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Event-Based Control for Online Training of Neural Networks

Zilong Zhao1, Sophie Cerf1, Bogdan Robu1, and Nicolas Marchand1

Abstract—Convolutional Neural Network (CNN) has become
the most used method for image classification tasks. During its
training the learning rate and the gradient are two key factors to
tune for influencing the convergence speed of the model. Usual
learning rate strategies are time-based i.e. monotonous decay
over time. Recent state-of-the-art techniques focus on adaptive
gradient algorithms i.e. Adam and its versions. In this paper we
consider an online learning scenario and we propose two Event-
Based control loops to adjust the learning rate of a classical
algorithm E (Exponential)/PD (Proportional Derivative)-Control.
The first Event-Based control loop will be implemented to prevent
sudden drop of the learning rate when the model is approaching
the optimum. The second Event-Based control loop will decide,
based on the learning speed, when to switch to the next data
batch. Experimental evaluation is provided using two state-of-
the-art machine learning image datasets (CIFAR-10 and CIFAR-
100). Results show the Event-Based E/PD is better than the
original algorithm (higher final accuracy, lower final loss value),
and the Double-Event-Based E/PD can accelerate the training
process, save up to 67% training time compared to state-of-the-
art algorithms and even result in better performance.

Index Terms—Event Based Control; Gradient Methods; Neural
Networks

I. INTRODUCTION

Convolutional Neural Network (CNN) is a popular machine
learning algorithm for image classification because it outper-
forms any other network architecture on visual data. In this
paper, we focus on an online learning scenario where data
used for training the CNN comes in batches over time [1],
[2]. A CNN model is a neural network structure with a set
of weights which are iteratively learned from training data
using methods such as Stochastic Gradient Descent (SGD).
The SGD algorithm is parametrized with a learning rate λ. A
large λ helps the model to converge faster but increases the
risk of diverging [3]. A small λ slows the convergence but
may lead to a local minimum.

There are two main learning rate evolution strategies: time-
based or adaptive. In most time-based learning rate strategies,
λ decreases following a predefined decay function [4]. Cyclical
strategies have also been developed, where two boundaries are
defined and λ cyclically varies between them. The disadvan-
tage of these algorithms is that the learning rate path is fixed
before training, it cannot be adjusted when necessary.

Adaptive learning rate algorithms such as Adam [5], Nadam
(Adam with Nesterov momentum) [6] and AMSGrad [7] are
recent state-of-the-art algorithms which mainly focus on the
convergence speed. Different from SGD which uses only
the current value of the gradient to update weights, these
algorithms use squared gradient to scale the learning rate and
take advantage of momentum by using moving average of
the gradients. Nevertheless, Wilson et al. [8] suggested that
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adaptive gradient methods do not generalize as well as SGD.
These methods tend to perform well in the initial portion
of training but are outperformed by SGD at later stages of
training [9]. To address this issue, AdaBound [10] employs
dynamic bounds on learning rates to achieve a gradual and
smooth transition from adaptive methods to SGD.

Up to our knowledge, E (Exponential)/PD (Proportional
Derivative) control [11] is the first adaptive learning rate
algorithm which uses control theory to dynamically adapt the
learning rate during the learning process. It uses only current
gradient as in SGD, but its learning rate λ is dynamically
calculated based on the loss value. During the E phase, that
corresponds to the beginning of the training when the loss
value is continuously decreasing, λ is increased each time step
by a factor of two. Once the loss stops decreasing, the PD
phase takes over and, considering CNN as a dynamic system,
computes the control input (i.e. λ) based on the CNN’s output
(i.e. the loss value).

The above-mentioned algorithms are time-based, in the
sense of a periodic computation of the control law regard-
less its utility. In this paper, we propose two event-based
control strategies to reduce the time CNN spends learning
”inefficiently” from data, as well as an extensive evaluation.
Moreover, while using event-based mechanisms we should
expect for a reduction in the use of resources [12], [13],
without degrading performances [14] and with stability and
robustness guarantees [15]. Numerous Event-Based control
strategies in the literature are focusing on stability and perfor-
mance guarantees. Most event-based PID controllers are based
on level-crossing triggering of some measuring error (see for
instance [13], [16]) or more generally rely on an event-function
based on Lyapunov functions (see for instance [15], [17]).

