T1
2 ) ⊂ [− 1

2 , 0] ⊂ [−1, 0]. Thus, we can apply Lemma 7.3 and
Remark 7.4 with t0 = 0 and T = 1. The bound (259) in Remark 7.4 implies that there
exists an epoch of regularity I ′′

1 = [t ′′1 − T ′′
1 , t ′′1 ] ⊂ I1 such that

T ′′
1 = |I ′′

1 | = M−48

4C3
univ

|I1| = M−48

8C3
univ

T1 (101)

and for j = 0, 1, 2,

‖∇ j u‖L∞
t L∞

x (R3×I ′′
1 ) ≤ 1

2 j+1 |I ′′
1 | −( j+1)

2 = 1

2 j+1 (T ′′
1 )

−( j+1)
2 . (102)

Let T ′′′
1 := 3

4T ′′
1 and s′′ ∈ [t ′′1 − T ′′

1
4 , t ′′1 ]. Let x1 ∈ R

3 be such that |x1| ≥ M100( T1
2 )

1
2

and let r1 := M50|x1| ≥ M150( T1
2 )

1
2 . Notice that for M large enough

r1 := M50|x1| ≥ M150
(T1
2

) 1
2 ≥ M99 · 4

√
S�

−1
(−t ′′0 )

1
2 (103)

and
r21 ≥ 4000T ′′′

1 .

We apply the second Carleman inequality, Proposition B.2 (quantitative unique contin-
uation), on the cylinder C1 = {(x, t) ∈ R

3 ×R : t ∈ [0, T ′′′
1 ], |x | ≤ r1} to the function

w : R
3 × [0, T ′′′

1 ] → R
3, defined by for all (x, t) ∈ R

3 × [0, T ′′′
1 ],

w(x, t) := ω(x1 + x, s′′ − t).

27 Notice that the whole argument of Sect. 3.2 goes through assuming that (97) holds for almost any
t ′′ ∈ [−1, 1

C� M548t ′0).
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Notice that the quantitative regularity (102) and the vorticity equation (37) imply that
on C1

|(∂t + �)w| ≤ 3

16
T ′′′
1

−1|w| +
√
3

4
T ′′′
1

− 1
2 |∇w|,

so that (310) is satisfied with S = S1 := T ′′′
1 and CCarl = 16

3 . Let

s1 = T ′′′
1

20000
, s1 = M−150T ′′′

1 .

For M sufficiently large we have 0 < s1 ≤ s1 ≤ T ′′′
1

10000 . Hence by (312) we have

Z1 � e
− r21

500s1 X1 + (s1)
3
2

(
es1
s1

)Cr21
s1

Y1, (104)

where

X1 :=
s′′∫

s′′−T ′′′
1

∫

Bx1 (M50|x1|)
((T ′′′

1 )−1|ω|2 + |∇ω|2) dxds,

Y1 :=
∫

Bx1 (M50|x1|)
|ω(x, s′′)|2(s1)−

3
2 e

− |x−x1|2
4s1 dx,

Z1 :=
s′′− T ′′′

1
20000∫

s′′− T ′′′
1

10000

∫

Bx1 (
M50 |x1|

2 )

((T ′′′
1 )−1|ω|2 + |∇ω|2)e− |x−x1|2

4(s′′−s) dxds.

We first use the concentration (97) for times s ∈ [s′′ − T ′′′
1

10000 , s′′ − T ′′′
1

20000 ] to bound Z1
from below. By (103), we have

B0(4
√

S�
−1

(−s)
1
2 ) ⊂ Bx1(2|x1|) ⊂ Bx1

(M50|x1|
2

)

for all s ∈ [s′′ − T ′′′
1

10000 , s′′ − T ′′′
1

20000 ] and for M sufficiently large. We have

Z1 �
s′′− T ′′′

1
20000∫

s′′− T ′′′
1

10000

∫

B0(4
√

S�
−1

(−s)
1
2 )

(T ′′′
1 )−1|ω(x, s)|2 dxds e

− C |x1|2
T ′′′
1

�
s′′− T ′′′

1
20000∫

s′′− T ′′′
1

10000

M−48(−s)−
1
2 ds(T ′′

1 )−1e
− C |x1|2

T ′′
1
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� M−48 T ′′′
1

(−s′′ + T ′′′
1

10000 )
1
2

(T ′′
1 )−1e

− C |x1|2
T ′′
1

� M−48(T1)
− 1

2 e
− C |x1|2

T ′′
1

� M−48(M48T ′′
1 )−

1
2 e

− C |x1|2
T ′′
1

= M−72(T ′′
1 )−

1
2 e

− C |x1|2
T ′′
1 .

Second, we bound from above X1. We rely on the quantitative regularity (102) to obtain

X1 � (T ′′
1 )−2M150|x1|3.

Hence,

e
− r21

500s1 X1 � (T ′′
1 )−2M150|x1|3e

− C M100 |x1|2
T ′′
1

� (T ′′
1 )−

1
2 e

− C M100 |x1|2
T ′′
1 .

Third, for Y1 we decompose and estimate as follows

Y1 :=
∫

Bx1 (
|x1|
2 )

|ω(x, s′′)|2(s1)−
3
2 e

− |x−x1|2
4s1 dx

+
∫

Bx1 (M50|x1|)\Bx1 (
|x1|
2 )

|ω(x, s′′)|2(s1)−
3
2 e

− |x−x1|2
4s1 dx

� M225(T ′′
1 )−

3
2

( ∫

Bx1 (
|x1|
2 )

|ω(x, s′′)|2 dx

+
∫

Bx1 (M50|x1|)\Bx1 (
|x1|
2 )

|ω(x, s′′)|2e
− C M150 |x1|2

T ′′
1 dx

)

� M225(T ′′
1 )−

3
2

( ∫

Bx1 (
|x1|
2 )

|ω(x, s′′)|2 dx + M150|x1|3(T ′′
1 )−2e

− C M150 |x1|2
T ′′
1

)

� M225(T ′′
1 )−

3
2

( ∫

Bx1 (
|x1|
2 )

|ω(x, s′′)|2 dx + (T ′′
1 )−

1
2 e

− C M150 |x1|2
T ′′
1

)
,

where we used the quantitative regularity (102). Hence,

(s1)
3
2

(es1
s1

)Cr21
s1 Y1 � (T ′′

1 )
3
2 e

C M100 |x1|2
T ′′
1

log( eM150
20000 )

Y1
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� M225e
C M101|x1|2

T ′′
1

∫

Bx1 (
|x1|
2 )

|ω(x, s′′)|2 dx

+ M225(T ′′
1 )−

1
2 e

− C M150 |x1|2
T ′′
1 .

Gathering these bounds and combining with (104) yields

M−72(T ′′
1 )−

1
2 e

− C |x1|2
T ′′
1 � (T ′′

1 )−
1
2 e

− C M100 |x1|2
T ′′
1

+M225e
C M101|x1|2

T ′′
1

∫

Bx1 (
|x1|
2 )

|ω(x, s′′)|2 dx + M225(T ′′
1 )−

1
2 e

− C M150 |x1|2
T ′′
1 .

Using (101) and |x1| ≥ M100( T1
2 )

1
2 , we see that for M sufficiently large

M−297(T ′′
1 )−

1
2 e

− C M101|x1|2
T ′′
1 �

∫

Bx1 (
|x1|
2 )

|ω(x, s′′)|2 dx .

Hence, for all s′′ ∈ [t ′′1 − T ′′
1
4 , t ′′1 ], for all |x1| ≥ M100( T1

2 )
1
2 ,

∫

Bx1 (
|x1|
2 )

|ω(x, s′′)|2 dx � M−297(T ′′
1 )−

1
2 e

− C M101|x1|2
T ′′
1 .

Let R ≥ M100( T1
2 )

1
2 and x1 ∈ R

3 be such that |x1| = R. Integrating in time [t ′′1 − T ′′
1
4 , t ′′1 ]

yields the estimate

M−321eC M349
T

1
2
1 e

− 2C M149R2
T1 � M−321T

1
2
1 e

− C M149R2
T1

�
t ′′1∫

t ′′1 − T ′′
1
4

∫

B0(2R)\B0(R/2)

|ω(x, t)|2 dxdt

which yields the claim (99) of Step 1.

Step 2: quantitative backward uniqueness. The goal of this step and Step 3 below is
to prove the following claim:

T
− 1

2
2 exp

(− exp(M1021)
)

�
∫

B0

( 3
4C(100)M1000R′

2

)
\B0(2R′

2)

|ω(x, 0)|2 dx,
(105)

for all 8
C� M749(−t ′0) < T2 ≤ 1 and M sufficiently large. Here, R2, R′

2 and C(100) are as
in (107)–(109). This is the key estimate for Step 4 below and the proof of Proposition 2.1.
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We apply here the results of Sec. 6 for the quantitative existence of an annulus of
regularity. Although the parameter μ in Sect. 6 is any positive real number, here we
need to take μ sufficiently large in order to have a large enough annulus of quantitative
regularity, and hence a large r+ below in the application of the first Carleman inequality
Proposition B.1. To fix the ideas, we take μ = 100.28 Let T1 and T2 such that

8

C�
M548+201(−t ′0) ≤ T2 ≤ 1 and T1 := T2

4M201 .29 (106)

Let
R2 := K �(T2)

1
2 , (107)

for a universal constant K � ≥ 1 to be chosen sufficiently large below. In particular it
is chosen in Step 3 such that (126) holds, which makes it possible to absorb the upper
bound (125) of X3 in the left hand side of (123). By Corollary 6.7, for M ≥ M1(100)
there exists a scale

2R2 ≤ R′
2 ≤ 2R2 exp(C(100)M1020) (108)

and a good cylindrical annulus

A2 := {R′
2 < |x | < c(100)M1000R′

2} ×
(

− T2
32

, 0
)

(109)

such that for j = 0, 1,

‖∇ j u‖L∞(A2) ≤ 2
j+1
2 C̄ j C(100)M−300T

− j+1
2

2 ,

‖∇ω‖L∞(A2) ≤ 2
3
2 C̄2C(100)M−300T

− 3
2

2 . (110)

We apply now the quantitative backward uniqueness, Proposition B.1 to the function
w : R

3 × [0, T2
M201 ] → R

3 defined for all (x, t) ∈ R
3 × [0, T2

M201 ] by,
w(x, t) = ω(x,−t).

An important remark is that although we have a large cylindrical annulus of quantitative
regularity A2, we apply the Carleman estimate on a much smaller annulus, namely

Ã2 :=
{
4R′

2 < |x | <
c(100)

4
M1000R′

2

}
×
(

− T2
M201 , 0

)
. (111)

Choosing M sufficiently large such that 2C̄ j C(100)M−300 ≤ 1 and 2
3
2 C̄2C(100)

M−300 ≤ 1, we see that the bounds (110) imply that the differential inequality (307) is
satisfied with S = S2 := T2

M201 and CCarl = M201. Take

r− = 4R′
2, r+ = 1

4c(100)M1000R′
2.

Then,

B0(160R′
2) \ B0(40R′

2) = B0(40r−) \ B0(10r−) ⊂
{
40R′

2 < |x | <
c(100)

8 M1000R′
2

}

28 More specifically, we see that μ is chosen so that 10μ > 350 in order to obtain (114) from (112) and
(113).
29 The reason for this is to ensure we can apply Step 1 to get a lower bound (113) for Z2.
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on condition that M is sufficiently large: one needs c(100)M1000 > 1280. Note also that

r2− = 16(R′
2)

2 ≥ 64R2
2 = 64(K �)2T2 > 64T2 > 4SCCarl .

By (309), we get

Z2 � e
− C M1000(R′

2)2

T2
(
X2 + e

C M2000(R′
2)2

T2 Y2
)
, (112)

where

X2 :=
0∫

− T2
M201

∫

r−≤|x |≤r+

e
4|x |2

T2 (M201T −1
2 |ω|2 + |∇ω|2) dxdt,

Y2 :=
∫

r−≤|x |≤r+

|ω(x, 0)|2 dx,

Z2 :=
0∫

− T2
4M201

∫

10r−≤|x |≤ r+
2

(M201T −1
2 |ω|2 + |∇ω|2) dxdt.

Thanks to the separation condition (106) and to the fact that for M large enough (107)
implies

20r− ≥ 10R′
2 ≥ 20R2 = 20K �T

1
2
2 ≥ M100

( T2
8M201

) 1
2 = M100

(T1
2

) 1
2
,

we can apply the concentration result of Step 1, taking there T1 = T2
4M201 = S2

4 and
R = 20r−. By (99) we have that

Z2 � M201
(

T2
4M201

) 1
2

e
− C M350(R′

2)2

T2 T −1
2 � T

− 1
2

2 e
− C M350(R′

2)2

T2 . (113)

Therefore, one of the following two lower bounds holds

T
− 1

2
2 exp

(C M1000(R′
2)

2

T2

)
� X2, (114)

T
− 1

2
2 exp(− exp(M1021)) � e

− C M2000(R′
2)2

T2 T
− 1

2
2 � Y2, (115)

where we used the upper bound (108) for (115). The bound (115) can be used directly
in Step 4 below. On the contrary, if (114) holds more work needs to be done to transfer
the lower bound to the enstrophy at time 0. This is the objective of Step 3 below.

Step 3: a final application of quantitative unique continuation. Assume that the
bound (114) holds. We will apply the pigeonhole principle three times successively in
order to end up in a situation where we can rely on the quantitative unique continuation
to get a lower bound at time 0. We first remark that this, along with the definition (111)
of the annulus Ã2, implies the following lower bound

T
− 1

2
2 exp

(C M1000(R′
2)

2

T2

)
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�
0∫

− T2
M201

∫

4R′
2≤|x |≤ 1

4 c(100)M1000R′
2

e
4|x |2

T2 (M201T −1
2 |ω|2 + |∇ω|2) dxdt.

By the pigeonhole principle, there exists

8R′
2 ≤ R3 ≤ 1

2c(100)M1000R′
2 (116)

such that

T
− 1

2
2 exp

(
− 4R2

3

T2

)
�

0∫

− T2
M201

∫

B0(R3)\B0(
R3
2 )

(T −1
2 |ω|2 + |∇ω|2) dxdt.

Using the bounds (110), we have that

T
− 1

2
2 exp

(
− 4R2

3

T2

)
�

− exp(− 8R23
T2

)T2∫

− T2
M201

∫

B0(R3)\B0(
R3
2 )

(T −1
2 |ω|2 + |∇ω|2) dxdt.

By the pigeonhole principle, there exists

1

2
exp
(

− 8R2
3

T2

)
T2 ≤ −t3 ≤ T2

M201 (117)

such that

T
− 1

2
2 exp

(
− 5R2

3

T2

)
�

t3∫

2t3

∫

B0(R3)\B0(
R3
2 )

(T −1
2 |ω|2 + |∇ω|2) dxdt.

