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We measure the local yield stress, at the scale of small atomic regions, in a deeply quenched two-dimensional
glass model undergoing shear banding in response to athermal quasistatic deformation. We find that the
occurrence of essentially a single plastic event suffices to bring the local yield stress distribution to a well-defined
value for all strain orientations, thus essentially erasing the memory of the initial structure. It follows that in a
well-relaxed sample, plastic events cause the abrupt (nucleation-like) emergence of a local softness contrast and
thus precipitate the formation of a band, which, in its early stages, is measurably softer than the steady-state flow.
Moreover, this postevent yield stress ensemble presents a mean value comparable to that of the inherent states
of a supercooled liquid around the mode-coupling temperature TMCT. This, we argue, explains that the transition
between brittle and ductile yielding in amorphous materials occurs around a comparable parent temperature.
Our data also permit to capture quantitatively the contributions of pressure and density changes and demonstrate
unambiguously that they are negligible compared with the changes of softness caused by structural rejuvenation.

DOI: 10.1103/PhysRevE.101.033001

I. INTRODUCTION

Shear banding, an intense localization of plastic strain
within narrow bands, is the primary mode of mechanical
failure in a variety of amorphous materials including metallic
glasses [1] or granular media [2]. When loading conditions
permit, bands may extend throughout a piece of material
and sustain repeated plastic activity while preserving their
overall structure [3]. While it is thus clear that the material
inside shear bands is softer than the surrounding, undeformed,
glass, the structural origin of this softness constrast, and the
mechanisms underlying its rapid emergence, remain highly
debated topics [4–8].

Progress on these issues is hampered by basic difficulties
in describing the mechanisms of plastic deformation in glasses
[9–15]. In these systems, indeed, structural disorder disallows
the existence of topological defects akin to crystalline dis-
locations [16,17], and plasticity results from the intermittent
occurrence of local rearrangements (“flips”) triggered when
the atoms within “zones” (small regions a few atoms wide)
reach mechanical instabilities [18–20]. Although the prox-
imity of a packing to instabilities may correlate with usual
observables such as local density, pressure, or shear stress,
these correlations are weak [21,22], and the question remains
open of their predictive value in the context of shear banding.

Mesoscopic models [23,24] of plasticity represent a glass
as an elastic continuum in which zones are embedded. They
prove able to reproduce most of the phenomenology of
amorphous plastic deformation, in particular the appearance
of shear bands, yet only by postulating that local plas-
tic thresholds are weakened after the occurrence of local
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rearrangements [25–28]. No atomistic data, however, exist
that support this idea.

In this article, we use a recently developed numerical
method [22,29,30] that permits to access local yield stress at
the zone scale (i.e., in regions a few atoms wide) in arbitrary
orientations. This method was previously applied to quenched
glasses prior to any plastic deformation. In a companion paper
[31], we use it to show that the Bauschinger effect results
from plasticity-induced yield strength anisotropies. Here we
use this technique to resolve the local yield stress during
shear banding. We thus demonstrate that the occurrence of
a small amount of plastic strain erases the memory of the
local structural properties acquired during aging. Moreover, it
brings the average local yield stress, in all shear orientations,
to a value smaller than in the steady flow state. The mean yield
stress of postevent zones compares with that of supercooled
liquid inherent states (ISs) around TMCT: This explains that
the equilibration temperature separating ductile and brittle
responses is located in the vicinity of TMCT [32]. When loading
a well-relaxed sample, the suddenness of the rejuvenation
process causes a rapid drop in the local yield stress which
precipitates the formation of a band that persists over large
strain scales thanks to the softness contrast.

II. NUMERICAL METHODS

We use the same atomistic model as in Ref. [30]: a
two-dimensional binary system comprising 104 equal-mass
atoms that interact via a Lennard-Jones (LJ) potential with
second-order smoothing at cutoff. All values are given in LJ
units. Preparation and deformation are performed with peri-
odic boundary conditions at a constant volume corresponding
to a density ρ � 1.02. Samples are prepared via a slow
temperature ramp at rate Ṫ = 0.32 × 10−6 across the glass
transition temperature range. This allows for equilibration
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FIG. 1. (a) Mean shear stress τxy (black) and pressure P (blue) as
a function of Hencky’s equivalent shear strain E during simple shear
AQS loading. Bottom: Local maps at E = 0.05; (b) accumulated
strain ε and (c) yield stress τ c

xy.

until the alpha relaxation time is of order Tg/Ṫ � 106, which
corresponds to a fictive temperature Tf � 0.29 as detailed
in Appendix A. When reaching T = 0.078 TMCT, each sam-
ple is further quenched by energy minimization to obtain a
mechanically equilibrated state. These initial states are then
subjected to athermal quasistatic (AQS) [18,33] simple shear
deformation along the x axis up to a linear strain γ = 5,
with steps �γ = 10−4 and a minimization force tolerance of
10−11. Unless otherwise specified, all averages and distribu-
tions are obtained by collecting data from 100 independent
samples.

