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ABSTRACT
In the context of faulted or occluded regions in seismic im-
ages, seismic horizon reconstruction requires the use of fast
interactive approaches with respect to any bounding domain
and number of passing points. The only algorithms which
respect these constraints and provide a result in reasonable
time in comparison with the interaction are based on the so-
lution of a partial derivative equation either on juxtaposed
quadrangular regions or using a binary mask on the whole
data. While the first method requires the use of many passing
points and its local nature leads to different results depending
on the number and location of constraints, the second is not
compatible with fast reconstruction for more than one pass-
ing point. In this paper, we propose a global and fast recon-
struction method on the polygon defined by constraint points.
Direct and inverse Schwarz-Christoffel space transformations
lead to global reconstructions in respect to all the constraints.
Experiments both on synthetic and real seismic images ex-
hibit better results than the conventional quadrangle and mask
methods.

Index Terms— Seismic horizon reconstruction, faulted
seismic image, partial derivative equation, space transforma-
tion, Schwarz-Christoffel transformation.

1. INTRODUCTION

Seismic images are three-dimensional directional textures
representing a stacking of sedimentary layers which appear
as a succession of bright and dark surfaces (see figure 1).
One key step of interpreting the structure of the subsoil is
to reconstruct the frontiers between sedimentary layers, also
known as seismic horizon. However, the interpretation pro-
cess is tedious because of the data dimensionality, seismic
faults due to tectonic forces causing horizon disruptions and
deaf or chaotic regions. An automatic tool of seismic horizon
reconstruction is needed to assist geophysicists during the
interpretation stage.

Numerous surface reconstruction methods have been pro-
posed in the literature during the last three decades. Region-

growing methods can be based on the measurement of shape
similarity [1, 2] or the integration of the estimated dip [3,
4] starting from an initial point. These methods generally
drift because of error cumulation. Methods based on an over-
all minimization of a nonlinear Partial Derivative Equation
(PDE) over the whole solution domain [5, 6, 7, 8, 9] are less
noise sensitive.

Fig. 1. Seismic horizon (in cyan) reconstructed over seismic
image

However, presence of faults, chaotic, noisy or missing re-
gions, requires adding as many passing or domain points as
needed. Therefore, only supervised methods allowing a fast
reconstruction, which is generally carried out in the Fourier
domain and requires a rectangular reconstruction domain, can
be used. Moreover, a rectangular domain is not suitable in
case of problematic regions. It has to be replaced by a free-
shaped domain which occluds or circumvents faulted or prob-
lematic regions. Methods of weighted reconstruction can be
used on a rectangular domain that surrounds the free-shaped
domain by using a weighting function [7] and a particular case
using a binary mask [9]. However, in the context of fast recon-
struction schemes which are based on the Fourier transform,
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weighted reconstruction methods cannot be used with multi-
ple passing points. Moreover, they do not guarantee the con-
vergence of the solution when the normal vector field estimate
is highly corrupted by discontinuities and can also introduce
numerical instability as well as high computational time. In
the general case of supervised methods allowing rapid and in-
teractive consideration of multiple passing points, Zinck et al.
[10] proposed an approach where the reconstruction domain
is defined by the convex polygonal envelope of passing points.
Each triangle from Delaunay triangulation of the domain is
subdivided into three quadrangles. A partial reconstruction is
then performed on each quadrangle by space transformation.
This method presents drawbacks due to its local nature. Noise
sensitivity depends on the dimensions of each quadrangle and
the partial reconstructions derivative continuity is not guaran-
teed at their boundaries. Moreover, when the configuration
changes by adding, changing or deleting a passing point, all
the partial reconstructions need to be recomputed.