The two introduced Event-Based control algorithms are:
(i) Event-Based Learning Rate control, which will be imple-
mented to prevent sudden drop of the learning rate when the
model is approaching the optimum; (ii) Event-Based Learning
Epochs control, which will decide based on the learning speed
when to switch to the next data batch.

Our algorithm is evaluated on two classical machine learn-
ing image datasets CIFAR-10 and CIFAR-100 [18]. The results
are compared with four best state-of-the-art algorithms: Adam,
Nadam, AMSGrad and AdaBound. Our results show that the
E/PD combined with the two introduced Event-Based control
not only outperforms original E/PD but also converges faster
than any other state-of-the-art counterpart.

The article is organised as follows: after a brief introduction
of the problem in Section I, we detail the scenario and the
system to be controlled (i.e. a CNN) with its input and output
metrics in Section II. The contribution, i.e., the two event-
based mechanisms, is described in Section III.Section IV



contains the experimental setup, results and analysis. The
article ends with a conclusion and perspectives for further
work in Section V.

II. BACKGROUND

A. Classical Online Learning Scenario

We consider a dataset T with a total number of training
instances T , each one belonging to a class c : Z+ → [1, C].
The whole dataset is composed of B subsets (i.e. batches), Ti
is the ith batch where i : Z+ → [1, B]. Each batch equally
contains S data instances and will be used to train the model
for N epochs (i.e. N times). At the reception of a new batch,
the learning rate algorithm is reset with initial values. Classical
online learning scenario is illustrated in Fig. 1.

Fig. 1: Classical Online Learning Scenario.

B. Convolutional Neural Network and Gradient

Convolutional Neural Network (CNN) is the state-of-the-
art learning mechanism for image classification [19]. CNN
neurons functions are parameterized with weights and, even-
tually, bias. The objective of the learning phase is to make
iterative adjustments to these biases and weights to better fit
the data. These weights in the CNN are usually updated using
Stochastic Gradient Descent techniques (SGD):

θj = θj−1 − λ
∂L

∂θ

where vector θj represents the weights vector computed at jth

discrete time instant, λ is positive and denotes the learning
rate. L is the loss function. As we are always trying to
minimize the loss function, we suppose that there exists an
optimal solution of parameters θ∗j .

C. Performance Metrics

There exists many metrics to evaluate the performance
of a CNN model [20], we used two of the most classical:
classification accuracy and loss value.

For evaluating, machine learning researchers typically pre-
pare a testing dataset which will not be used during the training
process. At the end of each training phase (called from now
on epoch), the testing dataset is used to evaluate the model
by measuring the classification accuracy and the loss value.
Accuracy is defined as:

Accuracy =
Number of correct prediction

Total number of prediction
(1)

The loss L is defined as the difference between the predicted
value by the model and the true value. The most common

definition of L used for classification problems is cross-
entropy [21]:

L = − 1

V

V∑
p=1

C∑
q=1

yp,q log(ŷp,q) + (1− yp,q) log(1− ŷp,q)

(2)

where V is the size of testing dataset and C is the total
number of classes and also the length of the prediction vector
which is a probability vector. ŷp,q denotes the qth bit value of
prediction vector for data sample p while yp,q is the ground
truth, indicating if data p belongs to class q (yp,q = 1) or not
(yp,q = 0).

III. EVENT-BASED CONTROL LAWS

In [11], an E/PD control of the learning rate is proposed
consisting of an increasing phase followed by a PD phase.
However, if an increase of the performance can be achieved
on both the loss and the accuracy, the learning rate is progres-
sively decreased by the E/PD control in the PD phase, even
though a larger value of learning rate would be more efficient
in term of performance. Since event-based PID have shown
to be more efficient in terms of convergence [13], we propose
here to implement an event-based E/PD controller to control
the learning rate. [11] also shows that significant improvements
in terms of accuracy and loss only occurred at the first epochs
of training each data batch, so after this stage there is no
limited interest into continuing the learning on further epochs.
Therefore, we propose a second event-based control to adapt
the data batch loading process.