In such strongly deformed systems, local strains must
be computed using finite-strain theory (see Appendix B). A
scalar measure of local strain ε is provided by the square root
of the second invariant of the logarithmic (Hencky) strain.
The macroscopic counterpart of this quantity is E = ln(γ /2 +√

1 + γ 2/4).
The sample-averaged stress-strain response during

constant-volume AQS loading is reported in Fig. 1(a). It
displays a typical stress overshoot followed by softening.
As observed in other systems [34], macroscopic pressure
P rises sharply until the peak and continues to grow,
albeit more slowly, thereafter. This pressure increase in
our constant-volume simulations is the analog of a volume
increase in typical fixed-pressure experiments. It is the
signature that plastic activity creates configurations that are
less well packed than the original aged ones, an idea usually
invoked to justify the still classical free-volume theory. We
will, however, rule out this interpretation quantitatively by
showing that the plastically induced pressure increase, or
local density decrease, contributes only a minor fraction of
strain softening.

The plastic response of our relaxed systems systematically
involves shear banding as illustrated in Fig. 1(b): Local strain

field maps, as shown here at E = 0.05, typically display a
high-strain region crossing the cell throughout. This phe-
nomenon may only arise from structural causes, since our use
of AQS shearing rules out the competition between timescales
[6], inertia [8], or local heating [4].

Local yield stress values are measured in sheared con-
figurations using the method of Refs. [22,30]. It consists in
isolating circular inclusions of radius Rfree = 5 and straining
them by requiring outer atoms to follow an affine motion
corresponding to pure shear along an arbitrary orientation
α ∈ [0, π ]. Inner, inclusion atoms are free to move nonaffinely
and required, using the AQS method, to remain mechanically
balanced. The first plastic rearrangement they undergo deter-
mines the yield point of the inclusion in orientation α and
defines the local yield stress τ c(α) and critical strain εc(α).
For any considered α, the yield threshold is thus identified for
all inclusions centered at regular grid points. In this article,
we primarily focus on the changes in softness that affect the
forward barriers, in the loading orientation with α = 0, due
to their direct relevance to the forward plastic response. Yet,
we will show [Sec. III C] that softening occurs in all shear
orientations, and in particular in the backward one (α = π/2).

Let us emphasize that we focus here on the threshold τ c,
not on the residual strength �τ c = τ c − τ , with τ the local
stress. �τ c is an adequate predictor of the immediate plastic
response [22,30] but explicitly depends on local stress, i.e., on
elastic loading. τ c does not and thus constitutes an intrinsic
gauge of local glassy structures.

III. LOCAL YIELD STRESS EVOLUTION

A. Shear band profiles

Figure 1(c) presents the resulting local yield stress map in
the loading orientation τ c(α = 0) = τ c

xy at E = 0.05. When
comparing with the strain map of Fig. 1(b), it is strikingly
clear that the material in the band tends to present lower yield
stress values than the material around it. We thus directly see
here that, as expected, plasticity induces softening and thus
localization in the band [35]. Below we use this ability to gain
insight on the mechanisms underlying the band formation and
stability.

To quantify the emergence and evolution of bands, we
focus first on samples (53 of 100) where a single band nu-
cleates horizontally.1 We identify as band center the ordinate
ySB where the x-averaged local strain reaches its maximum
at the macroscopic strain E = 0.1 where the band is clearly
visible in all samples. We then report in Fig. 2, as a function
of y − ySB, the x-averaged strains and yield stresses at several
macroscopic strains.