In [11], we proposed to reconstruct seismic horizons on
any simply connected polygonal domain deduced from the
free-shaped domain under the constraint of one passing point,
using Schwarz-Christoffel (SC) transformations. In this pa-
per, we present the generalization to seismic horizon recon-
struction on any simply connected polygonal domain under
any number of passing points constraints. Moreover, we dis-
cuss SC grid regularization when the SC transformations lead
to over-sampled regions. The reconstruction is carried out at
once on the whole domain of interest in the Fourier domain
using the space transformation and does not extend it to make
it convex. In this sense, it is more stable and can be qualified
as global.

In the rest of this paper, we first present seismic horizon
reconstruction under any kind of bijective differentiable space
transformation. Then, we discuss the space transformation
between a polygonal domain and rectangular domain before
presenting the grid regularization transformation to improve
the regularity of the grid corresponding to the SC transforma-
tion. In section 3, we compare results of our method to those
of the mask and quadrangle methods both on synthetic and
real seismic images.

2. SEISMIC HORIZON RECONSTRUCTION IN
PRESENCE OF PROBLEMATIC REGIONS

The reconstruction of seismic horizons using the method of
[7] is based on the solution of a non linear constrained op-
timization problem. It relies on the orientation field of the
seismic image and refers to a Poisson PDE. The solution of
the PDE in the Fourier domain can only be carried out on a
hyper-rectangular domain.

However, to avoid faults neighboring or occluded regions,
the horizon reconstruction support does not, unless in very
specific cases, have a rectangular aspect. It is most likely for
the reconstruction domain to have a free polygonal shape.

2.1. Seismic horizon reconstruction under a space trans-
formation

In a seismic image, each seismic horizon can be represented
by an explicit hypersuface τ1 defined by xN = τ1(x) upon the
domain Ω1 where x = (x1, . . . , xN−1) in a N -dimensional
vector space. The hypersurface τ1 is orthogonal at each point
to the orientation field n [9] (see figure 2). An explicit hy-
persurface τ1 verifies a non-linear PDE linking the gradient
∇(τ1) to the vector of slopes p1 deduced from the orienta-
tion field n [7]:

∀x1 = (x1
1, . . . , x

1
N−1) ∈ Ω1,∇τ1(x1) = p1(x1, τ1(x1)).

(1)
where ∀i ∈ [1, N − 1],

p1,i = − ni(x
1)

nN (x1)
. (2)

x1

x2

O

Fig. 2. Explicit hypersurface of a bidimensional orientation
field

The seismic horizon is iteratively reconstructed using a
non-linear constrained optimization problem:

τ1 = argming∈C2

∫
Ω1

‖∇g(x1)− p1(x1, g(x1))‖2. (3)

Equation 3 refers to a Poisson equation:

∆(δg(x1)) = −div(∇g(x1)− p1(x1, g(x1))). (4)

In general, the minimization of the term in 3 is done using
matricial methods. But in the particular case of a rectangular
domain, the solution is rapidly deduced using Fourier trans-
forms.

In order to transform an implicit hypersurface into an ex-
plicit one or to transform a domain, a space transformation F
from x1 into x2 can be introduced. Under the conditions of
F being bijective and of class C1, a reconstruction is obtained
[12] using equation (1) expressed in the transformed space:

∀x2 ∈ Ω2,∇τ2(x2) = p2(x2, τ2(x2)). (5)



Slope vectors are deduced from the components of the orien-
tations nj(F−1(xM)) in the initial space:

∀i ∈ [1, N − 1], p2,i = −

N∑
j=1

∂x1
j

∂x2
i
(x2).nj(F−1(x2))

N∑
j=1

∂xN
j

∂x2
i

(x2).nj(F−1(x2))

. (6)

In case of a chain of M bijective space transformations
F = f1 ◦ . . . ◦ fM from x1 to xM+1, the components of the
slopes vectors are expressed as:

∀i ∈ [1, N − 1], pM+1,i = −n
M+1
i (xM+1)

nM+1
N (xM+1)

, (7)

where xi = (fM ◦. . .◦fi)−1(xM+1). The orientation vectors
are expressed as:

nM+1 = JMM+1(xM+1)JM−1
M (xM) . . .J 1

2 (x2)n(x1),
(8)

and introduces the terms of the JacobianJ ii+1 of inverse space
transformations f−1

i i∈[1,M ]:

∀i ∈ [1,M ],J ii+1 =


∂xi

1

∂xi+1
1

. . .
∂xi

N

∂xi+1
1

...
. . .

