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Abstract

Scheduling maintenance routing for an offshore wind farm is a challenging and complex task. The
problem is to find the best routes for the Crew Transfer Vessels to maintain the turbines in order
to minimise the total cost. This paper primarily proposes an efficient solution method to solve
the deterministic maintenance routing problem in an offshore wind farm. The proposed solution
method is based on the Large Neighbourhood Search metaheuristic. The efficiency of the pro-
posed metaheuristic is validated against state of the art algorithms. The results obtained from
the computational experiments validate the effectiveness of the proposed method. In addition, as
the maintenance activities are affected by uncertain conditions, a simulation-based optimisation
algorithm is developed to tackle these uncertainties. This algorithm benefits from the fast com-
putational time and solution quality of the proposed metaheuristic, combined with Monte Carlo
simulation. The uncertain factors considered include the travel time for a vessel to visit turbines,
the required time to maintain a turbine, and the transfer time for technicians and equipment to
a turbine. Moreover, the proposed simulation-based optimisation algorithm is devised to tackle
unpredictable broken-down turbines. The performance of this algorithm is evaluated using a case
study based on a reference wind farm scenario developed in the EU FP7 LEANWIND project.
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1. Introduction

The offshore wind industry is growing at a rapid rate. For example, in Europe the installed
capacity has remarkably increased from less than 40 MW in 2000 to 12.6 GW in 2016 (EWEA,
2017). Although the offshore industry gives more benefits such as the electricity generated and the
low visual impact compared to its counterpart onshore (Akbari et al., 2017), the major challenge
for the industry is to reduce its high operating costs in order to make this industry profitable. One
of the major cost components of operating an offshore wind farm is the cost of the operation and
maintenance (O&M). This cost is expected to contribute up to a quarter of the life-cycle cost of an
offshore wind farm (Snyder and Kaiser, 2009; Musial and Ram, 2010; Garrad-Hassan, 2013; Wiser
et al., 2016). Scheduling maintenance for an offshore wind farm is a challenging and complex task
(Shafiee, 2015; Shafiee and Sørensen, 2017). The resources needed to maintain the turbines such
as vessels, parts, and technicians are commonly located at the nearest port or O&M base. The
offshore turbines are relatively more vulnerable to breakdown than the onshore ones. Moreover, the
accessibility to the wind farm sites (using vessels) are restricted and uncertain. In addition, as the
number of turbines along with their capacity increases, new wind farms are planned to be located
even further offshore. This situation increases the limitation to access the windfarm site.

One way to reduce the maintenance cost is to design the optimal route for each selected vessel to
access a set of turbines in the wind farm. This also includes the number of each type of technicians
required by each vessel. The principal skill division when considering wind turbine maintenance
is between electrical and mechanical expertise. However, there also exists an intersection of tasks
that require both electrical and mechanical expertise. Therefore, in this paper, we use three types
of technicians: electrical, mechanical and electrical-mechanical. When designing the routes, several
factors need to be considered including weather/time window, availability of various resources (e.g.
vessels, technicians, and spare parts) and the loss of electricity generation. The weather/time
window is defined as the period of time in which the weather is sufficiently clement to allow the
maintenance operation to be performed. In our case, the time window is represented by the interval
time between the time for a vessel to leave the O&M base and the time for the vessel to return
to the O&M base. Two types of maintenance, namely corrective and preventive maintenance, are
considered in this paper. Preventive maintenance (PM) is desirable in order to ensure that offshore
wind farms operate in an efficient way. PM aims to prevent failures and is comprised of monitoring,
detection and restoration actions in order to avoid future breakdowns. Ideally, PM in offshore wind

2



farms will be performed at a time when any associated shutdown will have the least impact on the
net energy production capacity (Zhang et al., 2012). On the other hand, corrective maintenance
(CM) is conducted following the detection of an unforeseen failure (Halvorsen-Weare et al., 2013).

There are various sources of stochasticity involved in the maintenance of an offshore wind turbine
that require to be considered as uncertain rather than deterministic. These principally include
turbine breakdown and weather related factors, although these two sources are related on a longer
term basis. The uncertainty related to breakdown depends on the past preventative and corrective
maintenance history of the turbine as well as factors such as age and location. With a growing size
of data and hence evidence regarding offshore wind turbine breakdown, this uncertainty is becoming
more quantifiable as time progresses. The second main factor causing uncertainty is the short-term
weather conditions at the desired time of maintenance. These have an impact on factors such as
travel times and time to complete tasks, as well as ruling out maintenance completely if parameters
such as wind speed and wave height surpass pre-defined thresholds. Whilst short-term weather is
not predictable in the medium or long term, sufficient meteorological data exists to give quantifiable
probabilities for the above weather factors in a given season and location.

In this paper, we first propose an efficient solution method based on large neighbourhood search
to solve the deterministic maintenance routing in an offshore wind farm. The solution method
is then incorporated in the proposed simulation-based optimisation framework for the stochastic
maintenance routing problem where uncertain conditions are taken into account. The uncertain
conditions considered are the travel time of the vessel, the transfer time for technicians and equip-
ment to a turbine, and the required time to maintain a turbine. The main contributions of this
paper include: (i) A new efficient metaheuristic approach to solve the deterministic maintenance
routing problem; (ii) A novel simulation-based optimisation framework for stochastic maintenance
routing incorporating Monte Carlo simulation and a metaheuristic.

The remainder of this paper is organised as follows: Section 2 presents a review on maintenance
routing in offshore wind farms. Section 3 describes the optimisation model and the metaheuristic
technique for the deterministic maintenance routing problem. Section 4 presents a set of compu-
tational experiments to analyse the performance of the proposed metaheuristic method in solving
the deterministic problem. In Section 5, the simulation-optimisation based model for dealing with
uncertainty in the stochastic maintenance routing problem is discussed. Section 6 presents the re-
sults of computational experiments to evaluate the performance of the proposed simulation-based
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optimisation algorithm in solving the stochastic maintenance routing problem. The last section
highlights the findings and some avenues for future research.

2. Literature review

A variety of models ranging from one period to multi-period have been developed. St̊alhane
et al. (2015) proposed the maintenance routing for an offshore windfarm for a one-day planning
horizon.The model developed is a Mixed Integer Linear Programme (MILP) considering preventive
and corrective maintenance activities along with the capacity of vessels transporting technicians.
The model is reformulated as a path-flow model where Dantzig-Wolfe decomposition (Dantzig and
Wolfe, 1960) is applied. In their work, a heuristic is proposed to generate a subset of possible routes.
Dai et al. (2015) introduced an MILP model that integrates maintenance scheduling and routing
problems. The model aims to optimise the schedule and the route for each vessel to maintain a
set of wind turbines over a planning period of several days. In other words, the model proposed
considers the multiple period problem. In addition, the model takes into account the capacity of
vessels in transporting spare parts. This problem was solved using an exact method.

An optimisation model for maintenance scheduling and routing for multiple periods, multiple
O&M bases and multiple offshore wind farms was investigated by Irawan et al. (2017). The model
is an enhancement of the model proposed by Dai et al. (2015) where the aim is to find the optimal
schedule for maintaining the turbines and the optimal routes for the vessels to access the turbines.
They designed an efficient algorithm based on the Dantzig-Wolfe decomposition method where an
MILP for each subset of turbines is optimally solved to generate all feasible routes and mainte-
nance schedules. Raknes et al. (2017) studied an optimisation model for the maintenance schedule
and routing problem taking into account multiple work shifts. Moreover, the model deals with
the situation where vessels are able to stay offshore for several shifts. Schrotenboer et al. (2018)
investigate the problem proposed by Irawan et al. (2017) considering sharing of technicians between
wind farms. The authors propose an Adaptive Large Neighborhood Search heuristic for solving the
problem. Stock-Williams and Swamy (2019) study the daily maintenance planning problem where
metaheuristic optimisation model based on a Genetic Algorithm is combined with a simulator to
evaluate solutions.

Most of the papers cited above deal with the deterministic case where all parameters are treated
as certain parameters. In this paper, we first propose an efficient metaheuristic approach based on
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Large Neighborhood Search to solve the maintenance routing problem for a one-day planning hori-
zon. The simulation-based optimisation algorithm combines the metaheuristic with Monte-Carlo
simulation to solve the stochastic maintenance routing problem. In the proposed simulation-based
optimisation algorithm, Monte Carlo simulation is developed to handle the stochastic parameters
including the travel time of each vessel, the required time to maintain a turbine and the transfer
time for technicians and equipment to a turbine. The stochastic parameters can be affected by
many factors including weather conditions, condition of the turbine, technicians skills, vessel condi-
tions, and the weight of equipment/parts. When the travel time or maintenance time are randomly
generated at very high values, the turbines may not be able to be maintained or visited for safety
reasons or because of a prohibitively high total maintenance cost.

