
HAL Id: hal-02509487
https://hal.science/hal-02509487

Submitted on 21 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Smartlog - A declarative language for distributed
programming in smart grids

Thi-Thanh-Quynh Nguyen, Vincent Debusschere, Christophe Bobineau,
Quang Huy Giap, Nouredine Hadjsaid

To cite this version:
Thi-Thanh-Quynh Nguyen, Vincent Debusschere, Christophe Bobineau, Quang Huy Giap, Nouredine
Hadjsaid. Smartlog - A declarative language for distributed programming in smart grids. Computers
and Electrical Engineering, 2019, 80, pp.UNSP 106499. �10.1016/j.compeleceng.2019.106499�. �hal-
02509487�

https://hal.science/hal-02509487
https://hal.archives-ouvertes.fr

Smartlog – A declarative language for distributed programming in smart grids

Thi-Thanh-Quynh Nguyena, Vincent Debusscherea,∗, Christophe Bobineaub, Quang Huy Giapc, Nouredine Hadjsaida

aUniv. Grenoble Alpes, CNRS, Grenoble INP1, G2Elab, 38000 Grenoble, France
bUniv. Grenoble Alpes, CNRS, Grenoble INP1, LIG, 38000 Grenoble, France

cDepartment of Electrical Engineering, University of Science and Technology, University of Danang

Abstract

In the control and supervision of smart grids, the objective is to handle any change in the system as fast as possible,

with as few resources as possible. In this context, this paper proposes a new language, called Smartlog, designed

with a declarative approach. This avoids collecting and analyzing data presenting no interest, and thus being less

efficient in bandwidth usage and computational time. Smartlog is designed for operating smart grids defined as abstract

structures of large and scalable distributed databases. From its definition, some major properties of this language, such

as simplicity, incremental capacity, and scalability are highlighted. The language is tested on the application of the

secondary control of an isolated microgrid using a real-time simulator connected to Raspberry Pis. The characteristics

of Smartlog are illustrated thanks to a comparison with an imperative programming implementation of the same

regulation.

Keywords: Smartlog, smart grids, declarative programming, distributed database system, secondary control,

discrete-time control

1. Context

The power-sharing of renewable energy resources and storage devices increases regularly in the traditional power

grid. This trend emphasizes the problem of monitoring and control, as the power system should be operated in the most

reliable, efficient, and flexible way with increasing variability of both energy producers and consumers. Actually, due

to the development of smart devices such as smart meters, micro-computers and the use of available communication

infrastructures (e.g., WiFi [1], 3G, 4G, 5G, power-line communication [2]), the power system could be more closely

controlled and monitored, even up to real-time. The complex interconnection between information, communication

technologies and energy systems represent, even indirectly, a significant part of the definition of smart grids [3].

In that context, metadata (i.e., data providing information about other data) are being gathered with a rapidly

growing rate. Data can come from energy sources, geographic positions, customer information, outages management,

∗Corresponding author
Email addresses: thi-thanh-quynh.nguyen@g2elab.grenoble-inp.fr (Thi-Thanh-Quynh Nguyen),

vincent.debusschere@grenoble-inp.fr (Vincent Debusschere), christophe.bobineau@grenoble-inp.fr (Christophe Bobineau)
1Institute of Engineering Univ. Grenoble Alpes

Preprint submitted to Computers & Electrical Engineering October 28, 2019

demand-response control systems [4], metering infrastructures [5], hierarchical stability control [6], as well as moni-

toring processes, and so on [7]. The quantity of collected data leads to a problem of volume and variety, which is at

the core of the big data trend.

1.1. Smart grids, data production and handling

The shorter the data sampling time is, the more accurate and precise control decisions can be. But the enormous

quantity of data received by servers in a short period of time can cause a problem of velocity in data processing, par-

ticularly when considering heterogeneous and complex systems like smart grids. It is expensive to maintain powerful

servers, without talking about enhancing the bandwidth, while data is growing in size, density and variety.

Besides, data processing is critical. It can take a lot of time to transform data into information and help to make

decisions. When considering a large power system at the scale of a country in Europe, a central server cannot make

use of all data simply due to the nodal limitation in computing power.

To deal with that, current researches focus on applying the concept of distributed algorithms to reduce the volume

of data collected by servers and make better use of the available local computing units [8, 9]. This presents a very

promising perspective for smart grids in the upcoming years [10].

1.2. Existing solutions and limitations

The control and monitoring of smart grids in real-time require handling any variations in the power system im-

mediately. Classic algorithms, in imperative programming, describe steps of solution (“how to do”) rather than the

reaction of the control system (“what to do if”). This can sometimes lead to a loss of information, or the collection

and analysis of a vast quantity of data, where the same action would have needed significantly less computing power

with a more efficient programming language.

To circumvent that problem, this paper proposes a new language, called Smartlog, based on declarative program-

ming. Smartlog supports, by definition, distributed computing in real-time and database management and is being

developed exactly to propose this features, dedicated to smart grids.

There exist several languages based on declarative programming. On the one hand, for example, Datalog is used

as a logic language [11]. It expresses the relation between data in centralized databases. However, the communication

between databases in the heterogeneous system is not properly described. NDlog [12] and Netlog [13], on the other

hand, support communication between local databases, particularly by defining a network protocol, rather than the

distributed computing mechanism. But, for both NDlog and Netlog, data are stored without identifiers. The structure

of command is then still not explicit.

Obviously, data sent to a centralized server could probably be pre-processed at the level of the local unit. If the

smart grid is organized as a distributed database system. Each local database can compute and analyze, by itself, part of

the information to contribute to the main solution. It is a great idea to reduce communications and local computations

to and for centralized servers. Several articles mention distributed databases for smart grids, but usually, they are

2

not making use of the local computing units [14]. Moreover, the abstract structures of local computing units are not

thoroughly illustrated yet, except partially in the standard IEC-61 850 [15], which only defines the data structure of the

substations and their communication protocol. Besides, most of the imperative languages do not support distributed

programming for the distributed data system. To be more efficient, the distributed deployment in imperative language

must rely on distributed algorithms.

In addition, it is to be noted that most of the calculations and communications in distributed programming are

carried out sequentially (thanks to the time step definition) rather than following the actual meaning of data [5]. The

addressed problem is not perspicuous because the algorithm states the order in which operations occur (“how to do”)

and not how to react to information (“what to do”).

