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Abstract

In this paper, we present a numerical method to describe the solution set of
a generalized Nash equilibrium problem (GNEP). Previous approaches show
how to reformulate the GNEP as a family of parametric variational inequalities
in the special case where the game has shared constraints. We extend this
result to generalized Nash problems by means of an umbrella shared constraint
approximation of the game. We show the validity of our approach on numerical
examples from the literature, and we provide new results that pinpoint the
handling of the algorithm’s parameters for its implementation. Last but not
least, we extend, solve, and discuss an applied example of a generalized Nash
equilibrium problem of environmental accords between countries.

Keywords: Game theory, Generalized Nash equilibrium problem, Variational
inequality, Karush-Kuhn-Tucker condition, Environmental accord model

Introduction

We consider a non-cooperative N -player game in which the strategy sets
of the players are mutually dependent; the problem of finding an equilibrium
of this game is called the generalized Nash equilibrium problem (GNEP). In
the early 50’s [38], Nash introduced a notion of equilibrium for games, the
well-known Nash equilibrium, where only the payoff function of each player
depends on the others’ strategies. Later on, Arrow and Debreu [3] extended
this notion to the generalized Nash equilibrium for games, where both the payoff
function and the set of feasible strategies depend on others’ strategies. Initially
motivated by economic applications, the notion of equilibrium in games has
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received a vivid interest thanks to its various applications in social science [12],
biology [44, 46] (evolutionary games and replicator dynamics), computer science
[2, 40], environment modeling [8, 10] or energy problems [11, 26, 27, 45] to
cite few among others. These applications have motivated the evolution of
the Nash equilibrium concept, and its use, to complex games that now require
a deep understanding of theoretical and computational mathematics used for
identifying, computing and analyzing (all) the equilibrium strategy(ies) of a
given game.

In the optimization literature, the GNEP has become an active subject dur-
ing the past two decades. We refer the interested reader to the survey papers
[18] and [23] for a complete overview of the state of the art of theoretical results
and numerical methods. The GNEP has been very popular as a modeling tool,
though the theory of numerical algorithms to solve it is still in its infancy.

One particular path for obtaining its solutions is to ”bridge” the gap be-
tween the GNEP and several variational tools well-known from the literature,
see [19], and then use this well-developed theory to solve it. Examples of such
variational tools are variational inequalities and quasi-variational inequalities.
A variational inequality problem is an inequality involving a mapping that has
to be satisfied for all values over a (convex) set. Initiated in the 60’ [31] for elas-
tostatics problems, it has been the subject of further developments in the study
of partial differential equations [29, 48], and is now a well-established modeling
tool in economics [37], optimization [19] and game theory [25]. Its extension
to a variational inequality with a parametric set, the quasi-variational inequal-
ity [6, 35], is now receiving increasing attention due to the need for modeling
more complex problems. For instance, under classical convexity assumptions,
the GNEP can be reformulated as a quasi-variational inequality [5, 39].

A special class of GNEP that has received increasing attention over the
past decade is that of shared constraints (GNSC), which means the constraint
functions that depend on rivals’ strategies are identical among all players. This
particular instance has motivated several numerical approaches in [7, 20, 21, 28,
41] and [18, 23]. The GNSC is, in particular, numerically more tractable as some
(but not all in general) solutions can be found by solving variational inequalities
instead of quasi-variational inequalities [4]. These particular solutions are called
variational equilibria [42]. The computation of such solutions already motivated
some numerical approaches as in [7, 20, 28] and [23].

All the aforementioned approaches focus on computing one equilibrium of
the problem. However, in many cases, there is no uniqueness of the equilib-
rium, and therefore it could be of great use to have a complete description of
the equilibrium set. This was the motivation in [10, 13, 14, 16, 22, 36, 43]. In
[43], the author studies a discrete strategy associated with a branch and bound
method. When the shared constraints are affine, following [36], the entire so-
lution set can be represented as a finite union of polyhedral sets via the KKT
conditions, which allowed specific enumeration as in [13] with quadratic costs
and more recently in [14] with linear costs. A more general approach consists
of reformulating the GNSC as a family of parametrized variational inequalities.
In [22] and the resource-directed parametrization in [36], the parameter varies
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following an enumeration of the decision space. On the other hand, in the price
directed optimization in [36], the authors proposed an enumeration in the dual
space. All these approaches concern the GNSC except [43] for games with a
discrete strategy set and [14] for linear GNEP.