We finally cover the annulus B0(R3) \ B0(
R3
2 ) with

C
R3
3

(−t3)
3
2

� R3
3

T
3
2
2

exp
(12R2

3

T2

)
� exp

(13R2
3

T2

)

balls of radius (−t3)
1
2 , and apply the pigeonhole principle a third time to find that there

exists x3 ∈ B0(R3) \ B0(
R3
2 ) such that

T
− 1

2
2 exp

(
− 18R2

3

T2

)
�

t3∫

2t3

∫

Bx3 ((−t3)
1
2 )

(T −1
2 |ω|2 + |∇ω|2) dxdt. (118)

We apply now the second Carleman inequality, Proposition B.2, to the function w :
R
3 × [0,−20000t3] → R

3 defined for all (x, t) ∈ R
3 × [0,−20000t3] by,

w(x, t) = ω(x + x3,−t).
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Let S3 := −20000t3. We take30

r3 := 1000R3

(
− t3

T2

) 1
2
, s3 = s3 = −t3. (119)

Notice that due to (107)–(108) and (116), we have that

r23 = 106R2
3

(
− t3

T2

)
≥ (2.56 × 108)(K �)2(−t3) ≥ 4000S3 = (8 × 107)(−t3),

(120)

r3
2

≥ 8000R2

(
− t3

T2

) 1
2 = 8000K �(−t3)

1
2 > (−t3)

1
2 , (121)

so that (311) is satisfied. Furthermore, from (117) we have

|x3|
2

≥ R3

4
≥ 1000R3

( 1

M201

) 1
2 ≥ r3.

Thus

Bx3((−t3)
1
2 ) ⊂ Bx3(

r3
2 ) ⊂ Bx3(r3) ⊂ Bx3

( |x3|
2

)

⊂ { R3
4 < |y| < 3

2 R3} ⊂ {2R′
2 < |y| < 3

4c(100)M1000R′
2}. (122)

Moreover,

0 ≤ s3 = s3 = −t3 ≤ −2t3 = S3
104

.

By (117), we see that for M large enough S3 ≤ T2
32 , hence the bounds (110) imply that

the differential inequality (307) is satisfied on B0(r) × [0, S] with S = S3, r = r3 and
CCarl = 1. Therefore, by (312) we have

Z3 ≤ Cunive
r23

500t3 X3 + Cuniv(−t3)
3
2 e

− Cr23
t3 Y3, (123)

where

X3 :=
0∫

−S3

∫

Bx3 (r3)

(S−1
3 |ω|2 + |∇ω|2) dxdt, Y3 :=

∫

Bx3 (r3)

|ω(x, 0)|2(−t3)
− 3

2 e
|x−x3|2

4t3 dx,

Z3 :=
t3∫

2t3

∫

Bx3 (
r3
2 )

(S−1
3 |ω|2 + |∇ω|2)e |x−x3|2

4t dxdt.

Using (118) and T −1
2 ≤ S−1

3 we have

T
− 1

2
2 exp

(
− 18R2

3

T2

)
�

t3∫

2t3

∫

Bx3 ((−t3)
1
2 )

(T −1
2 |ω|2 + |∇ω|2)e |x−x3|2

4t dxdt ≤ Z3. (124)

30 We follow here an idea of Tao which enables to remove one exponential from the final estimate. This idea
appears on his blog https://terrytao.wordpress.com/2019/08/15/quantitative-bounds-for-critically-bounded-
solutions-to-the-Navier--Stokes-equations/ in a comment dated December 28, 2019. See also footnote 31 and
(127).

https://terrytao.wordpress.com/2019/08/15/quantitative-bounds-for-critically-bounded-solutions-to-the-Navier--Stokes-equations/
https://terrytao.wordpress.com/2019/08/15/quantitative-bounds-for-critically-bounded-solutions-to-the-Navier--Stokes-equations/
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Using the bounds (110) along with (117), we find that

Cunive
r23

500t3 X3 � S−2
3 r33e

r23
500t3 � (−t3)

− 1
2 e

r23
1000t3 � T

− 1
2

2 e
4R23
T2 e

r23
1000t3

� T
− 1

2
2 e

− 996R23
T2 � T

− 1
2

2 e
− 18R23

T2 e
− 978R23

T2 ≤ C ′
univT

− 1
2

2 e
− 18R23

T2 e−978·256(K �)2 . (125)

We choose K � sufficiently large so that

C ′
unive−978·256(K �)2 ≤ 1

2
, (126)

where C ′
univ ∈ (0,∞) is the universal constant appearing in the last inequality of (125).

Therefore, the term in the right hand side of (125) is negligible with respect to the lower
bound (124) of Z3. Combining now (123) with the lower bound (124), we obtain31

T
− 1

2
2 exp

(
− 18R2

3

T2

)
� exp

(
− Cr23

t3

) ∫

Bx3 (r3)

|ω(x, 0)|2 dx

� exp
(

C
R2
3

T2

) ∫

Bx3 (r3)

|ω(x, 0)|2 dx .

Hence,

T
− 1

2
2 exp

(
− C

R2
3

T2

)
�

∫

Bx3 (r3)

|ω(x, 0)|2 dx .

Using (107), (122) and the upper bound

R3 ≤ 1
2c(100)M1000R′

2 ≤ c(100)M1000 exp(C(100)M1020)R2,

it follows that

T
− 1

2
2 exp(− exp(M1021)) �

∫

B0

( 3
4 c(100)M1000R′

2

)
\B0(2R′

2)

|ω(x, 0)|2 dx . (128)

Step 4, conclusion: summing the scales and lower bound for the global L3 norm.
Here we need the extra assumption (49). The key estimate is (105). From (107)–(108),
we see that the volume of B0

( 3
4C(100)M1000R′

2

) \ B0
(
2R′

2

)
is less than or equal to

T
3
2
2 exp(M1021). By the pigeonhole principle, there exists i ∈ {1, 2, 3} and

x4 ∈ B0
( 3
4C(100)M1000R′

2

) \ B0
(
2R′

2

)
such that |ωi (x4, 0)| ≥ 2T −1

2 exp(− exp(M1022)).

31 Here one notices a key advantage of taking r3 to depend linearly on (−t3)
1
2 as in (119). Otherwise the

trivial bound
r23
−t3

≤ R2
3

4(−t3)
� exp

(8R3
3

T2

) R2
3

T2
, (127)

where we used the lower bound (117) on −t3, would lead one more exponential in the final estimate. Taking
r3 as in (119) is Tao’s idea; see footnote 30.
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Let r4 := T
1
2
2 exp(− exp(M1022)). Using (107)–(109), we see that Br4(x4) × {0} ⊂ A2.

Thus the quantitative estimate (110) gives that

|ωi (x, 0)| ≥ T −1
2 exp(− exp(M1022)) in Br4(x4)

and that ωi (x, 0) has constant sign in Br4(x4). Without loss of generality, we can take
i = 3. This along with Hölder’s inequality yields that

T −1
2 exp(− exp(M1022)) ≤

∣∣∣
∫

B0(1)

ω3(x4 − r4z, 0)ϕ(z) dz
∣∣∣

≤ r−1
4

∣∣∣
∫

B0(1)

u2(x4−r4z, 0)∂1ϕ(z)−u1(x4−r4z, 0)∂2ϕ(z) dz
∣∣∣

≤ r−2
4 ‖u(·, 0)‖L3(B0(C(100)M1000R′

2)\B0(R′
2))

‖∇ϕ‖
L

3
2 (B0(1))

for a fixed positive ϕ ∈ C∞
c (B0(1)) such that

∫
B0(1)

ϕ dx = 1. Hence, using (107)–(108)
we get ∫

B0

(
exp(M1023)T

1
2
2

)
\B0

(
T

1
2
2

)
|u(x, 0)|3 dx ≥ exp

(− exp(M1023)
)
, (129)

for all 8
C� M749(−t ′0) ≤ T2 ≤ 1. Next we divide into two cases.

Case 1: −t ′0 > C�λ2

8 M−749 exp(−6M1023)

In this case, we use the additional assumption (49) to immediately get

−t ′0 >
C�λ2

8
M−749 exp

{
− 4M1023 exp(exp(M1024))

∫

B0(λ)

|u(x, 0)|3 dx

}
.

Case 2: −t ′0 ≤ C�λ2

8 M−749 exp(−6M1023)

First notice that in this case

M−1023 log
( C�λ2

8(−t ′0)
M−749

)
≥ 6

which implies

k + 1 := � 1
2 M−1023 log

( C�λ2

8(−t ′0)
M−749

)
� ≥ 2, (130)

k + 1 ≥ 1
4 M−1023 log

( C�λ2

8(−t ′0)
M−749

)
(131)

and
exp((k + 1)M1023)

( 8
C� M749(−t ′0)

) 1
2 ≤ λ < exp(M1023). (132)

In this case we sum (129) on the k + 1 ≥ 2 scales T2,

( 8
C� M749(−t ′0)

) 1
2 ≤ exp(M1023)

( 8
C� M749(−t ′0)

) 1
2
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≤ . . . ≤ exp(k M1023)
( 8

C� M749(−t ′0)
) 1
2 ≤ 1.

Using (131)–(132) we obtain

exp
(− exp(M1024)

) 1
4 M−1023 log(C�λ2

8 M−749(−t ′0)−1)

≤
∫

B0(λ)\B0

((
8

C� M749(−t ′0)
) 1
2
)

|u(x, 0)|3 dx .

This gives

−t ′0 ≥ C�λ2

8
M−749 exp

{
− 4M1023 exp(exp(M1024))

∫

B0(λ)

|u(x, 0)|3 dx

}
,

which was also obtained in Case 1 and hence applies in all cases.
Defining

−sλ := C�λ2

16
M−749 exp

{
− 4M1023 exp(exp(M1024))

∫

B0(λ)

|u(x, 0)|3 dx

}
,

we see ∫

B0(4
√

S�
−1

(−sλ)
1
2 )

|ω(x, sλ)|2 dx ≤ M2(−sλ)
− 1

2

√
S�.

Almost identical arguments to those utilized in the proof of Lemma 3.1, except using
the bound (177) instead of (178), give

‖u‖
L∞
(

B0

(
C2M50(−sλ)

1
2
)
×
( sλ
4 ,0
)) ≤ C1M−23

(−sλ)
1
2

.

This concludes the proof of Proposition 2.1.

3.3. Proof of the main estimate in the time slices case. We give the full proof of Propo-
sition 2.2 for the sake of completeness. Notice that the proof follows the same scheme
as the proof of Proposition 2.1. The proof of Proposition 2.2 follows from Lemma 3.3,
Corollary 6.9, Lemma 7.5 and the Carleman inequalities of “Appendix B”. In most esti-
mates M is simply replaced by M�, albeit with slightly different powers. However, since
in Step 2 below concentration is needed on the very small time interval [− T2

4(M�)201
, 0],

some care is needed when applying Lemma 7.5 on the epoch of quantitative regularity
and Lemma 3.3 on the backward propagation of concentration.

Let M ∈ [M4,∞) where M4 is a constant in Lemma 3.3. In the course of the
proof we will need to take M larger, always larger than universal constants. Let u :
R
3 ×[−1, 0] → R

3 be a C∞(R3 × (−1, 0)) finite-energy solution to the Navier–Stokes
equations (1) in I = [−1, 0]. Assume that there exists t(k) ∈ [−1, 0) such that

t(k) ↑ 0 with sup
k

‖u(·, t(k))‖L3(R3) ≤ M. (133)
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Select any “well-separated” subsequence (still denoted t(k)) such that32

sup
k

−t(k+1)
−t(k)

< exp(−2(M�)1223). (134)

For this well-separated subsequence, assume that there exists j +1 such that the vorticity
concentrates at time t( j+1) in the following sense

∫

B0(4
√

S�
−1

(−t( j+1))
1
2 )

|ω(x, t( j+1))|2 dx > M2(−t( j+1))
− 1

2

√
S�. (135)

where we recall that S� = C M−100. Fix k ∈ {1, 2, . . . , j}. Note that (134) implies that
for M sufficiently large

−t( j+1)

−t(k)

< (M�)−1051.

Lemma 3.3 then implies that the vorticity concentrates in the following sense

∫

B0(4(−s)
1
2 (M�)106)

|ω(x, s)|2 dx >
(M + 1)2

(−s)
1
2 (M�)106

. (136)

for any

s ∈
[
t(k),

t(k)

8(M�)201

]
. (137)

Step 1: quantitative unique continuation. The purpose of this step is to prove the
following estimate:

T
1
2
1 e

− C(M�)965R2
T1 �

− T1
2∫

−T1

∫

B0(2R)\B0(R/2)

|ω(x, t)|2 dxdt, (138)

for all T1, s0 and R such that

s0 ∈
[ t(k)

2
,

t(k)

4(M�)201

]
T1 := −s0 and R ≥ (M�)100

(T1
2

) 1
2
. (139)

Here, k ∈ {1, . . . j} is fixed. Let I1 := (−T1,− T1
2 ) ⊂ [ t(k)

2 ,
t(k)

8(M�)201
] ⊂ [−1, 0].

The bound (286) in Remark 7.6 implies that there exists an epoch of regularity I ′′
1 =

[t ′′1 − T ′′
1 , t ′′1 ] ⊂ I1 such that

T ′′
1 = |I ′′

1 | = (M�)−864

4C3
4

|I1| = (M�)−864

8C3
4

T1 (140)

32 This separation condition is stronger than that of Lemma 3.3. This stronger condition is needed to sum
disjoint annuli in Step 4 below.
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and for j = 0, 1, 2,

‖∇ j u‖L∞
t L∞

x (R3×I ′′
1 ) ≤ 1

2 j+1 |I ′′
1 | −( j+1)

2 = 1

2 j+1 (T ′′
1 )

−( j+1)
2 . (141)

Let T ′′′
1 := 3

4T ′′
1 and s′′ ∈ [t ′′1 − T ′′

1
4 , t ′′1 ]. Let x1 ∈ R

3 be such that |x1| ≥ (M�)100( T1
2 )

1
2

and let r1 := (M�)50|x1| ≥ (M�)150( T1
2 )

1
2 . Notice that for M large enough

(M�)7|x1|
2

≥ (M�)107

2

(T1
2

) 1
2 ≥ 4(−s0)

1
2 (M�)106 (142)

and
r21 ≥ 4000T ′′′

1 .

We apply the second Carleman inequality, Proposition B.2 (quantitative unique contin-
uation), on the cylinder C1 = {(x, t) ∈ R

3 ×R : t ∈ [0, T ′′′
1 ], |x | ≤ r1} to the function

w : R
3 × [0, T ′′′

1 ] → R
3, defined for all (x, t) ∈ R

3 × [0, T ′′′
1 ] by,

w(x, t) := ω(x1 + x, s′′ − t).

Notice that the quantitative regularity (141) and the vorticity equation (37) imply that
on C1

|(∂t + �)w| ≤ 3

16
T ′′′
1

−1|w| +
√
3

4
T ′′′
1

− 1
2 |∇w|,

so that (310) is satisfied with S = S1 := T ′′′
1 and CCarl = 16

3 . Let

s1 = T ′′′
1

20000
, s1 = (M�)−150T ′′′

1 .

