
HAL Id: hal-02509522
https://hal.science/hal-02509522v1

Preprint submitted on 16 Mar 2020 (v1), last revised 4 Nov 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Referenced Vertex Ordering Problem: Theory,
Applications and Solution Methods

Jérémy Omer, Antonio Mucherino

To cite this version:
Jérémy Omer, Antonio Mucherino. Referenced Vertex Ordering Problem: Theory, Applications and
Solution Methods. 2020. �hal-02509522v1�

https://hal.science/hal-02509522v1
https://hal.archives-ouvertes.fr

REFERENCED VERTEX ORDERING PROBLEM: THEORY,
APPLICATIONS, AND SOLUTION METHODS

JÉRÉMY OMER & ANTONIO MUCHERINO
Abstract. We introduce the referenced vertex ordering problem (revorder) as a combina-
torial decision problem generalizing several vertex ordering problems that already appeared
in the scientific literature under different guises. In other words, revorder is a generic
problem with several possible extensions corresponding to various real-life applications. Pre-
vious works show that revorder has a polynomial complexity, whereas its optimization
version, denoted in our work as min revorder, is NP-hard. We give a survey of methods
and algorithms that can be applied to the solution of min revorder, and we develop a new
enumeration scheme for its solution. Our theoretical analysis of this scheme yields several
pruning techniques aimed at the reduction of the number of enumeration nodes. We then
discuss how upper and lower bounds can be computed during the enumeration to design a
branch-and-bound algorithm. Finally, we validate the branch-and-bound by conducting a
large set of computational experiments on instances coming from various real-life applica-
tions. Our results highlight that the newly introduced pruning techniques allow for major
reductions of computational cost, with a constant solution quality. In result, our branch-and-
bound outperforms other existing solution methods: among 180 instances with 60 vertices,
it solves 179 instances to optimality whereas the best existing method is only able to solve
109 of them. Moreover, our tests show that our algorithm can solve medium-scale instances
including up to 500 vertices, which opens the perspective of handling new real-life problems.
Our implementation of the branch-and-bound algorithm, together with all instances we have
used, is publicly available on GitLab.

1. Introduction

Consider the problem of an undergraduate or graduate student organizing her
University program. Courses given at a second semester can be attended only when
the classes planned in the first semester have been attended, but not all the possible
classes offered in the first semester are actually necessary. Even though the problem
that every student needs to solve is very close to scheduling, the fact that only a
subset of classes is to be selected by the students makes this problem essentially
different from classical scheduling.

Consider now the same student makes a successful academic carrier, and some
years later she is faced with the problem of organizing the scientific program of
a conference. Again, any researcher in operational research would initially think
of scheduling. However, this particular event is supposed to gather experts from
different disciplines, and some tutorials are therefore planned to make it possible
that all participants are in fact able to follow the scientific presentations. In order
to avoid to devote the first conference day entirely to tutorials, it is desirable to
organize the program so that, before a scientific talk is scheduled, a minimal number
of tutorials, related to scientific prerequisites, has already been given. This would
allow the experts in other disciplines to have acquired a minimal knowledge on the
topic. When possible, the maximization of the number of reference tutorials might
be attempted, but without requiring that all tutorials on the topic are given before
the scientific talk.

These two simple examples illustrate the problem that is the main focus of this
paper. We point out that this problem is not new and has appeared already in the

Key words. Vertex ordering, Distance geometry, Branch-and-bound, Integer programming,
Cutting planes.

1

2 JÉRÉMY OMER & ANTONIO MUCHERINO

scientific literature: the reader is referred to Section 2 for some details about the
corresponding applications.

1.1. Formal definition of the problem and notations. The problem is for-
mally represented by a simple undirected graph G = (V,E), where the number of
vertices is given by |V | = n. Denoting as Ja, bK := {a, a+ 1, . . . , b} for any a, b ∈ Z,
any bijective function

σ : V −→ J1, nK,

defines a total vertex order of G: given one vertex of v ∈ V , σ associates to v one
integer value in J1, nK, and reciprocally. For v ∈ V , we also say that the integer
σ(v) is the rank of v in σ.

We are interested in vertex orders satisfying some specific connectivity proper-
ties. For their definitions, we introduce the following notations.

• The neighborhood of a vertex v is denoted as N (v) := {u : {u, v} ∈ E},
and the degree of v, |N (v)|, is denoted as d◦(v);
• If σ is a vertex order, then u ∈ V is called a reference in σ of v ∈ V if and
only if u ∈ N (v) and σ(u) < σ(v).

• The set of references of v in σ is denoted as Rσ (v). To simplify notations,
we will denote the set of references of the vertex with rank i ∈ J1, nK, σ−1(i),
as Rσ (i).

As already mentioned in the introductory examples, we wish to find vertex or-
ders where each vertex has a required number, L, of references. Since the first L
vertices cannot satisfy this constraint, it is necessary to define subsets of at least L
initial vertices, S, that can be positioned at the start of the order without fulfilling
this requirement. In the remainder, this decision problem will be referred to as
revorder and it is formally defined as follows.

Definition 1.1. (The Referenced Vertex Ordering problem (revorder))
Given a simple directed graph G = (V,E), a positive integer L and S ⊂ 2V , is there
a vertex order σ such that there is S ∈ S with |S| ≥ L and{

σ(S) = J1, |S|K
∀i ∈ J|S|+ 1, nK, |Rσ (i)| ≥ L.

Such a vertex order is called a referenced order, and the set of referenced orders of
G is denoted as Σ(S, L).

In addition to the requirements defining a referenced order, some applications
may also justify that we consider an ideal number of references U ≥ L. In such
case, while it is imposed that every vertex other than the initial ones has at least
L references, it is also required that a maximum number of vertices have at least U
references. For a given referenced order σ with initial set S, will then employ the
following additional notations:

• for all v /∈ S, δσ (v) ∈ {0, 1} indicates that v lacks references, i.e., δσ (v) = 1
if and only if |Rσ (v)| ≤ U − 1;

• if vertex v is such that δσ (v) = 1, v will be called a partially-referenced
vertex. In contrast, if δσ (v) = 0, v is called a fully-referenced vertex.

The above naturally yields the following optimization counterpart of revorder,
which will be the focus of this article.

Definition 1.2. (Minimum Referenced Vertex Ordering Problem (min revorder))
Given a simple undirected graph G = (V,E), two positive integers L and U ≥ L

REVORDER: THEORY, APPLICATIONS, AND SOLUTION METHODS 3

and an initial set S ∈ S with |S| ≥ L, find an optimal solution to the following
optimization problem:

min revorder :


min

∑
v∈V

δσ (v)

s. t. σ ∈ Σ(S, L)
|Rσ (v)| ≤ U − 1 =⇒ δσ (v) = 1.

1.2. State of the art and contribution statement. One important feature of
revorder and min revorder is that they share a generic and rather simple form.
This opens the perspective of using these formulations for several different real-life
applications, as illustrated in the introductory examples. In Section 2, we support
this statement by describing how min revorder emerges as a subproblem in the
solution of some distance geometry problems, and we discuss a particular case of
the interdiction problem where the adversary problem can be modeled as a min
revorder.

In the context of distance geometry, previous research has been focused on a
particular class of referenced orders, called discretization orders, where S is the
set of L-cliques of the graph. The associated decision problem is the Discretization
Vertex Order problem (dvop) [11]. Lavor et al [8] have proposed a greedy algorithm
that solves dvop in polynomial time for any fixed value of L. It was successfully
used in some applications related to distance geometry [5, 17]. In Section 4.2, we
adapt this greedy search for finding a referenced order, or to prove that none exists
(see Algorithm 2). This implies that revorder is in P. In contrast, it was proved
in [18] that a particular case of min revorder is NP-Complete for any fixed
integer values of L ≥ 0 and U ≥ L + 1, unless L = 0 and U = 1. The authors
of [18] also established that, even for L = 1, the greedy search does not approximate
the optimal value of this problem within a constant factor. Moreover, recent works
dedicated to the exact solution of special cases of min revorder have also reported
that several methods based on integer programming (IP), constraint programming
and decomposition techniques were unable to deal with instances containing as few
as 60 vertices within a reasonable computation time [17, 13].

With a view to overcoming these limits, we first improve one of the IP formula-
tions, previously presented in [17] for a variant of min revorder. We develop new
cutting planes whose separations are based on the analysis of cliques and cycles of
the subgraph of G induced by low-degree vertices. We then propose a new enu-
meration scheme which builds upon the completion greedy algorithm introduced
in [8]. For a faster and more accurate solution of the problem, we build a branch-
and-bound framework based on this enumeration scheme. We also design several
pruning techniques that are based on dominance and symmetry arguments.

We assess the performance of our branch-and-bound algorithm by a thorough
comparison with four existing approaches: two cutting plane algorithms, one com-
pact IP formulation and one constraint programming formulation. The computa-
tional experiments are carried out on a large benchmark including random artifi-
cial instances, and instances representing possible applications in structural biology,
sensor network location and interdiction problems. These experiments allow for the
study of the impact of the value of U , which has been set to L + 1 in all previous
works due to the needs of the considered application. The experiments show that
the new branch-and-bound widely outperforms existing methods and even allows
for the solution of medium-scale instances where the graph has 500 vertices and
U = L + 1. The codes used for the experiments (see Section 6), as well as all our
instances, are available on GitLab.

4 JÉRÉMY OMER & ANTONIO MUCHERINO

The remainder of the article is organized as follows. We expose two applications
of min revorder in Section 2. We sketch a state-of-the art of existing IP for-
mulations, and develop new cutting planes in Section 3. In Section 4, we give a
detailed presentation of the existing greedy completion algorithm, and we describe
an enumeration scheme based on the same ideas to solve min revorder. The
branch-and-bound algorithm based on this enumeration scheme is then developed
in Section 5, where we show that several dominance rules and symmetries can be
used to alleviate the computational effort. Finally, in Section 6, we assess our
methodological contribution through numerical comparisons with the best existing
methods.

2. Applications of revorder and min revorder

2.1. Discretization of distance geometry graphs. revorder appears as a
fundamental pre-processing step for the solution of distance geometry problems
(DGPs) [10]. The DGP consists in finding a realization in a K-dimensional Eu-
clidean space of a simple edge-weighted undirected graph so that distances between
realized vertices correspond to the weights on the corresponding edges.

Although the search space of the DGP is continuous in general, there exists a
subclass of DGPs where it can be discretized and represented as a tree. The layer
k of this search tree is associated with the vertex v ∈ V such that σ−1(v) = k: the
nodes belonging to layer k all contain potential positions for the vertex v.

In order to verify whether an instance of the DGP is discretizable or not, the
existence of a special vertex order on the vertices of V needs to be verified [15]. In
the literature devoted to DGP, this special vertex order is named a discretization
order, and it turns out that the search for discretization order (the dvop mentioned
above) is a particular case of revorder.

The subclass of DGPs that include only discretizable instances is referred to as
the Discretizable DGP (DDGP) [15]. The DDGP can be efficiently solved by em-
ploying a branch-and-prune algorithm [12], which performs a complete enumeration
on the feasible branches of the search tree. This is made possible by the assump-
tions satisfied by a discretization order: for every vertex v having a rank larger
than K, there exist at least K references for v, so that the feasible positions for v
can be computed by intersecting the K spheres centered in the reference vertices
and having as radius the known distance to v.

When working with the DDGP, one is therefore interested in finding referenced
orders where L = K. In this version of revorder, every initial set S ∈ S (those
that appear at the beginning of the order) must also form a K-clique. This is
necessary because a unique realization (modulo translations and rotations) needs
be identified for the initial K vertices of the graph. This allows to fix the reference
coordinate system where the remainder of the graph realization is eventually con-
structed. Moreover, when a vertex v has more than K references, then not only the
discretization is allowed, but additional distance information is associated to v, so
that a certain number of vertex positions in the tree can be immediately discarded.
In other words, the total number of tree nodes can be a priori reduced when more
than L reference vertices are associated to a given vertex v [5]. In fact, a vertex
v with more than L = K reference vertices implies that at least K + 1 spheres
are involved in the intersection which provides the set of possible positions for v.
Since the intersection of K spheres in a K-dimensional space gives at most two
singletons with probability 1, the additional sphere allows to select one of these two
singletons or show that the intersection is empty [8]. The benefit is evident in this
context, since the implication is that there is no branching at layer v of the search
tree. As a consequence, a particular case of min revorder where U = L+ 1 has

REVORDER: THEORY, APPLICATIONS, AND SOLUTION METHODS 5

been considered recently in [17] and [13] with the aim of selecting the most promis-
ing discretization order. This optimization problem has been called min double,
because two positions may have to be enumerated for partially-referenced vertices.

2.2. The interdiction problem. Another problem that can be found in the sci-
entific literature and that is related to min revorder is the interdiction problem.
This is a two-player game where, in its basic version, only two initial actions are
allowed to the two players [6]. In this game, the graph G represents a network that
Player 1 has the task to protect from the possible attacks performed by Player 2.
Player 1 plays first, by selecting a set W of vertices to protect: the attacker will
never be able to take control over (or influence) such protected nodes. Player 2
can then perform his attack. The attack is performed by choosing a set S of ver-
tices to influence. No more actions at this point are then possible for both players.
The influence is then propagated from S to vertices of V \ W as soon as some
non-influenced vertex has at least U influenced neighbors. Stated otherwise, we de-
termine the influenced vertices by finding the largest subgraph of G\W that admits
a referenced order starting with S and where the minimum number of references is
U .

Suppose now that Player 2 does have the possibility to interfere with the prop-
agation process, when necessary. The influence rule, based on the structure of a
referenced order implies that the propagation stops when every non-influenced ver-
tex has less than U influenced neighbors. It would be natural though to consider
that Player 2 can keep spending resources to influence vertices in order to prevent
the propagation from stopping, in particular if some vertices are close from being
influenced (i.e. the number of neighbors is almost equal to U). This motivates to
consider a variant of the problem, where two given values, L and U are considered
in the propagation of influence. From a given set S of vertices initially influenced,
a vertex becomes influenced if it has U influenced neighbors; otherwise, it may be-
come influenced if it has at least L vertices at the expense of an additional action of
Player 2. In this variant, we can remark that, once the the initial action of Player 1
has been executed, the solution of min revorder provides the minimum number
of actions that Player 2 would need to influence all vertices in V \W .

