Three-dimensional Lead Iodide Perovskitoid Hybrids with High X-ray Photoresponse
Résumé
Large organic A cations cannot stabilize the 3D perovskite AMX3 structure because they cannot be accommodated in the cubo-octhedral cage (do not follow the Goldschmidt tolerance factor rule), and they generally template low-dimensional structures. Here we report that the large di-cation aminomethylpyridinium (AMPY), can template novel 3D structures which resemble conventional perovskites. They have the formula (xAMPY)M2I6 (x = 3 or 4, M = Sn2+ or Pb2+) which is doubled the AMX3 formula. However, because of the steric requirement of the Goldschmidt tolerance factor rule, it is impossible for (xAMPY)M2I6 to form proper perovskite structures. Instead, a combination of corner-sharing and edge-sharing connectivity is adopted in these compounds leading to the new 3D structures. DFT calculations reveal that the compounds are indirect-bandgap semiconductors with direct bandgaps presenting at slightly higher energies and dispersive electronic bands. The bandgaps of the Sn and Pb compounds are ~ 1.7 eV and 2.0 eV, respectively, which is slightly higher than the corresponding AMI3 3D perovskites. The Raman spectra for the compounds are diffuse, with a broad rising central peak at very low frequencies around 0 cm-1, a feature that is characteristic of dynamical lattices, highly anharmonic, and dissipative vibrations very similar to the 3D AMX3 perovskites. Devices of (3AMPY)Pb2I6 crystals exhibit clear photoresponse under ambient light without applied bias, reflecting a high carrier mobility (μ) and long carrier lifetime (τ). The devices also exhibit sizable X-ray generated photocurrent with a high μτ product of ~1.2×10-4 cm2 /V and an X-ray sensitivity of 207 μC Gy-1 cm-2.
Fichier principal
Li et al-2020-Three-dimensional Lead Iodide Perovskitoid Hybrids with High X-ray Photoresponse.pdf (2.31 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...