A. Event-Based Learning Rate

Fig. 2: E/PD Control Structure.
A recall of the E/PD Control algorithm from [11] is

schematicly presented in Fig. 2. We suggest to look at a
CNN training as a dynamical system with the learning rate
as controlled input and the loss as measurable output. Initial
weights of the CNN are chosen randomly and the initial
learning rate λ(0) is fixed. E/PD learning rate strategy is
defined as:

λ(k + 1) = 2λ(k) (3)

as long as L(k) < L(k − 1) (E phase) and

λ(k + 1) = KP
L(k)

L(0)
−KD

L(k)− L(k − 1)

L(0)
(4)

from the first instant k = k∗ when L(k∗) > L(k∗ − 1) to the
end of learning process for the data batch (i.e. the PD phase).
For the sake of simplicity the loss values are normalized with



respect to the initial epoch loss value L(0). KP and KD are
the proportional and derivative gain detailed in [11].

On top of the PD phase we consider the following event base
mechanism where instead of letting the PD-Control compute
the rate each time (which might be lowering the learning rate),
we propose to update the learning rate only if the loss value
increases during the PD-Control phase.

Let us define the event function e1 : R+ → {0, 1} by:

e1k =

{
1 if L(k)− L(k − 1) > 0
0 otherwise (5)

The proposed PD event-triggered control output λ(k + 1) at
time k + 1 is then:

λ(k+1)=

 KP

L(k)

L(0)
−KD

L(k)−L(k−1)

L(0)
if e1k = 1

λ(k) otherwise
(6)

where λ(k+1) is the calculated learning rate for epoch k+1,
L(k) is the corresponding loss for epoch k.

Note that the stability of CNN is ensured by E/PD, whose
stability analysis is provided in [11]. Proposed event-based
control does not introduce any instability because if e1 = 0,
which means the loss is decreasing, model is converging, and
if e1 = 1, the learning rate strategy returns to E/PD.

B. Event-Based Learning Epochs

1) Controller Design: As observed in [11], significant
improvement in the learning only occurs at the beginning when
loading a new batch, the accuracy and loss value evolve slowly
afterwards. This motivates the use of an event-based strategy
on the loss value record.

Consider a maximum of N training epochs within each
batch. Let Xk vector contains the latest m epochs numbers
and Yk vector contains the m latest corresponding normalized
loss values:

Xk =
[
k −m · · · k − 2 k − 1 k

]
Yk =

[
L(k−m)
L(0) · · · L(k−2)

L(0)
L(k−1)
L(0)

L(k)
L(0)

]
where k ∈ [1, N − 1]. One can use least squares estimation to
fit a regression line with Xk and Yk:

Yk = αkXk + βk (7)

The purpose of this is that if the training process goes well the
loss value should always decrease, therefore αk should always
be negative. Even with the presence of loss variations during
the training, as long as the decreasing trend doesn’t change,
αk should still be negative. Nevertheless, in the moment the
loss trend becomes flat or even is increasing, αk will become
0 or positive.

We define the event mechanism by the event function e2 :
R+ → {0, 1} by:

e2k =

{
call new batch if αk>αthld or k=N

remain on same batch if αk≤αthld and k<N
(8)

which enables to switch to new data batch when the learning
speed is too low, i.e. the training is not efficient anymore.

The threshold αthld can be adjusted in order to control the
efficiency of learning. This threshold should never be positive
as an increasing curve of the loss value is not desirable.
With enough computing resources and no time constraints, the
threshold can be set close to 0, and the training will last even
though it makes very small improvement. Nevertheless, for
online learning the time interval between two data batches can
be short compared to the training time and we could encounter
the scenario when before we finish the current training epochs
the next data batch is already available. In this case, cutting
off some useless training can be very useful. Therefore αthld
should also be chosen depending on the frequency of batch
arrival. The choice of m is based on the constraints imposed
by the CNN (or the application using CNN). A large value
of m would imply a long time of inactivity as the controller
would react only after m epochs (consecutive tests). A small
value of m would imply that the algorithm is very sensitive to
each epoch thus if m = 0 the event based algorithm becomes
a time based one.