3. Integer programming formulations

In the following, recall that the literature about the search of optimal discretiza-
tion orders can be easily extended to min revorder. In this section, we draw
our attention on the IP formulations that were proposed for min double [17, 13].
In [17], two compact formulations have been developed where binary variables in-
dicate if u is a predecessor of v in the order, for all pairs of vertices u and v. Then
one model guarantees that the variables describe a vertex ordering by consider-
ing transitivity constraints while the other uses constraints similar to those that
appear in the Miller-Tucker-Zemlin formulation of the travelling salesman prob-
lem [14]. The authors then show that both formulations are outperformed by a
cutting plane procedure where cycle constraints are iteratively added to the model.
In [13], Bodur and MacNeil present a third compact formulation, vertexrank,
where binary variables indicate whether a vertex v is at rank r in the order for all
v ∈ V and all r ∈ J1, nK. They also develop a decomposition scheme, witness,
where they introduce the notion of witness, which can be defined as a necessary
reference. This means that partially and fully-referenced vertices have respectively
exactly L and U witnesses. The decomposition yields a cutting plane algorithm
that is also based on the separation of cycle constraints. One important difference
between the models developed in [17] and in [13] is that the former enumerate all

6 JÉRÉMY OMER & ANTONIO MUCHERINO

the feasible initial cliques and include one extra binary variable per clique, whereas
the latter add constraints ensuring that the first vertices form a clique.

In this section, we will focus on the cycle-constrained extended formulation of [17]
which appeared to be the best performing IP approach in our tests. We first
generalize this formulation to min revorder, and we develop two sets of valid
inequalities based on cliques and cycles in the subgraph of G induced by low degree
vertices. In Section 4, we will see how the initial sets can be analysed to yield other
valid inequalities.

Our computational experiments will also consider vertexrank and witness:
the reader is referred to the Appendix for details.

3.1. Cycle-constrained extended formulation. The IP model describes a ref-
erenced order σ with three sets of binary variables. Those indicating which vertex
is partially-referenced in σ were already defined as δσ (v) ∈ {0, 1} in Section 1.1.
The other two sets of variables are as follows.

• for {u, v} ∈ E, xu,v = 1 if and only if σ(u) < σ(v);
• for S ∈ S, κS = 1 if and only if σ(S) = J1, |S|K.

Generalizing the cycle-constrained extended formulation of [17] to min revorder,
we then get:

IPccg : min
∑
v∈V

δσ(v),

s. t.
∑

(u,v)∈AC

xu,v ≤
∣∣AC∣∣− 1, ∀C ∈ C, (3.1)

∑
S∈S

κS = 1, (3.2)∑
u∈N (v)

xu,v +
∑

S∈K:v∈S
UκS ≥ L+ (U − L)(1− δσ(v)), ∀v ∈ V, (3.3)

x ∈ {0, 1}2|E|, κ ∈ {0, 1}|K|.
Constraints (1) ensure that x defines an acyclic orientation of G. Constraint (2)
states that exactly one set is chosen among S. Constraints (3) ensure that if a
vertex is not in the initial set of vertices, then it must have at least L references if
partially-referenced, and at least U if fully-referenced.

The above model includes one constraint per directed cycle of G, which can result
in an IP with exponential number of constraints with respect to the cardinality of V .
For this reason, the authors of [17] include the constraints (1) in a cutting plane
algorithm. The algorithm starts by considering only the cycles whose lengths are
at most three in (1). A new cycle constraint is then added when a new incumbent
containing a cycle is found during the solution. This overall procedure will be
referred to as ccg in the remainder.

3.2. Low degree clique and cycle cutting planes. IPccg can be strengthened
if we are able to identify subgraphs of G that will necessarily contain partially-
referenced vertices in any referenced order. This will be the case in cliques and
cycles that contain vertices with degrees close to U .

We first investigate the cliques of G. We intend to show that for some cliques,
there cannot be a referenced order where every vertex is fully-referenced. For this,
we can always look at the ideal situation where every vertex of a clique, K, is among
the last |K| vertices of a referenced order. In this case, an optimal ordering of K
yields the maximum number of fully-referenced vertices in K.

Procedure maxfull(K), whose pseudo-code is given by Algorithm 1, is based on
this idea. In the description of the algorithm, vertices of K are iteratively added to

REVORDER: THEORY, APPLICATIONS, AND SOLUTION METHODS 7

1 function maxfull(K):
2 MFK ← 0, O ← ∅;
3 while O 6= K do
4 if maxu∈K\O{d◦(u) + |O|} ≥ U + |K| − 1 then
5 v ∈ argmaxu∈K\O{d◦(u)};
6 MFK ← MFK+1;
7 else
8 v ∈ argminu∈K\O{d◦(u)};
9 O ← O ∪ {v};

10 return MFK ;
Algorithm 1: Computation of an upper bound on the number of fully-
referenced vertices in a clique

a set O of ordered vertices. At each iteration, either one vertex can be ordered so
that it has at least U references or we choose the vertex with lowest degree.

Proposition 3.1. Let K be a clique of G, then at most maxfull(K) vertices of K
are fully-referenced in any referenced order of G.

Proof. We show the result by induction on the size of K. If |K| = 1, i.e., K = {v}
for some v ∈ V , then maxfull(K) = 0 if d◦(v) ≤ U − 1 and maxfull(K) = 1
otherwise. If d◦(v) ≤ U − 1, v cannot be fully-referenced, so the result is true for
|K| = 1.

Suppose now that the proposition is true for any clique with size p ≥ 1 and let K
be a (p+1)-clique. Let v ∈ K be the first vertex included in O during the execution
of maxfull(K). The execution of maxfull(K) reduces to the inclusion of v in O
followed by the execution of maxfull(K \ {v}). As a consequence, we have{

maxfull(K)=maxfull(K \ {v})+1, if max
u∈K
{d◦(u)} ≥ U + |K| − 1,

maxfull(K)=maxfull(K \ {v}), otherwise.
From the induction hypothesis, no more than maxfull(K \ {v}) vertices can be

fully-referenced in K \ {v}. Since K contains one more vertex than K \ {v}, it is
only natural that no more than maxfull(K\{v}) vertices could be fully-referenced
in K, so we only need to study the case where maxu∈K{d◦(u)} < U + |K| − 1.

Assume that maxu∈K{d◦(u)} < U+|K|−1. Let σ be a referenced order and w be
the vertex of K with smallest rank in σ. Since d◦(w) ≤ maxu∈K{d◦(u)} < U+|K|−1
and σ(u) ≥ σ(w),∀u ∈ K, then |Rσ (w)| ≤ U − 1. The induction hypothesis thus
yields that σ has at most maxfull(K \ {w}) fully-referenced vertices among K.
Moreover, by design of Algorithm 1, we know that v ∈ argminu∈K{d◦(u)}, so
d◦(w) ≥ d◦(v). As a consequence, one can easily verify that

maxfull(K \ {w}) ≤ maxfull(K \ {v}) .

Hence, σ has less than maxfull(K\{v})=maxfull(K) fully-referenced vertices. �

Notice in particular that for a p-cliqueK, Proposition 3 implies that if maxv∈K{d◦(v)} ≤
U +p−2, then at most p−1 vertices of K will be fully-referenced in any referenced
order.

Proposition 3 suggests that a given vertex is fully-referenced only when it is
neither partially-referenced, nor in the initial set of vertices. For any clique K of
G, we thus get the following valid inequality.∑

v∈K
(1− δσ(v)) +

∑
v∈K

∑
S∈S:v∈S

κS ≤ maxfull(K). (3.4)

8 JÉRÉMY OMER & ANTONIO MUCHERINO

We wish to extend the above clique-cuts to cycles containing low degree vertices.
Without further assumptions on the graph induced by the cycle we consider, the
problem of finding the maximum number of fully-referenced vertices in the cycle
is as hard as min revorder for L = 0. Given that the latter is known to be
NP-Hard for all U ≥ 2 [18], we know that it is impossible to design a polynomial
greedy algorithm that will return the maximum number of fully-referenced vertices
in any cycle. Instead, we show below that under a condition on the degrees of the
vertices, it is guaranteed that at least one vertex will not be fully-referenced. This
allows to focus on a potentially much smaller set of cycles.

Proposition 3.2. Let C = {V C , EC} be a cycle of G such that d◦(v) ≤ U + 1, ∀v ∈
V C . Then any referenced order of G has at most |C| − 1 fully-referenced vertices
among those of V C .

Proof. Let σ be a referenced order of G. By definition of a cycle, every vertex of
C has at least two neighbors in C. The first vertex of C in σ cannot have any
reference among the other vertices of C. So, if it has at most U + 1 neighbors, it
has at most U − 1 references in σ, meaning that it is not fully-referenced. �

As a consequence, for any cycle C = (V C , EC) such that d◦(v) ≤ U+1,∀v ∈ V C ,
the following is a valid inequality for IPccg.∑

v∈V C

(1− δσ(v)) +
∑
v∈V C

∑
S∈S:v∈S

κS ≤
∣∣V C∣∣− 1. (3.5)

4. A new enumeration scheme for MIN REVORDER

For a more concise and insightful description of the proposed solution algorithm,
we will start in Section 4.1 with a series of definitions related to the iterative
construction of a referenced order. Then, in Section 4.2, we will briefly present an
adaptation to revorder of the greedy algorithm initially proposed in [8] for dvop.
The basic idea behind our enumeration scheme will be detailed in Section 4.3, while
Section 4.4 will describe how it can be used to solve min revorder.

4.1. Preliminary definitions.

Definition 4.1 (Incomplete orders). A vertex order σ is an incomplete referenced
order of G if there is W ⊆ V such that σ is a referenced order of the subgraph of
G induced by W , G[W]. We then denote as PreIm(σ)(= W), the preimage of σ,
and |σ| (= |W |) the number of ordered vertices in σ.

We then extend the definition of a “reference” so that it also makes sense for an
incomplete order.

Definition 4.2 (References in incomplete orders). Let {u, v} ∈ E and σ be an
incomplete referenced order of G. Vertex u is a reference of v in σ if and only if
u ∈ PreIm(σ) and

• v ∈ PreIm(σ) and σ(u) < σ(v), or
• v /∈ PreIm(σ).

Similarly to a referenced order, we denote as |Rv (σ)| the number of references
of v in σ and set δσ (v) = 1 if and only if |Rv (σ)| ≥ U . Finally, the objective value
of σ is given by

∆ (σ) =
∑

v∈PreIm(σ)

δσ(v).

REVORDER: THEORY, APPLICATIONS, AND SOLUTION METHODS 9

Definition 4.3 (Extensions and candidates). Let σ and σ be two incomplete ref-
erenced orders of G. We say that σ is an extension of σ if it starts like σ, i.e.,

∀v ∈ PreIm(σ) : σ(v) = σ(v).
We then say that we extend σ with vertex v /∈ PreIm(σ) if we assign the next

available rank to v. More formally, σ is the extension of σ with v if and only if
PreIm(σ) = PreIm(σ) ∪ {v},
∀u ∈ PreIm(σ), σ(u) = σ(u),
σ(v) = |σ|+ 1.

We denote as [σ|v] the extension of σ with v.
Vertex v is a valid candidate for the extension of σ if and only if v /∈ PreIm(σ)

and |Rv (σ)| ≥ L. It is a partial candidate if L ≤ |Rv (σ)| < U and a full candidate
if |Rv (σ)| ≥ U . The sets of partial and full candidates are respectively denoted as
Partial (σ) and Full (σ).

Definition 4.4 (Completions). If an extension of an incomplete order σ is a ref-
erenced order (meaning that it orders all the vertices of V), then it is a completion
of σ.

We denote as Σ(σ) the set of possible completions of σ. If Σ(σ) 6= ∅, a referenced
order σV is an optimal completion of σ if σV ∈ argminσ∈Σ(σ){∆ (σ)}. The cost of an
optimal completion of σ is denoted as ∆∗ (σ), and we set ∆∗ (σ) = +∞ if Σ(σ) = ∅.

Since the vertices of an initial set S ∈ S can be ordered in any way with no
impact on the completion of the order, we will simply refer to completions of S
to talk about completions of any ordering of S. We say that S is feasible if it
admits a completion and infeasible otherwise. In the remainder of the article, we
discuss methods that start with some initial set in S and incrementally extend it
until a completion is built. At every step of the procedures, we consider only valid
candidates for the extension. Hence, when extending an incomplete order with a
vertex v, it will be implicit that v is a valid candidate unless explicitly stated.

4.2. Greedy search for a referenced order. As already mentioned in Sec-
tion 2.1, a greedy algorithm was initially proposed for finding discretization orders
in the context of distance geometry [8]. The algorithm constructs the order start-
ing from a given initial clique in O (n log(n) +m). A certificate of non-existence is
delivered when no discretization order starting with this clique exists.

The close relationship between discretization and referenced orders makes it
easy to adapt this greedy algorithm for revorder. We give the pseudo-code of
this greedy search in Algorithm 2.

input : An initial set S ∈ S
output: A completion of S or the proof that none exist

1 σ(S)← {1, . . . , |S|};
2 while |σ| < n do
3 Let v ∈ argmaxu/∈PreImσ{|Rσ (u)|} ;
4 Rmax ← |Rσ (v)|;
5 if Rmax < L then
6 stop: no referenced order order starts with S;
7 else
8 σ ← [σ|v] // extend σ with v

9 return σ;
Algorithm 2: Greedy completion algorithm.

10 JÉRÉMY OMER & ANTONIO MUCHERINO

Notice that the initial clique S is preselected, so that a complete enumeration of
the solution set can actually be achieved only by invoking the greedy algorithm for
every possible initial clique [5]. Moreover, the key choice in the greedy algorithm
design is that it always chooses the new candidate vertex with largest number
of references (see step 3 of Algorithm 2). The clique preselection, together with
the way new candidate vertices are selected, can lead the greedy algorithm to find
suboptimal solutions [17]. We thus develop a new enumeration scheme that explores
every relevant choice when selecting the next vertex candidates (instead of making
one arbitrary decision).

4.3. The enumeration scheme. In this section, we study in deeper details the
properties of valid and full candidates during the construction of a referenced order.
The results of this study motivate the different components of our enumeration
scheme.

4.3.1. Propagation of full candidates. As a preamble, we first point out that, when
building a referenced order by successive extensions from a given initial set, it is
always best to choose a full candidate when one exists. Indeed, a full candidate
does not increase the objective once added to the order, whereas it can only increase
the number of references of its non-ordered neighbors. What is more, when more
than one full candidate is available, then their relative ordering in the referenced
order is irrelevant. The above two observations can be formalized with the following
proposition.

Proposition 4.1. Let σ be an incomplete referenced order such that there is a full
candidate u, i.e., u /∈ PreIm σ and |Rσ (u)| ≥ U , then

∆∗ ([σ|u]) = ∆∗ (σ) . (4.1)

Proof. Let k = |σ| and let σV be an optimal completion of σ (hence ∆ (σV) =
∆∗ (σ)). We get a completion of [σ|u] by switching u and σ−1

V (k+1) in σV . Denoting
this completion as σV , we get

∆ (σV) = ∆ (σ) + δσV
(u) +

∑
v/∈PreIm(σ),v 6=u

δσV
(v) .