The strain profiles [Fig. 2(a)] clearly show that the band
grows over time [13,36]. This would be inaccessible in experi-
ments as the band evolution is usually interrupted by mechan-
ical failure [1]. But, in simulations, since periodic boundary

1In 25 samples, a band initially nucleates vertically yet cannot
persist due to the simple shear Lees-Edwards boundary conditions:
A horizontal band then emerges later. The rest of the samples exhibit
more complex behavior and show intermediate crossed configura-
tions, porelike structure [36], and multiple shear bands.
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FIG. 2. Local averages computed along the shear direction x for
different strain levels E as a function of the vertical position y with
respect to the shear band position ySB: (a) strain 〈ε〉x and (b) yield
stress 〈τ c

xy〉x . The symbols used for the different strain levels are the
same as for Fig. 1(a).

conditions maintain the system integrity, the softness contrast
eventually resorbs itself and the system reaches a unique,
statistically homogeneous, steady flow state [31]. The yield
stress profiles [Fig. 2(b)] distinctly show that the softer region
coincides with the band and grows at a similar rate. At E =
0.05, the contrast of local yield stresses between the band and
the outer region is of order 27%, in striking agreement with
experimental hardness measurements in metallic glasses [37].

Similarly band-centered density, shear modulus, and po-
tential energy profiles are displayed in Appendix C. They
show that the band also presents a 2% lower density, a 17%
lower shear modulus, and a 5% higher potential energy than
the surrounding material. In agreement with Ref. [38], these
profiles demonstrate that the position of the band correlates,
albeit at different degrees, with the initial values of the
considered properties in the quenched state. Although the
initial central fluctuation would decrease with system size,
this merely illustrates that the AQS response is completely
governed by structure. Yet the question remains to understand
why softening occurs just after a few percentage strains, thus
promoting the formation of the band.

B. Local yield stress vs. local plastic strain

In this perspective, we report in Fig. 3, for different E ’s,
the average yield stress [Fig. 3 (top)] conditioned by the local
strain ε from the quench state. These data are collected from
all 100 systems of our ensemble (irrespective of the initial
band orientation). The distribution of log10 (ε/ε∗), which is
the abscissa of this lin-log graph, is reported in the bottom
panel and shows a characteristic two-peak structure [20] that
separates low-strain, elastically responding regions with the

FIG. 3. Top: Average yield stresses 〈τ c
xy〉 as a function of the

normalized local strain ε/ε∗ for various macroscopic strain E . The
continuous, dashed, and dash-dotted horizontal lines correspond
to 〈τ c

xy〉 in the as-quenched, steady-state, and renewed ensembles,
respectively. Bottom: Distribution of log10 (ε/ε∗).

high-strain ones, which have undergone local plastic events.
As E increases, the first peak expectedly decreases in ampli-
tude, while the second one grows and shifts rightward, which
is expected to result from the accumulation of plastic activity.
The crossover strain scale between the two peaks happens to
be ε∗ � 2〈εc〉, with 〈εc〉 = 0.054 the average critical strain
in the as-quenched state. ε∗ thus corresponds roughly with
the scale of the local strain change caused by a plastic
rearrangement.

The 〈τ c
xy〉 curves of Fig. 3(a) constitute the first direct

and quantitative observation of local softening associated
with local yielding. They systematically decay with ε, with
a characteristic strain of order ε∗. This key observation en-
tails that the memory of the initial state is erased with a
characteristic strain corresponding to essentially one event. It
explains the rapidity of softening and thus localization. Yet
there are several features of these curves that are surprising
and call for further explanations: (i) the very low strain
(ε/ε∗ � 0.1), elastic regions present higher yield stress values
than the quenched state; (ii) there is a significant spread
between the curves, which entails that the local yield stress
depends on both E and ε; and, more specifically, (iii) at small
E , highly strained regions are unexpectedly softer than the
steady (homogeneous) flow state, so that at a given ε, the
local yield stress grows with E , which constitutes a hardening
effect.

To clarify these issues, we focus on E = 0.05 and dis-
tinguish within each configuration two types of local envi-
ronments: (a) regions where ε < ε∗/8 are called “unyielded”
and (b) those where ε > 2ε∗ are called “yielded.” The dis-
tributions of local yield stresses in these two subsets are
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FIG. 4. (a) Distribution of local yield stresses τ c
xy in the as-

quenched state (black), the steady flow state (blue), at E = 0.05
in the unyielded (red) and yielded (green) areas and the renewed
state (shades of brown). [(b) and (c)] The effect of pressure and
statistical hardening (see text for details) for the as-quenched state
and unyielded sites (b); the steady flow state and yielded sites (c).

shown in Fig. 4, along with their counterparts in the initial
as-quenched ensemble and steady homogeneous flow. We find
that (A) unyielded regions (mainly outside the shear band)
are harder than the as-quenched state and (B) yielded ones
are (unexpectedly) softer than the steady flow. The hardening
and softening previously noted above under points (i) and (iii)

FIG. 5. Distribution of local yield stresses τ c
xy in the loading

(continuous lines) and reverse directions (dashed lines) in the as-
quenched state (black), the steady flow state (blue), at E = 0.05 in
the unyielded (red) and yielded (green) areas.