Nevertheless, elements in smart grids are almost all eventual. This paradigm leads to computations and commu-

nications redundancies. In that case, an algorithm able to react to a concrete problem is more efficient than some

sequences that are created to manage pre-defined states of a system. Thus, in this context, algorithms supporting

declarative paradigms are more convenient than those supporting imperative ones.

1.3. Problem statement

This paper considers a system of smart devices embedded in a smart grid organized as a distributed database.

In this context, a new language is proposed, considering high-level programming, called Smartlog. Smartlog is a

declarative language which supports distributed programming, developed directly for a distributed database system.

This article expands the descriptions of the language, started in [16]. In particular, the termination of the program

is analyzed, focusing on the mechanism of support for distributed programming as well as on the definition of its con-

vergence which is presented in Section 2. Section 3 proposes a distributed secondary control in an isolated microgrid

as a case study of the Smartlog implementation. A general conception for programming in Smartlog is also provided

in section 4. The specific quantitative evaluation of the Smartlog programming language is presented in Section 6

through results of the case-study which were obtained from the implementation in a real-time simulation platform

presented in Section 5. Finally, Section 7 concludes the paper and discusses future works.

2. Smartlog language

Smart grids involve many heterogeneous smart devices in order to ensure a reliable, flexible, and self-healing

operation of the electrical grid by updating and processing data regularly or even in real-time. We propose to abstract

the whole computing nodes in smart grids as a distributed database system in which Smartlog is in charge of the

manipulation of distributed data. The architecture of each node in such an ad-hoc network is presented below.

2.1. The architecture of a node in smart grids

Each smart device oversees the computation and communication for its node in the smart grid. For reference,

Fig. 1 presents that common architecture.

3

Figure 1: Architecture of each node within the considered structure of smart grid.

There are four main components in this architecture:

The local database: Stores the node’s information such as parameters in the information infrastructure of the smart

grid, set-point values (outputs), control parameters, and measured data which are collected from local sensors

or directly from the grid. This mechanism limits data concentration on a central server as well as accelerates

the time of access to data. Ultimately, this structure creates a smart grid as a system of distributed databases

which is easily scalable [14].

The sensor interface: Is set up to collect data from sensors, storing everything into a local database and transferring

the output values to the regulator in order to control any available active electrical components.

The rule engine: Is the most important part of the considered structure. That engine decides which rules are exe-

cuted, relying on the programs written using Smartlog.

The communication interface: Is in charge of the interaction with other nodes over the communication network.

2.2. Structure of the language

The structure of Smartlog is described in three main parts, as expressed in Listing 1.

4

Listing 1: The structure of a Smartlog program.

Program(NameOfProgram){

Data_type{

//define the data types

}

Initial_data{

//set up initial data

}

Module(data_type 1){

//rules

}

Module(data_type 2){

//rules

}

...

}

2.2.1. The “Data type” block

The data is declared in the form of a structure called the data type that defines the schematic of the data stored

in the database. It contains the name of the data type, its attributes and the data type of the attribute. A key word is

added after the data type of the attribute to indicate the critical attribute in the data type. For example, the instruction

of Listing 2 is used to declare a data type called Neighbor.

Listing 2: Declaration of a “data type” called “Neighbor”.

Data_type{

Neighbor(NodeID:int key, NeighborID:int key, NeighborAddr:string).

}

The declaration of the data type Neighbor in Listing 2 presents four attributes, two of which are critical:

NodeID and NeighborID. They are assigned a key word after their data type.

The data used for distributed control in smart grids are divided into four types: the measured data, the parameters,

the intermediate data, and the output. The measure data are collected by sensors. The parameters can be additional

information in the communication network or constants used in the control process. The intermediate data holds

the auxiliary variables used in the computation process, and the output data holds the results of computation and

represents control variables.

5

2.2.2. The “Initial data” block

Usually, initial parameters and output data are set up in this block. The stored data will not activate any rule in the

Module blocks and thus are not mandatory in Smartlog. For example, the initial data for the data type Neighbor is

proposed in Listing 3.

Listing 3: Declaration of the initial data of the “data type” called “Neighbor”.

Initial_data{

Neighbor(1,2,'192.168.1.102').

}

2.2.3. The “Module” block

Rules. The definition of any command to be executed in each node is declared via rules. Each rule in Smartlog is

defined in the form: “head :- body”.

The body part, B, can comprise one or more terms B = {B1, B2, ..., Bn}. The terms are separated by a comma and

can be a relational atom (data type), conditional expressions, and/or assignments with arithmetic expressions (using

the prefix “:=”). The first term in the body part and the head part, H, must be atoms.

When a rule is activated, the terms are checked one by one from left to right in the body part. If all terms in the

body are validated, the execution of H is launched.

Variables. It is not necessary to declare variables in Smartlog, even if used in rules. The data type of a variable

is defined automatically by considering its position in the data type. The symbol “ ” is used to indicate that one

attribute is ignored in the data type. Variables are used to store values of attributes. They are divided into two types:

variables with assigned values (linked variables) and variables with values not yet assigned (unlinked variables).

All the attributes in the first term B1 of the body are linked variables. The unlinked variables are defined relying

on at least one linked variable in the atom. If the linked variable corresponds to the whole set of key attributes, there is

only one possible value for unlinked variables. Otherwise, all possible values must be checked for unlinked variables.

The head part needs then to be executed with each value assigned to variables. Listing 4 illustrates the definition of

variables in Smartlog.

Listing 4: Exemple of variables definition in Smartlog.

Measure(j,v,i) :- Measure(id,v,i), Neighbor(id,_,j,_).

In Listing 4, all variables of the first term id, v, i are linked variables. The second term is the relational atom

Neighbor, which has two key attributes: NodeID and NeighborID. The variable j holds the value of the NeighborID

attribute, which is an unlinked variable. The execution of the head will generate a quantity that depends on the number

of neighbors of the considered node.

6

Operators. The negation operator is denoted “~” in Smartlog. It is used to check whether it exists or not a value of

the linked variables in the atom, as illustrated in Listing 5.

Listing 5: The “negation” operator in Smartlog.

Measure(id,v,i) :- Measure(id,v,i), ~Neighbor(id,_,_).

The consumption operator is denoted “!” in Smartlog. It is used to delete the atom of the linked variables, as

illustrated in Listing 6. This operator allows managing a possible overload of the local data storage capacities.

Listing 6: The “consumption” operator in Smartlog.