3. The optimisation model and solution method for the deterministic maintenance
routing problem

This section presents the optimisation model for the deterministic maintenance routing problem
(MRP) for an offshore windfarm. It is followed by the proposed metaheuristic method for solving
the MRP to determine the best route of each vessel.

3.1. The optimisation model
The optimisation model for the deterministic Maintenance Routing Problem (MRP) for an

offshore windfarm is developed based on the model proposed by St̊alhane et al. (2015). The model
requires information regarding the turbines that need to be maintained and the resources (e.g.
vessels, spare parts and technicians) to do so. The information required from the turbines includes:
the type of maintenance task (PM/CM), the maintenance/repair time, the number of technicians
required, the weight of spare parts needed, downtime cost and turbine penalty cost. The downtime
cost is incurred due to maintenance activities as the turbine stops operating. In other words, a
revenue loss occurs. The turbine penalty cost exists when the turbine cannot be visited/maintained
on a given day due to various factors/constraints including limited resources (e.g. vessels, parts
and technicians) and bad weather conditions. For a turbine that needs a preventive maintenance
task, the turbine penalty cost occurs when the turbine has to operate at a reduced performance
(derated). For a turbine that requires a corrective maintenance task, the turbine penalty cost could
be calculated based on the revenue lost for one day as the turbine is not operating (broken-down).
This cost is also determined based on the electricity price on that day.
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The required information on vessels includes the travel cost/time for each vessel, the transfer
time for technicians and equipment from a vessel to the turbine, the vessel capacity (number of
technicians on board and total weight of spare parts/equipment) and the information whether a
vessel needs to be present during the maintenance operation on a turbine. The information on
the weather window for each vessel includes the earliest time for a vessel to leave from and return
to the O&M base. In other words, a vessel is not allowed to stay overnight at sea. In addition,
the availability of technicians in the O&M base is also considered. The aim of the models is to
minimise the total cost including travel, downtime (PM and CM) and turbine penalty costs. Here,
the technician cost is not considered as this cost is relatively small compared to the other costs. The
following notations are used to describe the sets and parameters of the deterministic maintenance
routing model (MRP).

Sets

V : set of vessels with v as its index

I: set of turbines with i as its index and n = |I|

Ip: set of turbines that need preventive maintenance (Ip ⊂ I)

Ic: set of turbines that need corrective maintenance (Ic ⊂ I)

Iv: set of turbines that can be maintained by vessel v ∈ V

Ĭ: set of turbines whose require a given vessel during the maintenance operations

Vi: set of vessels that can maintain turbine i, Vi ⊆ V, i ∈ I

P : set of technician types (such as electrical, mechanical, and electromechanical) with p as its
index

Let N = {0, ..., 2n + 1} where node 0 and 2n + 1 represent an O&M base for the beginning
and ending of a vessel’s route. Each turbine consists of two types of nodes, namely a delivery and
a pickup node, where turbine i has delivery node i and pick-up node (n + i). Therefore, a set of
delivery nodes is similar to a set of turbines (i ∈ I, i = 1, . . . , n) whereas a set of pickup nodes is
denoted by i ∈ I ′(i = n+ 1, . . . , 2n).

Parameters

cvij : the travel cost of vessel v from node i to j, (i, j ∈ N)

τvij : the travel time of vessel v from node i to j, (i, j ∈ N)
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τ̂i: the required time to maintain turbine i ∈ I

τ̃i: the transfer time for technicians and equipment to turbine i ∈ I

wi: the weight of spare parts and equipment needed by turbine i ∈ I

ρip: the number of technicians of type p ∈ P needed to service turbine i ∈ I

ρ̈p: the number of technicians of type p ∈ P available at the O&M base

c̈i: the turbine penalty cost if maintenance task for turbine i ∈ I is not performed

c̃i: the downtime cost per hour for turbine i ∈ I

ρ̂v: the maximum number of technicians on board vessel v ∈ V (technician capacity)

ŵv: the total weight of spare parts/equipment that can be transported by vessel v ∈ V

t̄v: the earliest possible time for vessel v ∈ V to leave from the O&M base

t̂v: the latest possible time for vessel v ∈ V to return to the O&M base.

For modelling purposes, let ρ(n+1)p = −ρip for i = 1, . . . , n and p ∈ P with ρip = 0 for i =
{0, (2n+ 1)} and p ∈ P .

Decision Variables

Xvij =
{

1 if vessel v ∈ V travels from node i to j, (i, j ∈ N) ,
0 otherwise

Tvi: the time when vessel v ∈ V visits (delivery/pick-up) node i ∈ N

Qvip: the number of technicians of type p ∈ P on vessel v ∈ V after leaving node i ∈ N

The objective function

The objective function aims to minimise the total maintenance cost (Z) including travel, down-
time (due to preventive and corrective tasks) and turbine penalty costs. The objective function is
expressed as follows:

min Z = Ztr + Zcm + Zpm + Zpc (1)

where
Travel Cost Ztr =

∑
v∈V

∑
i∈N

∑
j∈N

(cvij ·Xvij) (2)

CM downtime Cost Zcm =
∑
v∈V

∑
i∈Ic

(c̃i · (Tv(n+i) + τ̃i ·
∑
j∈N

Xvij)) (3)
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PM downtime Cost Zpm =
∑
v∈V

∑
i∈Ip

(c̃i · (Tv(n+i) − Tvi + τ̃i ·
∑
j∈N

Xvij)) (4)

Turbine Penalty Cost Zpc =
∑
i∈I

(c̈i · (1−
∑
v∈V

∑
j∈N

Xvji)) (5)

Constraints ∑
v∈Vj

∑
i∈N

Xvij ≤ 1, ∀j ∈ I (6)

Xv(i+n)i = 0, ∀v ∈ V, i ∈ I (7)∑
j∈I

Xv0j = 1, ∀v ∈ V (8)

∑
i∈Iv

Xv(n+i)(2n+1) = 1, ∀v ∈ V (9)

Xv0j = 0, ∀v ∈ V, j ∈ I ′ (10)∑
i∈N

Xvij =
∑
i∈N

Xvji, ∀v ∈ V, j ∈ N (11)

∑
i∈N

Xvij =
∑
i∈N

Xvi(n+j), ∀v ∈ V, j ∈ I (12)

∑
i∈I

∑
j∈N

(Xvij · wi) <= ŵv, ∀v ∈ V (13)

∑
p∈P

Qvip ≤ ρ̂v, i ∈ {0, 2n+ 1} (14)

∑
p∈P

Qvip ≤ ρ̂v −
∑
p∈P

ρip, ∀v ∈ V, i ∈ Iv (15)

∑
p∈P

ρip ≤
∑
p∈P

Qv(n+i)p ≤ ρ̂v, ∀v ∈ V, i ∈ Iv (16)

Qvip + ρjp −Qvjp ≤ ρ̂v · (1−Xvij) , ∀v ∈ V ; p ∈ P ; i = 0, . . . , 2n; j = 1, . . . , 2n+ 1 (17)

Qvip + ρjp −Qvjp ≥ −ρ̂v · (1−Xvij) , ∀v ∈ V ; p ∈ P ; i = 0, . . . , 2n; j = 1, . . . , 2n+ 1 (18)

Tv0 ≥ t̄v, ∀v ∈ V (19)

Tv(2n+1) ≤ t̂v, ∀v ∈ V (20)

Tvi + τ̃i + τvij − Tvj ≤M · (1−Xvij) , ∀v ∈ V ; i = 0, . . . , 2n; j = 1, . . . , 2n+ 1 (21)

(τ̃i + τ̂i) ·
∑
j∈N

Xvij ≤ Tv(n+i) − Tvi, ∀v ∈ V ; i ∈ I (22)
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∑
v∈V

Qvip ≤ ρ̈p, ∀i ∈ N, p ∈ P (23)

Xvij = 0, ∀v ∈ V, i ∈ Ĭ , j ∈ N, j 6= (n+ 1) (24)

Xv(2n+1)0 = 1, ∀v ∈ V (25)

Xvii = 0, ∀v ∈ V, i ∈ N (26)

Xvi0 = 0, ∀v ∈ V, i ∈ (I ∪ I ′) (27)

Xv(2n+1)i = 0, ∀v ∈ V, i ∈ (I ∪ I ′) (28)

Xvij = 0, ∀v ∈ V, i ∈ I, j ∈ N, v /∈ Vi (29)

Xvji = 0, ∀v ∈ V, j ∈ N, i ∈ I, v /∈ Vi (30)