For M sufficiently large we have 0 < s1 ≤ s1 ≤ T ′′′
1

10000 . Hence by (312) we have

Z1 � e
− r21

500s1 X1 + (s1)
3
2

(es1
s1

)Cr21
s1 Y1, (143)

where

X1 :=
s′′∫

s′′−T ′′′
1

∫

Bx1 ((M�)50|x1|)
((T ′′′

1 )−1|ω|2 + |∇ω|2) dxds,

Y1 :=
∫

Bx1 ((M�)50|x1|)
|ω(x, s′′)|2(s1)−

3
2 e

− |x−x1|2
4s1 dx,

Z1 :=
s′′− T ′′′

1
20000∫

s′′− T ′′′
1

10000

∫

Bx1 (
(M�)50 |x1|

2 )

((T ′′′
1 )−1|ω|2 + |∇ω|2)e− |x−x1|2

4(s′′−s) dxds.
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We first use the concentration (136) for times

s ∈
[
s′′ − T ′′′

1

10000
, s′′ − T ′′′

1

20000

]
⊂
(

s0,
s0
2

)
⊂
(

t(k),
t(k)

8(M�)201

)

to bound Z1 from below. By (142), we have

B0(4(−s)
1
2 (M�)106) ⊂ B0(4(−s0)

1
2 (M�)106) ⊂ B0

( (M�)7|x1|
2

)
⊂ Bx1((M�)7|x1|)

for all s ∈ [s′′ − T ′′′
1

10000 , s′′ − T ′′′
1

20000 ] and for M sufficiently large. Hence, we have

Z1 �
s′′− T ′′′

1
20000∫

s′′− T ′′′
1

10000

∫

B0(4(−s)
1
2 (M�)106)

(T ′′′
1 )−1|ω(x, s)|2 dxds e

− C(M�)14|x1|2
T ′′′
1

�
s′′− T ′′′

1
20000∫

s′′− T ′′′
1

10000

(M�)−106(−s)−
1
2 ds(T ′′

1 )−1e
− C(M�)14|x1|2

T ′′
1

� (M�)−106 T ′′′
1

(−s′′ + T ′′′
1

10000 )
1
2

(T ′′
1 )−1e

− C(M�)14|x1|2
T ′′
1

� (M�)−106(T1)
− 1

2 e
− C(M�)14|x1|2

T ′′
1

� (M�)−106((M�)864T ′′
1 )−

1
2 e

− C(M�)14|x1|2
T ′′
1

= (M�)−538(T ′′
1 )−

1
2 e

− C(M�)14|x1|2
T ′′
1 .

Second, we bound from above X1. We rely on the quantitative regularity (141) to obtain

X1 � (T ′′
1 )−2(M�)150|x1|3.

Hence,

e
− r21

500s1 X1 � (T ′′
1 )−2(M�)150|x1|3e

− C(M�)100 |x1|2
T ′′
1

� (T ′′
1 )−

1
2 e

− C(M�)100 |x1|2
T ′′
1 .

Third, for Y1 we decompose and estimate as follows

Y1 :=
∫

Bx1 (
|x1|
2 )

|ω(x, s′′)|2(s1)−
3
2 e

− |x−x1|2
4s1 dx

+
∫

Bx1 ((M�)50|x1|)\Bx1 (
|x1|
2 )

|ω(x, s′′)|2(s1)−
3
2 e

− |x−x1|2
4s1 dx
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� (M�)225(T ′′
1 )−

3
2

( ∫

Bx1 (
|x1|
2 )

|ω(x, s′′)|2 dx

+
∫

Bx1 ((M�)50|x1|)\Bx1 (
|x1|
2 )

|ω(x, s′′)|2e
− C(M�)150 |x1|2

T ′′
1 dx

)

� (M�)225(T ′′
1 )−

3
2

( ∫

Bx1 (
|x1|
2 )

|ω(x, s′′)|2 dx + (M�)150|x1|3(T ′′
1 )−2e

− C(M�)150 |x1|2
T ′′
1

)

� (M�)225(T ′′
1 )−

3
2

( ∫

Bx1 (
|x1|
2 )

|ω(x, s′′)|2 dx + (T ′′
1 )−

1
2 e

− C(M�)150 |x1|2
T ′′
1

)
,

where we used the quantitative regularity (141). Hence,

(s1)
3
2

(es1
s1

)Cr21
s1 Y1 � (T ′′

1 )
3
2 e

C(M�)100 |x1|2
T ′′
1

log( e(M�)150
20000 )

Y1

� (M�)225e
C(M�)101|x1|2

T ′′
1

∫

Bx1 (
|x1|
2 )

|ω(x, s′′)|2 dx

+ (M�)225(T ′′
1 )−

1
2 e

− C(M�)150 |x1|2
T ′′
1 .

Gathering these bounds and combining with (143) yields

(M�)−538(T ′′
1 )−

1
2 e

− C(M�)14|x1|2
T ′′
1 � (T ′′

1 )−
1
2 e

− C(M�)100 |x1|2
T ′′
1

+ (M�)225e
C(M�)101|x1|2

T ′′
1

∫

Bx1 (
|x1|
2 )

|ω(x, s′′)|2 dx

+ (M�)225(T ′′
1 )−

1
2 e

− C(M�)150 |x1|2
T ′′
1 ,

which implies

(M�)−763(T ′′
1 )−

1
2 e

− C(M�)101|x1|2
T ′′
1 �

∫

Bx1 (
|x1|
2 )

|ω(x, s′′)|2 dx .

Hence, for all s′′ ∈ [t ′′1 − T ′′
1
4 , t ′′1 ], for all |x1| ≥ (M�)100( T1

2 )
1
2 ,

∫

Bx1 (
|x1|
2 )

|ω(x, s′′)|2 dx � (M�)−763(T ′′
1 )−

1
2 e

− C(M�)101|x1|2
T ′′
1 .
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Let R ≥ (M�)100( T1
2 )

1
2 and x1 ∈ R

3 be such that |x1| = R. Integrating in time [t ′′1 −
T ′′
1
4 , t ′′1 ] yields the estimate

(M�)−763(T ′′
1 )

1
2 e

− C(M�)101R2

T ′′
1 �

t ′′1∫

t ′′1 − T ′′
1
4

∫

B0(2R)\B0(R/2)

|ω(x, t)|2 dxdt,

which yields the claim (138) of Step 1.

Step 2: quantitative backward uniqueness. The goal of this step and Step 3 below is
to prove the following claim:

T
− 1

2
2 exp

(− exp((M�)1221)
)

�
∫

B0

(
3(M�)1200

4 R′
2

)
\B0(2R′

2)

|ω(x, 0)|2 dx,
(144)

for T2 = −t(k) with k ∈ {1, . . . j}. Here, R2 and R′
2 are as in (146)–(147). This is the

key estimate for Step 4 below and the proof of Proposition 2.2.
We apply here the results of Sect. 6 for the quantitative existence of an annulus of

regularity. Although the parameter μ in Sect. 6 is any positive real number, here we
need to take μ sufficiently large in order to have a large enough annulus of quantitative
regularity, and hence a large r+ below in the application of the first Carleman inequality,
Proposition B.1. To fix the ideas, we take μ = 120. Let T1 and T2 such that

T2 := −t(k) and T1 := T2
4(M�)201

. (145)

Let
R2 := K �(T2)

1
2 (146)

for a universal constant K � ≥ 1 to be chosen sufficiently large below. In particular it
is chosed such that (165) holds. By Corollary 6.9 applied on the epoch (t(k), 0), for
M ≥ M2(120) there exists a scale

2R2 ≤ R′
2 ≤ 2R2 exp(C(120)(M�)1220) (147)

and a good cylindrical annulus

A2 := {R′
2 < |x | < (M�)1200R′

2} ×
(

− T2
32

, 0
)

(148)

such that for j = 0, 1,

‖∇ j u‖L∞(A2) ≤ 2 j+1C̄ j (M�)−360T
− j+1

2
2 ,

‖∇ω‖L∞(A2) ≤ 2
3
2 C̄2(M�)−360T

− 3
2

2 .

(149)

We apply now the quantitative backward uniqueness, Proposition B.1 to the function
w : R

3 × [0, T2
(M�)201

] → R
3 defined for all (x, t) ∈ R

3 × [0, T2
(M�)201

] by,
w(x, t) = ω(x,−t).
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An important remark is that although we have a large cylindrical annulus of quantitative
regularity A2, we apply the Carleman estimate on a much smaller annulus, namely

Ã2 :=
{
4R′

2 < |x | <
(M�)1200

4
R′
2

}
×
(

− T2
(M�)201

, 0
)
. (150)

The reason for this is to ensure we can apply Step 1 to get a lower bound (152) for Z2.

Choosing M sufficiently large such that 2C̄ j (M�)−360 ≤ 1 and 2
3
2 C̄2(M�)−360 ≤ 1,

we see that the bounds (149) imply that the differential inequality (307) is satisfied with
S = S2 := T2

(M�)201
and CCarl = (M�)201. Take

r− = 4R′
2, r+ = 1

4 (M�)1200R′
2.

Then,

B0(160R′
2) \ B0(40R′

2) = B0(40r−) \ B0(10r−) ⊂
{
40R′

2 < |x | < 1
8 (M�)1200R′

2

}

provided that M is sufficiently large: one needs (M�)1200 > 1280. By (309), we get

Z2 � e
− C(M�)1200(R′

2)2

T2
(
X2 + e

C(M�)2400(R′
2)2

T2 Y2
)
, (151)

where

X2 :=
0∫

− T2

(M�)
201

∫

r−≤|x |≤r+

e
4|x |2

T2 ((M�)201T −1
2 |ω|2 + |∇ω|2) dxdt,

Y2 :=
∫

r−≤|x |≤r+

|ω(x, 0)|2 dx,

Z2 :=
0∫

− T2
4(M�)201

∫

10r−≤|x |≤ r+
2

((M�)201T −1
2 |ω|2 + |∇ω|2) dxdt.

For M large enough (146) implies

20r− ≥ 10R′
2 ≥ 20R2 = 20K �(T2)

1
2 ≥ (M�)100

( T2
8(M�)201

) 1
2 = (M�)100

(T1
2

) 1
2
.

Hence, we can apply the concentration result of Step 1, taking T1 = T2
4(M�)201

=
−t(k)

4(M�)201
= S2

4 and R = 20r−. By (138) we have that

Z2 � (M�)201
(

T2
4(M�)201

) 1
2

e
− C(M�)1166(R′

2)2

T2 T −1
2 � T

− 1
2

2 e
− C(M�)1166(R′

2)2

T2 . (152)

Therefore, one of the following two lower bounds holds

T
− 1

2
2 exp

(C M1200(R′
2)

2

T2

)
� X2, (153)
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T
− 1

2
2 exp(− exp((M�)1221)) � e

− C(M�)2400(R′
2)2

T2 T
− 1

2
2 � Y2, (154)

where we used the upper bound (147) for (154). The bound (154) can be used directly
in Step 4 below. On the contrary, if (153) holds more work needs to be done to transfer
the lower bound on the enstrophy at time 0. This is the objective of Step 3 below.

Step 3: a final application of quantitative unique continuation. Assume that the
bound (153) holds. We will apply the pigeonhole principle three times successively in
order to end up in a situation where we can rely on the quantitative unique continuation
to get a lower bound at time 0. We first remark that this with the definition (150) of the
annulus Ã2 implies the following lower bound

T
− 1

2
2 exp

(C(M�)1200(R′
2)

2

T2

)

�
0∫

− T2
(M�)201

∫

4R′
2≤|x |≤ (M�)1200

4 R′
2

e
4|x |2

T2 ((M�)201T −1
2 |ω|2 + |∇ω|2) dxdt.

By the pigeonhole principle, there exists

8R′
2 ≤ R3 ≤ 1

2 (M�)1200R′
2 (155)

such that

T
− 1

2
2 exp

(
− 4R2

3

T2

)
�

0∫

− T2
(M�)201

∫

B0(R3)\B0(
R3
2 )

(T −1
2 |ω|2 + |∇ω|2) dxdt.

Using the bounds (149), we have that

T
− 1

2
2 exp

(
− 4R2

3

T2

)
�

− exp(− 8R23
T2

)T2∫

− T2
(M�)201

∫

B0(R3)\B0(
R3
2 )

(T −1
2 |ω|2 + |∇ω|2) dxdt.

By the pigeonhole principle, there exists

1

2
exp
(

− 8R2
3

T2

)
T2 ≤ −t3 ≤ T2

(M�)201
(156)

such that

T
− 1

2
2 exp

(
− 5R2

3

T2

)
�

t3∫

2t3

∫

B0(R3)\B0(
R3
2 )

(T −1
2 |ω|2 + |∇ω|2) dxdt.

We finally cover the annulus B0(R3) \ B0(
R3
2 ) with

C
R3
3

(−t3)
3
2

� R3
3

T
3
2
2

exp
(12R2

3

T2

)
� exp

(13R2
3

T2

)



760 T. Barker and C. Prange

balls of radius (−t3)
1
2 , and apply the pigeonhole principle a third time to find that there

exists x3 ∈ B0(R3) \ B0(
R3
2 ) such that

T
− 1

2
2 exp

(
− 18R2

3

T2

)
�

t3∫

2t3

∫

Bx3 ((−t3)
1
2 )

(T −1
2 |ω|2 + |∇ω|2) dxdt. (157)

We apply now the second Carleman inequality, Proposition B.2, to the function w :
R
3 × [0,−20000t3] → R

3 defined for all (x, t) ∈ R
3 × [0,−20000t3] by,

w(x, t) = ω(x + x3,−t).

Let S3 := −20000t3. We take33

r3 := 1000R3

(
− t3

T2

) 1
2
, s3 = s3 = −t3. (158)

Notice that due to (146)–(147) and (155), we have that

r23 = 106R2
3

(
− t3

T2

)
≥ (2.56 × 108)(K �)2(−t3) ≥ 4000S3 = (8 × 107)(−t3),

(159)

r3
2

≥ 8000R2

(
− t3

T2

) 1
2 = 8000K �(−t3)

1
2 > (−t3)

1
2 , (160)

so that (311) is satisfied. Furthermore, from (156) we have

|x3|
2

≥ R3

4
≥ 1000R3

( 1

(M�)201

) 1
2 ≥ r3.

Thus

Bx3((−t3)
1
2 ) ⊂ Bx3(

r3
2 ) ⊂ Bx3(r3) ⊂ Bx3

( |x3|
2

)

⊂ { R3
4 < |y| < 3

2 R3} ⊂
{
2R′

2 < |y| <
3(M�)1200

4
R′
2

}
. (161)

Moreover,

0 ≤ s3 = s3 = −t3 ≤ −2t3 = S3
104

.