By assumption, u is a full candidate. Given that σV is also a completion of σ,
δσV

(u) = 0. Now, let v /∈ PreIm(σ), v 6= u. Given that the only difference between
σv and σV is in the rank of u, which is smaller in σV , we know that |RσV

(v)| ≥
|RσV

(v)|. As a consequence,∑
v/∈PreIm(σ),v 6=u

δσV
(v) ≤

∑
v/∈PreIm(σ),v 6=u

δσV
(v) ,

which yields ∆ (σV) ≤ ∆ (σV). Finally, σV is a completion of [σ|u], so by definition,
∆∗ ([σ|u]) ≤ ∆ (σV). Moreover, every completion of [σ|u] is also a completion of σ,
so ∆∗ ([σ|u]) ≥ ∆∗ (σ), hence the result. �

Let σ be an incomplete referenced order. Based on Proposition 9, we consider
a particular extension of σ that sequentially selects full candidates until there is
none. We will call such an extension the propagation of full candidates in σ and
denote it as Π(σ). Algorithm 3 gives the pseudo-code of function propagate(σ),
which executes this operation.

The recursive application of Proposition 9 immediately shows that full candidates
can always be propagated without loss in the objective function. We thus get the
following fundamental motivation for an enumeration scheme based on the greedy
search. Indeed, it implies that suboptimal extensions of an incomplete order can
only be made if there is no full candidate.

REVORDER: THEORY, APPLICATIONS, AND SOLUTION METHODS 11

1 function propagate(σ):
2 Π(σ)← σ;
3 while Full (Π(σ)) 6= ∅ do
4 v ← any element of Full (Π(σ));
5 Π(σ)← [Π(σ)|v];
6 return Π(σ);

Algorithm 3: Propagation of an incomplete referenced order

Proposition 4.2. Let σ be an incomplete referenced order, and σ = Π(σ) the
propagation of full candidates in σ. Then, ∆∗ (σ) = ∆∗ (σ).

4.4. Enumeration of partial candidates. Algorithm 4 describes a procedure
that enumerates completions of a feasible initial set S ∈ S. It builds an enumeration
tree where every node corresponds to an incomplete referenced order, and stores the
pending nodes in Q. The root node is given by the propagation of the set S. Then,
for each partial candidate v of an incomplete referenced order σ, one new branch
is created. The child node corresponding to v is given by propagate([σ|v]). The
propagation preceding every inclusion of σ to the list of pending nodes guarantees
that every pending node corresponds to an incomplete referenced order without any
full candidate. In the remainder, the node corresponding to the referenced order σ
will simply be called enumeration node σ.

input : A feasible initial set S ∈ S
output: An optimal completion of S

1 UB← +∞;
2 σ ← propagate(S);
3 Q← {σ};
4 while Q 6= ∅ do
5 σ ← an element of Q;
6 Q← Q \ {σ};
7 if |σ| = n then
8 if ∆ (σ) < UB then σ ← σ; UB← ∆ (σ);
9 goto step 2;

10 for v ∈ Partial (σ) do
11 Π([σ|v])← propagate([σ|v]);
12 Q← Q ∪ {Π([σ|v])};
13 return σ;

Algorithm 4: Enumeration algorithm for min revorder

Theorem 4.1. Let S ∈ S be a feasible initial set. Then Algorithm 4 computes an
optimal completion of σ.

Proof. Using the notations of Algorithm 4, we show that at the start of any iteration
of the while loop, min{UB,minτ∈Q{∆∗ (τ)}} = ∆∗ (S).

At the first iteration, σ = Π(S), so Proposition 10 guarantees that ∆∗ (σ) =
∆∗ (S). So assume that the property remains true at the start of a given iteration,
and denote as σ the element of Q selected at step 5.
If ∆∗ (σ) > ∆∗ (S), then min{UB,minτ∈Q{∆∗ (τ)}} = ∆∗ (S) after removal of σ
from Q so it will still be true at the start of next iteration.
Assuming that ∆∗ (σ) = ∆∗ (S), there is a candidate for extension, v, such that
∆∗ ([σ|v]) = ∆∗ (S). Given that there is no full candidate, there is v ∈ Partial (σ)

12 JÉRÉMY OMER & ANTONIO MUCHERINO

such that ∆∗ ([σ|v]) = ∆∗ (S). Once again Proposition 10 yields ∆∗ (Π([σ|v])) =
∆∗ (S). We conclude by observing that Π([σ|v]) is added to Q at some point of the
for loop. �

5. Speeding-up the enumeration algorithm

The main benefit of the enumeration given in Algorithm 4 is that it allows to
focus on the partial candidates when selecting the next vertex in the order. Here,
we show that some additional properties of graph G may be used to further reduce
the enumeration to a subset of the partial candidates.

5.1. Dominance rules.

Definition 5.1. Let σ and τ be two incomplete referenced orders. We say that σ
dominates τ if and only if ∆∗ (σ) ≤ ∆∗ (τ).

Let τ be a pending node and σ be either a pending node or a treated node on a
different branch than τ . This definition of dominance implies that if σ dominates
τ , then τ can be pruned from the tree because σ will be completed into a referenced
order with smaller or equal cost. This definition cannot be used in practice though,
because it requires the computation of ∆∗ (σ) and ∆∗ (τ). We propose a practical
sufficient condition below.

Proposition 5.1 (Basic dominance). Let σ and τ be two incomplete referenced
orders. If ∆ (σ) ≤ ∆ (τ) and PreIm(τ) ⊆ PreIm(σ), then σ dominates τ .

Proof. Let τV be an optimal completion of τ . Starting with σ, we can construct
a vertex order of G, σV , by adding the vertices of V \ PreIm(σ) after those of
PreIm(σ) so that:

∀u, v ∈ V \ PreIm(σ) : (τV (u) < τV (v)) =⇒ (σV (u) < σV (v)) .
Using that PreIm(τ) ⊆ PreIm(σ), the above yields

∀v ∈ V \ PreIm(σ) : |RσV
(v)| ≥ |RτV

(v)| .
This yields that σV is a referenced order and δσV

(v) ≤ δτV
(v) ,∀v ∈ V \PreIm(σ).

Moreover, σV completes σ, so

∆ (σV) = ∆ (σ) +
∑

v∈V \PreIm(σ)

δσV
(v)

≤ ∆ (τ) +
∑

v∈V \PreIm(τ)

δτV
(v) = ∆ (τV) .

�

We first examine how the above rule applies to dominance among children node
of a given pending node.

Proposition 5.2. Let σ be an incomplete order without full candidate such that
there are u, v ∈ Partial (σ). If u ∈ PreIm (Π([σ|v])), then Π([σ|v]) dominates
Π([σ|u]).

In particular, if {u, v} ∈ E and |Rσ (u)| = U − 1, Π([σ|v]) dominates Π([σ|u]).

Proof. Vertices u and v are both partial candidates, so by Proposition 10, we know
that

∆ (Π([σ|v])) = ∆ (Π([σ|u])) = ∆ (σ) + 1.
Moreover, if u ∈ PreIm (Π([σ|v])), then any full candidate added to the order during
the propagation of [σ|u] will also be added during that of [σ|v], so

PreIm(Π([σ|u])) ⊆ PreIm(Π([σ|v])).

REVORDER: THEORY, APPLICATIONS, AND SOLUTION METHODS 13

Therefore, Π([σ|v]) dominates Π([σ|u]) (by Proposition 13).
In particular, if {u, v} ∈ E and |Rσ (u)| = U − 1, then

∣∣R[σ|v] (u)
∣∣ = U . Hence

u ∈ PreIm (Π([σ|v])). �

We apply this rule to compare each new enumeration node with two sets of
vertices. From the above property, we can see that the verification of dominance
among children nodes has a rather low computational cost. Hence, when branch-
ing, we can start by comparing children nodes with each other for dominance.
Then, the search for dominance can be extended as follows. Let T be the set of
all treated nodes that have not been pruned yet, and denote as T (z) the nodes
of T with cost z. Each new node σ is compared with every vertex in T (z) for
∆ (σ)−∆z ≤ z ≤ ∆ (()σ). We make this restriction, because the dominance crite-
rion of Proposition 13 is transitive. Hence, larger dominance is unlikely if smaller
dominance does not occur. Moreover, this restriction saves a significant amount of
computational time (especially for larger instances).

Another case of dominance can be detected by comparing the neighborhoods of
partial candidates.

Proposition 5.3. Let σ be an incomplete referenced order such that there exist
u, v ∈ Partial (σ) with |Rσ (u)| ≤ |Rσ (v)| and (N (u) \ PreIm(σ)) = (N (v) \ PreIm(σ)),
then [σ|u] dominates [σ|v].

Proof. Let σV be any completion of [σ|v] and build σV as the completion of [σ|u]
obtained by swapping the ranks of u and v in σV , i.e,

σV (v) = σV (u)
σV (u) = σV (v)
σV (w) = σV (w),∀w /∈ {u, v}

Using that (N (u) \ PreIm(σ)) = (N (v) \ PreIm(σ)), we know that |RσV
(w)| =

|RσV
(w)| for w 6= u, v. Moreover, |Rσ (u)| ≤ |Rσ (v)|, so |RσV

(u)| ≤ |RσV
(v)|.

Stated otherwise, u is fully-referenced in σV only if v is fully-referenced in σV .
Given that v is partially-referenced in σV and u is partially-referenced in σV , we
get that

∆∗ ([σ|v]) = ∆ (σV) ≥ ∆ (σV) ≥ ∆∗ ([σ|u]) .
�

The above dominance rules are all used in the final version of the enumeration
algorithm as described in steps 11-20 of Algorithm 5.

5.2. Breaking symmetries. Another perspective of improvement is in the identi-
fication of symmetric referenced orders. The basic idea is to avoid building several
referenced orders where the list of partially-referenced vertices is the same. For
this, we arbitrarily index the vertices of V and denote u < v if the index of u ∈ V
is smaller than that of v ∈ V . We wish to break symmetry by constructing refer-
enced orders σ such that a vertex v is partially-referenced in σ only if every other
partially-referenced vertex u such that u < v either

• has a smaller rank than u in σ, i.e., σ(u) < σ(v), or
• has less than L references with rank smaller than σ(v).

The second condition implies that we cannot obtain a valid referenced order by
simply swapping the ranks of u and v in σ. In the context of Algorithm 4, the
above condition is equivalent to requiring that, if u and v are two partial candidates
for some incomplete order σ such that u < v, then u should be removed from the
list of partial candidates when extending σ with v. Therefore, in the corresponding
branch of the enumeration tree, it will be possible to extend σ with u only when

14 JÉRÉMY OMER & ANTONIO MUCHERINO

fully-referenced. In the remainder, this selection rule will be referred to as the index
priority rule. As a first step, we show that there exists a solution to min revorder
that satisfies this rule.

Proposition 5.4 (Index priority rule). Let τ be a referenced order. Then, there is
a referenced order σ such that for all v ∈ V :

• if v is partially-referenced in σ, then it is partially-referenced in τ (i.e.,
∆ (σ) ≤ ∆ (τ)), and
• ∀v ∈ V such that δσ (u) = 1, and ∀u ∈ V such that u < v and δσ (v) = 1:

σ(u) > σ(v) =⇒ |{w ∈ N (v) : σ(w) < σ(v)}| < L.

Proof. For any referenced order, we have seen that there is a referenced order
with smaller or equal cost that can be constructed by using the enumeration al-
gorithm sketched in Algorithm 4. Therefore, without loss of generality, we can
consider a referenced order, τ , where the vertex at a given rank is partially-
referenced if and only if there is no full candidate for this rank. Let v ∈ V be
the partially-referenced vertex with smallest rank in τ , and consider Pσ(v) = {u ∈
V : |w ∈ N (u) : τ(w) < τ(v)| ≥ L}. Set Pσ(v) includes all the (partial) candidates
for rank τ(v). Assume that v does not satisfy the index priority rule. This means
that the vertex with smaller index in Pσ(v), u, is such that u < v. Then let σ be
the vertex order obtained by inserting u at the rank of v in τ , i.e.,

σ(w) = τ(w),∀w : τ(w) < τ(v), or τ(w) > τ(u),
σ(u) = τ(v),
σ(w) = τ(w) + 1,∀w : τ(v) ≤ τ(w) < τ(u).

Then, u is partially-referenced in both τ and σ, and every other vertex has at least
as many references in both orders. As a consequence, every partially-referenced
vertex of σ is also partially-referenced in τ , but the index priority rule is satisfied
at least up to rank τ(v). We conclude by induction on the minimum rank of a
vertex that does not meet the index priority rule. �

We ensure the index priority rule in the enumeration algorithm by introducing
one new set of candidates, Fixed (σ), for each incomplete order σ. Any vertex in
Fixed (σ) can be chosen to extend an order only if it has more than U references.
In the enumeration algorithm, this means that those vertices can extend an order
only during propagation. We then modify, the branching rules by excluding fixed
candidates from the list of valid candidates, and when creating a node by extending
some order σ with a partial candidate u, we set as fixed every other partial candidate
v such that v < u. The corresponding modification appears at step 8 of Algorithm 5,
and the identification of fixed vertices is detailed at steps 23.

5.3. Bound pruning. In addition to the above pruning rules, we use the tra-
ditional bound pruning of branch-and-bound algorithms. For this, we start the
algorithm with the upper bound provided by running the greedy completion algo-
rithm from every initial set of S. The upper bound, UB, will then be updated every
time an improving complete order is found during the enumeration. A lower bound
LB(σ) is then computed for each incomplete order σ in the pending nodes queue
Q, and the order is pruned if LB(σ) ≥ UB.

In our implementation, we have tried two different methods for computing the
lower bound. One trivial lower bound at node σ is given by ∆ (σ)+1, where we add
one to the cost of σ, because the next vertex in the order is necessarily partially-
referenced. We slightly improve this bound by acknowledging that a vertex with
degree smaller than U will necessarily be partially-referenced. Likewise, if two

REVORDER: THEORY, APPLICATIONS, AND SOLUTION METHODS 15

vertices with exactly U neighbors are linked by an edge, then at least one of them
will be partially-referenced. The resulting lower bound is denoted as LBtrivial(σ)

In order to compute a better lower bound, we can solve the linear relaxation
of any IP formulation of the problem. As already remarked above, IPccg includes
every cycle constraints, but we can start the cycle-cut generation with 2- and 3-
cycles. Since this initial model is a relaxation of min revorder, so is its linear
relaxation. For a given incomplete order σ, we can then compute a lower bound,
denoted as LBccg(σ), by fixing all the variables corresponding to PreIm(σ) and by
solving the linear relaxation of the initial relaxation of IPccg.