Our aim in this paper is to continue this discussion and extend it to the
GNEP. We study a shared constraint approximation of the GNEP build by
adding all the constraints to each players’ problems, called uGNEP. We prove
that any equilibrium of the game is an equilibrium of this augmented game.
Then, we use the ”price-directed parametrization” approach introduced by [36]
to describe the solution set of the uGNEP. By adding a condition to their
a posteriori analysis, we discard the equilibria that are not equilibria of the
GNEP. Finally, we discuss the implementation and validate our approach on
examples from the literature.

The rest of the paper will be organized as follows. In Section 1, we intro-
duce some classical definitions related to variational inequalities and define the
GNEP. In Section 2, we present the augmented game, which will be used as
a shared constraint approximation of the GNEP. Then, in Section 3, we study
the link between both problems and in particular focus on the link between the
KKT conditions of these games. In Section 4, we discuss a strategy to approxi-
mate the solution set of a GNSC and then extend it to the GNEP through our
augmented GNEP. The implementation of the method as well as discussions on
the implementation is done in Section 5. In Section 6, we show numerical re-
sults on classical examples. We especially outline a 5-player GNEP of countries
involved in the design of an environmental accord by investing in clean tech-
nologies whole curbing emissions. Finally, we discuss concluding perspectives in
Section 7.

1. Generalized Nash Equilibrium Problems

1.1. Variational Inequalities

We start by recalling a few key facts related to variational inequalities. We
refer the interested reader to the manuscripts [29, 48] for a complete introduction
to the subject and to [19] for a recent treatment with a focus on numerical
methods.

Given a non-empty closed convex set X ⊆ Rn and a mapping F : Rn → Rn,
the variational inequality problem VI(F,X) consists in finding x ∈ X such that

F (x)T (y − x) ≥ 0, ∀y ∈ X. (1)

In the special case of a moving set X : Rn ⇒ Rn, the problem (1) becomes a
quasi-variational inequality QVI(X(x), F (x)), which consists in finding a vector
x ∈ X(x) such that

F (x)T (y − x) ≥ 0, ∀y ∈ X(x).
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1.2. Generalized Nash Equilibrium Problems

The generalized Nash equilibrium problem (GNEP) consists of N players,
each player ν ∈ {1, ..., N} controlling the variables xν ∈ Rnν . We denote by
x the vector formed by all the decision variables: x = (x1, . . . , xN )T , which

has dimension n :=
∑N
ν=1 nν . We denote by x−ν the vector formed by all

the player’s decision variables except those of player ν. We sometimes write
(xν , x−ν) instead of x, which does not mean that the block components of x are
reordered. The aim of player ν, given the other players’ strategies x−ν , is to
choose a strategy xν that solves the minimization problem

min
xν

θν(xν , x−ν)

s.t. xν ∈ Xν(x−ν),
(2)

where θν : Rn → R and Xν(x−ν) is defined by a set of inequalities and equalities:

Xν(x−ν) := {xν ∈ Rnν : gν(xν , x−ν) ≤ 0, hν(xν , x−ν) = 0},

with gν : Rn → Rmν and hν : Rn → Rpν . Note that this formulation en-
compasses constraints that depend only on xν , such as box constraints. The
vector x∗ = (x∗,ν)Nν=1 of optimal solutions of (2) is called a generalized Nash
equilibrium.

Denote by X(x) :=
∏N
ν=1Xν(x−ν) the feasible set of the GNEP. Thus, any

equilibrium x∗ satisfy x∗ ∈ X(x∗).
One of the most studied class of GNEP is when the set of constraints is the

same for all players, i.e. there exists a closed set X ⊆ Rn such that for all ν we
have

Xν(x−ν) = {xν | (xν , x−ν) ∈ X}.