Measure(j,v,i) :- Measure(id,v,i), !Neighbor(id,j,_).

The body part is terminated by a dot or a semi-colon. If it is a dot, the program will exit the current module after

the execution of the rule. Otherwise, the next rules in the current module are performed.

Communication and storage. The head part contains the variables with assigned values in the body part and defines

the execution of the rule(s). The execution can be by default an insertion or an update of the data. Sending data to

another address is denoted by the symbol “^”. Two actions executed simultaneously can be triggered using the symbol

“&”. To establish a communication, the shipping address should be marked with the symbol “@” in front of the address

variable noted j in the example of Listing 7.

Listing 7: Communication and storage in Smartlog.

^Measure(id,v,i) :- Measure(id,v,i), Neighbor(id,_,@j).

To optimize the execution of the language, rules with the same first data type placed in the body are grouped

into a Module. A Smartlog-based program can then present many Modules, each consisting of many rules.

The name of the module is the same name as the data type of the first term B1. If there is any change in this

data type, the inside rules are performed sequentially. The changes in data are eventual. Modules are executed in

parallel, which makes the order of programs undefined. The Smartlog language supports declarative programming to

that purpose.

2.3. Ending a one-round execution of a Smartlog program

A set of variables for the rule R (with its body part B and its head part H) is called Var(R). These variables are

categorized in two types: uninterpreted and arithmetic, which are symbolized by (N,≤) and (R,+,×,≤) respectively

[13]. Considering a set of local data called I, a mapping on I from all variables of a rule R, (Var(R)) to N∪R is noted

ΘI . Mappings on I from a set of the variables in the body part Var(B) and the head part Var(H) are named ϕI and τI

respectively, defined as:

7

ϕI(B) = {ϕI |ϕI ⊂ ΘI ,∀Bi, ϕI(Var(Bi)) = Bi} (1)

τI(H) = {τI |τI ⊂ ΘI ,∀x ∈ Var(H), ϕI(x) = τI(x), ϕI = B} (2)

B =

n⋃
i=1

Bi (3)

The execution of the “consumption” operator of a relational atom !D(d1, d2, ..., dn) deletes a portion of data in-

stances, and modifies the set of local data I. So, after this execution, I is assigned as expressed in (4).

I :=
{
I \ ∆−R(I),∆−R(I) = D(ϕI(d1), ϕI(d2), ..., ϕI(dn))

}
(4)

J is a set of incoming data via the interfaces. The result of the rule R, produced in the set of data (I∪J) is ∆+
R(I∪J),

with:

∆+
R(I ∪ J) = τI∪J(H) (5)

There are two main executions for the head part. In the case of the default execution, the storage operator of the

rule R is denoted Φ
↓

R(I, J) and is expressed in (6).

Φ
↓

R(I, J) = I ∪ J ∪ ∆+
R(I ∪ J) \ ∆−R(I ∪ J) (6)

In the case of the communication execution, the sending operator of the rule R is noted Φ
↑

R(I ∪ J) and defined as:

Φ
↑

R(I ∪ J) = ∆+
R(I ∪ J) (7)

A Smartlog program P can have many rules. With a set of incoming data J, the rules in P are evaluated and some

are executed.

One-round execution. In a computing node α, on a local data set I and an incoming data set J, the one-round execution

of P is given by a sequence of (Iαi ,P
α
i)i=0,1,.... With Iαi and Pαi are the local data set and data to send of node α at step

i, respectively. They are defined as follows:


Iα0 = Φ

↓

P(I, J)

Iαi+1 = Φ
↓

P(Iαi , ∅) for i ≥ 0
and


Pα0 = Φ

↑

P(I ∪ J)

Pαi+1 = Φ
↑

P(Iαi) ∪ Pαi for i ≥ 0
(8)

8

One-round computation. In a computing node α, on I ∪ J, a one-round computation (containing many one-round

executions) of P terminates if all its non-deterministic one-round executions converge to a fixpoint, it means that

(Iαi ,P
α
i)

i→∞
→ (Iα,Pα). Such a limit is called a one-round fixpoint of the program P in the node α.

When a local one-round computation l starts, the node α has a local instance Iα(l), the data receiving Jα(l).

The new local data instance after that lth one-round computation is Iα(l + 1) = limi→∞ Iαi and set of sending data

Pα(l + 1) = (limi→∞ P
α
i). So, in a local database, the termination of the Smartlog program relies on the convergence

of the sequence of fixpoints.

2.4. How Smartlog supports distributed programming

Rules in a Smartlog program are grouped to define all actions of the system as a modification of a specific

data type. The measured data are collected and stored in a local database. Intermediate data, created during rules

executions, can be shared. The data transferred between nodes are in the form of a data type. The sending data

allow triggering the next calculations in another node. As an illustration, Listing 8 and Listing 9 propose two modules

in two nodes.

Listing 8: Module “A” in node i.

Module(A){

^TmpC(i,v,c) :- A(i,v,c), B(i,@j); }

Listing 9: Module “TmpC” in node j.

Module(TmpC){

C(i,v,c) :- TmpC(i,v,c), c<100; }

When the rule in Listing 8 of the node i is executed, the atom named TmpC is sent to node j. The module of

Listing 9 in node j is performed after receiving TmpC. This mechanism is the core of the full support of Smartlog for

distributed programming. The convergence of a distributed Smartlog program is thus defined as follows [13]:

Definition 2.1. Given P a centralized Smartlog program, VG a set of computing nodes in the distributed system

and Iα, (Iα ⊂ I) a data instance distributed in each node α ∈ VG, all one-round computations l of P converge to a

fixpoint, i.e. all sequences (Iαi (l),Pαi (l))
i→∞
→ (Iα(l),Pα(l)) and all sequences (Iα(l), Pα(l)) have a limit (Iα,Pα)l→∞.

This collection of limits (Iα,Pα) represents the distributed fixpoints of the program P.

3. Case study: Secondary control for isolated microgrids

3.1. Motivation

A Smartlog implementation should follow the node architecture of the distributed database system in the consid-

ered smart grid, handle the mechanism of the distributed programming and process the quantitative evaluations of the

Smartlog language. Those points are validated with the help of the deployment of a “manually distributed” smart grid

application in a real-time platform.