By (156), we see that for M large enough S3 ≤ T2
32 , hence the bounds (149) imply that

the differential inequality (307) is satisfied with S = S3 and CCarl = 1. Therefore, by
(312) we have

Z3 ≤ Cunive
r23

500t3 X3 + Cuniv(−t3)
3
2 e

− Cr23
t3 Y3, (162)

where

X3 :=
0∫

−S3

∫

Bx3 (r3)

(S−1
3 |ω|2 + |∇ω|2) dxdt, Y3 :=

∫

Bx3 (r3)

|ω(x, 0)|2(−t3)
− 3

2 e
|x−x3|2

4t3 dx,

33 As in the proof of Proposition 2.1 above, we follow here again Tao’s idea; see footnotes 30 and 31.
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Z3 :=
t3∫

2t3

∫

Bx3 (
r3
2 )

(S−1
3 |ω|2 + |∇ω|2)e |x−x3|2

4t dxdt.

Using (157) and T −1
2 ≤ S−1

3 we have

T
− 1

2
2 exp

(
− 18R2

3

T2

)
�

t3∫

2t3

∫

Bx3 ((−t3)
1
2 )

(T −1
2 |ω|2 + |∇ω|2)e |x−x3|2

4t dxdt ≤ Z3 (163)

Using the bounds (149) along with (156), we find that as in (125),

Cunive
r23

500t3 X3 � T
− 1

2
2 e

− 996R23
T2 ≤ C ′

unive
− 18R23

T2 e−978·256(K �)2 . (164)

We choose K � sufficiently large such that

C ′
unive−978·256(K �)2 ≤ 1

2
, (165)

whereC ′
univ ∈ (0,∞) is the constant appearing in the last inequality of (164).Combining

now (162) with the lower bound (163), we obtain

T
− 1

2
2 exp

(
− 18R2

3

T2

)
� exp

(
− Cr23

t3

) ∫

Bx3 (r3)

|ω(x, 0)|2 dx

� exp
(

C
R2
3

T2

) ∫

Bx3 (r3)

|ω(x, 0)|2 dx .

Hence,

T
− 1

2
2 exp

(
− C

R2
3

T2

)
�

∫

Bx3 (r3)

|ω(x, 0)|2 dx .

Using (146), (161) and the upper bound

R3 ≤ 1
2 (M�)1200R′

2 ≤ (M�)1200 exp(C(120)(M�)1220)R2,

it follows that

T
− 1

2
2 exp(− exp((M�)1221)) �

∫

B0

(
3(M�)1200

4 R′
2

)
\B0(2R′

2)

|ω(x, 0)|2 dx .
(166)

This together with the bounds (147) and (155) for R3 proves the claim (144).

Step 4, conclusion: summing the scales and lower bound for the global L3 norm.
The key estimate is (144). From (146)–(147), we see that the volume of the annulus
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B0
( 3(M�)1200

4 R′
2

) \ B0(2R′
2) is less than or equal to T

3
2
2 exp((M�)1221). By the pigeonhole

principle, there exist i ∈ {1, 2, 3} and

x4∈ B0

(3(M�)1200

4
R′
2

)
\B0

(
2R′

2

)
such that |ωi (x4, 0)|≥2T −1

2 exp(− exp((M�)1222)).

Let r4 := T
1
2
2 exp(− exp((M�)1222)). Using (146)–(148), we see that Br4(x4) × {0} ⊂

A2. Thus the quantitative estimate (149) gives that

|ωi (x, 0)| ≥ T −1
2 exp(− exp((M�)1222)) in Br4(x4)

and that ωi (x, 0) has constant sign in Br4(x4). Without loss of generality, we can take
i = 3. This along with Hölder’s inequality yields that

T −1
2 exp(− exp((M�)1222)) ≤

∣∣∣
∫

B0(1)

ω3(x4 − r4z, 0)ϕ(z) dz
∣∣∣

≤ r−1
4

∣∣∣
∫

B0(1)

u2(x4 − r4z, 0)∂1ϕ(z) − u1(x4 − r4z, 0)∂2ϕ(z) dz
∣∣∣

≤ r−2
4 ‖u(·, 0)‖L3(B0((M�)1200R′

2)\B0(R′
2))

‖∇ϕ‖
L

3
2 (B0(1))

for a fixed non-negative ϕ ∈ C∞
c (B0(1)) such that

∫
B0(1)

ϕ dx = 1. Recalling (145)–
(147) we conclude that,

∫

B0

(
exp((M�)1223)(−t(k))

1
2
)
\B0

(
(−t(k))

1
2
)

|u(x, 0)|3 dx ≥ exp
(− exp((M�)1223)

)
, (167)

for all k ∈ {1, . . . j}. Note that (134) implies that for distinct k, the spatial annuli in
(167) are disjoint. Summing (167) over such k we obtain that

exp
(− exp((M�)1223)

)
j

≤
∫

B0

(
exp((M�)1223)(−t1)

1
2
)
\B0

(
(−t( j))

1
2
)

|u(x, 0)|3 dx

≤
∫

R3

|u(x, 0)|3 dx .

This gives

j ≤ exp
(
exp((M�)1223)

) ∫

R3

|u(x, 0)|3 dx ≤ exp
(
exp((M�)1224)

)
.

This concludes the proof of Proposition 2.2.
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4. Further Applications

4.1. Effective regularity criteria based on the local smallness of the L3,∞ norm at the
blow-up time.

Proposition 4.1 For all M ∈ [1,∞) sufficiently large the following result holds true.
Consider a global-in-time suitable finite-energy solution (u, p) to the Navier–Stokes
equations on R

3 × [−1,∞) that satisfies the following Type I bound

‖u‖L∞
t L3,∞

x (R3×(−1,0)) ≤ M.

Assume that for some T ∗ ∈ (−1, 0],

lim
r→0

‖u(·, T ∗)‖L3,∞(B0(r)) ≤ exp(− exp(M1023)). (168)

Then, (0, T ∗) is a regular point.

Proof of Proposition 4.1. We argue by contradiction and assume (0, T ∗) is a singular
point. The proof relies on two ingredients: (i) the concentration of the enstrophy norm
near a Type I singularity, see Lemma 3.2, (ii) the transfer of concentration at backward
times to a lower bound at the final moment in time (Sect. 3.2). Contrary to the proof of
Proposition 2.1 no summing of scales argument is required.

Without loss of generality, we assume that u solves Navier–Stokes on R3 × (−1, 0),
that (0, 0) is a singular point ofu and that it satisfies theType I bound‖u‖L∞

t L3,∞
x (R3×(−1,0))

≤ M . First note that by the interpolation inequality for the Lorentz spaces (see Lemma
2.2 in [30] for example) we have that any suitable finite-energy solution with Type I
bound is a mild solution on R

3 × [−1, 0] with

u ∈ L4
x,t (R

3 × (−1, 0)). (169)

By Lemma 3.2 and following Step 1–3 in Sect. 3.2, see in particular footnote 27, we
can prove that

T
− 1

2
2 exp

(− exp(M1021)
)

�
∫

B0(exp(M1021)(T2)
1
2 )\B0((T2)

1
2 )

|ω(x, 0)|2 dx,

for all 0 < T2 ≤ 1 and M sufficiently large. Here we used that u ∈ L4
x,t (R

3 × (−1, 0)∩
L∞

t L3,∞(R3 × (−1, 0)), which allows an application of Corollary 6.7 and Lemma 7.3
in the course of following Steps 1-3.

Let r ∈ (0, 1]. Define T2 := r2 exp(−2M1023). Following Step 4 of Sect. 3.2 and
using Hölder’s inequality for Lorentz spaces in Proposition 7.2 instead of Hölder’s
inequality, we then obtain that

‖u(·, 0)‖L3,∞(B0(r)) ≥ ‖u(·, 0)‖
L3,∞(B0(exp(M1023)(T2)

1
2 )\B0(T

1
2
2 ))

≥ 2 exp(− exp(M1023)).

(170)
This contradicts (168). ��
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4.2. Estimate for the number of singular points in a Type I scenario. The technology
developed in the present paper also enables us to give an effective bound for the number
of singularities in a Type I scenario. The following proposition and its corollary are
effective versions of the results by Choe, Wolf and Yang [12] and Seregin [39].

Proposition 4.2 Let M ∈ [1,∞) be sufficiently large and define

ε(M) := exp(−4 exp(M1023)). (171)

For all global-in-time suitable finite-energy solutions34 (u, p) to the Navier–Stokes equa-
tions on R

3 × [−1,∞) that satisfy the following Type I bound

‖u‖L∞
t L3,∞

x (R3×(−1,0)) ≤ M,

the following result holds.
Let x0 ∈ R

3. Assume that there exists r ∈ (0, exp(M1021)) such that

1

|Bx0(r)|
∣∣∣∣
{

x ∈ Bx0(r) : |u(x, 0)| ≥ ε(M)

r

}∣∣∣∣ ≤ ε(M). (172)

Then (x0, 0) is a regular space-time point.

This result is a variant of Theorem 1 in [12] and Proposition 1.3 in [39]. Our contri-
bution is to provide the explicit formula (171) for ε(M) in terms of M .

Corollary 4.3 Let T ∗ ∈ (0,∞) and M ∈ [1,∞) be sufficiently large. Assume that
(u, p) is a global-in-time suitable finite-energy solution to the Navier–Stokes equations
on R

3 × [0,∞) that satisfies the following Type I bound

‖u‖L∞
t L3,∞

x (R3×(0,T ∗)) ≤ M.

Then u has at most exp(exp(M1024)) blow-up points at time T ∗.

Proof of Corollary 4.3. We follow here the argument of [39]. Without loss of generality
we can assume that u is defined on [−1, 0] rather than [0, T ∗]. Let σ denote the set of
all singular points at time 0. We take a finite collection of p points

x1, . . . x p ∈ σ. (173)

There exists r ∈ (0, exp(M1021)) such that Bxi (r) ∩ Bx j (r) = ∅ for all i �= j . Then,
Proposition 4.2 implies that

|B0(1)|ε(M)4 p <

p∑
i=1

(ε(M)

r

)3 ∣∣∣∣
{

x ∈ Bxi (r) : |u(x, 0)| ≥ ε(M)

r

}∣∣∣∣

≤ ‖u‖3
L∞

t L3,∞
x (R3×(−1,0))

≤ M3.

This yields the result. ��
34 For a definition of ‘suitable finite-energy solutions’ we refer to Sect. 1.4 ‘Notations’.
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Proof of Proposition 4.2. Without loss of generality we assume that x0 = 0. As in the
proof of Proposition 4.1, we assume for contradiction that (0, 0) is a singular point.
Using verbatim reasoning as in the proof of Proposition 4.1, we see that the outcome of
Step 1-3 in Sect. 3.2 holds, in particular estimate (105), which holds for all 0 < T2 ≤ 1.

Arguing as in Step 4, and using the same notation, we get that there exists

x4 ∈ B0(
3

4
C(100)M1000R′

2) \ B0(2R′
2)

such that for r4 := T
1
2
2 exp(− exp(M1022)),

exp(− exp(M1023)) ≤
∫

Bx4 (r4)

|u(x, 0)|3 dx

≤ T
3
2
2 exp(−3 exp(M1022)) sup

Bx4 (r4)
|u(x, 0)|3.

Hence, there exists x5 ∈ Bx4(r4) such that

|u(x5, 0)| ≥ 2T
− 1

2
2 exp(− 1

3 exp(M1023)).

By estimate (110) and the choice of M sufficiently large, we have ‖∇u‖L∞(A2) ≤ 1 in

the good annulus. Hence, for r5 := T
1
2
2 exp(− exp(M1023)), the ball Bx5(r5) is contained

in A2 and

|u(x, 0)| ≥ T
− 1

2
2 exp(− exp(M1023)) in Bx5(r5), (174)

for all 0 < T2 ≤ 1. For r := T
1
2
2 exp(M1021), we have Bx5(r5) ⊂ A2 ⊂ B0(r) and

|u(x, 0)| ≥ exp(− exp(M1023))

r
. (175)

Subsequently,

1

|B0(r)|
∣∣∣∣
{

x ∈ B0(r) : |u(x, 0)| ≥ exp(− exp(M1023))

r

}∣∣∣∣

≥
(r5

r

)3
> exp(−4 exp(M1023)).

This holds for r = T
1
2
2 exp(M1021) and every 0 < T2 ≤ 1, which contradicts our

assumption (172) on u(·, 0). ��
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4.3. Effective regularity criteria based on the relative smallness of the L3 norm at the
final moment in time. Here we prove an effective regularity criteria for (u, p) a solution
to the Navier–Stokes equations on R

3 × [−1,∞) based on the relative smallness of
‖u(·, 0)‖L3 vs. ‖u(·,−1)‖L3 . A non-effective version of this result (without explicit
quantitative bounds) is in [2, Theorem 4.1 (i)].

Proposition 4.4 For all sufficiently large M ∈ [1,∞), we define M� by (17). Let (u, p)

be a global-in-time suitable finite-energy solution to the Navier-Stokes equations (1) on
R
3 × [−1,∞). Assume that

‖u(·,−1)‖L3(R3) ≤ M.

If

‖u(·, 0)‖L3(B0(exp((M�)1221))\B0(1)) ≤ exp(− exp((M�)1223)),

then (0, 0) is a regular point.

Proof. Assume for contradiction that (0, 0) is a singular point. Since (u, p) is a suitable
finite-energy solution, there exists � ⊂ (−1, 0) such that |�| = 1 and

• ‖∇u(·, t ′)‖L2(R3) < ∞ for all t ′ ∈ �,
• u satisfies the energy inequality on [t ′, 0].

Then, arguing in a similar way as in the proof of Lemma 3.3, we show that for any
s0 ∈ [−1,− 1

8(M�)201
] ∩ � the vorticity concentrates in the following sense,

∫

B0(4(−s0)
1
2 (M�)106)

|ω(x, s0)|2 dx >
(M + 1)2

(−s0)
1
2 (M�)106

.

Here, M� is as in (17).
Using |�| = 1 and then following Step 1–3 of Sect. 3.3 with one time scale, we

obtain

T
− 1

2
2 exp

(− exp((M�)1221)
)

�
∫

B0

(
3(M�)1200

4 R′
2

)
\B0(2R′

2)

|ω(x, 0)|2 dx,
(176)

for

T2 = 1, R2 := K �(T2)
1
2 , 2R2 ≤ R′

2 ≤ 2R2 exp(C(120)(M�)1220)

for K � chosen such that (165) holds. Reasoning as in Step 4 of Sect. 3.3, we then obtain

∫

B0(exp((M�)1221))\B0(1)

|u(x, 0)|3 dx ≥ 2 exp
(− exp((M�)1223)

)
.

This concludes the proof. ��
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5. Main Tool 1: Local-in-Space Short-Time Smoothing

The role of the next result is central in our paper.

Theorem 5.1 (local-in-space short-time smoothing). There exist three universal con-
stants C∗, M5, N1 ∈ [1,∞) such that the following holds. For all M ≥ M5, N ≥
N1, there exists a time S∗(M, N ) ∈ (0, 1

4 ] such that the following holds. Consider a
divergence-free initial data u0 satisfying the global control

‖u0‖L2
uloc(R

3) ≤ M, ‖u0‖L2(Bx̄ (1))
|x̄ |→∞−→ 0,

and, in addition, u0 ∈ L6(B0(2)) with

‖u0‖L6(B0(2)) ≤ N .