The overall branch-and-bound algorithm is summarized in Algorithm 5. We
can deduce from the above discussions that it yields the optimal completion of the
input initial set S, or it proves that no completion of S can improve the input upper
bound UB. In the algorithm, the method chosen for computing the lower bound of
some incomplete order σ is abstracted by a call to function lowerbound(σ) that
returns either LBtrivial(σ) or LBccg(σ), depending on the chosen option. This will
be discussed further in Section 6.

5.4. Preprocessing the initial set. Before any call to Algorithm 5, the set of
initial sets is preprocessed in order to delete as many of its entries as possible. For
this, we propagate each set of S and compare them for dominance. We then run the
greedy algorithm from every non-dominated initial set for an initial upper bound.
While doing so, we also obtain the list of infeasible initial sets. In the end, we
execute Algorithm 5 only with feasible and non-dominated initial sets.

This preprocessing step is similarly performed before the execution of ccg to
reduce the number of initial sets. But, we also use it to compute valid inequalities
based on the propagation of each initial set. Indeed, if we consider S ∈ S, and
Π(S) :=propagate(S), we know that no vertex among those of PreIm(Π(S)) \ S
will be partially-referenced if S is chosen as an initial set. Moreover, there will
necessarily be one partially-referenced vertex among the partial candidates of Π(S).
As a consequence, we add the following two sets of valid inequalities to IPccg:

δσ(v) ≤ (1− κS),∀S ∈ S,∀v ∈ PreIm (Π(S)) \ S; (5.1)∑
v∈Partial(Π(S))

δσ(v) ≥ κS ,∀S ∈ S. (5.2)

6. Computational experiments

We have tested the branch-and-bound framework given in Algorithm 5 on five
different families of instances (Random, Synthetic, Protein, SensorNetwork
and Interdiction), and we compared it with the other methods discussed in this
article. For reproducibility of our results and more efficiency in future research on
the topic, our implementation of Algorithm 5 is publicly available on GitLab1. The
same repository also contains the instances used in our computational experiments,
together with the bash scripts that run the tests.

6.1. Our instance sets. Random and Synthetic sets of instances contain ran-
domly generated instances, obtained as described in [13]. In particular, Random
contains randomly generated instances with no specific patterns, while Synthetic
contains the so-called “synthetic” instances, where, starting from a randomly gen-
erated instance, edges are removed in order to build the sparsest graph that still
admits a referenced order. An additional 0.15n or 0.20n edges are then added as

1https://gitlab.insa-rennes.fr/Jeremy.Omer/min-revorder.git

https://gitlab.insa-rennes.fr/Jeremy.Omer/min-revorder.git

16 JÉRÉMY OMER & ANTONIO MUCHERINO

input : A feasible initial set S ∈ S and an initial upper bound UB
output: An optimal completion of S

1 Q← {propagate(S)};
2 while Q 6= ∅ do
3 σ ← an element of Q;
4 Q← Q \ {σ};

// If the order is complete, update incumbent
5 if |σ| = n then
6 if ∆ (σ) < UB then σ ← σ; UB← ∆ (σ);
7 goto step 2;

// Temporarily store valid extensions of σ in E
8 for v ∈ Partial (σ) \ Fixed (σ) do
9 Π([σ|v])← propagate([σ|v]);

10 E ← Π([σ|v])
// Check dominance criteria

11 for Π([σ|u]) ∈ E do
// Dominance among children nodes

12 for Π([σ|v]) ∈ E such that v 6= u do
// Apply Proposition 14

13 if u ∈ PreIm(Π([σ|v])) then
14 goto step 11; // Prune Π([σ|u])

// Apply Proposition 15
15 if N (u) \ PreIm(σ) = N (v) \ PreIm(σ) and |Rσ (u)| ≥ |Rσ (v)|

then
16 goto step 11; // Prune Π([σ|u])

// Dominance with subsets of the enumeration tree
17 for z = ∆ (Π([σ|u]))−∆z to ∆ (Π([σ|u])) do
18 for τ ∈ T (z) do
19 if PreIm(Π([σ|u])) ⊆ PreIm(τ) then
20 goto step 11; // Prune Π([σ|u])

// Bound-pruning
21 if lowerbound(Π([σ|u])) ≤ UB then
22 goto step 11; // Prune Π([σ|u])

// Apply index priority rule in extensions of [σ|u]
23 Fixed (Π([σ|u]))← Fixed (σ) ∪ {v ∈ Partial (σ) : v < u};

// Add non-pruned orders to tree and pending nodes
24 T (Π([σ|u]))← T (Π([σ|u])) ∪ {Π([σ|u])};
25 Q← Q ∪ {Π([σ|u])};
26 return σ, UB;

Algorithm 5: Branch-and-bound algorithm for min revorder

noise. Notice that we use the same instances as those that appear in the experi-
ments published in [13], which were made publicly available2 by the authors. The
details about the instances in Random and Synthetic are summarized in Table 1.
In all our tables, we also include the values of L, because they are constant in all
corresponding experiments. Moreover, S is given by the set of (L + 1)-cliques of
the graph.

2https://sites.google.com/site/mervebodr/

REVORDER: THEORY, APPLICATIONS, AND SOLUTION METHODS 17

name |V | |E| L name |V | |E| L
random25(1) 25 90 3 synthetic25(1) 25 91 3
random25(2) 25 90 3 synthetic25(2) 25 92 3
random25(3) 25 120 3 synthetic25(3) 25 90 3
random25(4) 25 120 3 synthetic25(4) 25 91 3
random30(1) 30 131 3 synthetic30(1) 30 111 3
random30(2) 30 131 3 synthetic30(2) 30 113 3
random30(3) 30 174 3 synthetic30(3) 30 110 3
random30(4) 30 174 3 synthetic30(4) 30 112 3
random35(1) 35 179 3 synthetic35(1) 35 131 3
random35(2) 35 179 3 synthetic35(2) 35 133 3
random35(3) 35 238 3 synthetic35(3) 35 130 3
random35(4) 35 238 3 synthetic35(4) 35 132 3

Table 6.1. Details about the instances in Random (left-side)
and Synthetic (right-side) sets.

name |V | m/n |E| L name |V | m/n |E| L
1m40(1) 60 3.2 202 3 1bpm(1) 60 3.2 212 3
1m40(2) 60 3.6 216 3 1bpm(2) 60 3.6 216 3
1m40(3) 60 4.0 238 3 1bpm(3) 60 4.0 239 3
1n4w(1) 60 3.2 221 3 1mqq(1) 60 3.2 203 3
1n4w(2) 60 3.6 221 3 1mqq(2) 60 3.6 216 3
1n4w(3) 60 4.0 238 3 1mqq(3) 60 4.0 240 3

Table 6.2. Details about the instances in Protein. The ratio
m/n indicates the percentage of edges that are kept in the instance.

The Protein set contains the protein instances that were already used in previ-
ous publications on distance geometry for protein structure determination (see [8]
for the details about the instance generation procedure from known protein con-
formations). In order to increase the difficulty in finding solutions, and as already
proposed in [13] and [17], we have removed a subset of edges from the original
graphs representing those protein instances. In order to select the number of edges
in the graph, we first observe that the minimum number of edges that can be kept
in a feasible instance is m = L(n − L+1

2) ≈ L × n. In [17], it was observed, for
U = L + 1, that the most difficult instances to solve are those where the ratio
m/n is near in value to 3.6. In our experiments, we generated instances where
m/n = 3.2, 3.6, 4.0. Only the first 60 atoms of the original instances are taken into
consideration, so that all the instances in this set have 60 vertices. Table 2 gives
more details about those protein instances.

Another important and traditional application of distance geometry is the so-
called Sensor Network Localization Problem [3, 1]. The SensorNetwork set con-
sists of randomly generated instances that resemble sensor networks in dimension 2.
An edge between two vertices is in this case included in the graph if the two cor-
responding sensors are able to communicate, that is, if their relative distance is
smaller than a given threshold T , that represents the upper limit for the communi-
cation. In the generation of the instances, we control the shape of the “underlying”
area where the sensors are supposed to be randomly placed. By doing that, we can
artificially generate situations where the neighborhood of a sensor can have a full
or partial intersection with the underlying 2D area. In the former case the sensor
naturally has a larger range of communication possibilities with others. Table 3

18 JÉRÉMY OMER & ANTONIO MUCHERINO

name |V | h w T |E| L
sensor01 60 0.3 1.0 0.12 234 2
sensor02 60 0.3 1.0 0.15 306 2
sensor03 60 0.3 1.0 0.18 397 2
sensor04 60 0.5 1.0 0.20 317 2
sensor05 60 0.5 1.0 0.21 458 2
sensor06 60 0.5 1.0 0.22 397 2
sensor07 60 0.7 1.0 0.20 276 2
sensor08 60 0.7 1.0 0.22 297 2
sensor09 60 0.7 1.0 0.24 326 2
sensor10 60 1.0 1.0 0.25 263 2
sensor11 60 1.0 1.0 0.30 363 2
sensor12 60 1.0 1.0 0.35 542 2

Table 6.3. Details about the instances in SensorNetwork set.

name |V | p |E| L name |V | p |E| L
interdiction010 60 0.10 585 1 interdiction055 60 0.55 108 1
interdiction020 60 0.20 309 1 interdiction060 60 0.60 102 1
interdiction030 60 0.30 108 1 interdiction065 60 0.65 94 1
interdiction040 60 0.40 157 1 interdiction070 60 0.70 86 1
interdiction045 60 0.45 123 1 interdiction080 60 0.80 67 1
interdiction050 60 0.50 112 1 interdiction090 60 0.90 66 1

Table 6.4. Details about the instances in our Interdiction set.

gives more details about these instances: we indicate with the two letters h and w
the height and width, respectively, of the underlying area for the generated sensor
networks. All networks are composed of 60 sensors.

The Interdiction set is related to instances of the interdiction problem (see
Section 2.2). The instances belonging to this set have been generated by using
the same procedure as Hemmati et al. [6], which had been previously proposed by
Chung and Lu in [2], where we only had to make one minor modification in order
to build undirected graphs. The procedure starts with a graph containing only
one vertex; an expected total number of vertices is given in input, together with a
probability p ∈ [0, 1]. The procedure iterates and executes one of the following two
steps until the graph contains the desired number of vertices:

(1) with probability p, add one new vertex to the graph and add one edge be-
tween this new vertex and another randomly selected vertex already present
in the graph;

(2) with probability 1−p, choose two vertices already in the graph and add an
edge between them.

We generate instances with 60 vertices and use a probability p ranging from 0.1 to
0.9. Table 4 gives some additional details about these instances.

6.2. Comparing our branch-and-bound against existing approaches. The
experimental assessment of the capability of our branch-and-bound algorithm is
made through a comparison with the three IP-based approaches ccg, witness
and vertexrank and the solution of a constraint programming model cp, which
was introduced by [13]. A detailed description of the last three approaches is given
in Appendix B. We chose them, because they represent the best existing solution
methods for min revorder.

REVORDER: THEORY, APPLICATIONS, AND SOLUTION METHODS 19

0 5 10 15
0.00

0.25

0.50

0.75

1.00

Within this factor of the best (log scale)

P
ro

p
o

rt
io

n
 o

f
p

ro
b

le
m

s

BB
CCG
WITNESS
VERTEXRANK
CP

Figure 6.1. Comparison of our branch-and-bound algorithm to
the existing methods.

For each method, we solve all the instances described in the previous section with
three different values of U chosen so that U−L = 1, 2, 3. As a result, this benchmark
includes 180 instances. Every experiment is run on a workstation equipped with
an Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz, 16GB RAM3. Every IP and
constraint programming formulation is solved with CPLEX 12.9. The time limit is
set to 1000 seconds, and for a fair comparison, every run is done on a single thread.
In this section the reader can find the corresponding performance profiles, with our
associated comments. For more details about the computational results, one can
refer to Appendix B; To construct performance profiles, we apply the method4 by
Dolan and Moré initially proposed in [4].

Our implementation of the branch-and-bound algorithm corresponds to the sketch
given in Algorithm 5, where lowerbound(σ) returns the trivial lower bound, LBtrivial(σ)
(see Section 5.3). The value of the parameter ∆z is set to 1 in all the experiments.
The nodes in the branch-and-bound queue are explored in a best-first fashion, where
the best node is the one minimizing the ratio ∆ (σ) / |σ|. These two parameters
have been set to these values according to preliminary tests. In the remainder, we
will refer to this default implementation of our branch-and-bound as bb.

The first performance profile (see Figure 1) considers all the experiments (the
logarithmic scale on the x-axis is in base 2). The profile clearly shows the superiority
of the proposed method. Moreover, when comparing the other existing methods,
we can remark that the results we report for witness, cp and vertexrank are
consistent with those previously published in [13]. However, the results of ccg are
better than those reported in [13]. This is because our implementation of ccg is
enhanced by the initial enumeration and preprocessing of (L + 1)-cliques, and by
the addition of cutting planes (see Section 5.4).

3We ran experiments on a Linux kernel 4.13.16-100.fc25.x86_64 and we used GNU C++ 6.4.1
to compile our code

4We used the Julia package available on GitHub:
https://github.com/JuliaSmoothOptimizers/BenchmarkProfiles.jl

https://github.com/JuliaSmoothOptimizers/BenchmarkProfiles.jl

20 JÉRÉMY OMER & ANTONIO MUCHERINO

0 5 10 15
0.00

0.25

0.50

0.75

1.00

Within this factor of the best (log scale)

P
ro

p
o

rt
io

n
 o

f
p

ro
b

le
m

s

BB
CCG
WITNESS
VERTEXRANK
CP

(a) Instances from the Random set.

0 5 10 15
0.00

0.25

0.50

0.75

1.00

Within this factor of the best (log scale)

P
ro

p
o

rt
io

n
 o

f
p

ro
b

le
m

s

BB
CCG
WITNESS
VERTEXRANK
CP

(b) Instances from the Synthetic set.

0.0 2.5 5.0 7.5 10.0
0.00

0.25

0.50

0.75

1.00

Within this factor of the best (log scale)

P
ro

p
o

rt
io

n
 o

f
p

ro
b

le
m

s BB
CCG
WITNESS
VERTEXRANK
CP

(c) Instances from the Protein set.