9

Measured data are stored near collection devices, and a declarative approach is used for expressing distributed data

manipulations. The computations and communications are triggered for any change in the measure data (violation

of the set-point value of the frequency for instance). Real-time applications, which require very short response times

and small communication delay, are not the context of this paper. Herein, we assume to develop smart grid scenarios

with the available communication infrastructure (i.e., 3G, 4G, wireless) having known delay time and a network of

computing units.

3.2. The application support

As the objective is to illustrate the principle of the Smartlog language, the simulation model is reduced to a basic

grid, composed of three distributed energy resources (DER) connected to AC static loads, as presented in Fig. 2. The

PV systems and storage devices are considered as DC sources in which the generated powers are perfectly controllable.

Figure 2: Isolated microgrid as a support to the illustration of Smartlog language.

In isolated mode, the microgrid is disconnected from the main grid (thus no PCC has to be modeled). All gener-

ators must still cooperate to maintain the power balance. The model of each voltage source inverter (VSI) supports a

local primary control to properly operate the microgrid [17]. Each VSI includes three controllers: power, current, and

voltage. The droop control is applied to the power controller, in order to represent the relationship between the electric

parameters (P/ f and Q/V). It is then emulated by transferring the functions in a Simulink/Matlab environment for the

experimentation. The details of the converter design, as well as the parameters such as for the low-pass filters, droop

characteristics and PI controllers, are referenced in [18].

3.3. The secondary control

When the local active power (P) or the reactive power (Q) of the load varies, the primary control of the generators

reacts immediately to adjust its set-points so that the system keeps operating with an acceptable power balance and

remains stable [19]. This leads to variations in frequency and voltage magnitudes, which impact the quality of the

electricity supplied to the load. That is particularly true in isolated grids.

10

The main purpose of the secondary control is to restore the frequency and voltage magnitudes to their original

set-point values after deviation, for instance, due to the primary control. The diagram of the secondary control in the

VSI is shown in Figure 3.

Figure 3: Diagram of the secondary control implemented in each VSI of the application support.

The principle of the secondary control is to shift the droop characteristic by changing the initial power values, as

presented in Figure 4.

(a) f /P. (b) V/Q.

Figure 4: Droop characteristics [17].

The new initial values of active and reactive power P′o and Q′o are set based on (9):

11


P′o = Po + ∆P

Q′o = Qo + ∆Q
Considering that:


−m∆P = ∆ f

−n∆Q = ∆V
(9)

With m and n the droop coefficients of the active and reactive powers respectively. Without knowing the dynamics

of the control of the VSI, the variability of frequency and voltage magnitudes are computed using (10).


ḟ = ḟo − m(Ṗo − Ṗ)

V̇ = V̇o − n(Q̇o − Q̇)
(10)

In the secondary control, the set-point frequency (fo) and the set-point voltage magnitude (Vo) are constant. How-

ever, the initial active and reactive power vary by a quantity ∆P and ∆Q respectively. So, (10) becomes:


ḟ = −m(Ṗ − ∆̇P)

V̇ = −n(Q̇ − ∆̇Q)
(11)

Combining (9) and (11), we can write:


∆̇ f = ḟ + mṖ

∆̇V = V̇ + nQ̇
(12)

The objective of the secondary control is finally to provide the set-points of ∆ f and ∆V to the primary control

when the frequency (Freq) and the voltage magnitude (Volt) of the system differ from their initial reference. To

ensure an effective active power sharing, the product of the active power and the droop coefficient of each generator

must be identical [20]. This is expressed in (13).

mi.Pi = m j.P j (13)

The synchronous tracking error method allows synchronizing the frequency, the voltage and the active power

sharing of all DER-clusters [21]. It defines the derivation of the frequency, voltage and active power sharing of each

generator as:


ḟi = c f × ei

f

v̇i = cv × ei
v

mi.Ṗi = cp × ei
p

(14)

Where c f , cv and cp are control coefficients and ei
f , ei

v and ei
p determines the sum of the neighborhood’s error

at each node, which is done with (15). In this paper, the coefficients c f , cp and cv are chosen identical and called

c-coefficient.

12


ei

f =
∑

j∈Ni
ai j.(f j − fi) + ai0.(fo − fi)

ei
v =

∑
j∈Ni

ai j.(V j − Vi) + ai0.(Vo − Vi)

ei
p =

∑
j∈Ni

ai j.(m j.P j − mi.Pi)

(15)

Where ai j is a coefficient representing the connection of node i to node j (equal to 1 if connected and 0 if not).

The derivation of the reactive power is computed with the low-pass filter, expressed in (16) in the Laplace domain.

Q =

(
wc

wc + s

)
× Q′ → sQ = wc(Q

′

− Q) ≡ Q̇ (16)

Where Q′ and Q are feedback values of the reactive power, respectively before and after the low-pass filter. The

cut-off frequency of the filter is wc.

To implement this method in the real-time experimental installation, all equations have to be transformed in their

discrete-time representation. The output is then calculated as expressed in (17):


∆ fi =

∫
∆̇ fidt

∆Vi =

∫
˙∆Vidt

(17)

These Laplace functions are transformed in their discrete-time representation with the sample time Ts.


∆ fi(k) = Tsu f (k) + ∆ fi(k − 1)

∆Vi(k) = Tsuv(k) + ∆vi(k − 1)
with


u f (k) = −c(ei

f (k) + ei
p(k))

uv(k) = −c(ei
v(k) − uq(k))

uq = −ni(Q(k) − Q(k − 1))/Ts

(18)

The method converges if (Ts × c) < 1 [21]. In order to evaluate the performance of the implementation, the

c-coefficient is fixed, and Ts varies. Since Ts depends mainly on the sum of the computation and communication

times. Thus, the value of Ts impacts the “smoothness” of the system response. The smaller Ts is, the “smoother” the

system response is. On the contrary, if Ts is too big and violates the converged criteria, the system will be unstable

and possibly go out rapidly of control.

4. Implementation with Smartlog

Smartlog is a declarative language of data manipulation which proceeds at a higher level of abstraction than

imperative programming. That may be not familiar to programmers. In this part, through the implementation of the

secondary control, we describe how to program in this new proposed language.

13

4.1. Programming in Smartlog

Smartlog aims to accomplish a specific task rather than following pre-defined steps of algorithms. Smartlog is also

a reactive language. The computations are triggered by data updates. Thus, algorithms programmed in Smartlog are

incremental. Whenever a piece of data changes, it attempts to save time by only recomputing the outputs that depend

on the changed data.