2) Online Learning Scenario: Recall the online learning
scenario defined in Sec. II-A and Fig. 1, the difference for
Event-Based Learning Epochs is that the training epochs for
each batch could be varied but no larger than N , but the
total training epochs are the same for both scenario for all the
experiments of the same dataset. So here we could cyclically
learn the data batches until it reaches the total epochs limit.
The online learning arrangement for Event-Based Learning
Epochs is illustrated in Fig. 3.

Fig. 3: Event-Based Learning Epochs Online Learning Sce-
nario.

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup

The experiments are implemented on two state of the art
machine learning datasets: 1) CIFAR-10 (a natural image data
set with 10 categories) and 2) CIFAR-100 (a natural image
data set with 100 categories) [18] with 3 different initial
learning rate. The characteristics of the two data-sets are given
in Table I. As the CIFAR-100 dataset has more classes, we use
a deeper CNN: ResNet [22] than the one used for CIFAR-10
VGG [23]. Due to the computational resource limitation, for
ResNet with CIFAR-100, we train 30 epochs per data batch
instead of 60 for CIFAR-10.

All the experiments are implemented with Keras [24] and
are carried out on Google Cloud Compute-Engine using 8
virtual CPU with 30 GB memory and one P100 GPU. Each
experiment is repeated 5 times.

The parameters αthld and m are selected through a process
of cross validation on a subset of CIFAR-10. As a small value
for m leads to high sensitivity and a large m slows down



TABLE I: Experiments configuration

Use case CIFAR-10 CIFAR-100

#data instances to train T 50,000 50,000
#data instances to test V 10,000 10,000
#classes C 10 100
data batch size S 10000 10000
total batches B 5 5
#trainng epochs per batch N 60 30

the detection of the situation, we predefined a reasonable list
of choice m ∈ [4; 5; 6; 7; 8]. Due to similar consideration
of sensibility, we also predefined a list for the learning
rate threshold αthld ∈ [−0.1;−0.01;−0.001;−0.0001]. Each
possible pair from these two lists is tested, a good compromise
between reactivity and noise sensitivity was found for m = 4
and αthld = −0.001.
B. Evaluation Metrics

The final loss and final validation accuracy (hereinafter
referred to as FVA) reveal the performance of the final model.
Nevertheless, stability metrics are also important: if accuracy
curve experiences a big variance near the end of training
process, even we could have a good final result, we could not
assure that we always get this result. Thus, in our evaluation,
we include standard deviation of the accuracy of the last
10% training epochs [25] (hereinafter referred to as FASD
(Final Accuracy Standard Deviation)). Convergence speed
of accuracy is another metric to evaluate the performance,
as we will focus on online learning scenario, the interval
between two batch data can be short. With a limited time,
a faster accuracy convergence could lead to a better model
performance comparing to other algorithms. Therefore, we
will report the first epoch when the experiment reaches the
95% of best final accuracy among all the experiments.
C. Evaluation of Event-Based E/PD

Event-Based E/PD (hereinafter referred to as EB E/PD)
refers to the E/PD control combined with Event-Based Learn-
ing Rate control (Sec. III-A). We implement the online training
experiments with E/PD and EB E/PD on CIFAR-10. From
Fig. 5 we can first see the comparison between EB E/PD and
original E/PD (only yellow and dotted blue line for now).
For the first 60 epochs, we can see that EB E/PD is more
stable than E/PD, then their curves are quite overlapped. The
averaged comparison results are showed in Table. II. EB E/PD
performs better than E/PD in almost all metrics for all initial
learning rate group. Even though EB E/PD has a higher FASD
under 0.01 and 0.05 initial learning rate, but the minimum
value of FVA(±FASD) range of EB E/PD is higher than the
maximum value of the range of E/PD.

For the sake of visibility, we zoom into the 60th to 90th
training epochs from our two experiment runs and show
the evolution of the loss value and learning rate in Fig. 4.
According to the learning rate curve, we know that E phase
ends at 62th epoch for E/PD-Control curve, and at 64th epoch
for EB E/PD. E/PD-Control curve clearly shows the problem
we mentioned above, we can observe that from 62th epoch,
the loss of E/PD is continuously decreasing until 70th epoch,
and its learning rate is also decreasing during this period. If

TABLE II: Experiments with varying initial learning rate λ(0)
on CIFAR-10. Mean value over 5 runs are reported.