0.0 2.5 5.0 7.5 10.0
0.00

0.25

0.50

0.75

1.00

Within this factor of the best (log scale)

P
ro

p
o

rt
io

n
 o

f
p

ro
b

le
m

s

BB
CCG
WITNESS
VERTEXRANK
CP

(d) Instances from the SensorNetwork
set.

0 5 10 15
0.00

0.25

0.50

0.75

1.00

Within this factor of the best (log scale)

P
ro

p
o

rt
io

n
 o

f
p

ro
b

le
m

s

BB
CCG
WITNESS
VERTEXRANK
CP

(e) Instances from the Interdiction set.

Figure 6.2. Comparison of our branch-and-bound algorithm to
existing methods. Every profile is related to one family of in-
stances: (a) Random, (b) Synthetic, (c) Protein, (d) Sensor-
Network, (e) Interdiction.

The performance profiles in Figure 2 allow to analyse each family of instances
independently. For instances of Random, Protein and Interdiction, the profiles
seem representative of the overall results. We remark that the dominance of bb is
more pronounced when the sensor network instances are concerned. Looking at the
tables in Appendix B, it appears that even for bb], the solution of sensor network
instances takes on average more time than for the other families of instances. Due
to this additional difficulty, other methods reach the time limit. We can also remark
that ccg outperforms bb on the Synthetic benchmark. In fact, for these particular
instances, the linear relaxation of ccg provides a bound that is very close to the
optimal value, leading as a consequence to good performances. Moreover, these
instances include only 25 to 35 vertices which yields many computational times
below one second. As a consequence, machine overhead may have an impact on
this comparison.

REVORDER: THEORY, APPLICATIONS, AND SOLUTION METHODS 21

0 5 10 15
0.00

0.25

0.50

0.75

1.00

Within this factor of the best (log scale)

P
ro

p
o

rt
io

n
 o

f
p

ro
b

le
m

s

BB
CCG
WITNESS
VERTEXRANK
CP

(a) U − L = 1

0 5 10 15
0.00

0.25

0.50

0.75

1.00

Within this factor of the best (log scale)

P
ro

p
o

rt
io

n
 o

f
p

ro
b

le
m

s BB
CCG
WITNESS
VERTEXRANK
CP

(b) U − L = 2

0.0 2.5 5.0 7.5 10.0
0.00

0.25

0.50

0.75

1.00

Within this factor of the best (log scale)

P
ro

p
o

rt
io

n
 o

f
p

ro
b

le
m

s BB
CCG
WITNESS
VERTEXRANK
CP

(c) U − L = 3

Figure 6.3. Comparison to existing methods per value of U − L.

To establish the impact of the value of U −L on the performances of the various
algorithms, we provide independent performance profiles where the value of U−L is
fixed to 1, 2 or 3 (see Figure 3). The results confirm the intuition that the problem
gets more difficult when the value of U − L increases. This is expected for our
branch-and-bound algorithm, because the enumeration is based on the number of
partial candidates which must necessarily increase with the value of U . Since L is
constant, the number of candidate vertices at a given enumeration node is the same,
but the number of full ones will necessarily decrease. A similar combinatorial effect
seems to affect every other approach. We also observe that witness is less impacted
than other approaches. This seems to indicate that the concept of "witness" yields a
stronger formulation when U−L increases, but additional analyses will be necessary
to conclude on this issue.

6.3. Assessment of improvements in the branch-and-bound algorithm. In
order to assess the various improvements that we have proposed for our branch-
and-bound framework (see Section 5), we propose another performance study where
different versions are compared.

For a reasonable computational effort, we perform this analysis on a subset of
the above benchmark, where we keep only two instances per family. In doing so,
we selected those that appear to be the most difficult in our previous tests5.

The “default” version of the algorithm is the implementation used in previous
sections, bb. The “no dominance” and “no symmetry break” versions correspond
to the “default” version where the dominance rules or the symmetry break strategy,
respectively, are not used. The “relaxation bound” version differs from the default
one only in the computation of the lower bound at each enumeration node. In this

5Referring to tables 1-4, we keep the following ten instances: random35(1), random35(2),
synthetic35(1), synthetic35(3), sensor10, sensor12, interdiction045, interdiction050, 1bpm(2) and
1bpm(3)

22 JÉRÉMY OMER & ANTONIO MUCHERINO

0 2 4 6 8
0.00

0.25

0.50

0.75

1.00

Within this factor of the best (log scale)

P
ro

po
rt

io
n

of
 p

ro
bl

em
s

default
no dominance
no symmetry break
relaxation bound
plain BB

Figure 6.4. Performance profiles for the different versions of our
branch-and-bound algorithm.

version, lowerbound(σ) returns LBccg(σ) instead of LBtrivial(σ) (see Section 5.3),
meaning that the linear relaxation of an IP is solved at each enumeration node to
compute a lower bound better than the trivial one. Finally, the version “plain BB”
does not use any pruning technique.

Figure 4 shows the performance profile obtained when comparing these different
versions against each other. The default version appears to have better perfor-
mances in comparison with the others even though its profile is very similar to
that observed when the “relaxation bound” version is used. With a more thorough
look at results, it appears there is a clear dominance of the default version on the
Random, SensorNetwork and Interdiction instances, whereas the “relaxation
bound” version is the best performing one on Synthetic and Protein. For the
latter two families of instances, we observed that LBccg(σ) provides lower bounds
that are in general much closer to the value of the optimal completion of σ than
LBtrivial(σ). When this is not the case, the time spent computing LBccg(σ) is not
compensated by the resulting reduction in the number of enumeration nodes. In
contrast, the performance profiles highlight that there is a clear contribution of the
pruning techniques based on dominance and symmetry. The version where none
of these techniques is used indicates that ccg would be better performing if no
pruning had been implemented.

6.4. Impact of the size of the graph. We now study the impact of the size of
the graph on the performances of the branch-and-bound algorithm. For this, we
run the algorithm on instances including up to 500 vertices with U − L = 1, 2, 3.
In order to create a benchmark with representative entries among those in the
instances described in Section 6.1, we keep only two instances per family and per
number of vertices. The parameters we use to generate the instances are those we
already identified when comparing the different versions of the branch-and-bound
(which indicate the instances that are hardest to solve on average). Given that

REVORDER: THEORY, APPLICATIONS, AND SOLUTION METHODS 23

(a) Default branch-and-bound (b) Best branch-and-bound method among
“default” and “relaxation bound” versions

Figure 6.5. Percentage of instances solved, per number of ver-
tices and values of U−L (U−L = 1 in blue, U−L = 2 in magenta
and U − L = 3 in red)

these parameters lead to infeasible or trivially solved instances for two families, we
had to slightly modify some parameter values as follows.

For synthetic instances, we initially took as a reference the density (D = 0.3)
related to the most difficult instances of the previous benchmark. With increasing
numbers of vertices, our preliminary tests highlighted that the resulting instances
had trivial solutions that included only fully-referenced vertices. As a consequence,
we reduced the density by setting it to D = 0.3

√
35√
n
, which matches D = 0.3 when

n = 35.
In order to generate larger sensor network instances, we have selected the thresh-

old values 0.25 and 0.35 with a square shape. We then modified the lengths of the
square’s sides to keep a constant density of sensors in the area.

We run bb on every large instance, and, given that last section showed that the
“relaxation bound” version gets better results on two families of instances, we also
run this version. In Figure 5, we report the percentage of successful runs of the
branch-and-bound algorithm with respect to the instance size, for separated values
of U −L. On the left subfigure, we focus on default parameter values, whereas the
right subfigure displays the percentage of instances solved by either of the two sets
of parameters. We observe that every instance can be solved for U − L = 1 and
n = 100, 150, 200 and 300 with one of the two versions. Moreover, never less than
80% are solved for instances including up to 500 vertices. In comparison, existing
methods could not find provable optimal solutions of more than 50% of instances
including as few as 35 to 60 vertices. Given that U − L = 1 is the value that
appears in the applications related to distance geometry (see Section 2.1), these
results establish a significant step towards the exact resolution of real instances
where thousands of vertices need to be considered.

In contrast, as the value of U − L increases, it becomes more and more difficult
for the branch-and-bound algorithm to find provable optimal solutions within the
required time threshold.

7. Conclusions

We have introduced a vertex ordering decision problem, revorder, and its
optimization counterpart, min revorder. By exploiting some previous results ob-
tained for related applications, we have proposed a brief survey on existing methods.
We have then proposed new cutting planes for an existing IP formulation and devel-
oped a new branch-and-bound framework for min revorder. The computational

24 JÉRÉMY OMER & ANTONIO MUCHERINO

results highlight that the branch-and-bound clearly outperforms existing solution
methods. This improvement allows the solution of instances with up to 500 ver-
tices, even though these instances were willingly constructed to show the limits of
solution methods.

min revorder is a generic problem for which some applications are already
known; moreover, we believe it can serve as a basis for the (re)formulation of other
problems arising in other research areas. One of the research lines that we find
interesting is, for example, the one related to epidemic networks [7]. To completely
fulfill this aim, there are some possible extensions that we can foresee. First of
all, we have limited our current study to undirected graphs G, because it captures
the main applications we took into consideration. However, the entire work may be
extended to directed graphs for considering other applications where the orientation
of edges is important. This would be natural if some relevant applications emerge
in the area of scheduling.

Another assumption that we have considered in this work, which may be re-
laxed or totally removed in future works, is related to the shape of the objective
function δσ (v). Again, our choice in the current work was led by the fact that the
considered applications do not need more generic objective functions. However, if
G is a weighted graph (with weights on the vertices and/or on its edges), then the
objective function may actually take these weights into consideration, so that it
does not correspond anymore with the simple count that we have used above. For
instance, consider another distance geometry problem where distances are repre-
sented by real-valued intervals instead of precise distances [16]. In this context, a
reference with smaller distance interval range yields a reduced set of possible real-
izations. To do so, the objective function needs to include a term where the lengths
of the distance interval of a vertex is added every time it serves as a reference.

Appendix A. Existing integer programming and constraint
programming formulations

In this section, we give more details about the approaches from the literature
that are used in our computational tests. While doing this, we will simplify the
presentation by assuming that the initial sets are the (L+ 1)-cliques of G, which is
the case in all our test instances. The generalization to arbitrary initial sets would
be possible by enumerating them as in the cycle-based extended formulation.

Please see [13] for the original descriptions of the models and other approaches
to the discretization of distance geometry graphs.

A.1. A rank-based IP formulation: vertexrank. The compact IP formulation
described in [13] is based on a model proposed by Lavor et al. [9], where binary
variables indicate which vertex is at each rank. In the following presentation of
the model, δr = 1 if and only if the vertex with rank r ∈ JL + 2, nK is partially-
referenced, σrv = 1 if and only if v ∈ V is at rank r ∈ J1, nK and yr,v = 1 if v is at
rank r and v is partially-referenced.

REVORDER: THEORY, APPLICATIONS, AND SOLUTION METHODS 25

min 1 +
∑

r∈JL+2,nK

δr

s. t.
∑

r∈J1,nK

σrv = 1, ∀v ∈ V (A.1)

∑
v∈V

σrv = 1, ∀r ∈ J1, nK (A.2)∑
u∈N (v)

∑
q∈J1,r−1K

σqu ≥ rσrv, ∀v ∈ V, r ∈ J1, L+ 1K, (A.3)

∑
u∈N (v)

∑
q∈J1,r−1K

σqu ≥ Lσrv, ∀v ∈ V, r ∈ JL+ 2, nK, (A.4)

∑
u∈N (v)

∑
q∈J1,r−1K

σqu ≥ U(1− yr,v), ∀v ∈ V,∀r ∈ JL+ 2, nK, (A.5)

δr ≥ yr,v + σrv − 1, ∀v ∈ V,∀r ∈ JL+ 2, nK, (A.6)

x ∈ {0, 1}2|E|, κ ∈ {0, 1}|S|, δ ∈ {0, 1}n−L−1, y ∈ {0, 1}n(n−L−1).

Constraints (9) and (10) ensure that there is exactly one vertex per rank and
reciprocally. Constraints (11) ensure that the L+ 1 first vertices induce a complete
subgraph of G. By (12), vertex v is at rank r only if it has at least L references,
and by (13), v is fully-referenced and at rank r only if it has at least U references.
Finally, constraints (14) ensure that if v is at rank r and partially-referenced, then
the vertex at rank r is partially-referenced.

A.2. The witness-based decomposition: witness. Bodur and MacNeil [13]
develop a decomposition scheme based on witness vertices. A witness is a reference
vertex that is necessary to satisfy the reference constraints. As a consequence,
partially and fully-referenced vertices have exactly L and U witnesses, respectively.
Moreover, the initial vertices are not assigned a specific rank among the first L+ 1.
Instead they are all witness to one another and to all their other neighbors. The
decomposition yields an extended formulation including one constraint per directed
cycle of G:

min
∑
v∈V

δσ(v)

s. t.
∑
v∈V

κv = L+ 1 (A.7)

κu + κv ≤ 1, ∀u, v ∈ V : u 6= v, {u, v} /∈ E (A.8)
κv ≤ wu,v, ∀v ∈ V, u ∈ N (v) (A.9)
δσ(v) ≤ 1− κv, ∀v ∈ V (A.10)∑
u∈N (v)

wu,v = L(1− κv) + (U − L)(1− δσ(v)) + Lκv, ∀v ∈ V, (A.11)

∑
(u,v)∈AC

wu,v ≤
∣∣V C∣∣− 1 + 1

(∣∣V C∣∣ ≤ L+ 1
)
×
∑
v∈V C

κv, ∀C ∈ C (A.12)

w ∈ {0, 1}2|E|, κ ∈ {0, 1}n.

26 JÉRÉMY OMER & ANTONIO MUCHERINO

where wu,v = 1 if and only if u is witness to v, {u, v} ∈ E. Constraints (15)–
(17) guarantee that the L + 1 vertices belonging to the initial clique are pairwise-
connected and that they are witness to all their neighbors. The valid inequal-
ities (18) state that the first L + 1 vertices are not partially-referenced. Con-
straints (19) ensure that the vertices of the initial clique have exactly L witnesses,
and that other vertices have L witnesses if they are partially-referenced and U wit-
nesses if they are fully-referenced. Constraints (20) forbid cycles in the directed
graph containing every arcs (u, v) such that wu,v = 1. One specificity of the model
is that the first L + 1 vertices are witness to one another. As a consequence, the
cycle constraints (20) are lifted in the space (w, κ) to allow for cycles containing
only vertices among the L + 1 first in the order. This is required only for cycles
including at most L+ 1 vertices, because MacNeil and Bodur [13] have shown that
it is not necessary to forbid directed cycles that include vertices both inside and
outside the first L+ 1 vertices.