The purpose of the secondary control is to adjust ∆ f and ∆v to restore the frequency and voltage magnitude to a

given set-point. In a distributed way, this problem is composed of two sub-problems: new measured data at the local

node and new received data from other nodes.

The identification (ID) of each node is an integer number. The reference values of frequency and voltage are set

to 50 Hz (standard frequency in Europe) and 311 V (nominal value of a three-phase low-voltage balanced system)

respectively. The c-coefficient depends mainly on the network characteristic. It is chosen so that Ts > Tdelay (Ts

should be superior to the delay due to the communications time Tdelay), with in mind the condition of convergence of

the implemented method. In the context of the presented implementation, this gives a c-coefficient of 2.

4.2. Structure of the database

• Measure(ID, Freq, Volt, Pow, Rep) holds the instantaneous measure data of the frequency (Freq), the

voltage (Volt), the active power (Pow), and the reactive power (Rep) for each node;

• Doop(ID, m, n) defines the droop coefficients for each DER converter;

• DynamicMeasure (ID, Freq, Volt, mPow, nRep, Rep) describes the data sent to neighbor nodes;

• Neighbor(ID, ID-Neighbor, Address) defines the neighbor name/network address mapping;

• NeighborData(ID, ID-NEIGHBOR, δ fi j, ei
f, δvi j, ei

v,δpi j, ei
p) provides the local neighborhood errors

of frequency, voltage, and power sharing;

• NeighborSum(ID,
∑
δ fi j,

∑
δVi j) sums the local neighborhood errors;

• Output(ID, ∆ fi, ∆Vi) gathers the compensation values of frequency and voltage for each node;

The above described attributes in data types are key attributes. In this experiment, the distributed program is

written manually for each computing unit. The rules using the Smartlog language are expressed in Listing 10. This

program is loaded into each computing unit of the real-time experimentation.

14

Listing 10: Distributed secondary control implementation in Smartlog.

Module(Measure){

//rule1

& DynamicMeasure(i,f,v,mp,nq,q) :- Measure(i,f,v,p,q), DynamicMeasure(i,_,_,_,_,qo), f<>50,

Droop(i,m,n), mp:=m*p, nq:=n*(q-qo), Neighbor(i,j,@k);

}

Module(DynamicMeasure){

//rule2

NeighborData(i,j,ef,sef,emp,semp,ev,sev):- DynamicMeasure(i,f,v,mp,_,_),

NeighborData(i,j,df,_,dmp,_,dv,_), DynamicMeasure(j,fj,vj,mpj,_,_), ef:=fj-f,

sef:=-df+ef, emp:=mpj-mp, semp:=-dmp+emp, ev:=vj-v, sev:=-dv+ev;

//rule3

NeighborData(i,j,ef,sef,emp,semp,ev,sev):- DynamicMeasure(j,fj,vj,mpj,_,_),

NeighborData(i,j,df,_,dmp,_,dv,_), DynamicMeasure(i,fi,vi,mpi,_,_), ef:=fj-fi,

sef:=-df+ef, emp:=mpj-mpi, semp:=-dmp+emp, ev:=vj-vi, sev:=-dv+ev;

//rule4

Output(i,ef,ev,now) :- DynamicMeasure(i,f,v,_,nq,_), Output(i,efo,evo,to),

NeighborSum(i,sf,sv), ef:=(efo+(now-to)*0.001*2*(sf+(50-f))),

ev:=(evo+(now-to)*0.001*(2*(sv+311-vm)+nq)).

}

Module(NeighborData){

//rule5

NeighborSum(i,ef,ev):- NeighborData(i,_,_,sdf,_,smp,_,sdv), NeighborSum(i,df,dv),

ef:=df+sdf+smp, ev:=sdv+dv.

}

When a data instance in Measure is modified and its frequency value violates the set-point value, the correspond-

ing instance in DynamicMeasure is sent to the neighboring nodes (rule 1) and the neighborhood error is updated

in the current node (rule 2). Otherwise, if a node receives the modification of neighbor’s data, it also updates the

neighborhood’s error (rule 3). Every change in the neighborhood’s error leads to the incremental update of the sum of

the neighborhoods’ errors (rule 5). The output control values change consecutively if there is a modification of each

instance of measure data, itself or one of its neighbors (rule 4).

5. Experimentation and proof of concept

The objective of the experiment is to prove that Smartlog is capable of providing the same results as an imperative

language, in a more efficient way, with advantages discussed in Section 6.

15

The chosen model is built and simulated in the Matlab/Simulink environment. Then, it is loaded in an OPAL-

RT target for real-time execution. Raspberry Pis 2 Model B (a small ARM computer) oversee the local computing

unit of each generator (i.e. each node). Each Raspberry Pi is implemented following the node architecture shown in

Figure 1. PostgreSQL is used to manage the database and plays the role of the rule engine. The distributed Smartlog

program is executed with this rule engine. A small dedicated java program is in charges of the interfaces. This

experiment presents a distributed database network with three raspberry Pis corresponding to three generators. The

measured data are collected in the OPAL-RT server and sent to the Raspberry Pis (the virtual OPAL-RT server is

configured to exchange measured data and control signals with each Raspberry Pi). Simultaneously, each Raspberry

Pi communicates with each other via a TCP/IP protocol and sends back two attributes of their output data to OPAL-RT

for the control of the simulated isolated microgrid. As OPAL-RT and the system of Raspberry Pis are configured in

the same network, the IP address supplies enough information to identify a node in the network.

The architecture of the real-time platform used for the experiment is presented in Figure 5. The communication

time between OPAL-RT and the Raspberry Pis is estimated to be around 10 ms.

Text

Figure 5: Architecture of the experimental installation.

We perform the simulation of the microgrid in isolated mode for 60 s. The load changes at T=20 s with an

increase of 25% of the maximal power and comes back to normal at T=40 s. The parameters of the primary control

are computed so that the stability of the grid, when the load changes, is reached within 0.5 s.

For comparison, the same implementation is done using Java JDK 1.8.0 (whose data are stored in the temporary

memory, not in the database). Java was chosen as a good archetype of imperative language that fits well in the

scope of the comparison with the proposed declarative language. Also, current multi-agent systems typically use Java

(Python could be a possibility, but it is slower) and Java can be compiled in native mode on the system used for the

experimentation (it could be based on C with a decreased ease of use). The Java implementation is used as a reference

to validate the proper operation of the Smartlog implementation. The Java program is available in [22] as additional

research data. The comparison of both implementations is also conducted to confirm the quantitative evaluations as

well as the impact of the execution in the database on the response time with the Smartlog implementation.