(respectively)2 hence affect the whole yield stress distribution;
in fact, they even occur in all orientations as shown below in
Fig. 5.

The hardening of unyielded sites can be attributed pri-
marily to a statistical effect: the progressive elimination (ex-
haustion) from this ensemble of the weakest sites of the
quenched state when they yield [39]. Indeed, if we pick out
the unyielded sites at E = 0.05 and plot their yield stress
distribution in the initial quenched state [Fig. 4(b), orange dia-
monds], then we recover the major part of the hardening. The
residual difference is entirely attributable to the large (nearly
0.4) pressure increase during loading. Indeed, in unyielded
sites, 〈τ c

xy〉 depends roughly linearly, but quite weakly, on P
(see Appendix C), and when both exhaustion and the linear
pressure dependence of 〈τ c

xy〉 are taken into account (green
triangles), we recover the distribution of yield stress outside
shear bands.

We previously observed that yielded sites at finite strains
(especially E = 0.05) are weaker than the steady flow state.
We now show this results from a general property of “freshly
renewed,” i.e., postyield sites. To evidence this idea, we pick
out sites that yield (i.e., present a local strain change �ε >

2ε∗) over a fixed, small amount of macroscopic strain �E =
0.05 (as before), yet starting from different initial states, say,
strain E . Figure 4(c) compares the yield stress distributions
in these postyield states for E values ranging from 0 (as-
quenched) to the steady AQS flow state. Strikingly, all these
distribution collapse. This constitutes a key observation of our
work. It establishes that essentially one plastic event brings the
local structure to a unique yield stress distribution, regardless
of the initial state.

Note that the final states explored in Fig. 4(c) present suffi-
ciently different pressure levels that we should see systematic
deviations from collapse.3 This is not the case, which implies
that the pressure-yield-stress relation is specific to each re-
newed ensemble as shown in Appendix C: The renewal pro-
cess does not produce a unique structural “state” but instead
a unique yield stress distribution under different conditions.
This idea is often speculated to hold in the construction of
mean-field [10,40,41] or mesoscale models [25] but was never
directly observed. It entails that shear banding results from a
process akin to nucleation: the production of structures of a
specific softness level after essentially one plastic event.

The hardening of yielded sites with increasing E then
appears to occur due to the rapid elimination, via further
yielding, of the weakest among the freshly renewed sites. As
E increases, beyond 0.05, the regions of a fixed ε comprise
an increasing fraction of sites that have yielded early but are
strong and have resisted since. This finally explains that the
steady flow state is harder than the freshly renewed sites.

2These effects can also be seen in the 〈τ c
xy〉x profiles of Fig. 2(b) as

material outside the band initially hardens, while the middle of the
band softens at largest E ’s.

3Our renewed ensembles show mean pressure differences up to
0.25 which are expected to correspond to mean yield stress differ-
ences ≈0.0625.
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FIG. 6. Average local yield stress 〈τ c
xy〉 as conditioned by local

density in unyielded (red) and yielded (green) states at E = 0.05 and
in the renewed ensembles (shades of brown).

C. Local yield stresses in other directions

The distributions of local yield stresses in the forward
(α = 0) and backward (α = π/2) global shear directions are
shown in Fig. 5. As for the forward simple shear direction
investigated above, we report the yielded and unyielded states
at E = 0.05, along with their counterparts in the initial as-
quenched ensemble and steady homogeneous flow. Here τ c

xy =
τ c for 2α = 0 and = −τ c for 2α = π , so that forward (respec-
tively, reverse) barriers correspond to positive (respectively,
negative) abscissa. The lack of τ c

xy → −τ c
xy symmetry in all

three deformed ensembles points to a flow-induced anisotropy
studied in detail in Ref. [31]. We do not address this effect
in this article but focus on the overall changes in softness
that affect the forward barriers in the loading orientation.
We see here that the rejuvenation process, in particular the
strain-softening, occurs in fact in all orientations [31].