Xvij = {0, 1}, ∀v ∈ V, (i, j) ∈ N (31)

Tvi ≥ 0, ∀v ∈ V, i ∈ N (32)

Qvip ≥ 0, integer, ∀v ∈ V, i ∈ N, p ∈ P (33)

Constraints (6) and (7) ensure that each turbine is visited only once for delivery and only once
for pick-up. Constraints (8) and (9) ensure that a vessel leaves and returns to the port only once.
Constraints (10) ensure that a vessel returns to the port from a pick-up node. Flow conservation
at each node is expressed by Constraints (11). Here, if a vessel visits a node, this vessel must
leave this node as well. Constraints (12) ensure that both delivery and pick up at a turbine are
done. Vessel capacity is described by Constraints (13). These ensure that the weight of spare parts
transported by a vessel does not exceed its capacity. Constraints (14) – (16) guarantee that the
number of technicians onboard does not exceed the vessel’s capacity. The number of technicians
onboard the vessel when arriving at each node is tracked by Constraints (17) and (18). Constraints
(19) and (20) ensure that a vessel must leave after the start of, and return within, the weather
window. The travel time compatibility of the vessel is maintained by Constraints (21) where M is
an arbitrarily large constant. These constraints also determine the arrival time of a vessel at a node.
Constraints (22) guarantee that the time between the delivery and the pickup is greater than the
time required to perform maintenance at the turbine. Constraints (23) ensure that the number of
technicians required is less than or equal to the number of technicians available in the O&M base.
Constraints (24) make sure that the vessel travels directly from the delivery node to the pickup node
(the same location) if the vessel needs to be present during the maintenance activity. Constraints
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(25) – (28) also ensure flow conservation at each node. The ability of vessels to maintain a turbine
is represented by Constraints (29) and (30). Constraints (31) and (33) indicate the type of the
decision variables.

3.2. Metaheuristic Approach for the Deterministic Problem

The proposed solution method benefits from the large neighborhood search principle to explore
the solution space. The underlying principle of the Large Neighborhood Search (LNS) is to destroy
and reconstruct iteratively the current solution in order to improve it (Eskandarpour et al., 2017).
The proposed solution method (LNS) aims to obtain a good solution that minimises the total
maintenance cost expressed in Equation (1) within an acceptable computational time. The main
steps of the LNS are depicted in Algorithm 1. We first initialise the required parameters (line 1).
Set S∗v consists of a set of turbines that will be visited by vessel v and set R stores all the turbines
that are not visited by any vessel. We call the latter the request set. At the beginning, all the
turbines are assigned to set R = I. The determination of the initial solution (line 2) is detailed
in Section 3.2.1. We use simply a maximum number of iterations (IterMax) as the termination
criterion (line 6). At each iteration, a so-called removal operator is randomly selected to eliminate
a turbine from the current solution and insert it into set R (line 7-9). The resulting solution is
called a partial solution S ′v, after eliminating this turbine. These removal operators are described
in Section 3.2.2. Each turbine belonging to the set R will be reinserted to the partial solution S ′v
to construct a new solution (line 11-12). This process is described in Section 3.2.3. Finally, the
algorithm returns the best solution along with the turbines visited by each vessel and the ones that
are not visited by any vessel.

3.2.1. Initial solution
The initial solution assigns randomly σ turbines to each vessel. σ is set to b |I||V | − 2c. This value

is determined based on numerous computational tests and ensures that each vessel is able to visit
all the nodes (delivery and pick up) with respect to all the constraints such as those concerning
time windows and personnel. Once the sets have been populated, the order of all the nodes (pick
up and delivery) visited by the vessel are determined using the reconstruct operator explained in
Section 3.2.3.
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Algorithm 1 The proposed LNS for the deterministic model
1: Set S∗v = ∅ (∀v ∈ V ), z∗ =∞ and the request set R = I
2: Determine the initial solution S0

v

3: Build the request set R by including turbines that are not inserted at S0
v

4: Best Solution: S∗v ← S0
v

5: Current solution Sv ← S0
v

6: for iter = 1 to IterMax do
7: Randomly choose a Removal operator
8: Select a turbine to be removed from Sv and move it to set R
9: S′v ← Removal(Sv)

10: for i = 1 to |R| do
11: Reconstruct the solution by inserting turbine Ri to solution S′v
12: S′′v ← Reconstruct(S′v)
13: Denote z′′ and z∗ the objective values of solutions S′′v and S∗v , respectively
14: if z′′ < z∗ then
15: S∗v ← S′′v
16: S′v ← S′′v
17: end if
18: end for
19: Update set R by including turbines that are inserted at S∗v
20: Sv ← Removal(S∗v)
21: end for
22: return S∗v , z∗ and R

3.2.2. Removal operators
The goal of these operators is to select a turbine to be eliminated from the current solution. For

this purpose, five operators are defined to explore the solution space from different perspectives. All
the operators work in a hierarchical approach in the way they first determine which vessel should
be targeted and then which turbine should be eliminated. To diversify the search, all the removal
operators (except Random removal) use the biased roulette wheel selection principle introduced
by Prescott-Gagnon et al. (2009). Without loss of generality, let us describe this principle applied
to the vessel selection part only. The reasoning is exactly the same for selecting the turbine to
remove. The underlying principle is to randomly select a vessel, favoring those providing a greater
proximity measure considering the operator of concern. All vessels are sorted in non-increasing
order according to the desired proximity measure. The vessel at position dNρDe is chosen, where
N is the number of vessels, ρ a number generated randomly between 0 and 1, and D a constant
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greater than or equal to 1. For these experiments, the value of D was set at 2.

1. Travel cost removal: Select the vessel with the highest traveling cost and then select a
turbine that imposes the highest travelling cost.

2. Corrective maintenance time removal: Select the vessel with the highest corrective
maintenance cost and then select a turbine that has the most costly corrective maintenance.

3. Preventive maintenance: Select the vessel with the highest preventive maintenance cost
and then select a turbine that has the most costly preventive maintenance.

4. Total cost: Select the route with the highest total cost and select the turbine with the highest
summation of traveling, corrective maintenance and preventive maintenance costs among the
ones assigned to this vessel.

5. Randomly removal: Randomly select a Route and select a turbine for removal out of it.
Equations 1 are used for the above operators excluding Randomly removal to calculate the
sum of traveling, corrective maintenance and preventive maintenance costs associated with
each vessel and turbine needed.

3.2.3. Reconstruct operator
The outcome of applying a removal operator is a partial solution, S′v, and an updated request

set. More precisely, a turbine is selected by the removal operator to be removed from the solution
and is inserted into the request set. The goal of the reconstruct operator is to reconstruct the
partial solution and find the best permutation of the assigned turbines (delivery and pick up) for
each vessel v. Once the order of visiting the turbines is determined xvij , other variables (Tvi, Qvip)
can be computed according to Equations 14 - 23.

Algorithm 2 details the whole process of reconstructing a partial solution. The algorithm starts
with a set of turbines assigned to each vessel and a request set, which contains a set of turbines
that are not yet assigned. The idea is to insert each turbine that belongs to the request set into
the set of turbines visited by each vessel (Sv, v ∈ V ) and explore all the neighboring solutions.
To obtain the neighboring solutions, all the turbines of set Sv convert to their equivalent set of
delivery nodes and pick up nodes. As far as delivery nodes are concerned, complete permutations
are counted. Then, for each permutation of the delivery nodes, all possible permutations of pick
up nodes are considered. If the vessel must be present during the maintenance operations, pick up
node i+n is placed next to delivery node i. Otherwise, all possible places are iteratively considered
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as a candidate place for pick up node i + n. Of course, pick up node i + n must be visited after
delivery node i. Once the permutation of delivery and pick up nodes are determined, the feasibility
check is called to ensure all the constraints are respected.