Figure 6, 7 and 8 present the frequency, voltage and active power variations after the load change and the action

16

of both the primary and secondary controls with two implementations: one in Smartlog and another in Java.

49.80

49.85

49.90

49.95

50.00

50.05

50.10

50.15

50.20

0 10 20 30 40

Fr
eq

u
en

cy
(H
z)

Time(s)

Frequency-DER1

Frequency-DER2

Frequency-DER3

49.95

50

50.05

20 21 22

(a) In Smartlog.

49.8

49.85

49.9

49.95

50

50.05

50.1

50.15

50.2

0 10 20 30 40

Fr
eq

u
en

cy
(H
z)

Time(s)

Frequency-DER1

Frequency-DER2

Frequency-DER3

49.95

50

50.05

20 21 22

(b) in Java.

Figure 6: Frequency response after a 25 % load change and the action of both the primary and secondary controls.

300

305

310

315

320

325

0 10 20 30 40

V
o
lt
ag
e(
V
)

Time(s)

Voltage-DER1

Votlage-DER2

Voltage-DER3

310

312

314

20 21 22

(a) In Smartlog.

300

305

310

315

320

325

0 10 20 30 40

V
o
lt
ag
e
(V
)

Time(s)

Voltage-DER1

Voltage-DER2

Voltage-DER3

310

312

314

20 21 22

(b) In Java.

Figure 7: Voltage magnitude after a 25 % load change and the action of both the primary and secondary controls.

Figure 6a, 7a, and 8a show that the Smartlog implementation provides a satisfactory secondary control compared

to the equivalent java implementation, which present similar response times (Figure 6b, 7b, and 8b). When the load

changes, at T=20 s, and T=40 s, the frequency and the voltage oscillate slightly due to the regulation. The active power

is also correctly shared between the three generators during the experiment. The results confirm that the distributed

node architecture is appropriate for the Smartlog implementation, validating the convergence of the Smartlog program

and finally illustrating the distributed programming mechanism of Smartlog.

6. Discussion: advantages and disadvantages of Smartlog compared with other languages

6.1. Smartlog compared with imperative languages

6.1.1. Simplicity

The Smartlog language is well adapted with database management and communication. It uses simple symbols

(“^”, “@”) to describe communications where other languages need much more command lines. Besides, it is not

17

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

0 10 20 30 40

A
ct

iv
e

_P
o

w
er

(W
)

Time(s)

Active_Power-DER1

Active_Power-DER2

Active_Power-DER3

(a) In Smartlog.

0

5000

10000

15000

20000

25000

30000

35000

0 10 20 30 40

A
ct
iv
e_
P
o
w
er
(W

)

Time(s)

Active_Power-DER1
Active_Power-DER2
Active_Power-DER3

(b) In Java.

Figure 8: Active power sharing after a 25 % load change and the action of both the primary and secondary controls.

necessary to declare variables in modules, because this declaration is done automatically and optimally. Through

each module, a Smartlog program clarifies which sub-problem in the system is to be considered, so no unnecessary

commands are executed.

Each rule in Smartlog represents a concrete problem. A rule can be a combination of the condition operator and

computations, i.e. the execution. This combination leads to program being more perspicuous and closer to a natural

language. The secondary control is programmed in only five rules in Smartlog (i.e. five lines of code). Moreover, the

implementation in Smartlog is simple, because it works on the database which is available in each node in the smart

grid. No sequence of code is really defined in the algorithm, as computations depend on the meaning of data, they do

not only follow the steps of an algorithm. The output of the control is just adjusted after a change in the data.

Compared to the Java implementation presented in the experimentation of Section 5, similar responses times (with

light differences of operation) provide an advantage to Smartlog which automatically distributes, in the form of rules,

a control developed for a centralized implementation. It thus eases both the implementation, the operation and the

bandwidth solicitation. As an illustration, the number of command lines in the Java implementation is quite significant

compared to the Smartlog implementation. The compactness of Smartlog regarding the length of the implemented

programs in this test-case is summarized in the comparison of Table 1.

Table 1: Secondary control implemented in Smartlog and Java.

Features Smartlog Java

Number of lines of code 5 54

Number of instructions 36 108

The lower number of instructions in the Smartlog language to implement the same algorithm does not mean that

Smartlog instructions present a better performance than the implementation in Java. Actually, the number of machine-

level instructions is ideal for this comparison but was not easily accessible for this experiment, because both the Java

18

and the Smartlog implementations were not directly compiled to machine code. Thus, even if the number of code lines

and instructions do not really reflect the performance of the program, the fact that the implementation in Smartlog

needs almost 10 times less lines of code and 3 times less instructions than the implementation with Java provides a

relevant first comparison.

6.1.2. Scalability and capacity to address an incremental volume of data

Smartlog is designed for declarative programming. The computation is performed based on detecting changes in

the database. Smartlog supports algorithms developed for real-time control, based on the current measured data as

well as historic data. The output values are corrected step by step. For that reason, no sample time or communication

time between neighbors are fixed. Those timings are defined by the interval between updates occurring in data and

the actual computation time. Moreover, by keeping the same configuration of the network and the same program

(modules), the performance of the computation is conducted on an increasing number of Raspberry Pis. We get the

same result, but the computation is shared. That proves the potential of the approach in sharing the calculations and

data as the system of computing resources grows.

6.1.3. Impact of execution in the local database on computing time

Smartlog is designed to perform computations distributed in local databases. This architecture presents some

advantages but affects the performance of the program’s execution. This particular application is also interesting to

evaluate the possibilities of control and management of a microgrid with Smartlog.

As stated in Section 3.3, the sample time Ts affects the smoothness of the response. When we look more closely

at the voltage response of the first generator (at T=20 s) with both implementations, presented in Figure 9, the Java

implementation presents less variations.

(a) With Smartlog. (b) With Java.

Figure 9: Voltage response after a load change for one of the generators of the microgrid.

It means that Ts is bigger with the Smartlog implementation than with Java one. This can be explained simply by

the fact that data in the Java implementation are stored in Read-Only Memory, which has a faster query time than the

database used in the Smartlog implementation. However, it should be admitted that this does not affect the results and

19

the response time of the system significantly. The procedure for the acceleration of computing time in Smartlog can

be done, for example, by using in-memory databases or dedicated rule execution engines.