Similarly to ccg, the above extended formulation is solved with a cutting plane
algorithm, where every 2 and 3-cycle is included in the initial relaxation.

A.3. A constraint programming approach: cp. In [13], Bodur and MacNeil
develop three different constraint programming approaches, two of which performed
similarly well and better than the third one in their experiments. The model we
describe, cp, is among those two best approaches. In cp, decision variable vr is
equal to the vertex whose rank is r in an optimal referenced order, and δr is as in
vertexrank. The model involves the adjacency matrix of G, A, i.e., Au,v = 1 if
and only if {u, v} ∈ E for all u, v ∈ V .

cp : min 1 +
∑

r∈JL+2,nK

δr

s. t. AllDifferent(v1, . . . , vn) (A.13)
Avq,vr

= 1, ∀r ∈ J1, LK, ∀q ∈ Jr + 1, L+ 1K, (A.14)∑
q∈J1,r−1K

Avq,vr ≥ L+ (1− δr)(U − L), ∀r ∈ JL+ 2, nK (A.15)

∀r ∈ J1, nK : vr ∈ J1, nK, δr ∈ {0, 1}
Constraint (21) ensures that variables v1, . . . , vn describe a vertex ordering. It

uses the AllDifferent constraint, which is classical to handle scheduling problems.
Constraints (22) state that the first L + 1 vertices are pairwise connected, while
constraints (23) ensure that the following ones have at least L references and that
they are partially-referenced if they have less than U . These two constraints make
use of constraint programming element constraints where decision variables can be
used as indices.

Appendix B. Details on computational experiments

The following tables show our computational experiments aimed at performing
a global comparison among all methods discussed in the article. For every instance
belonging to one of the five sets described in Section 6, we run the experiments
for three values of U − L: 1, 2 and 3. For every instance, for every value of
U −L, and for every solver, we report in the following tables: the objective value of
the best solution found (“obj”), the computational time in seconds (“time”), and
the number of branch-and-bound nodes explored by the solver (“#-bbnodes”). In
column “time”, TL indicates that the time limit was reached. In every other case,
optimality is reached, so the value indicated in column “obj” is the optimal one.

REVORDER: THEORY, APPLICATIONS, AND SOLUTION METHODS 27

cc
g

cp
ve

rt
ex

ra
nk

w
it

ne
ss

B
B

na
m

e
U
−
L

ob
j

tim
e

#
bb

-n
od

es
ob

j
tim

e
#
bb

-n
od

es
ob

j
tim

e
#
bb

-n
od

es
ob

j
tim

e
#
bb

-n
od

es
ob

j
tim

e
#
bb

-n
od

es
ra
nd

om
25
(1
)

1
5

2.
2

49
54

5
T
L

11
72
24
14

5
69
.5
9

10
76
6

5
11
4.
38

18
70
90

5
0.
02

34
ra
nd

om
25
(1
)

2
12

0.
1

90
12

T
L

15
12
89
25

12
T
L

11
84
35

12
0.
97

60
5

12
0.
29

71
2

ra
nd

om
25
(1
)

3
15

0.
07

10
7

15
T
L

12
99
62
65

15
T
L

11
56
99

15
0.
54

62
15

0.
57

12
99

ra
nd

om
25
(2
)

1
7

39
.8
2

12
21
32

7
T
L

12
72
20
00

7
86
9.
97

13
29
12

7
T
L

10
16
50
0

7
0.
01

23
ra
nd

om
25
(2
)

2
12

0.
01

0
12

T
L

15
17
53
86

12
T
L

14
48
10

12
0.
37

6
12

0.
25

54
1

ra
nd

om
25
(2
)

3
15

0.
41

25
6

15
T
L

17
95
99
36

15
T
L

10
96
48

15
0.
9

68
7

15
0.
8

12
13

ra
nd

om
25
(3
)

1
1

0.
02

0
1

0.
11

11
9

1
0.
24

0
1

0.
02

0
1

0.
02

2
ra
nd

om
25
(3
)

2
2

0.
07

0
2

0.
19

99
2

2
0.
28

0
2

T
L

57
24
85

2
0.
07

84
ra
nd

om
25
(3
)

3
7

35
2.
36

11
24
30

7
T
L

11
25
78
25

8
T
L

18
47
17

8
T
L

45
05
20

7
0.
42

97
0

ra
nd

om
25
(4
)

1
2

0.
02

0
2

18
.5
8

13
64
34

2
18
.8
3

64
46

2
T
L

66
28
35

2
0.
02

22
ra
nd

om
25
(4
)

2
4

T
L

52
00
32

4
21
7.
15

17
76
66
3

4
46
8

83
36
1

4
T
L

55
43
00

4
0.
03

94
ra
nd

om
25
(4
)

3
7

T
L

48
21
02

7
T
L

10
13
25
37

7
T
L

11
94
73

7
T
L

29
71
00

7
2.
42

40
09

ra
nd

om
30
(1
)

1
3

54
7.
46

71
69
69

3
14
.7
2

10
23
93

3
93
.0
8

10
14
6

3
T
L

49
40
50

3
0.
02

10
ra
nd

om
30
(1
)

2
8

31
6.
29

31
98
04

8
T
L

93
29
23
4

9
T
L

93
65
3

9
T
L

46
85
00

8
0.
03

10
1

ra
nd

om
30
(1
)

3
12

0.
33

30
3

13
T
L

94
32
41
6

13
T
L

10
36
57

12
22
.3
7

12
97
5

8
21
.5
2

15
32
7

ra
nd

om
30
(2
)

1
4

T
L

82
38
00

4
38
.5
6

24
30
33

4
12
2.
76

15
37
4

4
T
L

35
10
00

4
0.
01

5
ra
nd

om
30
(2
)

2
8

T
L

81
10
19

8
T
L

91
95
73
3

8
84
1.
2

58
98
9

9
T
L

27
17
19

8
0.
03

54
ra
nd

om
30
(2
)

3
12

11
.9
3

98
70

13
T
L

87
07
32
7

13
T
L

11
53
41

13
T
L

22
38
00

12
1.
83

26
26

ra
nd

om
30
(3
)

1
1

0.
02

0
1

0.
26

10
24

1
0.
43

0
1

0.
03

0
1

0.
02

2
ra
nd

om
30
(3
)

2
2

0.
07

0
2

0.
31

11
41

2
0.
54

0
2

T
L

27
92
41

2
0.
09

13
1

ra
nd

om
30
(3
)

3
4

T
L

37
05
72

4
98
3.
9

42
39
70
4

4
T
L

10
15
73

4
T
L

50
30
00

4
0.
65

16
10

ra
nd

om
30
(4
)

1
1

0.
03

0
1

0.
17

13
5

1
0.
44

0
1

0.
02

0
1

0.
02

2
ra
nd

om
30
(4
)

2
3

T
L

46
39
18

3
24
0.
62

10
87
65
1

3
23
8.
88

55
48
8

3
T
L

27
35
30

3
0.
14

33
5

ra
nd

om
30
(4
)

3
5

T
L

35
92
73

5
T
L

46
86
82
0

5
T
L

90
60
5

6
T
L

32
13
88

5
0.
39

10
32

ra
nd

om
35
(1
)

1
3

T
L

60
73
87

3
T
L

26
92
07
3

3
T
L

49
73
7

3
T
L

18
65
38

3
0.
04

57
ra
nd

om
35
(1
)

2
6

T
L

34
79
79

6
T
L

36
97
43
9

6
T
L

63
70
3

6
T
L

38
01
86

6
0.
28

70
3

ra
nd

om
35
(1
)

3
8

T
L

28
98
70

8
T
L

42
29
14
4

8
T
L

54
67
8

8
T
L

18
90
49

12
2.
4

35
25

ra
nd

om
35
(2
)

1
3

T
L

63
29
66

3
32
9.
29

90
85
67

3
75
3.
79

35
13
1

3
T
L

18
46
08

3
0.
02

38
ra
nd

om
35
(2
)

2
6

T
L

44
43
00

6
T
L

38
80
12
4

6
T
L

34
67
4

6
T
L

33
74
94

6
0.
19

46
5

ra
nd

om
35
(2
)

3
10

T
L

19
79
00

10
T
L

42
93
14
8

10
T
L

51
06
7

10
T
L

17
27
00

9
11
.1
8

98
65

ra
nd

om
35
(3
)

1
1

0.
02

0
1

0.
33

22
2

1
0.
87

0
1

0.
03

0
1

0.
02

2
ra
nd

om
35
(3
)

2
3

T
L

25
90
00

3
89
0.
73

27
57
41
5

3
44
5.
38

89
49
3

3
T
L

91
98
9

3
0.
3

63
9

ra
nd

om
35
(3
)

3
5

T
L

18
32
00

5
T
L

27
84
22
1

5
T
L

60
67
8

5
T
L

19
77
00

5
8.
97

99
30

ra
nd

om
35
(4
)

1
1

0.
03

0
1

0.
33

98
1

0.
87

0
1

0.
03

0
1

0.
02

2
ra
nd

om
35
(4
)

2
2

0.
19

0
2

0.
49

11
37

2
1.
1

0
2

T
L

94
54
6

2
0.
21

26
6

ra
nd

om
35
(4
)

3
3

T
L

19
06
50

3
0.
54

11
36

3
1.
07

0
3

T
L

23
70
60

3
0.
75

15
96

Table B.1. Experiments with our Random set of instances.

28 JÉRÉMY OMER & ANTONIO MUCHERINO

cc
g

cp
ve

rt
ex

ra
nk

w
it

ne
ss

B
B

na
m

e
U
−
L

ob
j

tim
e

#
bb

-n
od

es
ob

j
tim

e
#
bb

-n
od

es
ob

j
tim

e
#
bb

-n
od

es
ob

j
tim

e
#
bb

-n
od

es
ob

j
tim

e
#
bb

-n
od

es
sy
nt
he

tic
25
(1
)

1
2

0.
01
0

0
2

1.
60
0

18
93
2

2
22
.2
00

51
56

2
0.
52
0

67
8

2
0.
01
0

13
sy
nt
he

tic
25
(1
)

2
11

0.
13
0

61
11

T
L

11
29
43
19

11
T
L

19
61
78

11
1.
58
0

70
2

11
0.
24
0

55
8

sy
nt
he

tic
25
(1
)

3
15

0.
18
0

14
15

T
L

13
13
74
82

15
T
L

13
59
58

15
0.
57
0

38
15

1.
23
0

23
27

sy
nt
he

tic
25
(2
)

1
2

0.
01
0

0
2

1.
96
0

19
60
1

2
30
.6
90

81
33

2
0.
99
0

11
02

2
0.
02
0

13
sy
nt
he

tic
25
(2
)

2
11

0.
10
0

28
11

T
L

13
84
46
11

11
T
L

16
65
52

11
0.
57
0

34
11

0.
25
0

59
2

sy
nt
he

tic
25
(2
)

3
15

0.
26
0

12
15

T
L

99
76
12
2

15
T
L

12
89
96

15
0.
36
0

34
15

2.
59
0

37
22

sy
nt
he

tic
25
(3
)

1
2

0.
02
0

0
2

4.
82
0

70
28
3

2
14
5.
79
0

75
20
6

2
0.
21
0

14
2

0.
01
0

4
sy
nt
he

tic
25
(3
)

2
12

0.
09
0

26
12

T
L

12
54
82
77

12
T
L

21
02
83

12
0.
79
0

34
12

0.
29
0

59
8

sy
nt
he

tic
25
(3
)

3
15

0.
55
0

66
15

T
L

11
88
42
24

16
T
L

12
41
26

15
0.
87
0

72
5

15
1.
37
0

21
26

sy
nt
he

tic
25
(4
)

1
2

0.
01
0

0
2

15
.7
60

18
91
41

2
18
7.
10
0

64
07
5

2
0.
49
0

24
4

2
0.
01
0

5
sy
nt
he

tic
25
(4
)

2
12

25
.1
60

41
92
2

12
T
L

11
94
62
87

12
T
L

21
61
27

12
98
.8
40

84
08
6

12
0.
36
0

75
2

sy
nt
he

tic
25
(4
)

3
15

0.
58
0

11
15

T
L

12
90
16
45

15
T
L

11
66
98

15
0.
52
0

50
15

2.
21
0

29
99

sy
nt
he

tic
30
(1
)

1
2

0.
02
0

0
2

4.
43
0

25
37
1

2
60
.8
00

92
01

2
1.
64
0

13
72

2
0.
03
0

17
sy
nt
he

tic
30
(1
)

2
14

0.
13
0

61
14

T
L

95
98
87
4

14
T
L

81
62
8

14
1.
92
0

98
0

14
0.
81
0

14
64

sy
nt
he

tic
30
(1
)

3
18

2.
49
0

27
80

19
T
L

79
78
90
9

19
T
L

15
30
96

18
3.
66
0

23
67

18
0.
84
0

16
17

sy
nt
he

tic
30
(2
)

1
2

0.
02
0

0
2

5.
47
0

29
04
1

2
80
.6
20

84
70

2
19
.1
40

19
83
9

2
0.
01
0

17
sy
nt
he

tic
30
(2
)

2
13

0.
13
0

74
13

T
L

84
08
22
5

14
T
L

80
39
5

13
3.
94
0

40
80

13
0.
56
0

10
62

sy
nt
he

tic
30
(2
)

3
18

0.
54
0

79
5

18
T
L

75
41
63
8

19
T
L

13
72
81

18
5.
11
0

33
60

18
4.
51
0

57
25

sy
nt
he

tic
30
(3
)

1
3

0.
02
0

0
3

T
L

83
50
49
6

3
T
L

77
85
5

3
0.
95
0

87
9

3
0.
01
0

17
sy
nt
he

tic
30
(3
)

2
15

5.
15
0

79
05

15
T
L

80
91
10
0

15
T
L

11
29
53

15
13
0.
76
0

89
67
4

15
0.
41
0

87
8

sy
nt
he

tic
30
(3
)

3
19

0.
10
0

13
19

T
L

92
51
09
5

19
T
L

15
96
31

19
1.
97
0

10
90

19
1.
09
0

21
27

sy
nt
he

tic
30
(4
)

1
3

0.
02
0

0
3

T
L

93
31
13
9

3
T
L

95
55
7

3
7.
86
0

83
10

3
0.
02
0

17
sy
nt
he

tic
30
(4
)

2
14

7.
86
0

10
56
5

15
T
L

10
37
94
89

15
T
L

12
88
04

14
44
.7
50

31
15
8

14
0.
20
0

47
4

sy
nt
he

tic
30
(4
)

3
18

0.
14
0

13
2

18
T
L

75
15
36
7

19
T
L

13
47
99

18
1.
33
0

51
0

18
1.
55
0

28
23

sy
nt
he

tic
35
(1
)