D. Local yield stress vs. free volume

To quantify the possible role of local expansion in soften-
ing, we report in Fig. 6 〈τ c

xy〉 as conditioned by local density in
both yielded and unyielded site. These data show very clearly
that, at the same ρ, yielded and unyielded sites present sharply
different yield stresses: local density, hence, cannot predict
local softness. The �2% density difference seen between the
band and the outer, elastic, region corresponds to a maximum
τ c

xy variation of �4%, which is insignificant compared with the
observed �27% change in τ c

xy. The leading cause of softening
is the production by plasticity of packings in a different
“state,” i.e., presenting different τ c

xy vs. ρ (or other) relation,
than the initial material.

E. Variation of local yield stresses with parent temperature

We report in Fig. 7 the average 〈τ c
xy〉 computed for inherent

states obtained after instantaneous quenches from different
parent temperatures of equilibrated liquids. It is noteworthy
that the value 〈τ c

xy〉 � 1.32 in postyield states is comparable
with the average yield stress in the ISs of a supercooled liquid
at 0.9 TMCT, a range of temperatures where the dynamics
of liquids enters the activated regime. This indicates that

FIG. 7. Average local yield stresses 〈τ c
xy〉 of inherent states as a

function of their parent (liquid) temperatures.

postyield structures have comparable barriers heights with
a liquid lying on the upper layers of the potential energy
landscape (PEL). From this standpoint, the fact that the av-
erage yield stress in postyield sites compares with that of
liquid ISs near TMCT appears to constitute a fundamental
feature of the PEL. It then explains that the critical parent
temperature separating brittle and ductile yielding transitions
in amorphous materials is located in the vicinity of TMCT [32],
since a contrast must exist between the yield stress in the
initial state and in the postyield sites for shear banding to
occur.

Note, however, that we consider here just an average.
Furthermore, rearranged and inherent states cannot be strictly
compared due to the nonzero polarization in the barrier en-
semble along the loading direction [31] and to the slight in-
crease of the pressure in flowing states. Despite this oversim-
plification, an inherent state obtained near TMCT is therefore
expected to give a good estimate of the stationary threshold
distributions and thus act as a limit between softening (leading
to strain localization) and hardening regimes in deeply and
poorly quenched glasses, respectively [32]. This result is also
fully consistent with recent findings obtained in oscillatory
shear simulations [42,43], showing that the transition from
annealed to yielded behavior is found for parent temperatures
in the vicinity of the dynamical crossover temperature TMCT.

IV. CONCLUSIONS

All mesoscopic models of amorphous plasticity, starting
from the early works by Argon and coworkers [44] to the most
recent space-resolved models [24], postulate the existence of
local thresholds that are reshuffled during plastic events and
affected by local stress. These general assumptions have been
guided by mainly two observations. First, plasticity results
from the rearrangement of local packings, which suggests
it is primarily controlled by local yielding thresholds. Sec-
ond, it involves avalanche behavior, which implies long-range
correlations mediated by elastic deformations. Mesoscopic
models attempt to take these two observations into account
by separating short scales (local packings, which determine
local yield stresses) from large scales, i.e., the requirement of
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mechanical balance which couples elastically local stress
levels. So, clearly, all mesoscopic models implement, of ne-
cessity, the same general script. Yet as soon as one looks at
any level of detail beyond these rough guidelines, there is a
flurry of such models and no consensus on the proper way to
define a reliable one.

The problem is that, until now, as far as we know, no
direct observation had been made of local yield thresholds in
plastically deformed amorphous media. In the absence of such
an observation, it has always remained a question whether the
consideration of local yield thresholds was anything more that
a simplifying assumption. And the key assumption about the
effect of plasticity on local thresholds could only be build
on guesswork: For example, it has never been clear whether
it was meaningful to assume the existence of a well-defined
postyield yield stress distribution. And no test was available
for the prediction of models concerning the dynamics of
their core state variable: the distribution of these local yield
stresses.