Algorithm 2 Procedure Reconstruct operator
Require: Partial solution S′v, Request set R, S∗v and z∗

1: Set Sv = ∅ (∀v ∈ V )
2: for For each turbine i in set R do the followings do
3: for For each vessel v ∈ V do the followings do
4: Partial solution: Sv ← S′v
5: if turbine i can be maintained by vessel v then
6: Insert turbine i into set Sv
7: Convert all the turbines of set Sv to a set of delivery nodes [1 . . . n] and pick up nodes

[n+ 1 . . . 2n]
8: for each permutation of a set of delivery nodes do
9: for each permutation of a set of pick up nodes do

10: for each node ([1 . . . 2n]) driven from Sv do
11: Compute Tvi
12: for each personnel p ∈ P do
13: Compute Qvip
14: end for
15: end for
16: Check feasibility of the solution
17: if z < z∗ and the solution is feasible then
18: z∗ = z
19: S∗v ← Sv
20: S′v ← Sv
21: update set R
22: end if
23: end for
24: end for
25: end if
26: end for
27: end for
28: return S∗v(v ∈ V ), z∗ and R
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4. Computational experiments to assess the proposed LNS

In this section, the computational results for the deterministic maintenance routing problem
(MRP) are presented. Extensive computational experiments have been carried out to assess the
performance of the proposed LNS. The implementation of the proposed solution method was coded
in C++ .Net 2015. The experiments were conducted on a PC with an Intel Core i7 CPU @ 3.60GHz
processor, 16.00 GB of RAM and under Windows 7. Here, we compare the performance of the LNS
with other methods from the literature using two case studies. The first case study used in our
experiments is based on a reference wind farm scenario developed in the EU FP7 LEANWIND
project (http://www.leanwind.eu/), which is based on an 8 MW wind turbine (Desmond et al.,
2016). The location of the wind farm is the West Gabbard site in the UK North Sea where the
layout of the wind farm is illustrated in Figure 1a. It is assumed that there are 125 turbines in
the wind farm where the closest one is located 30 km from an onshore O&M base. The distance
between turbines is assumed to be 1.2 km where the Euclidean distance from one turbine to others
is used. The second case study is based on the Thanet wind farm located 11 km off the coast of
Thanet district in Kent, England. This offshore wind farm consists of 100 units of a 3 MW turbine
where the location of the O&M base is located in Ramsgate, UK. The layout of the wind farm is
presented in Figure 1 which is taken from Fischetti and Pisinger (2018).

Figure 1: The wind farm Layout
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Nine instances of each case study are used to assess the performance of the LNS where the
number of turbines (n) that are required to be visited is set from 7 to 14, which consist of PM and
CM turbines. The number of vessels |V | is set from 2 to 4 with different specifications presented
in Table, 1, which is taken from Irawan et al. (2017). An example of the test data for |V | = 3
and |I| = 9 is presented in Table, 2, where PM and CM activities need to be performed on 7 and
2 turbines, respectively. In these experiments, it is assumed that the vessels are available on the
O&M base and all vessels are able to transport the spare parts required for maintaining the turbines.
The time window for each vessel is set to 12 hours which means that a vessel needs to return to
O&M base within 12 hours after the vessel left the O&M base. In addition, the transfer time for
technicians (and equipment) from a vessel to a turbine is set to 11 minutes and 45 technicians are
available at the O&M base.

Table 1: Specification of the vessels

Vessel Weight Technician Speed Fuel Cost/hour
Capacity (kg) capacity (km/hour) (Euro)

V1 3,900 12 35 290
V2 4,000 12 35 300
V3 4,100 12 35 310
V4 3,950 12 35 295

Table 2: An example of test data for the MRP with |V | = 3 and |I| = 9

Turbine PM/CM
Maint. Weight Turbine Downtime Number of The vessel
time of parts Penalty Cost cost/hour Required need to be

(hours) (kg) (e) (e) Technicians present
T1 PM 7 710 7800 650 4 No
T2 PM 7 628 7800 650 2 No
T3 PM 7 882 7800 650 2 No
T4 PM 7 561 7800 650 2 No
T5 PM 7 486 7800 650 4 No
T6 PM 7 552 7800 650 2 No
T7 PM 7 400 7800 650 3 No
T8 CM 3 500 23400 650 4 No
T9 CM 4 320 23400 650 4 No

As the LNS is incorporated within the simulation-based optimisation for solving the stochastic

15



problem (SMRP), it is very important to ensure that the LNS can produce good quality solutions
within an acceptable computing time. In this paper, the MRP is solved by six methods: (i) the
exact method (EM); (ii) the decomposition approach (DA); (iii) an adoptive local search algorithm
which hybridises Simulated Annealing with variable neighborhood (SA); (iv) a perturbation based
variable neighborhood search (VNS); (v) Tabu Search (TS); and (vi) LNS. The exact method is
implemented using IBM ILOG CPLEX version 12.7. The DA is implemented based on Irawan et al.
(2017). For the exact method, we limit the solution time to three hours as the problem is very hard
to solve to optimality. The framework of the SA, VNS and TS are inspired from the literature of
vehicle routing problem with pickups and deliveries due to its similarity to our problem: (i) SA (Avci
and Topaloglu, 2015); (ii) VNS (Polat et al., 2015); (iii) TS (Montané and Galvao, 2006). However,
for the sake of fairness, we use the same operators developed for the LNS as neighborhood structures
within the framework of each of these methods. More precisely, five neighborhood structures are
designed such that each of them is composed of one removal operator and reconstruct operator. To
solve each test instance, the same time limit is used for all the metaheuristics. Here, the time limit
is based on the computational time needed by the LNS to solve the problem. The performance of
the approaches are measured by %Dev between the Z value attained by the proposed methods (Za,
a : EM, DA, SA, VNS, TS and LNS) and the best known Z obtained (Zb). %Dev is calculated as
follows:

%Dev = za − zb

zb
× 100. (34)

For the West Gabbard case study, Table 3 presents the experimental results for the MRP using
various methods (EM, DA, SA, VNS, TS and LNS). Based on the table, the EM generated the
optimal solutions for relatively small problems (|V | = 2 with |I| = 6−7). However, the EM was not
able to guarantee optimality for the relatively large problems ( |I| ≥ 8) within 3 hours. Therefore,
for this case the solutions generated by other approaches (DA, SA, VNS, TS and LNS) are not
guaranteed to be the optimal solutions. It is worthwhile noting that all methods avoid turbine
penalty costs in their solutions produced. In general, the transportation cost accounts for approx.
5% of the total maintenance cost, which is the smallest cost component of the maintenance cost.
On the other hand, the downtime cost for PM is the largest cost component (81%) due to the large
number of turbines that need to be preventively maintained compared to the corrective ones (14%).

According to Table 3, in general, the metaheuristic methods perform quite well as they generate
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Table 3: Experiment results for the deterministic problem on the West Gabbard wind farm

|V | |I| Best Zb EM DA Metaheuristics
Dev (%) CPU

Dev (%) CPU(s) Dev (%) CPU(s) LNS VNS SA TS (s)

2
6 29,227.76 0.00 61 0.00 8 0.00 0.60 0.00 0.00 6
7 34,124.84 0.00 361 0.00 60 0.00 0.00 0.15 0.00 18
8 38,941.43 0.00 10,800 0.00 146 0.00 0.47 0.00 0.31 24

3
9 42,388.62 0.14 10,805 0.00 404 0.32 0.62 0.69 0.59 37
10 47,225.06 0.03 10,810 0.00 943 0.28 0.43 0.44 0.45 59
11 52,068.29 1.06 10,812 0.00 1,895 0.34 0.44 0.42 0.37 72

4
12 55,130.80 0.80 10,817 0.00 8,541 1.13 1.52 1.59 1.49 85
13 60,429.96 0.92 10,819 0.00 10,080 0.42 0.94 0.59 0.50 82
14 65,419.78 0.53 10,810 0.00 15,005 0.37 0.59 0.48 0.92 101

Average 0.39 8,455 0.00 4,120 0.32 0.62 0.49 0.51 54

relatively good solutions (low %Dev) within a relatively short time (54 secs on average). This CPU
time is much smaller than the ones of EM (8,455 secs) and DA (4,120 secs). Among the metaheuristic
methods, LNS outperforms the other methods in terms of the quality of solutions produced as it
yields a relatively small deviation of 0.32% compared to the best solutions obtained. Figure 2 shows
the effectiveness of the proposed LNS method for solving a relatively large problem which consists
of 4 vessels and 14 turbines. LNS provides a good solution within much shorter computing time
(101 seconds) compared to EM (10,810 seconds) and DA (15,005 seconds). When the problem is
solved by the EM within 101 seconds, a bad solution with the total cost of e147,823.68 is obtained.
Note that the DA cannot be terminated in a certain time as this method requires the evaluation of
all possible routes for each vessel.

Figure 2: The cost and CPU time generated by the solution methods for the instance with |V | = 4 and |I| = 14

For the Thanet case study, Table 4 shows the results of the solution methods. In line with the
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previous experiments, the EM was able to obtain the optimal solutions for relatively small problems
(|V | = 2 with |I| = 6 − 7). Overall, the metaheuristic methods perform well as relatively good
solutions with low %Dev are generated within a relatively short time (181 secs on average). This
CPU time is much smaller than the ones of EM (8,457 secs) and DA (22,465 secs). Similar to previous
results, among the metaheuristic methods, LNS outperforms the other methods in terms of the
quality of solutions produced as it yields a relatively small deviation of 0.38% compared to the best
solutions obtained. Therefore, this method can be very useful to be incorporated in the proposed
simulation-based optimisation method to address the stochastic maintenance routing problem in an
offshore wind farm. This simulation-based optimisation approach requires an optimiser (method) to
be executed iteratively. Therefore, a powerful optimiser that runs very fast while generating good
solutions is needed. The EM and DA are not practical as they require a long computational time
to solve the problem, especially for large problems.