Algorithm λ(0)
Final
loss

FVA1 (± FASD2)
(%)

1st epoch to
81.66%3

E/PD 0.002 0.58 83.17(±0.08) 124/300
EB E/PD 0.002 0.56 83.81(±0.03) 93/300

E/PD 0.01 0.55 84.35(±0.07) 88/300
EB E/PD 0.01 0.54 84.91(±0.10) 75/300

E/PD 0.05 0.56 85.06(±0.12) 73/300
EB E/PD 0.05 0.50 85.96(±0.26) 63/300

1. FVA: Final Validation Accuracy
2. FASD: Final Accuracy Standard Deviation
3. 81.66%: 85.96%(best final accuracy among all the experiments)×95%

the learning rate could stay constant during these 9 epochs,
its loss would decrease sharply and that would improve the
convergence speed. In contrast, EB E/PD keeps the learning
rate when the loss continuously decreases which helps to
accelerate the convergence. We can also notice that with the
drop of the loss, each time when we update the learning rate
for EB E/PD, its trend is also decreasing which will guarantee
the stability of EB E/PD near the optimum.

(a) Loss value (b) Learning rate

Fig. 4: Performances of E/PD and EB E/PD on CIFAR-10
D. Evaluation of Double-Event-Based E/PD

Double-Event-Based E/PD-Control (hereinafter referred to
as D-EB E/PD) refers to the E/PD control combined with
Event-Based Learning Rate control (Sec. III-A) and Event-
Based Learning Epochs control (Sec. III-B). To ensure the
need of the Event-Based Learning Rate control, we imple-
mented E/PD with only Event-Based Learning Epochs control;
results showed that Double Event-Based E/PD always has a
better performance in Final loss and FVA. Due to the page
limitation, we exclude these results from the main manuscript,
however they are available online as appendices.

D-EB E/PD-Control has been tested on CIFAR-10 and
CIFAR-100 and compared with 4 best state-of-the-art adap-
tive optimization algorithms: Adam, Nadam, AMSGrad and
AdaBound. For these 4 learning rate strategies, except varying
initial learning rate, all the other parameters remain as default
as they mentioned in their paper or coded in Keras. As we
adopt Event-Based Learning Epochs control into D-EB E/PD,
the training epochs for each data batch is not fixed, we may
also iterate each data batch several times. Therefore, we will
not only report the results at the end of whole training process,
but also the results after first round training (i.e. the training
process iterates, for the first time, all the data batches, refer
to Fig. 3).

Experimental results on CIFAR-10 are showed in Fig. 5,
all the curves are generated with the same initial learning



(a) Loss value (b) Accuracy
Fig. 5: Performance comparison on CIFAR-10 with λ(0) = 0.01 initial learning rate. Compact view of the results in Table III.

rate 0.01. Between 25th and 60th epoch, D-EB E/PD largely
outperforms all the counterparts. The vertical line with arrow
at 104th epoch indicates that our D-EB E/PD algorithm has
finished its first round learning of the whole 5 batches after
this epoch. There are two reasons that we can achieve this
performance: (i) EB E/PD converges very fast, (ii) during
these epochs, our D-EB E/PD algorithm have trained with later
batches data, while other 4 algorithms, they are still working
on the first batch data. Diversity of training data helps to reach
better performance.

More detail of results on CIFAR-10 is reported in Table. III.
D-EB E/PD reaches a higher final accuracy and lower final
loss no matter λ(0). Even though D-EB E/PD has a higher
FASD than AdaBound with λ(0) = 0.01 and λ(0) = 0.05,
the FVA(±FASD) range of D-EB E/PD is always higher than
the range of AdaBound. Additionally it only takes about 32
to 38 epochs to reach 95% best accuracy in any group. All
the indicators are very stable across different groups for D-
EB E/PD. One can also note that for all the 4 state-of-the-
art algorithms, they all perform very bad with λ(0) = 0.05,
they cannot even reach the 95% best accuracy. We also
implemented the same experiments with λ(0) = 0.25. Except
our algorithm, no other one reaches a reasonable accuracy
value, which can be explained by the fact that during the PD
phase of E/PD control our learning rate can decrease to a low
level while the counterparts can not. Those results are available
as appendices.