Then, for any local energy solution35 (u, p) to (1) with initial data u0 we have the
estimate

‖u‖L∞(B0(
1
2 )×( 34 S∗,S∗)) ≤ C∗M8N 19, (177)

‖∇u‖L∞
t L2

x (B0(
1
4 )×( 1516 S∗,S∗)) ≤ C∗M40N 98. (178)

Moreover, there is an explicit formula for S∗, see (209), and S∗(M, N ) = C M−30N−70.

Remark 5.2. As a conclusion to the hypothesis in the above Theorem, one can also obtain
general version of (178). Specifically, for a local energy solution with β ∈ (0, S∗], we
get

‖∇u‖L∞
t L2

x (B0(
1
6 )×( 255256β,β))

≤ C∗β− 3
4

(
M N 2 + M Nβ− 1

4 + Mβ− 1
2 + M2 + (N 2 + Nβ− 1

4 )2
)
. (179)

We will require this more general estimate. The computations producing it are identical
to those used to show Theorem 5.1 and hence are omitted.

Corollary 5.3 There exist two universal constants C∗∗, M6 ∈ [1,∞) such that the
following holds. For all M ≥ M6 there exists a time S∗∗(M) ∈ (0, 1

4 ] with S∗∗(M) =
C M−100 (given explicitly by (183)) such that the following holds. Suppose (u, p) is
a ‘smooth solution with sufficient decay’36 on R

3 × [0, T ′] for any T ′ ∈ (0, T ) and
satisfies

‖u‖L∞
t L3,∞

x (R3×[0,T ]) ≤ M. (180)

Furthermore, suppose there exists t ∈ (0, T ) such that

‖u(·, t)‖
L∞(B0(2

√
S∗∗−1

(T −t)
1
2 ))

≤ M
√

S∗∗
(T − t)

1
2

. (181)

Then we conclude that

‖u‖
L∞(B0(

1
2

√
S∗∗−1

(T −t)
1
2 )×(t+ 3

4 (T −t),T ))
≤ C∗∗M27√S∗∗

(T − t)
1
2

. (182)

35 We recall that the definition of a ‘local energy solution’ is given in Sect. 1.4.
36 See Sect. 1.4.
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Proof. We define S∗∗ ∈ (0, 1
4 ] in the following way:

S∗∗ = S∗∗(M) := S∗
(
Cweak M, |B0(2)| 16 M

)
, (183)

where S∗ is the function defined in Theorem 5.1 (see also the formula (209)), and Cweak
is defined below (186). Define

r := √S∗∗
−1

(T − t)
1
2

and rescale
U (y, s) := ru(r y, r2s + t) for (y, s) ∈ R

3 × (0, S∗∗). (184)

Then assumptions (180)–(181) imply that

‖U (·, 0)‖L∞(B0(2)) ≤ M and ‖U‖L∞
t L3,∞

x (R3×(0,S∗∗)) ≤ M.

Hence we have,
‖U (·, 0)‖L6(B0(2)) ≤ M |B0(2)| 16 (185)

and
‖U (·, 0)‖L2

uloc(R
3) ≤ Cweak M. (186)

Here,Cweak ∈ [1,∞) is a universal constant from the embedding L3,∞(R3) ⊂ L2
uloc(R

3).
We then apply Theorem 5.1 to U and then rescale according to (184). This gives (182)
as desired. ��
Theorem 5.1 is proven in Sect. 5.2 below. It relies on an ε-regularity result for suitable
weak solutions37 to the perturbed Navier–Stokes equations

∂tv − �v + ∇q = −v · ∇v − a · ∇v − ∇ · (a ⊗ v), ∇ · v = 0, ∇ · a = 0 (187)

around a subcritical drift a ∈ Lm(Q(0,0)(1)), m > 5. We recover the result of Jia and
Šverák [20, Theorem 2.2] by a Caffarelli, Kohn and Nirenberg scheme [9] already used
in [6] for critical drifts; see also [21] for a similar result obtained by a compactness
argument. Contrary to the critical case, here we can prove boundedness directly.

Theorem 5.4 (epsilon-regularity around a subcritical drift). There exists C∗∗∗ ∈ (0,∞),
for all m ∈ (5,∞], there exists ε∗(m) ∈ (0,∞) such that the following holds for all
ε ∈ (0, ε∗(m)). Take any a ∈ Lm(Q(0,0)(1)) and any suitable weak solution (v, q) to
(187) satisfying

sup
−1<s<0

∫

B0(1)

|v(x, s)|2dx +
∫

Q(0,0)(1)

|∇v|2 dxds ≤ ε
5
9 . (188)

Assume that

‖a‖Lm (Q(0,0)(1)) ≤ ε
1
9 , (189)∫

Q(0,0)(1)

|v|3 + |q| 32 dxds ≤ ε. (190)

Then,

sup
(x̄,t)∈Q(0,0)(

1
2 )

sup
r∈(0, 14 ]

−
∫

Q(x̄,t)(r)

|v|3 dxds ≤ C∗∗∗ε
2
3 . (191)

37 For a definition of suitable weak solutions for (187), we refer to [6, Definition 1].
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This theorem is proved in Sect. 5.1 below. Notice that the smallness on the large-
scale quantity (190) in Q(0,0)(1) is transferred to the L∞ bound (191). In the following
statement, we remove the smallness assumption (189) on the drift.

Corollary 5.5 Let m ∈ (5,∞]. Let C∗∗∗ and ε∗ be given by Theorem 5.4. For all
ε ∈ (0,min(ε∗, 2−9)), for all N ∈ [1,∞), for all a ∈ Lm(Q(0,0)(1)) and any suitable
weak solution (v, q) to (187) satisfying

sup
−1<s<0

∫

B0(1)

|v(x, s)|2dx +
∫

Q(0,0)(1)

|∇v|2 dxds ≤ N
− 1

1− 5
m ε

1
9 · 6−

25
m

1− 5
m (192)

the following holds. Assume that

‖a‖Lm (Q(0,0)(1)) ≤ N , (193)

∫

Q(0,0)(1)

|v|3 + |q| 32 dxds ≤ N
− 2

1− 5
m ε

1
9 · 11−

45
m

1− 5
m . (194)

Then,

‖v‖L∞(Q(0,0)(
1
2 )) ≤ C

1
3∗∗∗N

1
1− 5

m ε

1
9 · 1−

10
m

1− 5
m . (195)

Proof of Corollary 5.5. Weuse a scaling argument as in [20,Theorem2.2]. Let (x0, t0) ∈
Q(0,0)(

1
2 ) and define R0 ∈ (0,∞) as

R0 = N
− 1

1− 5
m ε

1
9 · 1

1− 5
m . (196)

Notice that due to 0 < ε < min(ε∗, 2−9), we have R0 < 1
2 , so that the following

rescaling is well defined: for all (y, s) ∈ Q(0,0)(1),

V (y, s) := R0v(x0 + R0y, t0 + R2
0s), Q(y, s) := R2

0q(x0 + R0y, t0 + R2
0s).

Then (V, Q) is a suitable weak solution to (187) with a drift b defined by

b(y, s) := R0a(x0 + R0y, t0 + R2
0s).

We have by our choice of R0 in (196)

‖b‖Lm (Q(0,0)(1)) ≤ R
1− 5

m
0 ‖a‖Lm (Q(x0,t0)(R0)) ≤ R

1− 5
m

0 ‖a‖Lm (Q(0,0)(1)) ≤ R
1− 5

m
0 N ≤ ε

1
9

for the drift,

sup
−1<s<0

∫

B0(1)

|V (y, s)|2 dy +
∫

Q(0,0)(1)

|∇V |2 dyds

≤ R−1
0

⎛
⎜⎝ sup

t0−R2
0<s<t0

∫

Bx0 (R0)

|v(x, s)|2 dx +
∫

Q(x0,t0)(R0)

|∇v|2 dxds

⎞
⎟⎠
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≤ R−1
0

⎛
⎜⎝ sup

−1<s<0

∫

B0(1)

|v(x, s)|2 dx +
∫

Q(0,0)(1)

|∇v|2 dxds

⎞
⎟⎠

≤ R−1
0 N

− 1
1− 5

m ε

1
9 · 6−

25
m

1− 5
m = ε

5
9

for the local energy and finally
∫

Q(0,0)(1)

|V |3 + |Q| 32 dyds

≤ R−2
0

∫

Q(x0,t0)(R0)

|v|3 + |q| 32 dxds

≤ R−2
0

∫

Q(0,0)(1)

|v|3 + |q| 32 dxds

≤ R−2
0 N

− 2
1− 5

m ε

1
9 · 11−

45
m

1− 5
m = ε.

Therefore, (188), (189) and (190) are satisfied for (V, Q), and hence,

sup
(x̄,t)∈Q(0,0)(

1
2 )

sup
r∈(0, 14 ]

−
∫

Q(x̄,t)(r)

|V |3 dyds ≤ C∗∗∗ε
2
3 .

Rescaling, this gives

sup
(x̄,t)∈Q(x0,t0)(

R0
2 )

sup
r∈(0, R0

4 ]
−
∫

Q(x̄,t)(r)

|v|3 dxds ≤ C∗∗∗ε
2
3 R−3

0 ,

hence we obtain the bound (195) by taking the supremum over (x0, t0) ∈ Q(0,0)(
1
2 ).

This concludes the proof. ��

5.1. Sketch of the proof of Theorem 5.4. The proof follows almost verbatim the one of
Theorem 3 in [6], provided the following modifications are made. We propagate the
following two bounds: for rk = 2−k ,

1

r2k

∫

Q(x̄,t)(rk )

|v(x, s)|3 dxds +
1

r
1
2 +κ

k

∫

Q(x̄,t)(rk )

|q − (q)rk (s)|
3
2 dxds ≤ ε

2
3 r3k , (Ak)

sup
t−rk<s<t

∫

Bx̄ (rk )

|v(x, s)|2 dx +
∫

Q(x̄,t)(rk )

|∇v|2 dxds ≤ CBε
2
3 r3k , (Bk)

for a universal constant CB ∈ (0,∞) chosen sufficiently large and κ(m) ∈ (0,∞) such
that

0 < κ < min
(
2, 3 − 15

m

)
.
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One takes advantage of the subcriticality of the drift a in the following way:

‖a‖L5(Q(x̄,t)(rk ))
� r

1− 5
m

k ‖a‖Lm (Q(x̄,t)(rk )) � ε
1
9 r

1− 5
m

k .

This plays a key role in the estimate of I4 and I5 in Step 3, J2 and J4 in Step 4, using
the same notations as in the proof of [6, Theorem 3]. The restriction κ < 2 comes from
handling J5 and J6, while the restriction κ < 3 − 15

m comes from bounding J2 and J4.

5.2. Proof of Theorem 5.1. We fix n = 6 and m = 5n
3 = 10 in this proof. Let C∗∗∗ and

ε∗ = ε∗(10) be given by Theorem 5.4. We fix ε = ε∗(10)/2 for the whole proof. Let
also k0 = k0(6) and K0 = K0(6) be given by Proposition A.1.

Let M, N ∈ [1,∞). Let u0 ∈ L2
uloc(R

3) be such that ‖u0‖L2(Bx̄ (1))
|x̄ |→∞−→ 0. We

assume in addition that u0 ∈ L6(B0(2)). Moreover,

‖u0‖L2
uloc(R

3) ≤ M, ‖u0‖L6(B0(2)) ≤ N .

Let u be any local energy solution to (1) with such a data u0. The goal is to prove the
local-in-space short-time smoothing for u stated in Theorem 5.1.

Step 1: decomposition of the initial data.

Lemma 5.6 Let u0 ∈ L2
uloc(R

3) with, in addition, u0|B0(2) ∈ L6(R3). Then, there exists
a universal constant K2 ∈ [1,∞), there exists u0,a ∈ L6

σ (R3) ∩ L2
σ (R3), supp(u0,a) ⊂

B0(2), and u0,b ∈ L2
uloc(R

3) such that the following holds:

u0 = u0,a + u0,b, u0,a = u0 on B0(
3
2 ), ‖u0,a‖L6 ≤ K2‖u0‖L6(B0(2)),

‖u0,a‖L2 ≤ K2‖u0‖L2(B0(2)) and ‖u0,b‖L2
uloc

≤ K2‖u0‖L2
uloc

.

Proof. The proof is standard using Bogovskii’s operator [15, Chapter III.3]. We refer to
[6] for a detailed proof. ��
Step 2: control of the local energy of the perturbation. We use the decomposition
given by Lemma 5.6 for u0 as above. Let a be the mild solution given by Proposition A.1
associated to the data u0,a ∈ L6(R3). The mild solution a exists at least on the time
interval (0, Sa

mild), where
Sa

mild := k0N−4.

Moreover since u0 ∈ L2
σ (R3), the mild solution a can be constructed to be a weak

Leray-Hopf solution on R
3 × (0, Sa

mild) and we have the global energy control38

sup
s∈(0,Sa

mild )

∫

R3

|a(x, s)|2
2

dx +

Sa
mild∫

0

∫

R3

|∇a|2 dxds ≤ K ′
0N 2, (197)

with K ′
0 ∈ [1,∞) a universal constant. This and Calderón-Zygmund theory implies

‖qa‖
L

5
3 (R3×(0,Sa

mild ))
≤ K ′′

0 N 2, (198)

38 This can be inferred from arguments similar to [5, Section 3.1].
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where qa is the pressure associated to a. Moreover, since u is a local energy solution
with the initial data u0, Proposition A.3 implies the following control of the local energy

sup
s∈(0,Su

locen)

sup
x̄∈R3

∫

Bx̄ (1)

|u(x, s)|2
2

dx + sup
x̄∈R3

Su
locen∫

0

∫

Bx̄ (1)

|∇u(x, s)|2 dx ds ≤ K1M2, (199)

where Su
locen(N ) := k1 min(M−4, 1). As a consequence, the perturbation v = u − a is

a local energy solution to (187)

sup
s∈(0,Sv)

sup
x̄∈R3

∫

Bx̄ (1)

|v(x, s)|2
2

dx + sup
x̄∈R3

Sv∫

0

∫

Bx̄ (1)

|∇v(x, s)|2 dx ds

≤ K ′
1(N 2 + M2),

(200)

where K ′
1 ∈ [1,∞) is a universal constant and

Sv = Sv(M, N ) := min( 14 , Sa
mild , Su

locen)

= min
( 1
4 , k0N−4, k1M−4, k1

)
.

(201)

Moreover, we have the following pressure estimate

‖q − C0(t)‖
L

5
3 (B0(

3
2 )×(0,Sv))

≤ K ′
1(M2 + N 2), (202)

with a universal constant K ′
1 ∈ [1,∞). This bound follows from (198), (303) and (306).