Table 4: Experiment results for the deterministic problem on the Thanet wind farm

|V | |I| Best Zb EM DA Metaheuristics
Dev (%) CPU

Dev (%) CPU(s) Dev (%) CPU(s) LNS VNS SA TS (s)

2
6 27,809.73 0.00 53 0.00 9 0.23 0.23 0.23 0.23 5
7 32,664.23 0.00 291 0.00 62 0.20 0.21 0.20 0.20 10
8 37,546.45 0.00 10,799 0.00 118 0.00 0.00 0.05 0.00 23

3
9 40,180.03 0.42 10,802 0.00 1,184 0.56 0.78 0.68 0.66 81
10 45,147.36 0.01 10,805 0.00 2,892 0.13 0.27 0.18 0.26 94
11 49,899.34 0.18 10,809 0.00 6,481 0.21 0.48 0.33 0.42 154

4
12 52,676.57 0.94 10,942 0.00 52,179 0.77 0.69 0.74 0.64 253
13 57,317.39 0.66 10,803 0.00 58,620 0.67 0.83 0.63 0.73 375
14 62,244.71 0.81 10,805 0.00 80,638 0.65 0.66 0.67 0.61 634

Average 0.34 8,457 0.00 22,465 0.38 0.46 0.41 0.42 181

5. Stochastic Maintenance Routing Problem (SMRP)

This section mainly details the proposed simulation-based optimisation method to address two
main streams: (i) uncertain parameters (ii) unexpected broken-down turbines. However, in the first
subsection, we present a review on the stochastic routing problem as the MRP in an offshore wind
farm can be categorised as a vehicle routing problem with pick-up and delivery (VRPDP) based on
the classification proposed by Berbeglia et al. (2007).
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5.1. Overview of the stochastic routing problem

In this subsection, a review on the routing problem with stochastic travel and service times
is presented as in the proposed stochastic routing problem the uncertain travel and maintenance
times are also considered. Kenyon and Morton (2003) investigated an uncapacitated Vehicle Routing
Problem (VRP) with stochastic travel and service time where two different problems are considered.
The first problem minimises the completion time whereas the second one maximises the probability
of completing the operation within a predefined target time. Li et al. (2010) studied a Capacitated
Vehicle Routing Problem (CVRP) with time windows and stochastic travel and service times. The
problem considers the probability of arriving at each customer within the time windows, the prob-
ability of finishing a route within a certain given time and the expected value of some extra costs.
The travel times and service times are assumed to follow a normal probability distribution.

Zhang et al. (2013) studied a stochastic VRP with soft time windows under travel and service
time uncertainties in order to minimise the summation of the fixed cost of vehicles, expected travel
times, cost of early arrivals, cost of late arrivals and cost of excess route duration. In their paper,
each customer can have a different customer service-level constraint and time window. Travel and
service times are random variables with probability distributions that are assumed to be known and
independent. Gómez et al. (2016) proposed a method to solve the distance-constrained CVRP with
stochastic travel and service times which was originally introduced by Laporte et al. (1992). The
problem aims to minimise the total expected duration considering a service-level condition where
each route must finish before a threshold. The stochastic travel and service times are approximated
by Phase-type (PH) distributions (Neuts, 1981). Miranda and ao (2016) investigated the CVRP
with hard time windows and stochastic travel and service time. The service time of each customer
has to start within the range time and if the vehicle arrives early then it must wait. Hierarchical
optimization objectives are taken into account where the main objective is to minimise the number
of vehicles with the operating costs as the secondary objective. The travel and service times are
assumed to follow a normal distribution.

5.2. Simulation-based optimisation method

In the proposed stochastic optimisation model, we consider several uncertain parameters includ-
ing the travel time of vessel v ∈ V (τv), the required time to maintain turbine i ∈ I (τ̂i) and the
transfer time for technicians and equipment to turbine i ∈ I (τ̃i). In this study, we assume that
these parameters follow a normal distribution where the realisations have positive outcomes. Here,
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we propose a simulation-based optimisation method to solve the stochastic maintenance routing for
an offshore windfarm. In this method, the hybridisation of the LNS and Monte Carlo simulation is
proposed. The LNS presented in the previous section is used to solve the deterministic model to find
the route of each vessel to visit the turbines. When solving this deterministic problem, the stochas-
tic parameters are transformed into their deterministic counterparts. When the route of each vessel
has been determined, Monte Carlo simulation is used to obtain an estimate of the expected total
maintenance cost by considering the stochastic parameters. Monte Carlo simulation is an iterative
process where at each iteration, we generate random numbers to represent the stochastic parame-
ters. For each iteration, we propose a vessel penalty cost for the vessel that returns later than t̂v.
This can be considered as the recourse cost. Therefore, an additional parameter is added denoted
by c̆ to represent the vessel penalty cost per hour for the late vessel. In other words, the stochastic
problem has two types of penalty cost. The first penalty cost is the penalty cost for not visiting the
turbines while the second one is for the vessels that return outside the time weather/window.

Algorithm 3 presents the main ingredients of the proposed simulation-based optimisation ap-
proach to solve the SMRP. Parameter γ needs to be first defined representing the γ%-quantile total
cost data used to determine the expected total maintenance cost. Several scenarios can be per-
formed to obtain a solution including 50%, 70% and 90%-quantile. The 90%-quantile represents
the worst conditions where the maintenance duration and travel time are long (above the average).
Therefore, a solution based on the 90%-quantile can be treated as a risk-averse solution as it deals
with the worst of the three scenarios.

The simulation-based optimisation method consists of two stages. The first stage is an iterative
process where the route of each vessel (Sv) is first determined by the LNS. Here, the stochastic
parameters τv, τ̂i and τ̃i are transformed into their deterministic counterparts. In the first iteration,
these parameters are based on their mean values, whereas in the remaining iterations, the parameters
are based on the θ%-quantile data generated from Monte Carlo simulation as shown in Algorithm
4. It is worth noting that the value of θ is adjusted systematically, where θ = (α − 1) · 10 · T̈ /100.
Once the route of each vessel (Sv) has been determined, the Monte Carlo simulation is performed
to accommodate the uncertainty of parameters τv, τ̂i and τ̃i. The expected total maintenance cost
(zs) is obtained by running the simulation T̈ times which can be considered as short simulation (e.g.
T̈ = 10, 000). This procedure is repeated Γ times and the route of each vessel (S∗v) that gives the
smallest expected total maintenance cost zs∗ is then selected as an input to the next stage. In the
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Algorithm 3 The proposed simulation-based optimisation approach for the SMRP
1: Initialization:
2: Define γ, Γ, T̈ and T̆ . Set zs∗ =∞ and S∗v = ∅, v ∈ V .
3: Stage 1:
4: for α = 1 to Γ do
5: if α = 1 then
6: Use the mean value to estimate the travel time of each vessel (τv), the maintenance time

for each turbine (τ̂i) and the transfer time for technicians and equipment to a turbine (τ̃i)
7: else
8: Set θ = (α − 1) · 10 · T̈ /100 and use the θ%-quantile data generated from Monte Carlo

simulation in the previous iteration (iteration [α− 1]) to estimate parameters τv, τ̂i and τ̃i
9: end if(τ̃i) based on their distribution.

10: Solve the MRP using the LNS with deterministic parameters. The route for each vessel is
then obtained. Let Sv(v ∈ V ) be a set of turbines that will be visited by vessel v.

11: Run Monte Carlo simulation T̈ times (short simulation) using Sv (the route of each vessel
obtained by previous step) by calling Algorithm 4 - Monte Carlo Simulation (Sv, T̃ , γ, zs).
Record the expected total cost value (zs) based on the γ%-quantile total maintenance cost
data.

12: if zs < zs
∗ then

13: Update zs∗ = zs and S∗v ← Sv.
14: end if
15: end for
16: Stage 2:
17: Run Monte Carlo simulation T̆ times (long simulation) using S∗v obtained from the previous stage

by calling Algorithm 4 - Monte Carlo Simulation. Record the final expected total maintenance
cost value zs∗ and take S∗v as the route for each vessel in the final solution.

second stage, Monte Carlo simulation (e.g. T̈ = 100, 000) is performed based on (S∗v) to obtain the
final expected total maintenance cost zs∗ . As this method requires the solution of the deterministic
problem iteratively (several times), a powerful optimiser that can solve such a problem within a
relatively short time while producing good quality solutions is needed. Therefore, we propose a
metaheuristic that will be embedded in the proposed simulation-based optimisation method.