1
4

0.
02
0

0
4

T
L

64
41
06
8

4
T
L

65
11
5

4
13
.2
00

13
76
1

4
0.
02
0

11
sy
nt
he

tic
35
(1
)

2
16

0.
51
0

46
6

17
T
L

62
56
28
8

18
T
L

86
97
3

16
2.
30
0

11
29

16
1.
74
0

18
63

sy
nt
he

tic
35
(1
)

3
22

0.
32
0

31
22

T
L

56
20
01
6

22
T
L

85
58
1

22
1.
35
0

88
22

14
.3
90

11
74
6

sy
nt
he

tic
35
(2
)

1
4

0.
03
0

0
4

T
L

68
12
93
4

4
T
L

76
01
6

4
11
7.
76
0

96
80
1

4
0.
03
0

11
sy
nt
he

tic
35
(2
)

2
15

0.
57
0

46
4

16
T
L

68
85
99
8

16
T
L

46
06
9

15
2.
67
0

11
19

15
2.
41
0

25
90

sy
nt
he

tic
35
(2
)

3
21

1.
44
0

16
40

22
T
L

63
40
79
1

21
T
L

81
60
3

21
16
.2
80

10
23
0

21
14
.7
90

12
47
5

sy
nt
he

tic
35
(3
)

1
4

0.
02
0

0
4

T
L

72
83
27
8

4
T
L

62
92
5

4
5.
46
0

52
13

4
0.
02
0

11
sy
nt
he

tic
35
(3
)

2
17

0.
27
0

45
17

T
L

73
68
92
9

17
T
L

77
02
6

17
1.
77
0

14
8

17
6.
78
0

47
25

sy
nt
he

tic
35
(3
)

3
22

1.
62
0

18
26

23
T
L

58
31
53
3

23
T
L

88
92
0

22
2.
78
0

18
90

22
8.
54
0

80
26

sy
nt
he

tic
35
(4
)

1
4

0.
02
0

0
4

T
L

63
82
28
0

4
T
L

66
99
6

4
88
.7
10

82
67
6

4
0.
02
0

11
sy
nt
he

tic
35
(4
)

2
16

0.
20
0

38
16

T
L

69
39
86
0

16
T
L

32
67
8

16
1.
29
0

92
16

6.
75
0

47
37

sy
nt
he

tic
35
(4
)

3
21

23
.0
00

16
40
2

22
T
L

60
56
36
1

23
T
L

63
48
0

21
58
.0
20

16
78
5

21
5.
19
0

57
03

Table B.2. Experiments with the instances in the Synthetic set.

REVORDER: THEORY, APPLICATIONS, AND SOLUTION METHODS 29

cc
g

cp
ve

rt
ex

ra
nk

w
it

ne
ss

B
B

na
m

e
U
−
L

ob
j

tim
e

#
bb

-n
od

es
ob

j
tim

e
#
bb

-n
od

es
ob

j
tim

e
#
bb

-n
od

es
ob

j
tim

e
#
bb

-n
od

es
ob

j
tim

e
#
bb

-n
od

es
1m

40
(1
)

1
30

6.
62
0

46
14

30
T
L

11
12
38
2

30
T
L

50
0

30
61
3.
74
0

31
56
59

30
0.
49
0

45
6

1m
40
(1
)

2
46

T
L

36
35
89

47
T
L

12
20
05
2

47
T
L

50
7

47
T
L

39
56
23

46
4.
85
0

28
50

1m
40
(1
)

3
50

54
9.
34
0

16
77
58

51
T
L

11
74
24
2

53
T
L

38
1

51
T
L

22
40
00

50
3.
68
0

20
03

1m
40
(2
)

1
17

9.
04
0

48
12

17
T
L

96
74
96

17
T
L

55
6

17
47
4.
02
0

17
86
21

17
0.
38
0

32
2

1m
40
(2
)

2
38

T
L

30
90
54

38
T
L

97
73
20

39
T
L

48
0

38
T
L

43
72
00

38
24
.1
10

10
54
0

1m
40
(2
)

3
45

T
L

85
33
6

47
T
L

10
09
01
9

47
T
L

46
2

46
T
L

32
40
00

45
41
.5
80

18
74
4

1m
40
(3
)

1
1

0.
03
0

0
1

3.
31
0

12
70

1
2.
70
0

0
1

0.
05
0

0
1

0.
03
0

2
1m

40
(3
)

2
27

T
L

11
53
57

27
T
L

92
69
63

27
T
L

97
7

27
T
L

25
53
00

26
7.
34
0

46
72

1m
40
(3
)

3
37

T
L

89
70
0

38
T
L

92
18
94

38
T
L

13
0

38
T
L

18
77
00

37
70
.2
80

25
52
7

1b
pm

(1
)

1
25

15
5.
53
0

91
37
3

25
T
L

11
95
79
8

25
T
L

65
8

25
T
L

38
40
96

25
0.
20
0

21
5

1b
pm

(1
)

2
41

15
2.
03
0

10
76
00

42
T
L

12
61
31
4

42
T
L

49
6

41
T
L

44
65
00

41
7.
79
0

34
50

1b
pm

(1
)

3
47

T
L

32
00
03

48
T
L

13
96
37
5

49
T
L

63
5

47
T
L

28
48
32

47
23
.8
00

86
91

1b
pm

(2
)

1
20

55
.6
40

30
02
9

20
T
L

11
42
02
8

20
T
L

78
9

20
T
L

38
38
00

20
0.
33
0

28
5

1b
pm

(2
)

2
37

16
1.
94
0

41
91
3

39
T
L

11
71
69
5

39
T
L

52
4

39
T
L

35
13
00

37
15
.6
80

89
51

1b
pm

(2
)

3
45

T
L

21
57
72

45
T
L

11
38
51
1

46
T
L

48
6

46
T
L

25
10
00

45
19
9.
09
0

43
89
9

1b
pm

(3
)

1
1

0.
03
0

0
1

4.
10
0

13
86

1
2.
72
0

0
1

0.
06
0

0
1

0.
03
0

2
1b

pm
(3
)

2
26

T
L

97
84
0

27
T
L

87
16
17

27
T
L

40
3

26
T
L

21
82
42

26
4.
82
0

29
19

1b
pm

(3
)

3
37

T
L

68
40
0

37
T
L

10
17
42
8

38
T
L

51
6

37
T
L

22
72
00

37
10
0.
51
0

33
64
5

1n
4w

(1
)

1
13

11
.7
60

73
18

13
T
L

86
02
56

13
T
L

10
05

13
T
L

37
00
28

13
0.
24
0

19
8

1n
4w

(1
)

2
34

3.
65
0

17
47

34
T
L

97
96
88

35
T
L

51
1

34
39
.4
90

16
12
6

34
4.
24
0

37
20

1n
4w

(1
)

3
45

T
L

11
18
12

46
T
L

87
61
61

46
T
L

40
5

45
T
L

38
13
00

45
4.
50
0

44
18

1n
4w

(2
)

1
13

37
.1
30

19
01
3

13
T
L

78
61
49

13
T
L

10
03

13
T
L

20
38
57

13
0.
25
0

19
8

1n
4w

(2
)

2
34

6.
22
0

24
35

34
T
L

94
82
14

35
T
L

51
6

34
3.
26
0

48
2

34
3.
75
0

31
57

1n
4w

(2
)

3
45

T
L

10
59
02

46
T
L

11
61
69
0

46
T
L

51
3

45
T
L

29
68
00

45
4.
51
0

43
13

1n
4w

(3
)

1
1

0.
03
0

0
1

7.
77
0

20
27

1
2.
75
0

0
1

0.
06
0

0
1

0.
02
0

2
1n

4w
(3
)

2
25

T
L

12
67
34

26
T
L

87
12
93

26
T
L

71
4

25
21
8.
23
0

68
54
2

25
2.
67
0

22
06

1n
4w

(3
)

3
37

T
L

12
86
91

37
T
L

83
32
70

37
T
L

48
6

37
T
L

20
09
94

37
10
.6
30

75
54

1m
qq

(1
)

1
30

22
.8
80

30
30
6

30
T
L

88
02
03

30
T
L

60
1

30
78
9.
11
0

51
99
53

30
0.
63
0

60
4

1m
qq

(1
)

2
45

T
L

41
21
04

45
T
L

94
67
84

45
T
L

50
5

45
T
L

47
72
28

45
5.
02
0

47
41

1m
qq

(1
)

3
50

T
L

25
58
52

52
T
L

11
24
13
5

53
T
L

13
5

50
T
L

24
86
59

50
3.
67
0

30
49

1m
qq

(2
)

1
18

10
.2
30

70
52

18
T
L

99
38
22

18
T
L

15
73

18
T
L

33
03
75

18
0.
23
0

20
5

1m
qq

(2
)

2
38

51
0.
64
0

27
28
31

39
T
L

95
97
19

40
T
L

14
1

38
T
L

34
41
00

38
4.
18
0

35
83

1m
qq

(2
)

3
47

T
L

11
60
55

48
T
L

91
39
17

48
T
L

51
8

47
T
L

26
99
00

46
9.
18
0

79
85

1m
qq

(3
)

1
2

0.
03
0

0
2

T
L

85
92
83

2
T
L

64
44

2
T
L

28
89
34

2
0.
03
0

3
1m

qq
(3
)

2
26

T
L

12
03
42

27
T
L

85
07
47

27
T
L

50
5

26
T
L

22
55
00

26
3.
09
0

21
58

1m
qq

(3
)

3
39

T
L

85
63
5

39
T
L

81
78
82

39
T
L

80
2

39
T
L

16
26
89

39
9.
43
0

60
71

Table B.3. Experiments with the instances in the Protein set.

30 JÉRÉMY OMER & ANTONIO MUCHERINO

cc
g

cp
ve

rt
ex

ra
nk

w
it

ne
ss

B
B

na
m

e
U
−
L

ob
j

tim
e

#
bb

-n
od

es
ob

j
tim

e
#
bb

-n
od

es
ob

j
tim

e
#
bb

-n
od

es
ob

j
tim

e
#
bb

-n
od

es
ob

j
tim

e
#
bb

-n
od

es
se
ns
or
01

1
11

17
.9
60

30
01
9

11
T
L

15
95
66
0

11
T
L

98
5

11
T
L

23
39
00

11
0.
05
0

9
se
ns
or
01

2
23

T
L

88
47
21

23
T
L

16
80
32
6

23
T
L

51
4

23
T
L

24
13
57

23
2.
08
0

51
5

se
ns
or
01

3
31

T
L

41
39
00

31
T
L

16
43
26
0

31
T
L

71
2

31
T
L

0
31

9.
99
0

41
62

se
ns
or
02

1
3

10
0.
21
0

10
20
84

3
T
L

13
74
31
5

3
T
L

64
9

3
T
L

13
67
38

3
0.
07
0

10
se
ns
or
02

2
7

T
L

30
29
00

7
T
L

14
93
38
3

7
T
L

14
27

7
T
L

22
88
00

7
4.
44
0

78
1

se
ns
or
02

3
14

T
L

20
82
00

14
T
L

92
96
04

14
T
L

95
4

14
T
L

29
86
58

14
31
.2
70

76
06

se
ns
or
03

1
2

0.
52
0

0
2

T
L

16
85
17
0

2
T
L

31
15

2
T
L

66
56
0

2
0.
47
0

2
se
ns
or
03

2
5

T
L

12
72
10

5
T
L

14
05
32
7

5
T
L

18
02

5
T
L

67
00
0

5
2.
19
0

13
45

se
ns
or
03

3
9

T
L

15
39
21

9
T
L

13
77
44
0

9
T
L

14
2

9
T
L

13
11
00

9
23
.3
10

17
69
8

se
ns
or
04

1
2

0.
12
0

0
2

T
L

16
74
84
8

2
T
L

10
89
6

2
T
L

10
30
78

2
0.
10
0

3
se
ns
or
04

2
7

T
L

23
36
43

7
T
L

13
02
85
6

7
T
L

50
6

7
T
L

0
7

7.
52
0

15
39

se
ns
or
04

3
13

T
L

26
15
00

13
T
L

11
97
78
3

13
T
L

10
81

13
T
L

24
39
00

13
46
7.
76
0

25
59
3

se
ns
or
05

1
2

0.
50
0

0
2

T
L

18
01
30
9

2
T
L

25
91
1

2
T
L

50
33
6

2
0.
49
0

3
se
ns
or
05

2
4

T
L

12
33
05

4
T
L

10
75
12
6

4
T
L

10
57

4
T
L

41
30
0

4
28
.7
20

32
69

se
ns
or
05

3
6

T
L

54
60
0

6
T
L

13
44
42
8

6
T
L

22
36

6
T
L

35
00
0

6
20
0.
94
0

11
33
4

se
ns
or
06

1
2

0.
37
0

0
2

T
L

15
06
98
2

2
T
L

46
17

2
T
L

71
72
5

2
0.
34
0

4
se
ns
or
06

2
5

T
L

18
35
00

5
T
L

13
88
48
0

5
T
L

10
20

5
T
L

51
80
0

5
13
.6
50

26
31

se
ns
or
06

3
9

T
L

10
74
00

9
T
L

14
70
62
9

9
T
L

15
68

9
T
L

0
9

12
4.
99
0

14
81
6

se
ns
or
07

1
2

0.
05
0

0
2

T
L

14
39
46
6

2
T
L

28
27
7

2
T
L

26
22
00

2
0.
04
0

3
se
ns
or
07

2
7

T
L

42
71
00

7
T
L

13
45
06
8

7
T
L

59
9

7
T
L

35
55
00

7
2.
79
0

71
2

se
ns
or
07

3
15

T
L

18
21
00

15
T
L

99
00
29

15
T
L

78
5

15
T
L

0
14

16
.7
80

56
74

se
ns
or
08

1
5

T
L

61
32
00

5
T
L

13
58
34
3

5
T
L

20
91

5
T
L

14
20
00

5
0.
07
0

7
se
ns
or
08

2
11

T
L

25
80
00

11
T
L

14
17
95
5

12
T
L

54
9

12
T
L

19
53
00

11
4.
95
0

93
1

se
ns
or
08

3
16

T
L

20
53
00

16
T
L

10
99
67
8

16
T
L

52
3

16
T
L

0
16

29
.8
50

77
10

se
ns
or
09

1
2

0.
14
0

0
2

T
L

18
67
94
9

2
T
L

40
55
3

2
T
L

11
23
77

2
0.
11
0

4
se
ns
or
09

2
5

T
L

15
73
00

5
T
L

13
19
48
4

5
T
L

23
64

5
T
L

18
22
00

5
6.
97
0

80
0

se
ns
or
09

3
9

T
L

12
56
00

9
T
L

12
28
63
4

9
T
L

14
05

9
T
L

21
88
00

9
24
.8
00

45
89

se
ns
or
10

1
5

T
L

63
98
69

5
T
L

15
64
50
8

5
T
L

44
27

5
T
L

25
84
00

5
0.
09
0

24
se
ns
or
10

2
14

T
L

39
74
00

14
T
L

11
72
82
8

14
T
L

67
3

14
T
L

0
14

5.
58
0

16
37

se
ns
or
10

3
22

T
L

23
90
98

22
T
L

14
44
72
4

22
T
L

56
2

22
T
L

14
08
00

21
19
8.
97
0

31
35
7

se
ns
or
11

1
2

0.
10
0

0
2

T
L

16
13
31
0

2
89
.5
00

14
3

2
T
L

69
84
7

2
0.
09
0

2
se
ns
or
11

2
3

T
L

16
48
72

3
T
L

12
63
19
1

3
66
1.
92
0

19
43

3
T
L

0
3

1.
13
0

90
9

se
ns
or
11

3
5

T
L

83
00
0

5
T
L

12
85
51
1

5
T
L

17
79

5
T
L

19
36
05

5
1.
31
0

11
14

se
ns
or
12

1
2

2.
22
0

0
2

T
L

19
83
54
1

2
57
.2
40

95
2

T
L

38
83
0

2
2.
12
0

2
se
ns
or
12

2
3

T
L

81
50
0

3
T
L

14
72
74
6

3
38
1.
67
0

51
1

3
T
L

29
20
0

3
5.
59
0

23
16

se
ns
or
12

3
4

T
L

44
30
0

4
T
L

15
06
08
9

4
94
4.
53
0

28
48

4
T
L

21
65
7

4
67
.0
90

38
95
7

Table B.4. Experiments with the instances in the SensorNetwork set.