6.2. Smartlog comparison with declarative languages

To the best of our knowledge, there is no declarative language fully operational in the context of smart grids.

Either there is no available compiler, the database management is lacking, or, like for example in the case of Datalog,

there is no real support for communication. Smartlog is filling this gap from our point of view.

7. Conclusion

In this paper, the abstract structure of all nodes in a smart grid’s distributed control perspective, as well as the

structure of a new declarative language, called Smartlog are proposed and illustrated on typical examples. The Smart-

log language is used to program the implementation of a distributed secondary control in a microgrid in isolated mode.

The code in Smartlog is also proposed and explained.

An experimental test is put up on a real-time OPAL-RT target connected to three Raspberry Pis. A program is

written in a common imperative language (Java) for comparison. For the same control, Smartlog demonstrates its

simplicity, compactness and incremental operation allowing it to better adapt to a large number of nodes in real-time.

However, there are still work to be done to fully support its claim of scalability.

As future prospective work, the accelerating of data query time in Smartlog presents an interest. The automatic

distribution of rules, as well as the database definition for smart grids can also be optimized. The implementation of

other microgrid controls should be performed in Smartlog to prove the reduction of communication and computation

time in this declarative paradigm. Finally, the scalability of the proposed language is also to experimentally validate.

Acknowledgment

This research was made possible by the funding provided by the French Embassy in Vietnam as well as the

Fondaction Grenoble INP in France.

References

[1] R. Zafar, A. Mahmood, S. Razzaq, W. Ali, U. Naeem, K. Shehzad, Prosumer based energy management and sharing in smart grid, Renewable

and Sustainable Energy Reviews 82 (2018) 1675–1684.

[2] G. Van de Kaa, T. Fens, J. Rezaei, D. Kaynak, Z. Hatun, A. Tsilimeni-Archangelidi, Realizing smart meter connectivity: Analyzing the

competing technologies power line communication, mobile telephony, and radio frequency using the best worst method, Renewable and

Sustainable Energy Reviews 103 (2019) 320–327.

[3] N. Shaukat, S. Ali, C. Mehmood, B. Khan, M. Jawad, U. Farid, Z. Ullah, S. Anwar, M. Majid, A survey on consumers empowerment,

communication technologies, and renewable generation penetration within smart grid, Renewable and Sustainable Energy Reviews 81 (2018)

1453–1475.

20

[4] K. L. López, C. Gagné, M.-A. Gardner, Demand-side management using deep learning for smart charging of electric vehicles, IEEE Trans-

actions on Smart Grid 10 (3) (2018) 2683–2691.

[5] A. Sanchez, W. Rivera, Big data analysis and visualization for the smart grid, in: Int. Cong. on Big Data, IEEE, 2017, pp. 414–418.

[6] C. A. Hans, P. Braun, J. Raisch, L. Grüne, C. Reincke-Collon, Hierarchical distributed model predictive control of interconnected microgrids,

IEEE Transactions on Sustainable Energy 10 (1) (2018) 407–416.

[7] L. Wen, K. Zhou, S. Yang, L. Li, Compression of smart meter big data: A survey, Renewable and Sustainable Energy Reviews 91 (2018)

59–69.

[8] T. Yang, 10 - ict technologies standards and protocols for active distribution network, in: Q. Yang, T. Yang, W. Li (Eds.), Smart Power

Distribution Systems, Academic Press, 2019, pp. 205 – 230. doi:https://doi.org/10.1016/B978-0-12-812154-2.00010-9.

URL http://www.sciencedirect.com/science/article/pii/B9780128121542000109

[9] W. Liu, W. Gu, Y. Xu, Y. Wang, K. Zhang, General distributed secondary control for multi-microgrids with both PQ-controlled and droop-

controlled distributed generators, IET Generation, Transmission & Distribution 11 (3) (2017) 707–718.

[10] M. Pau, E. Patti, L. Barbierato, A. Estebsari, E. Pons, F. Ponci, A. Monti, A cloud-based smart metering infrastructure for distribution grid

services and automation, Sustainable Energy, Grids and Networks 15 (2018) 14 – 25, technologies and Methodologies in Modern Distribution

Grid Automation. doi:https://doi.org/10.1016/j.segan.2017.08.001.

URL http://www.sciencedirect.com/science/article/pii/S2352467716301783

[11] A. Ronca, M. Kaminski, B. C. Grau, B. Motik, I. Horrocks, Stream reasoning in temporal datalog, in: Thirty-Second AAAI Conference on

Artificial Intelligence, 2018, pp. 1–8.

[12] H. M. Demoulin, T. Vaidya, I. Pedisich, B. DiMaiolo, J. Qian, C. Shah, Y. Zhang, A. Chen, A. Haeberlen, B. T. Loo, et al., Dedos: Defusing

dos with dispersion oriented software, in: Proceedings of the 34th Annual Computer Security Applications Conference, ACM, 2018, pp.

712–722.

[13] S. Grumbach, F. Wang, Netlog, a rule-based language for distributed programming, in: Practical aspects of declarative languages, Lecture

Notes in Computer Science, Springer, Berlin, Heidelberg, 2010, pp. 88–103. doi:10.1007/978-3-642-11503-5_9.

[14] A. Vaccaro, I. Pisica, L. Lai, A. Zobaa, A review of enabling methodologies for information processing in smart grids, International Journal

of Electrical Power & Energy Systems 107 (2019) 516 – 522. doi:https://doi.org/10.1016/j.ijepes.2018.11.034.

URL http://www.sciencedirect.com/science/article/pii/S0142061518303405

[15] A. A. de Sotomayor, D. D. Giustina, G. Massa, A. DedÃ¨, F. Ramos, A. Barbato, Iec 61850-based adaptive protection system for the mv

distribution smart grid, Sustainable Energy, Grids and Networks 15 (2018) 26 – 33, technologies and Methodologies in Modern Distribution

Grid Automation. doi:https://doi.org/10.1016/j.segan.2017.09.003.

URL http://www.sciencedirect.com/science/article/pii/S2352467716302077

[16] T. T. Q. Nguyen, C. Bobineau, V. Debusschere, Q. H. Giap, N. Hadj-Said, Using declarative programming for network data management in

smart grids, in: Proceedings of the 22Nd International Database Engineering & Applications Symposium, IDEAS 2018, ACM, New York,

NY, USA, 2018, pp. 292–296. doi:10.1145/3216122.3216160.