The GNEP specialized for this kind of constraint is called the generalized Nash
equilibrium problem with shared constraints (GNSC). In this particular case,
the feasible set of the game is now X(x) = X.

Throughout the rest of the paper, we make the following classical convexity
assumptions allowing several formulations of the problem (see also [18]).

Assumption 1.1. For every player ν and every vector x−ν , the payoff θν(·, x−ν)
is pseudo convex and differentiable, while the constraints gν(·, x−ν) are differen-
tiable and convex, and hν(., x−ν) are affine. Additionally, there exists a vector
y ∈ Rn such that y ∈ X(y).

A direct consequence of these assumptions is that the set Xν(x−ν) is closed
and convex. We refer the reader to [32] for the definition of a pseudo convex
function and its properties.

In particular (2) can be reformulated as a quasi-variational inequality (QVI)
as first noted in [5]. Under Assumption 1.1, solving a generalized Nash equilib-
rium problem is equivalent to solving the QVI

(
(∇xνθν(xν , x−ν))Nν=1, X(x)

)
.

In the special case with shared constraints, under Assumption 1.1, the solu-
tions of the variational inequality VI

(
(∇xνθν(xν , x−ν))Nν=1, X

)
are generalized
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Nash equilibria. However, the converse is not true in general. These particular
equilibria, called variational equilibria (or normalized equilibria) [42], are more
numerically tractable as it is easier to solve a VI than a QVI.

2. An Umbrella Approximation of the GNEP

Based on the observation that the GNSC is numerically more tractable,
we study in this paper a GNSC-type approximation of the GNEP. Consider a
game with shared constraints called an umbrella approximation of the general-
ized Nash equilibrium problem (uGNEP) where each player ν = 1, . . . , N solves
the following optimization problem

min
xν

θν(xν , x−ν)

s.t. xµ ∈ Xµ(x−µ), ∀µ = 1, . . . , N.
(3)

Let us denote the feasible set of (3) by Xν(x−ν). When the feasible set is
described by inequalities and equalities we obtain

min
xν

θν(xν , x−ν)

s.t. gµ(xµ, x−µ) ≤ 0, hµ(xµ, x−µ) = 0, ∀µ = 1, . . . , N.
(4)

It is interesting to note that the feasible set of the augmented game, denoted
X(x), is the same as the initial game, that is

X(x) =

N∏
ν=1

Xν(x−ν) = X(x). (5)

The following theorem shows that we can go further and state that uGNEP
is a necessary optimality condition.

Theorem 2.1. Any equilibrium of the GNEP (2) is an equilibrium of the
uGNEP (4).

Proof. Let x∗ be a solution of the GNEP, so x∗ ∈ X(x∗) and x∗ ∈ X(x∗).
Now, for all ν, the feasible set of (4) is non-empty (as x∗,ν ∈ Xν(x∗,−ν))

and smaller than the corresponding one in the GNEP, in other words

Xν(x∗,−ν) ⊆ Xν(x∗,−ν).

Thus, if x∗,ν is a minimum of (2), then it is also a minimum of (4). Since this
holds for any ν, x∗ is a solution of the uGNEP.

The following example shows that the reverse implication does not hold in
general.
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Example 2.1. Consider a game with 2 players whose strategies are labeled
x ∈ R and y ∈ R, respectively, and whose optimization problems are as follows:

min
x

1
2 (x− y)2

s.t.

{
x− y = 0,

0 ≤ x ≤ 1,

and,

min
y

−2y

s.t.

{
x− y ≤ 0,

0 ≤ y ≤ 1.

The augmented version of this problem is

min
x

1
2 (x− y)2

s.t.


x− y = 0,

x− y ≤ 0,

0 ≤ x ≤ 1,

and,

min
y

−2y

s.t.


x− y = 0,

x− y ≤ 0,

0 ≤ y ≤ 1.

In [20], the authors consider this latter problem (as the constraint x− y ≤ 0 is
ineffective here) and show that the set of solutions is {(α, α) | 0 ≤ α ≤ 1}.