...
∂xi

1

∂xi+1
N

. . .
∂xi

N

∂xi+1
N

 . (9)

In the following section we present the expression of the
bijective transformation between the polygon defined by the
constraints and the rectangular domain for fast PDE solution.

2.2. Transformation between a polygon and a rectangle

The Riemann mapping theorem guarantees the existence of a
biholomorphic mapping f from any non-empty simply con-
nected subset of C onto the unit disc D. This implies that
f is angle-preserving and is, therefore, a conformal trans-
formation. The SC transformation which was independently
discovered by the german mathematicians Christoffel and
Schwarz in late 1860s defines an analytic expression of this
conformal transformation [13]. Ever since, it has been used
in the solution of Laplacian PDE in studies such as Brownian
motion [14] and wind flow [15].

The transformation of the polygonal into the rectangular
domain can be seen as the compose of two SC transforma-
tions which is also a conformal transformation. The first is
the inverse SC transformation f−1

P from the polygon P into
the unit disc D and the second is the direct SC transformation
fR of D into the rectangle R:

F = f−1
P ◦ fR. (10)

−β1π
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−β6π

−β4π
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Fig. 3. Polygon P defined by its vertices (in cyan) and exte-
rior angles

Let P be a polygon defined by its verticesw1, w2, . . . , wN
(see figure 3). Each vertex wk has an exterior angle of −βkπ.

Note that
N∑
k=1

βk = −2.

The SC transformation formula defines the conformal
transformation of the unit disc D into the polygon P as fol-
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Fig. 4. Transformation of a rectangle R into an L-shaped
polygon P using SC transformations
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Fig. 5. Transformation of a rectangle into a polygon without regularization and with regularization hD based on the SC
transformation of the polygon (in dotted frame)

lows:

∀z ∈ D, fP (z) = a+ c

z∫
0

N∏
i=1

(1− s

zk
)βkds, (11)

where a, c ∈ C and {zk}k=[1,N ] are the pre-images of the
vertices of P and are called prevertices. The main task in the
definition of the SC transformation is the estimation of the
previous N + 2 parameters. This is known as the SC parame-
ters problem and is at the heart of the numerical computation
of the SC transformation especially as the number of vertices
gets higher. However, Trefthen [13] proposed a fast method of
numerical solution based on side-length equations after fixing

the values of a and c as a = fP (w1) and c = fP (wN ):∣∣∣∣∣z
k+1∫
zk

f
′

P (z)dz

∣∣∣∣∣∣∣∣∣∣z2∫z1 f ′
P (z)dz

∣∣∣∣∣
=
|wk+1 − wk|
|w2 − w1|

, k = 1, 2, . . . , N − 1 (12)

which is solved using the Gauss-Newton method and a Broy-
den jacobian update. Integration is computed using Gauss-
Jacobi method.

The inverse SC transformation corresponds to the compu-
tation of f−1

P (w) which is obtained from the differentiation
and inversion of w = fP (z):

dw

dz
= c

N∏
i=1

(1− s

zk
)βk ⇒ dz

dw
=

1

c

N∏
i=1

(1− s

zk
)−βk . (13)

This equation is solved numerically using the Newton iter-
ative method starting from a rough approximation z̃ of the



solution obtained from a Runge-Kutta initialization.
Figure 4 shows the SC transformations between an L-

shaped polygon P and a rectangle R under the space trans-
formation F . The SC transformations of the rectangle lead
to a highly irregular grid on the polygonal domain. Orienta-
tions at some points of the initial grid in the polygon P are
not used while others have multiple contributions. This leads
to variable reconstruction precision across the domain.