CIFAR-100 results are reported in Table. IV. According
to the FVA, we know that all the algorithms did not totally
converge in the end of training process, but that does not
influence our conclusion of analysis. D-EB E/PD outperforms
other algorithms in almost all the metrics, when its FASD is
higher than others in certain groups, its FVA(±FASD) range
is always higher than others. As the algorithms are not totally
converged, the trend of accuracy curve is still increasing,
therefore, the higher the initial learning rate, the faster the
1st epoch to reach 95% best accuracy.

Table. V shows the results of D-EB E/PD in the end of
first round learning. All the final loss after first round learning
in this table is lower than all the state-of-the-art algorithms
in their end of whole training process comparing to their
own group. Except CIFAR-100 for λ(0) = 0.002, all the
FVA after first round learning in this table exceed the 95%
best accuracy in Table. III and Table. IV, respectively. As the
learning process on CIFAR-100 is not totally converged, we
can notice that the ending epoch of their first round is near the
end of whole training process, our event-based control did not
cut off many epochs. But for CIFAR-10, event-based control
helps to massively cut off around 62% to 67% training epochs

meanwhile guarantee a very good result.

TABLE III: Double-Event-Based E/PD algorithm experiments
with varying initial learning rate λ(0) on CIFAR-10. Mean
value over 5 runs are reported.

Algorithm λ(0) Final
loss FVA ±FASD 1st epoch to

80.94%1

D-EB E/PD 0.002 0.58 84.50(±0.59) 38/300
Adam 0.002 0.73 84.14(±1.34) 64/300
Nadam 0.002 0.71 83.29(±1.11) 66/300
AMSGrad 0.002 0.67 84.21(±1.65) 65/300
AdaBound 0.002 0.81 84.31(±0.96) 75/300

D-EB E/PD 0.01 0.61 84.83(±1.29) 37/300
Adam 0.01 0.79 83.98(±1.58) 64/300
Nadam 0.01 0.75 84.15(±1.29) 65/300
AMSGrad 0.01 0.65 84.21(±1.50) 72/300
AdaBound 0.01 0.84 79.22(±1.21) -

D-EB E/PD 0.05 0.60 85.20(±3.14) 32/300
Adam 0.05 5.98 48.93(±14.06) -
Nadam 0.05 7.74 42.27(±13.95) -
AMSGrad 0.05 2.69 59.74(±12.43) -
AdaBound 0.05 1.03 71.49(±1.65) -

1. 80.94%: 85.20%(best final accuracy among all the experiments)×95%

TABLE IV: Double-Event-Based E/PD algorithm experiments
with varying initial learning rate λ(0) on CIFAR-100. Mean
value over 5 runs are reported

Algorithm λ(0) Final
loss

FVA (±FASD)
(%)

1st epoch to
46.56%1

D-EB E/PD 0.002 2.59 45.69(±1.94) -
Adam 0.002 3.40 31.29(±3.23) -
Nadam 0.002 3.18 35.66(±3.35) -
AMSGrad 0.002 3.13 35.38(±4.02) -
AdaBound 0.002 3.29 39.87(±4.42) -

D-EB E/PD 0.01 2.41 48.14(±3.34) 111/150
Adam 0.01 4.94 8.11(±2.04) -
Nadam 0.01 4.55 9.70(±2.32) -
AMSGrad 0.01 4.79 8.16(±0.50) -
AdaBound 0.01 3.51 30.98(±3.08) -

D-EB E/PD 0.05 2.38 49.01(±10.52) 100/150
Adam 0.05 4.72 2.64(±0.58) -
Nadam 0.05 4.74 1.88(±0.79) -
AMSGrad 0.05 4.68 1.98(±0.56) -
AdaBound 0.05 3.69 19.03(±2.42) -

1. 46.56%: 49.01%(best final accuracy among all the experiments)×95%

E. Trade-offs and limitations
The addition of event-based mechanisms improves the per-

formance in terms of final accuracy and loss, however at
the cost of two sacrifices: (i) Event-Based Learning Epochs
accelerate the speed of learning each data batch. However, if
we are not allowed to keep in cache any data batch locally, i.e.
only allowed to learn each data batch once, the performance
of Double Event-Based E/PD after first round is slightly worse
than the performance after all the training epochs. (ii) Double



Event-Based E/PD will cyclically learn all data batches, and
it will need to load and unload data batch more times than
classical online learning setting. Loading (unloading) data
into (from) memory needs time. These are extra costs for
Double Event-Based E/PD, however negligible compared to
the computing intensity of CNNs.