Step 3: smallness of the local energy for a short time. Let φ ∈ C∞
c (R3) be a cut-off

function such that

0 ≤ φ ≤ 1, suppφ ⊂ B0(
3
2 ), φ = 1 on B0(1) and |∇(φ2)| + |�(φ2)| ≤ K3,

(203)

where K3 ∈ [1,∞). We estimate the local energy

E(t) := sup
s∈(0,t)

∫

R3

|v(x, t)|2φ2 dx + 2

t∫

0

∫

R3

|∇v|2φ2 dxds

for all t ∈ (0, Sv). The local energy inequality gives

E(t) ≤ I1 + . . . I6,

with

I1 =
t∫

0

∫

R3

|v|2�(φ2) dxds, I2 =
t∫

0

∫

R3

|v|2v · ∇(φ2) dxds,

I3 = 2

t∫

0

∫

R3

(q − C0(t))v · ∇(φ2) dxds, I4 = −2

t∫

0

∫

R3

(a · ∇v) · vφ2 dxds,
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I5 = 2

t∫

0

∫

R3

(a ⊗ v) : ∇vφ2 dxds and I6 = 2

t∫

0

∫

R3

(a ⊗ v) : v ⊗ ∇(φ2) dxds.

Let t ∈ (0, Sv). Let us estimate each term in the right hand side. For that purpose, we
rely on the bounds (200) for the local energy and (202) for the pressure. For the terms
involving only v, we have using that |B0(

3
2 )| = 33,

|I1| ≤ 33K3 · 2K ′
1(M2 + N 2)t,

and

|I2| ≤ 33+
3
10 K3(3

3 · 2K ′
1)

3
2 (M2 + N 2)

3
2 t

1
10

= 2
3
2 · 339

5 K3K ′
1

3
2 (M2 + N 2)

3
2 t

1
10 .

For the terms involving a and v we use (299) in Proposition A.1, more precisely the
bound ‖a‖L10(R3×(0,Sa

mild )) ≤ K0N . This in turn implies the controls

|I4 + I5 + I6| ≤ 3‖a‖L1033E(t)(33t)
1
5− 1

10

≤ 2 · 3 43
10 K0K3K ′

1N (M2 + N 2)t
1
10 .

For I6, we used t ∈ (0, Sv) ⊂ (0, 1
4 ).

Finally, we estimate the term involving the pressure

|I3| ≤ 2K3‖q − C0(t)‖
L

5
3 (B0(

3
2 )×(0,t))

‖v‖
L

10
3 (B0(

3
2 )×(0,t))

(33t)
1
10

≤ 2 · 39
5 K3K ′

1

3
2 (M2 + N 2)

3
2 t

1
10 .

Finally, we get the following estimate: there exists a universal constant K∗ ∈ [1,∞)

such that for all t ∈ (0, 1],
E(t) ≤ K∗(M2 + N 2)

3
2 t

1
10 . (204)

Notice that K∗ can be taken as

K∗ := 4max
(
2 · 33K3K ′

1, 2
3
2 · 339

5 K3K ′
1

3
2 , 2 · 3 43

10 K0K ′
1

)
, (205)

where K0 is defined in Proposition A.1, K ′
1 in (200) and (202), and K3 is the constant

in (203).

Step 4: boundedness of the perturbation. Let ε ∈ (0,min(ε∗, 2−9)). Our objective
is now to apply the ε-regularity result Corollary 5.5 in order to get the boundedness of
the perturbation. As in [20] and [6], we extend v by 0 in the past. The extension v is a
suitable weak solution on B0(1)× (−∞, Sv) to the Navier–Stokes equations (187) with
a drift a defined to be the zero extension of a to R3 × (−∞, 0). The bound on the local
energy (204) is crucial here, as is emphasized in [20]. Notice that the extended a is not a
mild solution to the Navier–Stokes system (1) onR3× (−∞, Sa

mild) but in Corollary 5.5
this fact is not required. We have the bound

‖a‖L10(R3×(−∞,Sa
mild )) ≤ K0N .
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By the control (200) on the local energy and (202) on the pressure, we have

t∫

t−1

∫

B0(1)

|v|3 + |q − C0(t)| 32 dxds =
t∫

0

∫

B0(1)

|v|3 + |q − C0(t)| 32 dxds

≤ 2K ′
1

3
2 (M2 + N 2)

3
2 (23t)

1
10 .

(206)

Therefore, in order to apply Corollary 5.5, we choose S∗ = S∗(M, N ) ∈ (0, Sv) suffi-
ciently small such that

K∗(M2 + N 2)
3
2 S

1
10∗ ≤ (K0N )−2ε

11
9 ,

2
13
10 K ′

1

3
2 (M2 + N 2)

3
2 S

1
10∗ ≤ (K0N )−4ε

13
9 .

(207)

Conditions (207) imply that (192) and (194) are satisfied on B0(1) × (S∗ − 1, S∗).
According to (207), we define S∗ = S∗(M, N ) in the following way

S∗ := min

(
Sv,

2− 3
2 ε

130
9

K 40
0 M30N 70

min
( 1

213K ′
1
15

,
1

K 10∗

))
(208)

Notice that for M, N sufficiently large we have

S∗ = 2− 3
2 ε

130
9

K 40
0 M30N 70

min

(
1

213K ′
1
15

,
1

K 10∗

)

= O(M−30N−70). (209)

For the rest of the proof we take this definition of S∗. It follows from (195) that

‖u − a‖L∞(Q(0,S∗)(
1
2 )) = ‖v‖L∞(Q(0,S∗)(

1
2 )) ≤ C

1
3∗∗∗N 2. (210)

Combining this estimate with (299) enables us to obtain that for all β ∈ (0, S∗)

‖u‖L∞(B0(
1
2 )×(β,S∗)) ≤ C

1
3∗∗∗N 2 +

K0N

β
1
4

, (211)

which implies estimate (177) as a particular case.

Step 5: estimates of the gradient of the perturbation. In this step, we take β = 3S∗
4 .

Our goal is to prove the following claim

sup
x̄∈B0(

1
4 )

sup
t∈( 1516 S∗,S∗)

∫

Bx̄ (
√

S∗
4 )

|∇u(x, t)|2 dx ≤ C M34N 80, (212)

for a universal constantC ∈ [1,∞). Estimate (212) implies estimate (178) in the theorem

by a covering argument. Let x̄ ∈ B0(
1
4 ). Notice that Bx̄ (

√
S∗
2 ) ⊂ B0(

1
3 ) for M, N

sufficiently large. Without loss of generality, we assume that x̄ = 0. We bootstrap the
regularity of u in the parabolic cylinder

Q(0,S∗)
(√

S∗
2

) = B0
(√

S∗
2

)× ( 34 S∗, S∗
)
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using the local maximal regularity for the non-stationary Stokes system. We first zoom

in on the parabolic cylinder Q(0,S∗)
(√

S∗
2

)
and define

U (y, s) := ru(r y, r2s + S∗), P(y, s) := r2
(

p(r y, r2s + S∗) − C0(r
2s + S∗)

)
,

for all (y, s) ∈ Q(0,0)(1), where r :=
√

S∗
2 . By the estimate (177), we have

‖U‖L∞(Q(0,0)(1)) ≤ C∗
2 M8N 19S

1
2∗

≤ C M−7N−16.
(213)

Moreover, the local energy estimate (199) implies that

‖∇U‖L2(Q(0,0)(1)) = r− 1
2 ‖∇u‖L2(Q(0,S∗)(r)) ≤ 2

1
2 K

1
2
1 M S

− 1
4∗ ≤ C M9N 18,

For the pressure, we decompose p − C0(t) according to (303). We have according to
the estimates in Proposition A.3

‖pnonloc‖L2(Q(0,S∗)(r)) ≤ ‖pnonloc‖L2(B0(
1
2 )×( 34 S∗,S∗))

≤ S
1
2∗ ‖pnonloc‖L∞(B0(

1
2 )×( 34 S∗,S∗))

≤ S
1
2∗ K1M2,

on the one hand, and

‖ploc‖L2(Q(0,S∗)(r)) ≤ ‖ploc‖L2(B0(
1
2 )×( 34 S∗,S∗))

≤ C‖u‖2
L4(B0(

1
2 )×( 34 S∗,S∗))

≤ C S
1
2∗ ‖u‖2

L∞(B0(
1
2 )×( 34 S∗,S∗))

≤ C S
1
2∗ M16N 39

using (304) and Calderón-Zygmund on the other hand. Hence,

‖P‖L2(Q(0,0)(1)) = r− 1
2 ‖p − C(t)‖L2(Q(0,S∗)(r)) ≤ 2

1
2 S

− 1
4∗ (S

1
2∗ K1M2 + C S

1
2∗ M16N 39)

≤ C M9N 22.

Notice that these are rough bounds, but they are enough for our purposes. Therefore,

‖∇U‖L2(Q(0,0)(1)) + ‖P‖L2(Q(0,0)(1)) ≤ C M9N 22. (214)

Using the local maximal regularity for the non-stationary Stokes system [41, Proposition
2.4] leads to

‖∂tU‖L2(Q(0,0)(
3
4 )) + ‖∇2U‖L2(Q(0,0)(

3
4 )) + ‖∇ P‖L2(Q(0,0)(

3
4 ))

≤ C
(
‖U‖L∞(Q(0,0)(1))‖∇U‖L2(Q(0,0)(1))

+‖U‖L2(Q(0,0)(1)) + ‖∇U‖L2(Q(0,0)(1)) + ‖P‖L2(Q(0,0)(1))

)
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≤ C M9N 22,

where we used the bounds (213) and (214). A simple local energy estimate for ∇U then
leads to the bound

‖∇U‖L∞
t L2

x (Q(0,0)(
1
2 )) ≤ C M9N 22.

Scaling back to the original variables leads to (212) and concludes the proof.

6. Main Tool 2: Quantitative Annuli of Regularity

In this section we prove that a solution u, satisfying the hypothesis of Propositions 2.1-
2.2, enjoys good quantitative bounds in certain spatial annuli. This was crucially used
in the aforementioned propositions in two places. Namely for applying the Carleman
inequalities (Propositions B.1-B.2), as well as in ‘Step 4’ for transferring the lower
bound of the vorticity to a lower bound on the localized L3 norm.

In the context of classical solutions to the Navier–Stokes equations in L∞
t L3

x (R
3 ×

(t0 − T, t0)), a related version was proven by Tao in [47] using a delicate analysis of
local enstrophies from [46]. Our proof is somewhat different and elementary (though we
use the ‘pigeonhole principle’ as in [47]), instead we utilize known ε-regularity criteria.
Notice that a crucial point in the following statement is that the L∞ bound is quantified
in terms of ε0, see below.

Proposition 6.1 ( [9] and [25, Theorem 30.1]). There exists absolute constants ε∗
0 > 0

and CC K N ∈ (0,∞) such that if (u, p) is a suitable weak solution to the Navier–Stokes
equations on Q(0,0)(1) and for some ε0 ≤ ε∗

0

∫

Q(0,0)(1)

|u|3 + |p| 32 dxdt ≤ ε0 (215)

then one concludes that

u ∈ L∞(Q(0,0)(1/2)) with ‖u‖L∞(Q(0,0)(
1
2 )) ≤ CC K N ε

1
3
0 . (216)

We require the following proposition, which is a quantitative version of Serrin’s result
[42]. Since the procedure is the same as that described in [42], we omit the proof.

Proposition 6.2 Suppose u ∈ L∞(Q(0,0)(1/2)) and ω := ∇ × u ∈ L2(Q(0,0)(1/2)) is
such that (u, p) is a distributional solution to the Navier–Stokes equations in Q(0,0)(1/2).
Furthermore, suppose

‖u‖L∞(Q(0,0)(1/2)) < 1 (217)

and
‖ω‖L2(Q(0,0)(1/2)) < 1. (218)

There exists universal constants C ′
k ∈ (0,∞) with k = 0, 1, such that the above assump-

tions imply that for k = 0, 1

‖∇kω‖L∞(Q(0,0)(1/3)) ≤ C ′
k(‖u‖L∞(Q(0,0)(1/2)) + ‖ω‖L2(Q(0,0)(1/2))). (219)
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Remark 6.3. If we instead use the framework of suitable weak solutions in the above
proposition, we can use the time integrability of the pressure to gain space-time Hölder
continuity of all spatial derivatives of u in Q(0,0)(1/3). The vorticity equation then
implies w, ∂tw, ∇w and ∇2w are continuous in space and time in Q(0,0)(1/3).

By using Proposition 6.2, one can recover the following well-known proposition
whose proof we omit.

Proposition 6.4 There exists absolute constants ε∗
1 ∈ (0, 1) and C ′′

k ∈ (0,∞), k =
0, 1, 2, such that if (u, p) is a suitable weak solution to the Navier–Stokes equations on
Q(0,0)(1) and for some ε1 ≤ ε∗

1

∫

Q(0,0)(1)

|u|3 + |p| 32 dxdt ≤ ε1 (220)

then one concludes that for j = 0, 1

∇ j u ∈ L∞(Q(0,0)(1/4)) with ‖∇ j u‖L∞(Q(0,0)(
1
4 )) ≤ C ′′

j ε
1
3
1 (221)

and

∇ω ∈ L∞(Q(0,0)(1/4)) with ‖∇ω‖L∞(Q(0,0)(
1
4 )) ≤ C ′′

2 ε
1
3
1 . (222)

Proposition 6.5 (annulus of regularity, general form). For all μ > 0 there exists λ0(μ) >

1 such that the following holds true. For all λ ≥ λ0(μ), R ≥ 1 and for every solution
(u, p) to the Navier–Stokes equations on R

3 × [−1, 0] that is a suitable weak solution
on Q(x∗,0)(1) for all x∗ ∈ R

3 and satisfies

0∫

−1

∫

R3

|u| 103 + |p| 53 dxdt ≤ λ < ∞, (223)

there exists R′′(u, p, λ, μ, R) with

2R ≤ R′′ ≤ 2R exp (2μλμ+2) (224)

and universal constants C̄ j ∈ (0,∞) for j = 0, 1, 2 such that for j = 0, 1

‖∇ j u‖L∞({R′′<|x |< λμ

4 R′′}×(− 1
16 ,0)) ≤ C̄ jλ

− 3μ
10 (225)

and

‖∇ω‖L∞({R′′<|x |< λμ

4 R′′}×(− 1
16 ,0)) ≤ C̄2λ

− 3μ
10 . (226)

Proof. Fix any R ≥ 1 and μ > 0. With these choices, take λ > λ0(μ) ≥ 1. Here, λ0 is
to be determined. Then

∞∑
k=0

0∫

−1

∫

(λμ)k R<|x |<(λμ)k+1R

|u| 103 + |p| 53 dxdt ≤ λ.
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By the pigeonhole principle, there exists k0 ∈ {0, 1, . . . �λμ+1�} such that

0∫

−1

∫

(λμ)k0 R<|x |<(λμ)k0+1R

|u| 103 + |p| 53 dxdt ≤ λ−μ.

Define R′ := Rλμk0 . Then

R ≤ R′ ≤ R exp(2μλμ+2) (227)

and
0∫

−1

∫

R′<|x |<λμ R′
|u| 103 + |p| 53 dxdt ≤ λ−μ (228)

Impose the restriction λ0(μ) > 4
1
μ and define

A := {x : R′ + 1 < |x | < λμ R′ − 1}. (229)

By Hölder’s inequality we have

sup
x∗∈A

0∫

−1

∫

B(x∗,1)

|u|3 + |p| 32 dxdt ≤ Cuniv

(
sup
x∗∈A

0∫

−1

∫

Bx∗ (1)

|u| 103 + |p| 53 dxdt
) 9

10

≤ Cunivλ
− 9μ

10 .