2.3. Grid regularization

An intuitive solution would be to increase the number of sam-
pling points. For instance, if the reconstruction error using a
grid of NP points is ε, then 4×NP points should be consid-
ered to achieve an ε

2 error. In general, to achieve an ε
2n , n ∈ N

error, 22n × NP should be considered. This leads to a very
high computational complexity compared to the reconstruc-
tion accuracy improvement.

Therefore, we introduce an intermediate space transfor-
mation hD between the direct and inverse SC transformation
in order to regulate the grid without losing the domain geom-
etry or changing the resolution grid size NP .

Let us consider the polar coordinates (ρin, θin) of the grid
corresponding to the transformation f−1

P of the regular grid of
P (see figure 5). The objective is to estimate the parameters of
a transformation that regularizes the distribution of the diskD
in the polar domain without altering the image of the polygon
vertices. Therefore hD : (ρin, θin) 7→ (ρout, θout).

θout = θin +

N∑
k=1

u(βk)N∫ (βk, σθk), (14)

whereN∫ (µ, σ) is a folded normal-distribution of mean µ and
standard-deviation σ and the function u is defined by analyz-
ing the angular distribution θin. Noting βN+1 = β1, the func-
tion u can be written:

u(βk) =


1 if θin is increasing on [βk, βk+1]

−1 if θin is decreasing on [βk, βk+1]

0 else
(15)

In the same manner, the radial distribution is changed
when the angular distribution is, unless the radius is equal
to 1:

ρout = ρin +

N∑
k=1

|u(βk)|N (ρk, σρk), (16)

where N (µ, σ) is a normal-distribution of mean µ and
standard-deviation σ, ρk =

1+ρkmin

2 , ρkmin is the minimal
radius corresponding to the angles βout 6= βin on [βk, βk+1]
and σρk = 1−ρk

3 .
This grid regularization method proves to be efficient,

however its implementation can be labourious because of
the empiral choice of parameters u(βk), σθk , σρk which are
relative to the number of vertices N .

2.4. Computational complexity

Table 1 shows SC transforms computational complexity for a
grid ofNP points. The direct transform has roughly a numeri-
cal complexity of O(NP ). The inverse transform is first based
on the computation of the direct transform and the inversion
has a complexity of O(NP ×N).

Stage Method Complexity

Parameter problem Gauss-Jacobi integration NP

Broyden Jacobian update
√
NP

Integration Gauss-Jacobi integration NP

Inversion Runge-kutta initialization NP

Newton iteration NP ×N

Table 1. Computational complexity of the steps of direct and
inverse SC transformations

The angular and radial regularization have O(N) com-
plexity. The SC direct and inverse transformations are com-
puted once to estimate the terms xi, i ∈ [2,M + 1]. The Ja-
cobians of the direct and inverse SC transformations are com-
puted by differentiation. Both transformations are evaluated
4 times for that matter. The reconstruction has a NP log(NP )
computational complexity. The proposed method has, there-
fore, Np(5(N + 1) + logNp) complexity.

This complexity is to compare to the quadrangle method

for which the reconstruction has
3(N−2)∑
k=1

NQk
log(NQk

) where

NQk
is the number of grid points in the kth quadrangle. For

each quadrangle the space transformation and corresponding
Jacobian need to be computed. They have linear complexity.
Overall, both methods have comparable computational exe-
cution time in practice.

3. RESULTS

3.1. Results on a synthetic seismic image

First, results are presented on a synthetic 300 × 300 × 300
image with high variations (see figure 6). The theoretical fault
appears in red and some theoretical horizons are presented in
blue.

The reconstruction using the proposed method has a
polygonal domain (see figure 7) taken in order to circumvent
the fault. The mask for the method of [9] is defined by setting
to 0 the contribution of external points to the polygon in the
corresponding rectangular domain.