Regarding the limitation of the presented D-EB E/PD, we
identified one potential case for which our algorithm will fail:
if the training data contains mislabeled data. These data will
lead the model to converge to a wrong optimum, and as the
algorithm minimizes faster the loss function, it will be faster
over-fitting to the noisy data than other algorithms. However,
this fail is caused by poor data selection, and is not specific
to our algorithm.

TABLE V: Double Event-Based E/PD experiments on CIFAR-
10 and CIFAR-100 in the End of First Round. Mean value over
5 runs are reported.

Dataset λ(0) EE of FR1 FL after
FR2

FVA after FR3

(%)

CIFAR10 0.002 99/300 0.60 82.47
CIFAR10 0.01 104/300 0.62 82.36
CIFAR10 0.05 113/300 0.62 82.75

CIFAR100 0.002 148/150 2.61 44.98
CIFAR100 0.01 148/150 2.44 48.04
CIFAR100 0.05 146/150 2.41 48.95

1. EE of FR: End Epoch of First Round
2. FL after FR: Final loss after First Round
3. FVA after FR: Final Validation Accuracy after First Round

V. CONCLUSION AND FUTURE WORK

Due to the limitation of computing resource or short interval
time between two data batches, convergence speed of the
loss and accuracy becomes especially important for online
learning. E/PD control is a powerful learning rate algorithm
when training neural network on an online learning scenario.
Based on E/PD, this paper proposes two algorithms: (i) Event-
Based Learning Rate algorithm and (ii) Event-Based Learning
Epochs algorithm.

The new algorithm firstly introduces an Event-Based control
on PD phase of E/PD, when the loss continuously decreases,
we prevent the learning rate to decrease during this period.
Second Event-Based control is implemented to inspect the
record of the loss value. If the loss record has the tendency to
increase, showing little learning efficiency, we will drop the
rest learning epochs for current data batch.

Results show that Double-Event-Based E/PD can massively
cut off training epochs, and even results in a lower loss value.
For instance with CIFAR-10 dataset, it could save up to 67%
training epochs.

As the Event-Based Learning Epochs control is independent
from learning rate algorithm and dataset, this work could be
further extended by implementing this control with language,
image and numeric datasets on time-based decay SGD, Adam,
Nadam, AMSGrad and AdaBound learning rate algorithms,
to prove that by simply adding this event-based control, all
the learning rate algorithms on any dataset can improve their
performance on online learning scenario.
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[16] K. E. Årzén, “A simple event-based PID controller,” in Preprints of the
14th World Congress of IFAC, 1999.

[17] M. Velasco, P. Martı́, and E. Bini, “On Lyapunov sampling for event-
driven controllers,” in Proceedings of the 48th IEEE Conference on
Decision and Control, 2009.

[18] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Master’s thesis, Department of Computer Science,
University of Toronto, 2009.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems 25 (NIPS 2012), Lake Tahoe, Nevada USA,
2012, pp. 1097–1105.

[20] X. Li, G. Zhang, H. H. Huang, Z. Wang, and W. Zheng, “Performance
analysis of Gpu-based convolutional neural networks,” in 45th IEEE
International Conference on Parallel Processing, 2016, pp. 67–76.

[21] R. Rubinstein, “The cross-entropy method for combinatorial and contin-
uous optimization,” in Methodology And Computing In Applied Proba-
bility, 1999, p. 127–190.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2016.

[23] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv:1409.1556, 2014.

[24] F. Chollet, Deep Learning with Python. Greenwich, CT, USA: Manning
Publications Co., 2017.

[25] S. Minaee, “20 popular machine learning metrics. part 1: Classification
& regression evaluation metrics,” 2019. [Online]. Available:
https://towardsdatascience.com/20-popular-machine-learning-metrics-
part-1-classification-regression-evaluation-metrics-1ca3e282a2ce