Defining

λ0(μ) := max
(
2 · 4 1

μ ,
(2Cuniv

ε∗
1

) 10
9μ
)
, (230)

the inequality λ ≥ λ0(μ) implies that

sup
x∗∈A

0∫

−1

∫

Bx∗ (1)

|u|3 + |p| 32 dxdt ≤ Cunivλ
− 9μ

10 < ε∗
1 .

Thus, we can apply Proposition 6.4 to get that for j = 0, 1

sup
x∗∈A

‖∇ j u‖L∞(Q(x∗,0)(
1
4 )) ≤C ′′

j C
1
3

univλ
− 3μ

10 and sup
x∗∈A

‖∇ω‖L∞(Q(x∗,0)(
1
4 )) ≤ C ′′

2C
1
3

univλ
− 3μ

10 .

Hence,

‖∇ j u‖L∞(A×(− 1
16 ,0)) ≤ C ′′

j C
1
3
univλ

− 3μ
10 and ‖∇ω‖L∞(A×(− 1

16 ,0)) ≤ C ′′
2C

1
3
univλ

− 3μ
10 .

Finally, note that (230) and λ ≥ λ0 imply that λμ R′ − 1 > λμ

2 R′ > 2R′ > R′ + 1.

Defining R′′ := 2R′ and using {x : R′′ < |x | < λμ

4 R′′} ⊂ A, we see that the above
estimates readily give the desired conclusion. ��
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Bearing in mind (265), the energy estimates (264), (270) and Calderón-Zygmund esti-
mates for the pressure, the following Lemma is obtained as an immediate corollary to
the above Proposition. Note that (265), (264) and (270) are shown in the proof of Lemma
7.3. We also use the known fact that mild solutions to the Navier–Stokes equations in
L4

x,t (R
3×(0, T )) are suitable weak solutions onR3×(0, T ), which can be seen by using

a mollification argument along with Calderón-Zygmund estimates for the pressure.

Lemma 6.6 (annulus of regularity, Type I). For all μ > 0 there exist M1(μ), c(μ), C(μ)

> 1 such that the following holds true. For all M ≥ M1(μ), R ≥ 1 and for every mild
solution (u, p) of the Navier–Stokes equations on R

3 × [−2, 0] satisfying

‖u‖L∞
t L3,∞

x (R3×(−2,0)) ≤ M (231)

and
u ∈ L4

x,t (R
3 × (−2, 0)), (232)

there exists R′′(u, p, M, μ, R) with

2R ≤ R′′ ≤ 2R exp (C(μ)M10(μ+2)) (233)

and universal constants C̄ j ∈ (0,∞) for j = 0, 1, 2 such that for j = 0, 1

‖∇ j u‖L∞({R′′<|x |<c(μ)M10μ R′′}×(− 1
16 ,0)) ≤ C̄ j C(μ)M−3μ (234)

and
‖∇ω‖L∞({R′′<|x |<c(μ)M10μ R′′}×(− 1

16 ,0)) ≤ C̄2C(μ)M−3μ. (235)

A simple rescaling gives the following corollary, which is directly used in the proof
of Proposition 2.1.

Corollary 6.7 Let S ∈ (0,∞). For all μ > 0, let M1(μ), c(μ), C(μ) > 1 be given by

Lemma 6.6. For all M ≥ M1(μ), R ≥ S
1
2 and for every mild solution (u, p) of the

Navier–Stokes equations on R
3 × [−S, 0] satisfying

‖u‖L∞
t L3,∞

x (R3×(−S,0)) ≤ M (236)

and
u ∈ L4

x,t (R
3 × (−S, 0)), (237)

there exists R′′(u, p, M, μ, R) with (233) and universal constants C̄ j for j = 0, 1, 2
such that for j = 0, 1

‖∇ j u‖L∞({R′′<|x |<c(μ)M10μ R′′}×(− S
32 ,0)) ≤ 2

j+1
2 C̄ j C(μ)M−3μS− j+1

2 (238)

and
‖∇ω‖L∞({R′′<|x |<c(μ)M10μ R′′}×(− S

32 ,0)) ≤ 2
2
3 C̄2C(μ)M−3μS− 3

2 . (239)

Bearing in mind (293), the energy estimate in footnote 12 (see also Lemma 3.3) and
Calderón-Zygmund estimates for the pressure, the following Lemma is obtained as an
immediate corollary to Proposition 6.5.
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Lemma 6.8 (annulus of regularity, time slices). For all μ > 0 there exists M2(μ) > 1
such that the following holds true. For all M ≥ M2(μ), R ≥ 1 and for every suitable
finite-energy solution39 (u, p) of the Navier–Stokes equations onR3×[−1, 0] satisfying

‖u(·,−1)‖L3(R3) ≤ M (240)

and with M� defined by (17), there exists R′′(u, p, M, μ, R) with

2R ≤ R′′ ≤ 2R exp (C(μ)(M�)10(μ+2)) (241)

and universal constants C̄ j for j = 0, 1, 2 such that for j = 0, 1

‖∇ j u‖L∞({R′′<|x |<(M�)10μ R′′}×(− 1
16 ,0)) ≤ C̄ j (M�)−3μ (242)

and

‖∇ω‖L∞({R′′<|x |<(M�)10μ R′′}×(− 1
16 ,0)) ≤ C̄2(M�)−3μ. (243)

A simple rescaling gives the following corollary, which is directly used in the proof
of Theorem B.

Corollary 6.9 Let S ∈ (0,∞). For all μ > 0, let M2(μ) > 1 and M� be given by

Lemma 6.8. For all M ≥ M2(μ), R ≥ S
1
2 and for every suitable finite-energy solution

(u, p) of the Navier–Stokes equations on R
3 × [−S, 0] satisfying

‖u(·,−S)‖L3(R3) ≤ M, (244)

there exists R′′(u, p, M, μ, R) with

2R ≤ R′′ ≤ 2R exp (C(μ)(M�)10(μ+2)) (245)

and universal constants C̄ j for j = 0, 1, 2 such that for j = 0, 1

‖∇ j u‖L∞({R′′<|x |<(M�)10μ R′′}×(− S
32 ,0)) ≤ 2

j+1
2 C̄ j (M�)−3μS− j+1

2 (246)

and

‖∇ω‖L∞({R′′<|x |<(M�)10μ R′′}×(− S
32 ,0)) ≤ 2

3
2 C̄2(M�)−3μS− 3

2 . (247)

Remark 6.10. According to Remark 6.3, in Proposition 6.5-Corollary 6.9 we have that
w, ∂tw, ∇w and ∇2w are continuous in space and time on the annuli considered. This
remark is needed to apply the first Carleman inequality, Proposition B.1, in Sects. 3
and 4.

39 See Sect. 1.4 ‘Notations’ for a definition of ‘suitable finite-energy solutions.’
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7. Main Tool 3: Quantitative Epochs of Regularity

In this section, we prove that a solution satisfying the hypothesis of Propositions 2.1-2.2
enjoys good quantitative estimates in certain time intervals. In the literature, these are
commonly referred to as ‘epochs of regularity’. Such a property is crucially used in ‘Step
1’ of the above propositions, when applying a quantitative Carleman inequality based
on unique continuation (Proposition B.2).

To show the existence of such epochs of regularity, we follow Leray’s approach
in [27]. In particular, we utilize arguments involving existence of mild solutions for
subcritical data and weak-strong uniqueness. We provide full details for the reader’s
convenience.

We first recall a result known as ‘O’Neil’s convolution inequality’ (Theorem 2.6 of
O’Neil’s paper [33]).

Proposition 7.1 Suppose 1 < p1, p2, r < ∞ and 1 ≤ q1, q2, s ≤ ∞ are such that

1

r
+ 1 = 1

p1
+

1

p2
(248)

and
1

q1
+

1

q2
≥ 1

s
. (249)

Suppose that
f ∈ L p1,q1(Rd) and g ∈ L p2,q2(Rd). (250)

Then

f ∗ g ∈ Lr,s(Rd) with (251)

‖ f ∗ g‖Lr,s (Rd ) ≤ 3r‖ f ‖L p1,q1 (Rd )‖g‖L p2,q2 (Rd ). (252)

We will also use an inequality that we will refer to as ‘Hölder’s inequality for Lorentz
spaces’. The statement below and its proof can be found in [18, Theorem 4.5, p.271];
see also [33, Theorems 3.4-3.5, page 141].

Proposition 7.2 Suppose that 1 ≤ p, q, r ≤ ∞ and 1 ≤ s1, s2 ≤ ∞. Let � be a domain
in R

d . Furthermore, suppose that p, q, r , s1 and s2 satisfy the following relations:

1

p
+
1

q
= 1

r

and

1

s1
+

1

s2
= 1

s
.

Then the assumption that f ∈ L p,s1(�) and g ∈ Lq,s2(�) implies that f g ∈ Lr,s(�),
with the estimate

‖ f g‖Lr,s (�) ≤ C(p, q, s1, s2)‖ f ‖L p,s1 (�)‖g‖Lq,s2 (�). (253)

Below we apply Proposition 7.1 and Proposition 7.2 to obtain a quantitative epoch
of regularity for a solution to the Navier–Stokes equations with Type I bound, let us
mention that the application of such inequalities to the Navier–Stokes equations was
pioneered by Kozono and Yamazaki [22,23,52].
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Lemma 7.3 (epoch of regularity, Type I). There exists a universal constant C3 ∈ [1,∞)

such that the following holds. Suppose u : R3 × [t0 − T, t0] → R
3 is a mild solution40

of the Navier–Stokes equations. Furthermore, assume for some M ≥ 1 that

‖u‖L∞
t L3,∞

x (R3×(t0−T,t0))
≤ M (254)

and
u ∈ L4

x,t (R
3 × (t0 − T, t0)). (255)

Then for all intervals I ⊂ [t0 − T
2 , t0] there exists a subinterval I ′ ⊂ I such that the

following holds true. Namely,

‖∇ j u‖L∞
t L∞

x (R3×I ′) ≤ C3M18|I | −( j+1)
2 (256)

for j = 0, 1, 2 and

|I ′| ≥ C−1
3 M−12|I |. (257)

Remark 7.4 (estimates for applying Carleman inequalities (Type I)). Let I ′′ ⊂ I ′ be
such that

|I ′′| = M−36

4C2
3

|I ′|.

Then

|I ′|−1 = M−36

4C2
3

|I ′′|−1.

Using (254)–(256), together with the fact that C3 and M ∈ [1,∞), we see that

‖∇ j u‖L∞
t L∞

x (R3×I ′′) ≤ 1

2 j+1 |I ′′| −( j+1)
2 (258)

for j = 0, 1, 2 and

|I ′′| ≥ M−48

4C3
3

|I |. (259)

Proof. The first part of the proof closely follows arguments in Tao’s paper [47]. The
only difference in the first part of the proof is that we exploit the above facts regarding
Lorentz spaces. For completeness, we give full details.

As observed by Tao in [47], (254)–(257) are invariant with respect to the Navier–
Stokes scaling and time translation. So we can assume without loss of generality

I = [0, 1] ⊂ [t0 − T
2 , t0] ⇒ [−1, 1] ⊂ [t0 − T, t0] (260)

Step 1: a priori energy estimates. Clearly we have from the standing assumptions that

‖u‖L∞
t L3,∞

x (R3×(−1,1)) ≤ M. (261)

40 See Sect. 1.4.4.
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On R
3 × (−1, 1) we have

u = e(t+1)�u(·,−1) + w, w := −
t∫

−1

e(t−s)�
P∇ · (u ⊗ u)(·, s)ds. (262)

It is known that et�
P∇· has an associated convolution kernel K . Furthermore, from

Solonnikov’s paper [44], this satisfies the estimate

|∂m
t ∇ j K (x, t)| ≤ C(m, j)

(|x |2 + t)2+
j
2 +m

, for j, m = 0, 1 . . . (263)

Thus we may apply O’Neil’s convolution inequality (Proposition 7.1) with r = s = 2,
q1 = p1 = 6

5 , p2 = 3
2 and q2 = ∞. This and Hölder’s inequality for Lorentz spaces

(Proposition 7.2) gives that for t ∈ [−1, 1]

‖w(·, t)‖L2
x

≤ C

t∫

−1

‖u ⊗ u(·, s)‖
L

3
2 ,∞

(t − s)
3
4

ds ≤ C M2(t + 1)
1
4 .

Thus,
‖w‖L∞

t L2
x (R3×(−1,1)) ≤ C M2. (264)

Using O’Neil’s convolution inequality once more gives

‖e(t+1)�u(·,−1)‖
L

10
3

x

≤ C M

(t + 1)
1
20

, (265)

‖e(t+1)�u(·,−1)‖L4
x

≤ C M

(t + 1)
1
8

, (266)

and

‖e(t+1)�u(·,−1)‖L6,2
x

≤ C M

(t + 1)
1
4

. (267)

By utilizing (266) for 1
2 + t

2 instead of 1 + t , together with standard heat semigroup
estimates, one can also obtain

‖e(t+1)�u(·,−1)‖L∞
x

≤ C M

(t + 1)
1
2

. (268)

Next, we see that w satisfies

∂tw − �w + u · ∇u + ∇ p = 0, ∇ · w = 0 w(·,−1) = 0. (269)

Using (255), (268) and (266) we infer the following. Namely, w ∈ C([0, 1]; L2
σ (R3)) ∩

L2(0, 1; Ḣ1(R3)) and satisfies the energy equality41 for t ∈ [0, 1]:

1

2
‖w(·, t)‖2L2

x
+

t∫

0

∫

R3

|∇w|2dxdt ′

41 This can be shown by utilizing arguments in [26] (Lemma 7.2 in [26]) and [43] (Theorem 2.3.1 in [43]),
for example.
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= 1

2
‖w(·, 0)‖2L2

x
+

t∫

0

∫

R3

e(t ′+1)�u(·,−1) ⊗ (w + e(t ′+1)�u(·,−1)) : ∇wdxdt ′.

Using Hölder’s inequality followed by Young’s inequality we see that

‖w(·, t)‖2L2
x
+

t∫

0

∫

R3

|∇w|2dxdt ′ ≤ ‖w(·, 0)‖2L2
x
+ C

t∫

0

∫

R3

|e(t ′+1)�u(·,−1)|4dxdt ′

+ C

t∫

0

‖w(·, t ′)‖2L2
x
‖e(t ′+1)�u(·,−1)‖2L∞

x
dt ′.

Using this, together with (264)–(266) and the fact M > 1, we obtain

1∫

0

∫

R3

|∇w|2dxdt ′ ≤ Cuniv M6. (270)

Here, Cuniv is a universal constant.