The procedure of Monte Carlo for the SMRP is presented in Algorithm 4 which requires the route
of each vessel (Sv) as input. This route is determined by the LNS. The simulation is executed T̃

times, where in each run parameters τv, τ̂i and τ̃i are generated randomly based on their distribution.
As the route is fixed, the number of technicians required (Qvip), the drop/pick-up time (Tvi) and
the return time (Tv(2n+1)) for each vessel v ∈ V can be determined based on the generated values
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of τv, τ̂i and τ̃i. In addition, the total maintenance cost can be calculated taking into account the
vessel penalty cost for the vessels that return to O&M base beyond the recommended time (t̂v).
This vessel penalty cost can be determined by introducing an additional parameter called c̆ which
represents the vessel penalty cost per hour for the late vessel. Once T̃ have been executed, the
expected total maintenance cost is taken from the γ%-quantile total maintenance cost (zk).

Algorithm 4 The Proposed Monte Carlo Simulation
Require: Sv, T̃ , γ, zs

1: for k = 1 to T̃ do
2: Generate randomly the travel time of each vessel (τv), the maintenance time for each turbine

(τ̂i) and the transfer time for technicians and equipment to a turbine (τ̃i) based on their
distribution.

3: Using the fixed route of each vessel (Sv), determine the number of technicians required (Qvip),
the drop/pick-up time (Tvi) and the return time (Tv(2n+1))

4: Compute the total maintenance cost of the kth iteration considering the vessel penalty cost
for the late vessels returning to O&M base.

5: end for
6: Use the γ%-quantile total maintenance cost data (zk) as the expected total maintenance cost

value (zs).

5.3. The simulation-based optimisation considering unexpected broken-down turbines

An additional consideration when maintenance route planning is that a turbine could suffer an
unexpected break down shortly before or during the execution of the planned route. A breakdown
here is defined as an event sufficiently severe as to stop the turbine from producing any power.
This type of breakdown occurs according to a continuous statistical distribution, that may or may
not be known in advance and is governed by a failure rate parameter as well as information from
the maintenance history of the turbine. With growing data and hence knowledge of wind turbine
breakdowns, these failure rates are becoming more predictable.

There are several strategies to deal with turbines which break down or are likely to breakdown
close to the planned route of the vessel. Sampling, which is one of the common strategies, in-
corporates stochastic knowledge by generating scenarios based on realisations drawn from random
variable distributions (Pillac et al., 2013). The fundamental idea is to include the sampled turbines
which have high chances to breakdown to the existing set of turbines to be visited. Therefore,
we may end up with three scenarios: (i) A-priori optimal route which ignores turbines likely to

22



breakdown; (ii) Tour with sampled turbines selected based on their failure rate and their mainte-
nance history; (iii) Optimal scenario without sampled turbines which is sub-optimal regarding a
cost evaluation, but leaves room to accommodate new turbines at a lower cost Figure 3 illustrates
how scenarios are generated where based on the current turbines (Figure 3a), tour with sampled
turbines, i.e. turbine T5, (Figure 3b), and a tour without the sampled turbine T5 (Figure 3c).

Figure 3: Scenario generation in sampling approaches

In this study, we utilise Monte Carlo simulation to predict the turbine breakdowns based on the
failure rate and the maintenance history of the offshore turbine. We consider the failure rate per
turbine per year (λ) together with the failure rate per turbine components per year (λc, c ∈ C),
where set C denotes the components in an offshore turbine including the gearbox, transformer,
blades, tower. The number of technicians, the repair time and the weight of spare parts required to
maintain the turbine are determined based on the component that needs to be repaired. Let J be
the set of turbines in an offshore wind farm whereas set I denotes the set of turbines that will be
maintained (PM and CM) where these turbines are determined at the beginning. Let J ′ = J − I
be the turbines that will not be visited. However, there is a probability that these turbines might
breakdown, where the unexpected broken down turbines need corrective maintenance straight away
in order to reduce cost and maintain power output.

The main procedure of Monte Carlo simulation to predict the turbine breakdowns is presented
in Algorithm 5. In the first step, based on the maintenance history, the last maintenance date for
each turbine j ∈ J ′ is retrieved where tj , j ∈ J ′ indicates that turbine j was maintained tj days
ago. Assuming that the failure rate (λ) remains constant over the life of a turbine, the probability
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of failure before a certain time can be approximated using Exponential Distribution. This means
that the reliability for each turbine (Rj) can be calculated as follows: (Rj = e−λtj ). The simulation
is executed T̄ times, and in each run a turbine is randomly determined whether it will breakdown
or not based on its reliability. If it is the turbine is broken down then the component that needs
to be repaired is also randomly generated using the roulette wheel selection principle based on the
failure rate of the components. Parameters τ̂ji, wji, and ρjp are determined based on the selected
component. Then, we select β turbines with the highest number of failures (ηj) to be included as
the sampled turbines (Ĵ).

Algorithm 5 The Monte Carlo Simulation for Predicting broken-down turbines
1: Retrieve the last maintenance date for each turbine (tj , j ∈ J ′).
2: Calculate the reliability for each turbine (Rj = e−λtj )
3: Define T̄ and set τ̂ji = ∅, wji = ∅, ρjp = ∅, and ηj = 0
4: for i = 1 to T̄ do
5: for each turbine j ∈ J ′ do
6: Generate randomly υ ∈ (0, 1)
7: if υ > Rj then
8: Select randomly the type of component that need to be repaired using the roulette wheel

selection principle based on the failure rate of the components.
9: Determine the values of τ̂ji, wji, and ρjp based on the selected component.

10: Update ηj = ηj + 1
11: end if
12: end for
13: end for
14: Calculate τ̂j =

∑T̄
i=1 τ̂ji/ηj , wj =

∑T̄
i=1wji/ηj , and ρj =

∑T̄
i=1 ρjp/ηj

15: Let Ĵ be the top β turbines that have the highest value of ηj where Ĵ ∈ J ′

6. Computational experiments for the stochastic maintenance routing problem

Extensive computational experiments have been carried out to evaluate the performance of the
proposed stochastic model for the maintenance routing problem under uncertainty (SMRP). The
set of data used for the SMRP is similar to the one used for the MRP in Section 4. However, the
data has been adapted in order to be suitable for the SMRP. Here, the experiments on the stochastic
model are performed on the West Gabbard case study only. The specification of the vessels used in
the model is based on Table 1. The travel time per km of each vessel follows a normal distribution
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with mean µ = 1.71 and standard deviation σ = 0.7. We also assume that the required transfer time
for technicians and equipment from a vessel to a turbine follows a normal distribution with mean
11 minutes and standard deviation 4 minutes, N(11, 4). In the Monte Carlo simulation, the vessel
penalty cost (c̆) is set to e650 per hour to penalise a vessel that returns after the weather/time
window (12 hours) which is almost the same as the downtime cost per hour. The example of the
turbines data is similar to the ones in Table 2 where the maintenance time is also assumed to follow
a normal distribution. The mean repair time is set to the values of the third column of Table 2
whereas the standard deviation is set to 2 and 3 hours for PM and CM activities respectively.

6.1. Computational Results for SMRP

In this study, three scenarios have been considered by varying the value of θ to 50%, 70% and
90%. In other words, the experiments have been performed using the 50%, 70% and 90% quantiles
to obtain the expected total maintenance cost. The experimental results are presented in Table
5, which is divided into three sections where the results with 50%, 70% and 90% quantiles (θ) are
provided. The table presents the breakdown cost together with turbine and vessel penalty costs
which refer to penalty costs for not maintaining a turbine and for not returning to the O&M base
within the weather window, respectively. The table also shows the CPU time required to solve each
instance, which increases with the number of turbines to maintain. The table also reveals that the
total maintenance cost increases with the number of turbines. The transportation cost is relatively
small when compared to the total downtime cost. When a higher value of θ is used, the total penalty
cost increases. This is reasonable as the value of θ affects the expected maintenance duration and
travel time. When the value of θ is high, the maintenance duration and travel times are long.