The present work, although it does not and cannot solve all
these issues, brings hope that they can be addressed rigorously
in the near future. It will not alleviate the need to rely on
simplifying assumptions, and neither is it intended to provide
a recipe for the construction of mesoscopic model—a still
distant goal. But it probes the rejuvenation process of atomic-
scale yield stresses in a model glass undergoing deformation.
Thus, it brings direct observations that strongly constrain
both model assumptions, especially about the effect of re-
juvenation, and model predictions concerning the dynamics
of local thresholds. Thanks to the focus on a system un-
dergoing shear banding, i.e., comprising quite different local
packings, we could demonstrate that there was indeed a well-
defined postyield yield stress distribution, quite insensitive
to the initial ensemble, and we could access it numerically.
This is evidently a key input for theories of amorphous
plasticity.

Moreover, we found that rejuvenation was an unexpectedly
rapid process, essentially requiring a single event to bring the
local packing to a well-defined softness level, comparable to
that of an IS obtained from a supercooled liquid around TMCT.
This brings several important inputs to theories, specifically
concerning our understanding of shear banding in amorphous
systems. We showed indeed that the rejuvenation drop in
yield stress causes the nucleation-like formation, immediately
after the first yield events, of regions of well-defined softness.
The rapidity of this process, resulting from the intensity and
suddenness of rejuvenation softening, explains that, when
starting from a well-relaxed glass, only a few plastic events
suffice to locally erase the memory of the initial packing
and achieve a soft state, which precipitates the shear banding
instability. Also, the closeness of the postyield yield stress
distribution to that of a liquid around the crossover region hint
at the possibility to explain how the brittle-ductile transition
depend on temperature, a very important practical issue.

By providing access to a relevant internal variable that
characterizes the local mechanical properties, this work opens
promising perspectives for describing nucleation and shear
band dynamics in amorphous solids. It also establishes a
stimulating link between mechanical and thermal proper-
ties, a necessary step to explain how the history of these

FIG. 8. Inherent-state (IS) potential energy per atom as a func-
tion of temperature in equilibrated liquids (gray circles) and in our
gradually quenched system (blue diamond). The green line is a fit of
the equilibrated liquid data. The fictive temperature Tf is estimated
as that where the liquid IS energy extrapolates to that of the gradually
quenched system (see blue dotted lines).

out-of-equilibrium and disordered systems is encoded in their
structure [45].

These observations illustrate the remarkable ability of our
tool to provide much-needed insights on the local mechanisms
of plasticity. We are convinced that a sustained exchange
between such numerical probes, which provide both input
and benchmarks, and the construction of mesoscopic models,
will be instrumental in the coming years for the advancement
of our fundamental understanding of amorphous plasticity.
We only hope the present work is an early step along this
promising route.
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APPENDIX A: EFFECTIVE TEMPERATURE SCALES

1. Determination of the fictive temperature

The notion of fictive temperature Tf is classically used to
map a nonequilibrium glass state onto an equilibrium liquid.
Following Ref. [46], the fictive temperature of our gradually
quenched glass is defined using the inherent state potential
energy: Namely, Tf is defined (see Fig. 8) as the temperature
at which the inherent potential energy of the glass equates that
of equilibrated liquids. We obtain Tf = 0.291 ± 0.007.

2. Determination of the mode-coupling temperature

The mode-coupling temperature TMCT is determined from
a functional fit of the relaxation time τα in the dynamical
regime for different temperatures T [47,48]. We first compute
the self-intermediate scattering function FL(q, t ) = 〈cos(q ·
(r j (t ) − r j (0)))〉, where the subscript L refers to the “large”
particles, r j (t ) is the position of the jth particle at time t , and
〈. . . 〉 denotes the average over j and the time origin. FL(q, t )
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FIG. 9. Relaxation time τα as a function of the equilibration
temperature. The red line is a power-law fit of the data points for
temperatures larger than 0.4. The vertical blue line represents the
location of estimated TMCT.

is averaged over 100 samples, containing 1024 atoms each,
for every temperature. We define the relaxation time τα as
FL(qSF , t = τα ) = 1

e with |qSF | = 6.07 corresponding to the
primary peak of the static structure factor. As reported in
Fig. 9, τα , as computed for temperatures larger than 0.4, is
well fitted by the power-law relation τα ∝ (T − TMCT)γ . We
obtain γ = −0.818 ± 0.005 and TMCT = 0.373 ± 0.001.

APPENDIX B: STRAIN MEASURES

1. Hencky equivalent global shear-strain

Our model glasses are deformed using AQS simple shear
loading up to linear strains γxy = 500%. The global strain
is characterized within the finite-strain theory by using a
Lagrangian description and choosing the Hencky’s logarith-
mic strain definition [49]. The advantages of proceeding in
such a way are threefold: It makes no use of small strain
approximation, it allows us to eliminate rotations, and it will
permit us to characterize macroscopic and microscopic strains
using comparable quantities.