URL http://doi.acm.org/10.1145/3216122.3216160

[17] A. Mehrizi-Sani, Chapter 2 - distributed control techniques in microgrids, in: M. S. Mahmoud (Ed.), Microgrid, Butterworth-Heinemann,

2017, pp. 43 – 62. doi:https://doi.org/10.1016/B978-0-08-101753-1.00002-4.

URL http://www.sciencedirect.com/science/article/pii/B9780081017531000024

[18] N. Pogaku, M. Prodanovic, T. C. Green, Modeling, analysis and testing of autonomous operation of an inverter-based microgrid, IEEE Trans.

on Power Electronics 22 (2) (2007) 613–625.

[19] Ã“scar LucÃa, E. Monmasson, D. Navarro, L. A. BarragÃ¡n, I. Urriza, J. I. Artigas, Chapter 29 - modern control architectures and

implementation, in: F. Blaabjerg (Ed.), Control of Power Electronic Converters and Systems, Academic Press, 2018, pp. 477 – 502.

doi:https://doi.org/10.1016/B978-0-12-816136-4.00030-0.

URL http://www.sciencedirect.com/science/article/pii/B9780128161364000300

21

http://www.sciencedirect.com/science/article/pii/B9780128121542000109
https://doi.org/https://doi.org/10.1016/B978-0-12-812154-2.00010-9
http://www.sciencedirect.com/science/article/pii/B9780128121542000109
http://www.sciencedirect.com/science/article/pii/S2352467716301783
http://www.sciencedirect.com/science/article/pii/S2352467716301783
https://doi.org/https://doi.org/10.1016/j.segan.2017.08.001
http://www.sciencedirect.com/science/article/pii/S2352467716301783
https://doi.org/10.1007/978-3-642-11503-5_9
http://www.sciencedirect.com/science/article/pii/S0142061518303405
https://doi.org/https://doi.org/10.1016/j.ijepes.2018.11.034
http://www.sciencedirect.com/science/article/pii/S0142061518303405
http://www.sciencedirect.com/science/article/pii/S2352467716302077
http://www.sciencedirect.com/science/article/pii/S2352467716302077
https://doi.org/https://doi.org/10.1016/j.segan.2017.09.003
http://www.sciencedirect.com/science/article/pii/S2352467716302077
http://doi.acm.org/10.1145/3216122.3216160
http://doi.acm.org/10.1145/3216122.3216160
https://doi.org/10.1145/3216122.3216160
http://doi.acm.org/10.1145/3216122.3216160
http://www.sciencedirect.com/science/article/pii/B9780081017531000024
https://doi.org/https://doi.org/10.1016/B978-0-08-101753-1.00002-4
http://www.sciencedirect.com/science/article/pii/B9780081017531000024
http://www.sciencedirect.com/science/article/pii/B9780128161364000300
http://www.sciencedirect.com/science/article/pii/B9780128161364000300
https://doi.org/https://doi.org/10.1016/B978-0-12-816136-4.00030-0
http://www.sciencedirect.com/science/article/pii/B9780128161364000300

[20] W. Gu, G. Lou, W. Tan, X. Yuan, A nonlinear state estimator-based decentralized secondary voltage control scheme for autonomous micro-

grids, IEEE Trans. on Power Systems 32 (2017) 4794–4804.

[21] X. Lu, X. Yu, J. Lai, J. M. Guerrero, H. Zhou, Distributed secondary voltage and frequency control for islanded microgrids with uncertain

communication links, IEEE Transactions on Industrial Informatics 13 (2) (2017) 448–460.

[22] N. T. Quynh, Implementation a distributed secondary control (May 2018). doi:10.5281/zenodo.1246756.

URL https://doi.org/10.5281/zenodo.1246756

Biographies

Thi-Thanh-Quynh Nguyen is currently a PhD student of Grenoble Institute of Technology. Her thesis is rolling

in the collaboration of two laboratories: Grenoble Electrical Engineering Laboratory (G2Elab) and Grenoble

Informatics Laboratory (LIG). Her research interests include Big data, distributed data management for smart

grids and distributed control and management in microgrid.

Vincent Debusschere has obtained his Ph.D. in ecodesign of electrical machines from the Ecole Normale Superieure

de Cachan in 2009. He joined the Electrical Engineering Laboratory of the Grenoble Institute of Technology,

in 2010 as an Associated Professor. His research interests include renewable energy integration, modeling of

flexibility levers for smart grids, multi-criteria assessment and optimal design of complex systems.

Christophe Bobineau has obtain his PhD in computer science from the University of Versailles Saint-Quentin in

2002. He is working since then at the Grenoble Informatics Laboratory (Grenoble Institute of Technology). His

topics cover transaction management, distributed query optimization and data storage from embedded systems

to Big Data.

Quang Huy Giap is a Lecturer-researcher at the University of Science and Technology, The University of Danang.

He received his PhD in Automation-Production in 2011 from Grenoble INP, France. His research is situated in

the field of Automation, with a special focus on fault detection and diagnostics technologies, renewable energies

and energy management.

Nouredine Hadjsaid is a Professor at Grenoble Institute of Technology, Director of the Laboratory of Electrical En-

gineering of Grenoble (G2ELAB). He is also a visiting professor at Virginia Tech (USA) and NTU (Singapore).

His research interests are in smart grids, which include distributed generation and power grids, information and

communication technologies in power grids, and power grid safety, among others.

22

https://doi.org/10.5281/zenodo.1246756
https://doi.org/10.5281/zenodo.1246756
https://doi.org/10.5281/zenodo.1246756

	Context
	Smart grids, data production and handling
	Existing solutions and limitations
	Problem statement

	Smartlog language
	The architecture of a node in smart grids
	Structure of the language
	The Data type block
	The Initial data block
	The Module block

	Ending a one-round execution of a Smartlog program
	How Smartlog supports distributed programming

	Case study: Secondary control for isolated microgrids
	Motivation
	The application support
	The secondary control

	Implementation with Smartlog
	Programming in Smartlog
	Structure of the database

	Experimentation and proof of concept
	Discussion: advantages and disadvantages of Smartlog compared with other languages
	Smartlog compared with imperative languages
	Simplicity
	Scalability and capacity to address an incremental volume of data
	Impact of execution in the local database on computing time

	Smartlog comparison with declarative languages

	Conclusion