REVORDER: THEORY, APPLICATIONS, AND SOLUTION METHODS 31

cc
g

cp
ve

rt
ex

ra
nk

w
it

ne
ss

B
B

na
m

e
U
−
L

ob
j

tim
e

#
bb

-n
od

es
ob

j
tim

e
#
bb

-n
od

es
ob

j
tim

e
#
bb

-n
od

es
ob

j
tim

e
#
bb

-n
od

es
ob

j
tim

e
#
bb

-n
od

es
in
te
rd
ic
tio

n0
10

1
5

75
.1
00

0
5

T
L

13
54
90
2

5
T
L

10
56

5
T
L

30
45
5

5
74
.5
90

2
in
te
rd
ic
tio

n0
10

2
7

T
L

74
38
7

7
T
L

17
30
14
6

7
T
L

52
5

7
T
L

23
45
1

7
75
.5
60

58
2

in
te
rd
ic
tio

n0
10

3
9

T
L

31
13
5

9
T
L

11
74
35
0

9
T
L

48
8

9
T
L

18
02
5

9
75
.6
20

62
9

in
te
rd
ic
tio

n0
20

1
8

T
L

22
70
76

8
T
L

17
03
56
8

8
81
8.
68
0

23
20

8
T
L

72
28
2

8
0.
06
0

2
in
te
rd
ic
tio

n0
20

2
12

T
L

15
55
10

12
T
L

12
59
15
5

12
T
L

14
36

12
T
L

52
65
0

12
0.
41
0

32
7

in
te
rd
ic
tio

n0
20

3
14

T
L

15
35
67

14
T
L

15
45
54
7

14
T
L

57
17

14
T
L

70
70
3

14
4.
24
0

60
94

in
te
rd
ic
tio

n0
30

1
10

T
L

54
47
61

10
T
L

15
94
28
9

10
T
L

21
57

10
T
L

96
50
0

10
0.
02
0

2
in
te
rd
ic
tio

n0
30

2
18

T
L

32
08
20

18
T
L

14
61
71
0

18
T
L

56
70

18
T
L

12
75
07

17
0.
21
0

20
1

in
te
rd
ic
tio

n0
30

3
23

T
L

27
65
00

23
T
L

14
26
00
6

23
T
L

51
03

23
T
L

20
89
53

23
0.
35
0

38
8

in
te
rd
ic
tio

n0
40

1
7

0.
02
0

0
7

T
L

15
04
17
9

7
T
L

19
85

7
T
L

29
78
09

7
0.
02
0

2
in
te
rd
ic
tio

n0
40

2
19

T
L

39
24
43

20
T
L

13
69
07
5

20
T
L

29
59

19
T
L

72
66
58

19
1.
57
0

14
26

in
te
rd
ic
tio

n0
40

3
30

T
L

40
91
00

32
T
L

12
56
43
6

33
T
L

46
69

30
T
L

25
53
00

30
35
.5
30

22
38
2

in
te
rd
ic
tio

n0
45

1
21

T
L

13
56
23
7

21
T
L

15
16
11
4

21
T
L

32
75

21
T
L

40
11
48

21
0.
01
0

5
in
te
rd
ic
tio

n0
45

2
30

12
9.
97
0

10
10
67

30
T
L

11
35
95
8

30
T
L

58
48

30
T
L

79
76
79

30
0.
11
0

16
9

in
te
rd
ic
tio

n0
45

3
38

1.
79
0

16
79

40
T
L

12
07
09
8

40
T
L

62
39

38
1.
92
0

46
2

38
67
.4
10

46
91
4

in
te
rd
ic
tio

n0
50

1
18

30
.3
00

61
74
8

18
T
L

15
29
93
7

18
T
L

35
63

18
T
L

44
33
00

18
0.
01
0

2
in
te
rd
ic
tio

n0
50

2
33

0.
63
0

80
2

34
T
L

13
49
53
9

34
T
L

46
25

33
0.
95
0

59
8

33
53
6.
03
0

88
32
6

in
te
rd
ic
tio

n0
50

3
42

0.
39
0

58
43

T
L

11
25
93
1

43
T
L

57
85

42
0.
91
0

57
0

42
T
L

13
10
35

in
te
rd
ic
tio

n0
55

1
24

30
.2
70

71
34
7

24
T
L

14
61
81
1

24
T
L

60
08

24
T
L

54
89
60

24
0.
01
0

2
in
te
rd
ic
tio

n0
55

2
36

6.
36
0

72
67

38
T
L

11
79
96
2

36
T
L

11
61
9

36
28
1.
91
0

17
58
61

36
0.
68
0

11
09

in
te
rd
ic
tio

n0
55

3
43

1.
66
0

12
56

46
T
L

12
17
96
3

46
T
L

57
83

43
2.
91
0

30
38

43
0.
38
0

72
0

in
te
rd
ic
tio

n0
60

1
25

8.
71
0

18
77
2

25
T
L

14
61
03
3

25
T
L

30
89

25
T
L

66
70
66

25
0.
07
0

55
in
te
rd
ic
tio

n0
60

2
38

0.
35
0

22
0

38
T
L

11
52
28
8

38
T
L

69
38

38
1.
32
0

19
9

38
9.
04
0

94
33

in
te
rd
ic
tio

n0
60

3
45

2.
69
0

25
08

48
T
L

10
52
86
7

47
T
L

52
20

45
6.
33
0

69
35

45
0.
55
0

97
6

in
te
rd
ic
tio

n0
65

1
26

0.
62
0

12
58

26
T
L

15
27
52
2

26
T
L

30
65

26
4.
50
0

64
08

26
1.
13
0

81
0

in
te
rd
ic
tio

n0
65

2
42

0.
30
0

20
0

43
T
L

12
04
49
4

43
T
L

35
65

42
1.
05
0

70
2

42
82
3.
27
0

11
20
91

in
te
rd
ic
tio

n0
65

3
48

0.
51
0

45
1

50
T
L

11
86
10
5

50
T
L

12
00
3

48
0.
77
0

20
6

48
4.
86
0

65
73

in
te
rd
ic
tio

n0
70

1
35

0.
77
0

25
81

35
T
L

14
59
21
0

35
T
L

43
58

35
7.
81
0

17
48
6

35
0.
11
0

16
2

in
te
rd
ic
tio

n0
70

2
46

0.
30
0

28
7

48
T
L

11
53
09
2

47
T
L

19
81
5

46
0.
64
0

20
0

46
2.
94
0

49
48

in
te
rd
ic
tio

n0
70

3
50

0.
18
0

99
51

T
L

10
64
51
8

51
T
L

53
86

50
0.
35
0

0
50

0.
86
0

18
07

in
te
rd
ic
tio

n0
80

1
51

0.
08
0

27
51

T
L

13
22
00
6

51
T
L

13
18
7

51
0.
17
0

20
51

0.
06
0

24
0

in
te
rd
ic
tio

n0
80

2
55

0.
05
0

0
55

T
L

12
28
69
4

55
T
L

46
93

55
0.
19
0

0
55

0.
32
0

16
6

in
te
rd
ic
tio

n0
80

3
57

0.
09
0

12
57

T
L

84
38
13

57
T
L

35
28

57
0.
15
0

0
57

0.
21
0

33
in
te
rd
ic
tio

n0
90

1
52

0.
07
0

25
52

T
L

14
92
57
4

52
T
L

10
19
1

52
0.
21
0

4
52

0.
08
0

12
3

in
te
rd
ic
tio

n0
90

2
56

0.
09
0

24
56

T
L

11
28
48
9

56
T
L

28
02

56
0.
25
0

4
56

0.
11
0

93
in
te
rd
ic
tio

n0
90

3
57

0.
07
0

0
58

T
L

11
27
32
5

58
T
L

90
57

57
0.
13
0

0
57

0.
18
0

22

Table B.5. Experiments with the instances in the Interdiction set.

32 JÉRÉMY OMER & ANTONIO MUCHERINO

References
[1] P. Biswas, T. Lian, T. Wang, and Y. Ye. Semidefinite programming based algorithms for

sensor network localization. ACM Transactions in Sensor Networks, 2:188–220, 2006.
[2] F.R.K. Chung and L. Lu. Complex Graphs and Networks, volume 107. American Mathemat-

ical Society and CBMS Regional Conference Series in Mathematics, 2006.
[3] Y. Ding, N. Krislock, J. Qian, and H. Wolkowicz. Sensor network localization, euclidean

distance matrix completions, and graph realization. Optimization and Engineering, 11:45–
66, 2010.

[4] E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance profiles.
Mathematical Programming, 91(2):201–213, 2002.

[5] Douglas S. Gonçalves and Antonio Mucherino. Optimal partial discretization orders for dis-
cretizable distance geometry. International Transactions in Operational Research, 23(5):947–
967, 2016, https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/
itor.12249.

[6] Mehdi Hemmati, J. Cole Smith, and My T. Thai. A cutting-plane algorithm for solving
a weighted influence interdiction problem. Computational Optimization and Applications,
57(1):71–104, 2014.

[7] M.J. Keeling and K.T.D Eames. Networks and epidemic models. Journal of the Royal Society
Interface, 2:295–307, 2005.

[8] C. Lavor, L. Liberti, N. Maculan, and A. Mucherino. The discretizable molecular dis-
tance geometry problem. Computational Optimization and Applications, 52(1):115–146, 2012,
https://arxiv.org/abs/0608012.

[9] Carlile Lavor, Jon Lee, Audrey Lee-St. John, Leo Liberti, Antonio Mucherino, and Maxim
Sviridenko. Discretization orders for distance geometry problems. Optimization Letters,
6(4):783–796, 2012.

[10] L. Liberti, C. Lavor, N. Maculan, and A. Mucherino. Euclidean distance geometry and ap-
plications. SIAM Review, 56:3–69, 2014.

[11] L. Liberti, B. Masson, J. Lee, C. Lavor, and A. Mucherino. On the number of realizations
of certain Henneberg graphs arising in protein conformation. Discrete Applied Mathematics,
165:213–232, 2014.

[12] Leo Liberti, Carlile Lavor, and Nelson Maculan. A branch-and-prune algorithm for the
molecular distance geometry problem. International Transactions in Operational Research,
15(1):1–17, 2008, https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.
1111/j.1475-3995.2007.00622.x.

[13] Moira MacNeil and Merve Bodur. Integer Programming, Constraint Programming, and
Hybrid Decomposition Approaches to Discretizable Distance Geometry Problems. https:
//arxiv.org/abs/1907.12468, Preprint manuscript, 2019.

[14] C. Miller, A. Tucker, and R. Zemlin. Integer programming formulations and the travelling
salesman problems. Journal of the ACM, 7:326—-329, 1960.

[15] A. Mucherino, C. Lavor, and L. Liberti. The discretizable distance geometry problem. Opti-
mization Letters, 6:1671–1686, 2012.

[16] Antonio Mucherino. On the Identification of Discretization Orders for Distance Geometry
with Intervals. In Lecture Notes in Computer Science, pages 231–238. Springer, 2013.

[17] Jérémy Omer and Douglas S. Gonçalves. An integer programming approach for the search of
discretization orders in distance geometry problems. Optimization Letters, 2017.

[18] Jeremy Omer and Tangi Migot. Vertex ordering with optimal number of adjacent predeces-
sors. Discrete Mathematics and Theoretical Computer Science, 22(1):19, 2019.

Univ Rennes, INSA Rennes, CNRS, IRMAR, UMR 6625, F-35000 Rennes, France
E-mail address: jeremy.omer@insa-rennes.fr

IRISA, University of Rennes 1, Rennes, France
E-mail address: antonio.mucherino@irisa.fr

https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/itor.12249
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/itor.12249
https://arxiv.org/abs/0608012
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1475-3995.2007.00622.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1475-3995.2007.00622.x
https://arxiv.org/abs/1907.12468
https://arxiv.org/abs/1907.12468

	Introduction
	Formal definition of the problem and notations
	State of the art and contribution statement

	Applications of revorder and min revorder
	Discretization of distance geometry graphs
	The interdiction problem

	Integer programming formulations
	Cycle-constrained extended formulation
	Low degree clique and cycle cutting planes

	A new enumeration scheme for MIN REVORDER
	Preliminary definitions
	Greedy search for a referenced order
	The enumeration scheme
	Enumeration of partial candidates

	Speeding-up the enumeration algorithm
	Dominance rules
	Breaking symmetries
	Bound pruning
	Preprocessing the initial set

	Computational experiments
	Our instance sets
	Comparing our branch-and-bound against existing approaches
	Assessment of improvements in the branch-and-bound algorithm
	Impact of the size of the graph

	Conclusions
	Existing integer programming and constraint programming formulations
	A rank-based IP formulation: vertexrank
	The witness-based decomposition: witness
	A constraint programming approach: cp

	Details on computational experiments