Given F as the deformation gradient, the logarithmic
(Hencky) strain is E = ln(U), where U is the right stretch
tensor, i.e., the unique symmetric and positive-definite tensor
such that F = RU, with R a rotation. Since the right Cauchy-
Green strain

FT F = U2 (B1)

is positive definite, we may also write E = 1
2 ln(U2). More-

over, U2 can be diagonalized, i.e., written as U2 = P−1DP
with D diagonal and P the associated change of basis matrix.
Finally, the invariants of E = P−1 ln(D)P are those of ln(D).

For two-dimensional simple shear deformation, the defor-
mation gradient is

F =
(

1 γ

0 1

)
(B2)

with γ the linear strain and the right Cauchy-Green strain

U2 =
(

1 γ

γ 1 + γ 2

)
. (B3)

FIG. 10. Local averages computed along the shear direction x for
different strain levels E as a function of the vertical position y with
respect to the shear band position ySB: (a) density 〈ρ〉x , (b) shear
modulus in the loading direction 〈Cxyxy〉x , (c) potential energy per
atom 〈e〉x , and (d) pressure 〈P〉x .

It eigenvalues are λ± = ( γ

2 ±
√

1 + γ 2

4 )
2
. Noting that

λ+λ− = 1, since det(U2) = 1, the square-root of the
second tensor invariant of E, E ≡ 1

4 | ln(λ+/λ−)| =
ln ( γ

2 +
√

1 + γ 2

4 ). This is the quantity we refer to in the
manuscript as the macroscopic Hencky strain.

2. Local strain computation

The procedure for computing local strain tensor in our
atomic system is the same as that previously employed in
Refs. [22,30]. It relies on the evaluation of the local, coarse-
grained, deformation gradient tensor F.
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FIG. 11. Local yield stress τ c
xy as conditioned by local pressure

P in yielded (green) and unyielded (red) regions at E = 0.05 and for
renewed sites (shades of brown) at different macroscopic strains.

In continuum mechanics F relates the position in the ref-
erence (undeformed) configuration to the current (deformed)
configuration through the Cauchy-Born rule. For an atomic
system under affine deformation this mapping relates the vec-
tors Xαβ and xαβ connecting atoms α and β in the reference
and current configurations (respectively) by

xαβ
i j = Fi jX

αβ
i j (B4)

with i and j coordinate components. Since local strains are
not affine in general (particularly in glasses [50]) the previous
formula will no longer be exact for each individual atom-
neighbor pair.

For two configurations separated by a small macroscopic
strain interval, as proposed by Zimmerman et al. [51], we
define the atomic-level deformation tensor Fα

i j for atom α by
minimizing the function

Bα =
n∑

β=1

2∑
i=1

g
(
rαβ

0

)(
xαβ

i − Fα
i j X αβ

j

)2
, (B5)

where the sum runs over the n nearest neighbors of α and
where g(rαβ

0 ) is a smooth weighting function that only de-
pends on the distance rαβ

0 between atoms α and β in the refer-
ence configuration [38]. Thus Fα

i j is the best fit of Eq. (B4), in
the least-squares sense, for an atom in its cage. We choose
for g an octic polynomial function [52]. This function has
a single maximum and continuously vanishes at a coarse-
graining length RCG = 5:

g(r) =
{

15
8πR2

CG

[
1 − 2

(
r

RCG

)4 + (
r

RCG

)8]
, for r < RCG

0, otherwise.
(B6)

The minimization of Eq. (B5) with respect to Fα gives

Fα
i j =

2∑
k=1

YikZ−1
jk , (B7)

with

Yik =
n∑

β=1

(
xαβ

i X αβ

k

)
g
(
rαβ

0

)
and Zik =

n∑
β=1

(
X αβ

i X αβ

k

)
g
(
rαβ

0

)
.

(B8)

This procedure is used to compute the strain gradient for
each atom F between macroscopic configuration separated
by small strain intervals �γ = 0.01. For larger �γ , F is nu-
merically integrated by multiplying the deformation gradient
tensors F = FnFn−1 · · · F2F1, where Fi is the deformation
gradient tensors between states i and i + 1 separated by �γ =
0.01.