However, for α < 1 we see that y∗ = α is not a minimum of the second
problem in the GNEP, since increasing y may reduce the objective function. In
this case, the GNEP has only one solution obtained for α = 1.

The following result, which is a consequence of the proof of Theorem 2.1,
provides a generic condition to have the reversed inclusion. As expected, this
condition is unlikely to hold unless the GNEP is itself a GNSC.

Corollary 2.1. Assume that for all ν and for all x ∈ X(x), it holds Xν(x−ν) =
Xν(x−ν). Then,

GNEP ⇐⇒ uGNEP.

The uGNEP can be interpreted as an umbrella approximation of the GNEP,
since in this case all the players take into account the constraints of each other.
It is interesting to note that this further consideration of all others’ constraints
does not eliminate our desired equilibria.

Our motivation in the following sections is to emphasize where and when
the uGNEP game is useful to solve the GNEP.

3. On the KKT conditions of the GNEP and the uGNEP

The idea to replace each optimization problem in the GNEP by their KKT
conditions in order to reformulate the GNEP has been extremely popular in the
literature to derive theoretical results and numerical methods [9, 15, 18, 23].

For the uGNEP, since the feasible set of each of the N subproblems is mod-
ified, a natural question is whether we need a stronger assumption to use the
KKT formulation as a necessary optimality condition. In this section, we define
and discuss the link between KKT-GNEP and KKT-uGNEP.
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3.1. On the KKT formulation of the GNEP

We say that x∗ is an ε-KKT-GNEP point if for all ν there exists (λν , γν) ∈
Rmν × Rpν such that the following system is satisfied:

‖∇xνθν(x∗) +∇xνgν(x∗)Tλν +∇xνhν(x∗)T γν‖∞ ≤ ε,
|λνi gνi (x∗)| ≤ ε, λνi ≥ 0,max(gνi (x∗), 0) ≤ ε, ∀i = 1, . . . ,mν ,

|hνi (x∗)| ≤ ε, ∀i = 1, . . . , pν .

(6)

x∗ is a KKT-GNEP point, if it satisfies (6) for ε = 0. We will denote by
Λ(x∗) ⊆ Rm+ ×Rp the set of Lagrange multipliers satisfying (6) for ε = 0, and by
Iν(x∗) := {i = 1, . . . ,mν : gνi (x∗) = 0} the set of active inequality constraints.

The KKT conditions are necessary optimality conditions for an optimization
problem if some assumptions are satisfied. This specific assumption is usually
called a constraint qualification (CQ). A large literature focus on the study of
CQs. Among the most classical there is the Guignard CQ (GCQ) known to
be the weakest CQ and the Mangasarian-Fromowitz CQ (MFCQ) which is very
classical one ensuring convergence of numerical methods.

Recall that the tangent cone of a closed and convex set X at x∗ ∈ X is
the closed cone defined by TX(x∗) := {d | ∃tk ≥ 0 and xk →X x∗ s.t. tk(xk −
x∗)→ d}, and the polar cone of a cone K is the closed convex cone defined by
K◦ := {y ∈ Rn | yTx ≤ 0, ∀x ∈ K}.

Definition 3.1. 1. We say that GNEP-LICQ holds at x̄ ∈ X(x̄) if for all
ν = 1, . . . , N the vectors

{∇xνgνi (x̄ν , x̄−ν) (i ∈ Iν(x̄)),∇xνhνj (x̄ν , x̄−ν) (j = 1, . . . , pν)}

are linearly independent.
2. We say that GNEP-MFCQ holds at x̄ ∈ X(x̄) if

• For all ν = 1, . . . , N , the vectors ∇xνhνj (x̄ν , x̄−ν) (j = 1, . . . , pν) are
linearly independent;

• For all ν = 1, . . . , N , there exists a vector d ∈ Rnν satisfying

∇xνgνIν(x̄)(x̄
ν , x̄−ν)d < 0, and, ∇xνhν(x̄ν , x̄−ν)d = 0.