This results in a shifted horizon using the mask method
since the normals are disturbed by the presence of the fault.
Even though the reconstruction is less accurate in regions
where the SC transformation results in a larger sampling, the



Fig. 6. Faulted synthetic seismic volume, fault model (in red)
and some horizons (in blue)

Fig. 7. Top: polygonal reconstruction domain defined by the
vertices (in blue) projected on the analytic surface to recon-
struct. Bottom: faulted seismic horizon reconstructions - the-
oretical (in blue), using the mask method (in green) and the
proposed method (in indigo) - on the 20th x2-section

proposed method leads to better results. The mean quadratic
error term compared to the analytic horizons is 0.18 pixels
using the proposed method when the binary mask method re-
sults in a mean quadratic error of 0.97 pixels.

3.2. Results on real seismic images

In this section, we consider a 329 × 376 × 195 faulted seis-
mic image with regions of occlusion (see figure 8). For the
remainder of this paper, each voxel corresponds to a physi-
cal dimension of 10 meters in each direction. Since both the
faults and the occluded regions are quasi-vertical, we recon-
struct the seismic horizon on the domain in figure 8 and one
passing point on coordinates (194, 208, 90). We compare the
results of our method to those of the mask method with the
same passing point and binary mask defined by the polygon
of figure 8.

Fig. 8. Faulted seismic image with occluded and faulted re-
gions and polygonal domain

Results of figure 9 show that the reconstructions using the
PDE method without and with mask method lead to surfaces
that drift away from the observed horizon after the faulted
region when our method leads to good results all over the re-
constructed region. This is due to the fact that even though the
same points are used for the mask and the proposed methods,
they do not have the same neighboring. The highest recon-
struction differences are located on the sections crossed by
faults with a mean absolute difference of 2.43 pixels com-
pared with the mask method and 3.16 pixels without mask.

In the rest of this section, we compare our method to the
quadrangle method for a 400× 350× 400 real seismic image
which contains faults and complex trench structures (figure
10).



Fig. 9. Faulted seismic horizon reconstructions using the clas-
sic PDE method without mask (in pink), with mask (in green)
and the proposed method (in blue) on the 172th x2-section

The reconstruction domain could be defined automati-
cally by detecting fault position using orientation coherence,
gradient magnitude or even trace similarity, as some authors
proposed in the litterature [16, 17, 18, 19] combined with
fault slip estimation as in [20]. In this section, we suppose
that the fault location is already known and that the recon-
struction domain is defined by passing points of figure 10
which form a non-convex polygon of 9 vertices. The orienta-
tion field is estimated using the conventional structure tensor
method with standard-deviations of 1 and 2 for the gradient
field estimation and autocorrelation matrix computation re-
spectively. Reconstructions are obtained after 40 iterations in
the Fourier domain.

200
170

135

Fig. 10. Seismic image sections and seismic horizon recon-
structed on the polygonal domain defined by passing points
(in cyan). x2-sections of figure 13 (in dotted lines)

.

For the proposed method, the reconstruction has 410×320
sampling points. The obtained quadrangles using Delaunay
triangulation are presented in figure 11. The non-convex do-
main is transformed into a convex one by adding the region
in red which leads to additional partial reconstructions. The
sampling grid is imposed by the largest side of the quadrangle
which leads to dense but non-homogeneous resolution along
partial reconstructions (see figure 12).

Fig. 11. Quadrangles deduced from Delaunay triangulation
of passing points (in blue) - quadrangles inside concave poly-
gone (in green) and outside (in red) -

Fig. 12. Sampling independence between the polygon’s quad-
rangles

Figure 13 shows the results of the reconstruction using our
quasi-global approach compared with the quadrangle method
on different inlines. It appears that the local aspect of the
quadrangle method leads to reconstructions that drift away
from the observed horizon. SC transformations lead to under-
sampled regions (to the left of the polygonal domain). This
affects reconstruction accuracy in these regions. Our method
with grid regularization leads to better horizon reconstruction
and corrects reconstruction errors in under-sampled regions
with the SC transformations.