Step 2: higher integrability via weak-strong uniqueness. From (270), the pigeonhole
principle, the Sobolev embedding theorem and (267), there exists t1 ∈ [0, 1

2 ] such that

‖u(·, t1)‖L6(R3) ≤ Cuniv M3. (271)

This, (254) and the interpolation inequality for the Lorentz spaces (see Lemma 2.2 in
[30] for example) implies that u(·, t1) ∈ L4

σ (R3). This and (271) allows us to apply
Proposition A.1 and Remark A.2. In particular, there exists C ′

univ ∈ (0,∞) and a mild

solution U : R3 ×[t1, t1 +
C ′

univ
M12 ] → R

3 to the Navier–Stokes equations, with initial data
u(·, t1), which satisfies the following properties. Specifically,

‖U‖
L∞

t L6
x (R3×[t1,t1+C ′

univ
M12 ])

≤ C M3 (272)

and

U ∈ L∞
t L4

x (R
3 × [t1, t1 +

C ′
univ

M12 ]). (273)

Let W : R3 × [t1, t1 +
C ′

univ
M12 ] → R

3 be defined by

W := u−U = −
t∫

t1

e(t−s)�
P∇·(u⊗u−U⊗U )(·, s)ds for t ∈ [t1, t1+

C ′
univ

M12 ]. (274)

Using (255) and (273), we see that

W ∈ C
([

t1, t1 +
C ′

univ

M12

]
; L2

σ (R3)
)

∩ L2
t

(
t1, t1 +

C ′
univ

M12 ; Ḣ1(R3)
)

(275)
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and W satisfies the energy equality for t ∈ [t1, t1 +
C ′

univ
M12 ]:

‖W (·, t)‖2L2
x
+ 2

t∫

t1

∫

R3

|∇W |2dxdt ′ = 2

t∫

t1

∫

R3

U ⊗ W : ∇W dxdt ′. (276)

Using this, (272) and known weak-strong uniqueness arguments from [27], we infer

that W ≡ 0 on R
3 × [t1, t1 +

C ′
univ

M12 ]. Using this together with (272), we get that for

τ(s) := t1 +
sC ′

univ
M12 :

‖u‖L∞
t L6

x (R3×(τ (0),τ (1))) ≤ C M3. (277)

Using that the pressure is given by a Riesz transform acting on u ⊗ u, we can apply
Calderón-Zygmund to get that the pressure p associated to u satisfies

‖p‖L∞
t L3

x (R3×(τ (0),τ (1))) ≤ C M6. (278)

Step 3: higher derivative estimates. Here, the arguments differ from those utilized in

[47]. Fix any x ∈ R
3 and t ∈ [τ( 12 ), τ (1)]. Take any r ∈ (0,

√
C ′

univ
2M12 ], which ensures

that t − r2 ∈ [τ(0), τ (1)]. Using this and (277)–(278) we see that

1

r2

∫

Q(x,t)(r)

|u|3 + |p| 32 dxdt ′ ≤ C ′′
univr

3
2 M9 = C ′′

univ(r M6)
3
2 . (279)

Taking

r = r0 := 1

M6 min

⎛
⎝
√

C ′
univ

2
,

ε
2
3
C K N

(C ′′
univ)

2
3

⎞
⎠,

where εC K N is ε∗
0 in [38, Lemma 6.1], we can then apply the Caffarelli-Kohn-Nirenberg

theorem [9] and [38, Lemma 6.1] to get that for j = 0, 1, . . .

sup
(x,t)∈R3×[τ( 12 ),τ (1)]

|∇ j u(x, t)| ≤ C

r j+1
0

� C( j)(M6) j+1.

This concludes the proof. ��
Lemma 7.5 (epoch of regularity, time slices). There exists a universal constant C4 ∈
[1,∞) such that the following holds. Suppose u : [−1, 0] × R

3 → R
3 and p :

[−1, 0] × R
3 → R is a suitable finite-energy solution to the Navier–Stokes equations.

Furthermore, assume for some M ≥ 1 and t0 ∈ [−1, 0) that

‖u(·, t0)‖L3
x

≤ M (280)

and u satisfies the energy inequality (43) starting from t ′ = t0.
We define M� as in (17). Fix any α ≥ M� and let

s0 ∈
[ t0
2

,
t0

4α201

]
. (281)
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Define

I :=
[
s0,

s0
2

]
. (282)

There exists a subinterval I ′ ⊂ I such that the following holds true. Namely,

‖∇ j u‖L∞
t L∞

x (R3×I ′) ≤ C4α
324|I | −( j+1)

2 (283)

for j = 0, 1, 2 and
|I ′| ≥ C−1

4 α−216|I |. (284)

Remark 7.6 (estimates for applying Carleman inequalities, time slices). Let I ′′ ⊂ I ′ be
such that

|I ′′| = α−648

4C2
4

|I ′|.

Then

|I ′|−1 = α−648

4C2
4

|I ′′|−1.

Using (283)–(284), together with the fact that C4 and M ∈ [1,∞), we see that

‖∇ j u‖L∞
t L∞

x (R3×I ′′) ≤ 1

2 j+1 |I ′′| −( j+1)
2 (285)

for j = 0, 1, 2 and

|I ′′| ≥ α−864

4C3
4

|I |. (286)

Proof. Define,

t̂ := t0
s0

− 1.

Note that (281) implies that
t̂ ∈ (1, 4α201 − 1). (287)

By appropriate scalings and translations, we can assume without loss of generality that
u : R3 × (0, T̂ ) → R

3, for some T̂ ∈ (0,∞)42 and

‖u(·, 0)‖L3(R3) ≤ M, (288)

‖u(·, t)‖2L2 + 2

t∫

0

∫

R3

|∇u(y, s)|2dyds ≤ ‖u(·, 0)‖2L2 (289)

and

I :=
[
t̂, t̂ +

1

2

]
⊂ (1, T̂ ). (290)

42 The time T̂ is the image of 0 by the scalings and translations. Its precise value does not matter at all, since
the proof is carried out on the time interval [0, t̂ + 1

2 ].
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On R
3 × (0, T̂ ) we have

u = et�u(·, 0) + w. (291)

Using O’Neil’s convolution inequality once more gives for all t ∈ (0,∞),

‖et�u(·, 0)‖L3
x

≤ C M, (292)

‖et�u(·, 0)‖
L

10
3

x

≤ C M

t
1
20

, (293)

‖et�u(·, 0)‖L4
x

≤ C M

t
1
8

, (294)

and

‖et�u(·, 0)‖L6,2
x

≤ C M

t
1
4

. (295)

Furthermore, arguments from [17] imply that

‖et�u(·, 0)‖L5(R3×(0,∞)) ≤ C M. (296)

Moreover, similar arguments as those used in Proposition 2.2 of [40] yield that for
t ∈ (0, T̂ ),

‖w(·, t)‖2L2
x
+

t∫

0

∫

R3

|∇w|2dxdt ′

≤ C

t∫

0

∫

R3

|et�u(·, 0)|4dxdt ′ + C

t∫

0

‖w(·, t ′)‖2L2
x
‖et ′�u(·, 0)‖5L5

x
dt ′.

Note that the energy inequality for w, which is used to produce this estimate, can be
justified rigorously using (296) and similar arguments as those used in Proposition 14.3
in [25].

Using (292)–(296) and Gronwall’s lemma, we infer that

sup
0<t<t̂+ 1

2

‖w(·, t)‖2L2
x
+

t̂+ 1
2∫

0

∫

R3

|∇w|2dxdt ′ ≤ (M�)4(t̂ + 1
2 )

1
2 < 2α105. (297)

Hereweused (287).Now let� ⊂ [0, T̂ ]be such that (43) is satisfied for all t ∈ [t ′, T̂ ] and
t ′ ∈ �. Since u is a suitable finite-energy solution we have that |�| = T̂ . Furthermore,
� can be chosen without loss of generality such that

∫

R3

|∇w(x, t ′)|2dx < ∞ for all t ′ ∈ �.

Using (297), the Sobolev embedding theorem, the pigeonhole principle and (295), we
see that there exists t1 ∈ [t̂, t̂ + 1

4 ] ∩ � such that

‖u(·, t1)‖2L6 ≤ Cα105. (298)

Making use of the fact that u satisfies the energy inequality starting from t1 and (298),
we can utilize similar arguments to those used in Lemma 7.3 replacing M by α18. ��
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Appendix A: Auxiliary Results

We first state the existence result of mild solutions with subcritical data.

Proposition A.1 ( [17,51]). Let n ∈ (3,∞). There exists k0(n) ∈ (0,∞), K0(n) ∈
[1,∞) such that the following holds. For all u0 ∈ Ln

σ (R3), we define

Smild(u0) := k0‖u0‖− 2n
n−3

Ln ∈ (0,∞).

There exists a unique mild solution of (1), a ∈ C([0, Smild); Ln) ∩ L∞((0, Smild); Ln),
with initial data u0 such that

sup
t∈(0,Smild )

(‖a(·, t)‖Ln + t
3
2n ‖a(·, t)‖L∞ + t

1
2 ‖∇a(·, t)‖Ln + t

1
2 +

3
2n ‖∇a(·, t)‖L∞

)

+‖a‖
L

5n
3 (R3×(0,Smild ))

≤ K0‖u0‖Ln . (299)

Remark A.2. Here n = 6. For U, V : R3 × (0, T ) → R
3 define

B(U, V )(·, t) :=
t∫

0

P∂i e
(t−s)�Ui (·, s)Vj (·, s)ds. (300)

Using (263), one has the estimate

‖B(U, V )‖L∞
t L4

x (R3×[0,T ]) + ‖B(V, U )‖L∞
t L4

x (R3×[0,T ])
≤ cT

1
4 ‖U‖L∞

t L6
x (R3×[0,T ])‖V ‖L∞

t L4
x (R3×[0,T ]).

http://creativecommons.org/licenses/by/4.0/
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Using this, one can show that for u0 ∈ L6
σ (R3) ∩ L4

σ (R3) and k0 sufficiently small
the following persistency property holds true. Namely, with n = 6 the mild solution in
Proposition A.1 satisfies

sup
t∈(0,Smild )

‖a(·, t)‖L4 ≤ 2‖u0‖L4 (301)

in addition to (299). This is utilized in the proof of Lemma 7.3.

The next result is the local energy bound for local energy solutions.43

Proposition A.3 ( [19, Lemma 2.1], [25]). There exist two universal constants k1 ∈
(0,∞), K1 ∈ [1,∞) such that the following holds. For all M ∈ (0,∞), we define

Slocen(M) := k1 min(M−4, 1) ∈ (0,∞).

For all u0 ∈ L2
uloc(R

3) with ‖u0‖L2(Bx̄ (1))
|x̄ |→∞−→ 0, for all local energy solution (u, p)

to (1) with initial data u0, if

sup
x̄∈R3

∫

Bx̄ (1)

|u0(x)|2 dx ≤ M2,

then

sup
s∈(0,Slocen)

sup
x̄∈R3

∫

Bx̄ (1)

|u(x, s)|2
2

dx + sup
x̄∈R3

Slocen∫

0

∫

Bx̄ (1)

|∇u(x, s)|2 dx ds ≤ K1M2. (302)

Moreover, we have the following decomposition of the pressure: for all x̄ ∈ R
3 and

t ∈ (0, Slocen), there exists Cx̄ (t) ∈ R such that44

p(x, t) − Cx̄ (t) = −1

3
|u(x, t)|2 + ploc(x, t) + pnonloc(x, t) (303)

for all (x, t) ∈ Bx̄ (
3
2 ) × (0, Slocen), with

ploc(x, t) = −
∫

R3

Ki j (x − y)ϕ(y)ui (y, t)u j (y, t)dy (304)

and

pnonloc(x, t) = −
∫

R3

(Ki j (x − y) − Ki j (x̄ − y))(1 − ϕ(y))ui (y, t)u j (y, t)dy. (305)

Here, ϕ ∈ C∞
0 (Bx̄ (4)) (with ϕ ≡ 1 on Bx̄ (3)) and Ki j (x) := ∂i∂ j

(
1
|x |
)
.

Moreover, we have the estimate

‖ploc‖
L

5
3 (Bx̄ ( 32 )×(0,Slocen))

+ ‖pnonloc‖L∞(Bx̄ ( 32 )×(0,Slocen)) ≤ K1M2. (306)

43 For a definition of ‘local energy solutions’, see Sect. 1.4.
44 This decomposition is also valid for ploc defined in Bx̄ ( 12 ) × (0, Slocen) instead of Bx̄ ( 32 ) × (0, Slocen)

as stated here. The constant Cx̄ (t) has to be adapted.
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Appendix B: Carleman Inequalities

The two statements below are taken directly from [47]. The first Carleman inequality in
Proposition B.1 corresponds to a quantitative backward uniqueness result.

Proposition B.1 (first Carleman inequality [47, Proposition 4.2]). Let CCarl ∈ [1,∞),
S ∈ (0,∞), 0 < r− < r+ and we define the space-time annulus

A := {(x, t) ∈ R
3 × R : t ∈ [0, S], r− ≤ |x | ≤ r+}.

Let w : A → R
3 be such that w, ∂tw, ∇w and ∇2w are continuous in space and time

and such that w satisfies the differential inequality

|(∂t + �)w| ≤ C−1
Carl S−1|w| + C

− 1
2

Carl S− 1
2 |∇w| on A. (307)

Assume
r2− ≥ 4CCarl S. (308)

Then we have the following bound

S
4∫

0

∫

10r−≤|x |≤ r+
2

(S−1|w|2 + |∇w|2) dxdt � C3
Carle

− r−·r+
4CCarl S

(
X + e

2r2+
CCarl S Y

)
, (309)

where

X :=
∫∫

A
e

2|x |2
CCarl S (S−1|w|2 + |∇w|2) dxdt, Y :=

∫

r−≤|x |≤r+

|w(x, 0)|2 dx .

The second Carleman inequality in Proposition B.2 below corresponds to a quanti-
tative unique continuation result.

Proposition B.2 (second Carleman inequality [47, Proposition 4.3]). Let CCarl ∈
[1,∞), S ∈ (0,∞), r > 0 and we define the space-time cylinder

C := {(x, t) ∈ R
3 × R : t ∈ [0, S], |x | ≤ r}.

Let w : C → R
3 such that w, ∂tw, ∇w and ∇2w are continuous in space and time

and such that w satisfies the differential inequality

|(∂t + �)w| ≤ C−1
Carl S−1|w| + C

− 1
2

Carl S− 1
2 |∇w| on C. (310)

Assume
r2 ≥ 4000S. (311)

Then, for all 0 < s ≤ s < S
10000 one has the bound

2s∫

s

∫

|x |≤ r
2

(S−1|w|2 + |∇w|2)e− |x |2
4t dxdt � e− r2

500s X + (s)
3
2

(es

s

)Cr2
s

Y, (312)

where

X :=
S∫

0

∫

|x |≤r

(S−1|w|2 + |∇w|2) dxdt, Y :=
∫

|x |≤r

|w(x, 0)|2(s)− 3
2 e− |x |2

4s dx .
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Propositions B.1 and B.2 are proved in [47] for smooth functions. The proof works
under the weaker smoothness assumption stated here. This is used in Sect. 4 in particular,
where the results are stated for suitable finite-energy solutions.
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