Table 6 presents a summary of the computational results for the MRP and SMRP. The results
on the Deterministic MRP column in the table are obtained by solving the deterministic MRP using
the proposed LNS. In the deterministic MRP, the stochastic parameters are approximated by their
mean values. The table shows the results of the SMRP when the 50%, 70% and 90% quantiles
are used. The difference (%) between the deterministic MRP and the stochastic MRP solutions is
also provided. It can be noted that diff (%) increases when the value of θ increases. Here, 50%,
70% and 90% quantiles yield approximately a difference of 3.5%, 7.9% and 15.6% respectively. The
total maintenance costs produced by the proposed stochastic model are slightly higher than the
one produced by the deterministic MRP model. However, the solutions on the stochastic model are
more realistic as uncertain conditions are considered.
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Table 5: The computational results for the stochastic maintenance routing

|V | |I| Total cost broken-down Cost (%) CPU (s)Transport Preventive Corrective Turbine penalty Vessel penalty
Simulation-based Optimisation method (θ = 50%)

2
6 30 027.60 907.73 25 185.70 3 934.17 0.00 0.00 150
7 35 308.98 674.99 31 404.21 3 229.79 0.00 0.00 299
8 41 086.07 780.21 37 346.03 2 959.83 0.00 0.00 466

3
9 43 661.13 1 102.10 37 380.11 5 178.92 0.00 0.00 1 279
10 48 448.20 955.72 41 207.59 6 284.88 0.00 0.00 2 110
11 53 972.59 1 072.50 42 893.42 5 779.77 0.00 4 226.91 2 600

4
12 56 885.58 1 185.98 47 362.77 6 920.80 0.00 1 416.03 4 990
13 61 974.01 1 319.91 51 749.86 8 904.24 0.00 0.00 4 748
14 67 355.56 1 274.63 54 637.42 10 092.07 0.00 1 351.44 4 879

Simulation-based Optimisation method (θ = 70%)

2
6 31 213.38 456.60 29 086.66 1 670.12 0.00 0.00 149
7 37 071.54 819.79 33 192.60 3 059.15 0.00 0.00 283
8 42 929.75 777.76 38 156.90 3 995.09 0.00 0.00 378

3
9 45 266.08 926.68 38 777.36 5 562.04 0.00 0.00 1 115
10 50 674.51 1 533.88 40 483.37 6 228.96 0.00 2 428.31 2 108
11 56 295.47 675.21 49 665.62 5 627.05 0.00 327.58 2 584

4
12 59 288.21 1 258.92 49 030.36 8 590.94 0.00 407.99 4 992
13 64 454.13 1 298.33 51 169.74 11 014.84 0.00 971.22 4 768
14 69 992.38 1 490.12 55 582.22 10 405.79 0.00 2 514.25 4 863

Simulation-based Optimisation method (θ = 90%)

2
6 33 644.74 703.42 30 264.86 2 676.46 0.00 0.00 135
7 39 704.57 797.28 33 713.16 5 194.12 0.00 0.00 259
8 45 915.91 532.06 40 206.29 5 045.07 0.00 132.49 468

3
9 48 571.13 940.70 40 243.69 6 575.84 0.00 810.90 1 210
10 54 164.92 954.56 43 787.25 6 492.25 0.00 2 930.87 2 079
11 59 904.69 879.97 47 633.21 9 482.00 0.00 1 909.52 2 615

4
12 63 039.36 1 698.43 52 125.27 9 215.67 0.00 0.00 5 102
13 68 306.38 1 381.41 54 316.12 11 207.97 0.00 1 400.88 4 768
14 74 087.88 1 322.15 63 619.66 8 813.34 0.00 332.74 4 958

Table 7 shows the different routes for |V | = 3 and |I| = 9 generated by solving the deterministic
MRP and stochastic MRP with θ= 50%, 70% and 90%. In the table, the text in red indicates
the pick-up nodes as the the vessels will pick up technicians from the turbines. The table also
presents the number of technicians in the vessels after leaving the nodes (turbines). According to
the solutions obtained, all three vessels are used to maintain the turbines. The solutions generated
also prioritise the broken down turbines (Turbines T8 and T9) where these turbines are visited
first in order to minimise the total cost. The corrective maintenance (CM) task is needed for these
turbines as they are not operating. Surprisingly, in the solution generated for SMRP with θ= 50%,
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Table 6: Summary of the computational results for the MRP and SMRP

|V | |I| Deterministic MRP
Stochastic MRP (SMRP)

Quantile (50%) Quantile (70%) Quantile (90%)
Total cost Diff.(%) Total cost Diff.(%) Total cost Diff.(%)

2
6 29 227.76 30 027.60 2.74 31 213.38 6.79 33 644.74 15.11
7 34 124.84 35 308.98 3.47 37 071.54 8.64 39 704.57 16.35
8 38 941.43 41 086.07 5.51 42 929.75 10.24 45 915.91 17.91

3
9 42 388.62 43 661.13 3.00 45 266.08 6.79 48 571.13 14.59
10 47 225.06 48 448.20 2.59 50 674.51 7.30 54 164.92 14.70
11 52 068.29 53 972.59 3.66 56 295.47 8.12 59 904.69 15.05

4
12 55 130.80 56 885.58 3.18 59 288.21 7.54 63 039.36 14.35
13 60 429.96 61 974.01 2.56 64 454.13 6.66 68 306.38 13.03
14 65 419.78 67 355.56 2.96 69 992.38 6.99 74 087.88 13.25

Average 3.29 7.67 14.93

Vessel 1 is expected to visit six turbines at the expense of a vessel penalty cost for the lateness to
return to O&M base (approx. 1.6 hours). This is due to the fact that travel time and repair time
are relatively small when θ= 50%. In this case, the vessel penalty cost is smaller than the travel
cost of other vessels to visit the turbines that are allocated to Vessel 1. In the solutions produced
for SMRP with θ= 70% and 90%, all vessels return to the O&M base within the weather window. It
is interesting to observe that the solution with θ= 90% (the worst weather conditions) is relatively
similar to the solution of deterministic MRP. Although the routes generated by these solutions are
not the same, the number of turbines visited by each vessel along with the number of technicians
required are quite similar.

6.2. Computational Results for SMRP considering the unexpected broken-down turbines

This subsection presents the computational results for the SMRP considering the unexpected
turbine breakdowns. In this experiment, an offshore windfarm consists of 125 turbines (J) and
within one day 6 to 14 turbines need to be maintained. The first step is to determine the sampled
turbines by executing Algorithm 5. The value of tj , j ∈ J ′ (the last days that the turbine has
been maintained or repaired) is randomly generated between 1 and 45 days assuming that the
turbine needs to be visited 6 to 8 times in one year. The failure rate of an offshore turbine and its
components is taken from Carroll et al. (2016). The failure rate of the turbine (λ) is 8.273 failure
per turbine per year, whereas the failure rate of its components together with the average number of
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Table 7: The routes generated for instances with |V | = 3 and |I| = 9
Determistic MRP

Vessel Nodes O&M T8 T4 T6 T5 T8 T4 T6 T5 O&M
V1 #Techs 12 8 6 4 0 4 6 8 12 12

Vessel Nodes O&M T9 T1 T3 T9 T1 T3 O&M
V2 #Techs 10 6 2 0 4 8 10 10

Vessel V3 Nodes O&M T2 T7 T2 T7 O&M
V3 #Techs 5 3 0 2 5 5

Stochastic MRP with 50% percentile
Vessel Nodes O&M T8 T2 T6 T4 T3 T8 T5 T2 T6 T4 T3 T5 O&M

V1 #Techs 12 8 6 4 2 0 4 0 2 4 6 8 12 12
Vessel Nodes O&M T9 T7 T9 T7 O&M

V2 #Techs 7 3 0 4 7 7
Vessel Nodes O&M T1 T1 O&M

V3 #Techs 4 0 4 4
Stochastic MRP with 70% percentile

Vessel Nodes O&M T9 T4 T1 T6 T9 T4 T1 T6 O&M
V1 #Techs 12 8 6 2 0 4 6 10 12 12

Vessel Nodes O&M T8 T2 T7 T3 T8 T2 T7 T3 O&M
V2 #Techs 11 7 5 2 0 4 6 9 11 11

Vessel Nodes O&M T5 T5 O&M
V3 #Techs 4 0 4 4

Stochastic MRP with 90% percentile
Vessel Nodes O&M T9 T5 T3 T2 T9 T5 T3 T2 O&M

V1 #Techs 12 8 4 2 0 4 8 10 12 12
Vessel Nodes O&M T8 T1 T7 T8 T1 T7 O&M

V2 #Techs 11 7 3 0 4 8 11 11
Vessel Nodes O&M T4 T6 T4 T6 O&M

V3 #Techs 4 2 0 2 4 4

technicians, repair time and maintenance cost (e) are given in Table 8. Note that we only consider
the minor repair that needs less than 10 hours to repair the turbine.