The absolute difference between our method and the
quadrangle method highlights up to 11 pixels difference lo-
cally and a mean absolute difference of 2.48 pixels on this
domain.



Fig. 13. Reconstructed seismic horizons using the quadrangle
method (in green) and our method without (in indigo) and
with (in blue) regularization on 135th (a), 170th (b) and 200th

(c) x2-sections

4. CONCLUSION

We proposed in this paper a fast and global method for
seismic horizon reconstruction on any simply connected
polygonal domain defined by passing points constraints.
Our approach is based on an overall minimization of a par-
tial derivative equation combined with direct and inverse
Schwarz-Christoffel transformations beside a bijective grid
regularization transformation. Results both on synthetic and
real seismic images show better horizon reconstruction when
compared with the mask and quadrangle method.

A possible improvement could be carried out by auto-
matic detection and correction of regions where the grid is
not regular enough by adopting a regularity criteria and using
gradient descent methods.

The simply connected aspect of the domain implies that
the fault can be circumvented by a simply connected polygon
and that the fault does not bisect the reconstruction domain.
If the fault does not intersect any edge of the reconstruction
domain, the corresponding polygon would be doubly con-
nected. We address this limitation in [21] using the Schwarz-
Christoffel transformation expression in case of a doubly con-
nected polygon. In case the domain is multiply connected,
one solution would be to use the expression of the Schwarz-
Christoffel transformation for multiply connected domains.
Although computational complexity of estimating the param-
eters of this transformation is large, numerical estimation is
likely to be possible in a reasonable amount of time within
the relatively near future.
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Guillon, and Olivier Lavialle, “Fast seismic horizon recon-
struction based on local dip transformation,” Journal of Ap-
plied Geophysics, vol. 96, pp. 11–18, 2013.

[11] Salma Doghraji and Marc Donias, “Seismic horizon recon-
struction on polygonal domains using the schwarz-christoffel
transformation,” International Conference on Image and Sig-
nal Processing, pp. 4057–4061, 2016.

[12] Guillaume Zinck, Marc Donias, and Olivier Lavialle, “N-
dimensional surface reconstruction from a noisy normal vector
field,” 20th European Signal Processing Conference (Eusipco-
2012), pp. 395–399, 2012.

[13] Tobin A. Driscoll and Lloyd N. Trefethen, Schwarz-Christoffel
Mapping, Cambridge Monographs on applied and Computa-
tional Mathematics, 2002.

[14] Lloyd N. Trefethen and Ruth J. Williams, “Conformal mapping
solution of laplace's equation on a polygon with oblique deriva-
tive boundary conditions,” Journal of Computational and Ap-
plied Mathematics, vol. 14, no. 1, pp. 227–249, 1986.

[15] Aaron Waters, François Blanchette, and Arnorld D. Kim,
“Modeling huddling penguins,” Applied Mathematics, Uni-
versity of California Merced, vol. 7, no. 11, 2012.

[16] Kurt J Marfurt, R Lynn Kirlin, Steven L Farmer, and Michael S
Bahorich, “3-d seismic attributes using a semblance-based co-
herency algorithm,” Geophysics, vol. 63, no. 4, pp. 1150–1165,
1998.

[17] Trygve Randen, Stein Inge Pedersen, Lars Sønneland, et al.,
“Automatic extraction of fault surfaces from three-dimensional
seismic data,” in 2001 SEG Annual Meeting. Society of Explo-
ration Geophysicists, 2001.

[18] David Gibson, Michael Spann, Jonathan Turner, and Timothy
Wright, “Fault surface detection in 3-d seismic data,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 43, no.
9, pp. 2094–2102, 2005.

[19] Dave Hale, “Methods to compute fault images, extract fault
surfaces, and estimate fault throws from 3d seismic images,”
Geophysics, vol. 78, no. 2, pp. O33–O43, 2013.

[20] Xinming Wu and Dave Hale, “3d seismic image processing for
faults,” Geophysics, vol. 81, no. 2, pp. IM1–IM11, 2016.
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