The local strain is reduced to a scalar following the same
procedure as for the global strain E , which involves the nu-
merical diagonalization of each FT F. Finally, the atomic-level
strain ε is defined as the second tensor invariant of 1

2 ln(FT F).
The ε field is then evaluated on a square grid N2 by

assigning to each grid point the value computed for the closest
corresponding atom. The regular grid lattice constant equals
to Rsampling = L/39 ≈ Rcut, where L is the dimension of the
initially square simulation box and Rcut = 2.5σ is the cutoff
interatomic potential. The grid deforms affinely with the
overall applied strain in simple shear. The local yield stresses
are computed on the same grid.

APPENDIX C: LOCAL PROPERTIES

1. Profiles through the shear band

In Fig. 10, we report the average profiles of density ρ,
elastic modulus Cxyxy, potential energy per atom e, and pres-
sure P for different macroscopic strain levels. As described in
the manuscript, we restrict this analysis to samples featuring
only horizontal shear bands. The profiles are centered on the
shear band ordinate ySB, which is defined at that where the
x-averaged local strain is maximum for E = 0.1.

The values of 〈ρ〉x, 〈Cxyxy〉x, and 〈e〉x in the shear band and
the outer medium are visibly contrasted: The accumulation
of plastic rearrangements brings the system to a less dense,
less rigid, and less stable state. Note, however, that all pro-
files eventually become homogeneous in the stationary flow
state.

Because of the constant volume loading protocol, the aver-
age of ρ is by definition equal to the mean system density.
The local density in the band thus reaches transiently a
minimum around E � 0.05 before increasing again toward
the mean density, its eventual value at large macroscopic
strains.

The evolution of the elastic moduli is somewhat curious.
While it softens in the band, 〈Cxyxy〉x presents an overall de-
crease during the early stages of loading up to the peak stress.
This is expected since the approach to plastic instabilities
reduces the macroscopic elastic modulus [18]. The moduli
in the outer, elastic region then rapidly rises as the stress
decreases from its peak, presumably because the density of
near threshold zone diminishes.

The presence and broadening of the shear band can also be
detected by examining the increase in 〈e〉x. This increase has
already been observed in a very similar atomic system [13],
where it has been interpreted as a rise in effective temperature
through shear-transformation-zone theory.
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It is interesting to note that the shear band position at
E = 0.1, which we take as reference, correlates with various
local properties of the quenched state. Note, finally, that if the
global pressure increases with plastic deformation (see Fig. 1
in the manuscript), then it is almost homogeneous along these
average profiles due to mechanical equilibrium as reported in
Fig. 10(d).

2. Variation of local yield stresses with pressure

We report in Fig. 11 the average of 〈τ c
xy〉 as a function of

the local pressure P in the yielded and nonyielded regions
at E = 0.05 and for renewed states (see manuscript) for
different macroscopic strains. This plot clearly shows that, at
the same P, unyielded and yielded regions present different
yield stresses. Moreover, in either ensemble, the local yield
stress increases nearly linearly with local pressure. This result
is in agreement with the variation of the yield surface obtained
numerically for a metallic glass in Ref. [53], where pressure
or normal stress give results intrinsically similar to a Mohr-
Coulomb criterion. The slopes of the 〈τ c

xy〉 relations differ by

merely 10%. We therefore choose to adjust the slope on all
the data. We find an empirical relationship for yielded and
unyielded sites: 〈τ c

xy〉 = 0.25 P + A, where A is a constant.
Using the identified slope of the local relation between τ c

xy
vs. P, we can now take into account the effect of local pressure
and correct the data in Fig. 4(b) of the manuscript. We
calculate the threshold distribution of unyielded sites at E =
0.05 from the corresponding thresholds in the quenched state
as τ c

xy = τ c
xy(E = 0|E = 0.05, ε < 〈ε∗〉/8) + 0.25�P, where

�P is the variation of local pressure on given sites between
E = 0 and E = 0.05. The corrected curves [green triangles in
Fig. 4(b) in the manuscript] quantitatively reproduce the dis-
tributions τ c

xy of unyielded sites at E = 0.05. This establishes
that changes in the local yield stress for small deformations,
mainly outside of the band, can be attributed both to the
depletion of weak sites and, in the case of constant volume
simulations, to the increase in local pressure.

The relation between 〈τ c
xy〉 and P for the renewed states

at different macroscopic strains still shows a nearly linear
dependency. It, however, slightly deviates from the relation
found for the yielded sites at E = 0.05.
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