In the Monte Carlo Simulation of Algorithm 5, the value of T̄ is set to 10,000 simulation runs.
The value of β is set to min{(|V | − 1), 2} where β turbines with the highest probability value is
treated as the sampled turbines. Figure 4 presents the pareto chart of the probability of turbines
that will break down generated for the instance with |V | = 3 and |I| = 9. In this case, Turbines
T5 and T6 are considered as the sampled turbines and they are predicted to breakdown on that
day. Table 9 reveals the experimental results for the SMRP considering the unexpected turbine
breakdowns. The table provides the total maintenance costs for the a-priori route, route with
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Table 8: The failure data for each component
C#1 C#2 C#3 C#4 C#5 C#6 C#7 C#8 C#9 C#10 C#11 C#12 C#13 C#14 C#15 C#16 C#17 C#18 C#19

λc 0.824 0.812 0.485 0.395 0.456 0.407 0.358 0.326 0.355 0.373 0.247 0.278 0.182 0.19 0.162 0.092 0.076 0.108 0.052
ρc 2.3 2 2.2 2.2 2.1 2 2.2 2.2 2.2 1.8 2.3 1.9 2.3 2.3 2.2 2.6 2.2 2.2 2.5
τc 9 5 7 8 9 4 5 4 8 2 8 4 10 5 5 5 7 7 7
e 1900 2400 3500 2500 1500 2000 2000 2300 2000 2400 2500 2000 1500 1300 3000 1100 5300 1200 2300

C1: Pitch/Hyd C6: Grease/Oil/Cooling Liq C11: Sensors C16: Tower/Fondation
C2: Other components C7: Electrical Components C12: Pumps/Motors C17: Power Supply/Converter
C3: Generator C8: Contactor/Circuit Breaker/Relay C13: Hub C18: Service Item
C4: Gearbox C9: Controls C14: Heaters/Coolers C19: Transformeter
C5: Blades C10: Safety C15: Yaw System

λc: failure rate of component ρc: # technicians needed τc: repair time (hours) e: maintenance cost in e

sampled turbines and optimised scenario without sampled turbines. The routes are generated by
executing the proposed simulation-based optimisation method with 90%-quantile. According to the
table, the unexpected broken down turbines (sampled turbines) have increased the maintenance
cost by approximately 18% on average as the number of turbines that need to be visited increases.
The total maintenance cost is still 5.6% higher than the one of the a priori route although the
sampled turbines have been removed from the routes. However, the routes based on the optimised
scenario without sampled turbines are more robust as they consider the turbines that have a high
chance of breakdown.

Figure 4: Pareto chart of the probability of turbines that will breakdown (Instance with |V | = 3 and |I| = 9)

We also observe quite interesting results when considering the turbine breakdowns. Figure 5
shows the routes generated for the instance with |V | = 2 and |I = 8|. As illustrated on Figure
5a, in the a priori routes, all turbines can be maintained and visited by 2 vessels. However, once
turbine T9 is considered as a sampled turbine that has high potential to breakdown, and turbine
T6 that needs PM cannot be visited by Vessel 1 due to the lack of resources. This leads to the
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Table 9: Experiment results for the SMRP considering the unexpected broken-down turbines (using 90%-quantile)

|V | |I|
A-priori Routes with sampled Optimized Scenario

route turbines without sampled turbines
Total Cost Total Cost Diff. (%) Total Cost Diff. (%)

2
6 33,644.74 39,527.85 17.4860 35,129.22 4.4122
7 39,704.57 44,659.93 12.4806 40,942.45 3.1177
8 45,915.91 52,336.98 13.9844 47,995.59 4.5293

3
9 48,571.13 60,902.75 25.3888 53,475.40 10.0971
10 54,164.92 65,095.14 20.1795 57,204.13 5.6110
11 59,904.69 72,544.47 21.0998 64,097.96 6.9999

4
12 63,039.36 73,186.63 16.0967 66,173.17 4.9712
13 68,306.38 79,507.95 16.3990 71,757.15 5.0519
14 74,087.88 85,754.08 15.7464 78,782.65 6.3368

Average 17.6512 5.6808

turbine penalty cost for not visiting turbine T6. However, the new routes illustrated in Figure 5c
are more robust and flexible to accommodate turbine T9 that may breakdown.

Figure 5: Comparison of the generated routes for instance with |V | = 2 and |I| = 8

6.3. Sensitivity Analysis

A sensitivity analysis on the vessel penalty cost for late return vessels is carried out to provide
useful information to decision makers. We evaluate the effect of the vessel penalty cost on the change
in the total lateness (hours) and the routes generated for each vessel. In the previous experiments,
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a vessel penalty cost of e650 per hour (c̆) is used which is based on the downtime cost. We vary
this cost to e350 and e50 per hour. The former is determined based on the average personnel cost
(for 12 technicians) per hour, whereas the latter indicates a relatively small vessel penalty cost.
The experiments are carried out on three problems. The first one is the problem with |V | = 2 and
|I| = 7 using θ = 50%, the second one |V | = 3 and |I| = 9 using θ = 70%, and the last one |V | = 4
and |I| = 14 using θ = 90%.

Figure 6 shows the total lateness for a vessel penalty cost (c̆) for a different problem. According
to the figure, when a lower vessel penalty cost is used, a solution with a larger total lateness is
generated. When c̆ is set smaller than the travel cost of a vessel per hour, a turbine tends to be
visited by a vessel that has visited a turbine near to it at expense of a longer return time of this
vessel. This may lead to a vessel penalty cost for the lateness for a vessel to return to O&M base.
However, this cost is still smaller than the travel cost for other vessel to visit that turbine. In other
words, changing the vessel penalty cost per hour affects the turbine allocation configuration. For
example, in the problem with |V | = 3 and |I| = 9 using θ = 70%, Vessels 1 and 2 visit 5 and 2
turbines respectively when c̆= 50. If we increase the value of c̆ to e650, it changes the turbine
allocation configuration where Vessels 1 and 2 visit 4 and 3 turbines, respectively. According to the
results of these experiments, it is more realistic to set the value of c̆ to e650 as a balance turbine
allocation to the vessels can be obtained while yielding the smallest lateness.

Hours

vessel penalty cost
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

0

0.5

1

1.5

2

2.5

3
V4I14(90%)

V2I7(50%)

V3I9(70%)

Figure 6: The total lateness for different scenarios

We also perform a sensitivity analysis on the maintenance/repair time where different statisti-
cal distributions are used to approach this stochastic parameter. In the previous experiments, the
normal distribution was used for the maintenance time. Here, we also apply exponential and log-
normal distributions as these can also be used for this parameter in an offshore wind farm (Seyr and
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Muskulus, 2016). The total maintenance cost is assessed by the change in the maintenance/repair
time generated based on its distribution. The experiments are conducted on three problems using
θ = 50% with |V | = 2 and |I| = 6, |V | = 3 and |I| = 10, and |V | = 4 and |I| = 12. The results of
our experiments are presented in Figure 7, where the total maintenance cost based on the different
distributions for the maintenance time is presented. The figure shows that for each problem, the
use of normal distribution generates the lowest total maintenance cost followed by exponential and
lognormal distributions. This indicates that a longer maintenance time will be generated when
exponential or lognormal distributions are assumed.

Figure 7: The maintenance cost based on different distribution for the maintenance time

7. Conclusions and future work

In this paper, we first propose an efficient metaheuristic based on large neighborhood search
to solve the deterministic maintenance routing problem in an offshore wind farm. Compared to
other methods available in the literature, the proposed metaheuristic performs very well as it runs
fast while producing good solutions. To deal with uncertain conditions, we propose a simulation-
based optimisation algorithm for solving the stochastic problem where Monte Carlo simulation
and the proposed metaheuristic are combined. The uncertain parameters considered in this study
include the travel time of each vessel, the required time to maintain a turbine and the transfer
time for technicians and equipment to a turbine. The total costs produced by the simulation-
based optimisation algorithm are slightly higher than those produced by the deterministic MRP
model. However, the solutions on the stochastic model are more realistic as uncertain conditions
are considered. In addition, we also propose Monte Carlo simulation to predict the failure of the
turbines. Based on the results of this simulation, we can have information on the turbines that have
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a high probability to fail. These turbines are then considered to construct a more robust routing
solution.

There are a number of possible extensions of the models developed in this paper to make it
more applicable to offshore wind farms in operation. The models can be integrated with the O&M
Strategy model for a more holistic decision support framework considering strategic, tactical and
operational time scales. Further research into the choice between the three scenario generation
techniques illustrated by Figure 3 under different real world circumstances would also be an in-
teresting line of potential future research. The models can also be enhanced for the maintenance
scheduling and routing of Service Operation Vessels (SOV) or other ”mother vessels” which can
stay offshore for multiple days. One challenge is coordinating the operation of such vessels with the
use of daughter vessels, ordinary Crew Transfer Vessels and possibly also helicopters.
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