3. We say that GNEP-SBCQ holds at x̄ ∈ X(x̄) if for every bounded sequence
{xk} ⊆ SOLGNEP there exists a bounded sequence {λk, γk} ⊆ Rm × Rp
satisfying (λk, γk) ∈ Λ(xk) for all k.

4. We say that GNEP-GCQ holds at x̄ ∈ X(x̄) if it holds for all ν = 1, . . . , N
that

TXν(x̄−ν)(x̄)◦ = Linν(x̄)◦,

where

Linν(x) := {d ∈ Rnν :∇xνgνi (xν , x−ν)d ≤ 0 (i ∈ Iν(x)),

∇xνhνj (xν , x−ν)d = 0 (j = 1, . . . , pν)}.

By extension, we say that GNEP-LICQ (-MFCQ, -SBCQ, -GCQ) holds for
the game if it holds for all x ∈ X(x).
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By definition, it is clear that GNEP-LICQ implies GNEP-MFCQ.
The following theorem shows that GNEP-GCQ is the weakest to guarantee

that the KKT holds in a generic way at a local minimum.

Theorem 3.1. [Theorem 3.2, [9]] Let x̄ ∈ X(x̄). Then, the following assertions
are equivalent:

1. GNEP-GCQ holds at x̄.
2. For any objective functions θν , ν = 1, . . . , N , in the definition of (2) such

that x̄ is a constrained minimum, then x̄ is a KKT-GNEP point.

In particular, this result implies that GNEP-MFCQ implies GNEP-GCQ
since the former is known to be sufficient to ensure that an equilibrium satis-
fies the KKT-GNEP conditions, see [18]. In a similar way, the GNEP-SBCQ
introduced in [36] implies KKT-GCQ.

We already stated that variational equilibria are particular equilibria of the
GNEP. So, under a constraint qualification, they are KKT-GNEP points. Ad-
ditionally, the Lagrange multipliers associated with these particular solutions
verify (λ1, γ1) = (λ2, γ2) = · · · = (λN , γN ) [18].

3.2. On the KKT formulation of the uGNEP

We now extend the definition of KKT-GNEP to the augmented game.

Definition 3.2. We say that x∗ is an ε-KKT-uGNEP point if for all ν there
exists (λν , γν) ∈ Rm × Rp satisfying:

‖∇xνθν(x∗) +

N∑
µ=1

∇xνgµ(x∗)Tλν,µ +

N∑
µ=1

∇xνhµ(x∗)T γν,µ‖∞ ≤ ε,

|λν,µi gµi (x∗)| ≤ ε, λν,µi ≥ 0,max(gµi (x∗), 0) ≤ ε, ∀µ = 1, . . . , N,∀i = 1, . . . ,mµ,

|hµi (x∗)| ≤ ε, ∀µ = 1, . . . , N,∀i = 1, . . . , pµ.
(7)

If x∗ satisfies (7) for ε = 0, it is a KKT-uGNEP point.

By definition of the KKT-uGNEP system, it follows that if x∗ is a KKT-
GNEP point then x∗ is a KKT-uGNEP point.

Remark 3.1. A similar result as Theorem 3.1 can be obtained for the KKT-
uGNEP assuming a GCQ-type condition

TX(x)(x)◦ = Linν(x)◦. (8)

A first observation of the cones involved in the definition of GNEP-GCQ and
(8) yields for all ν and for all x ∈ X(x):

TX(x−ν)(x) ⊆ TX(x−ν)(x) =⇒ TX(x−ν)(x)◦ ⊆ TX(x−ν)(x)◦,

and
Linν(x) ⊆ Linν(x) =⇒ Linν(x)◦ ⊆ Linν(x)◦.

In Appendix A, we give two examples showing that both conditions are inde-
pendent.
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The following example shows that if MFCQ holds for the ν-th problem
(GNEP-MFCQ is satisfied), then it might not hold for the ν-th problem of
uGNEP.

Example 3.1. Continuation of Example 2.1. Consider (x∗, y∗) = (1, 1).
GNEP-MFCQ holds since for the first player one non-zero gradient is always

linearly independent, while for the second player any direction of the form d > 0
satisfies dT (−1) < 0.

If we consider the augmented set X(x, y) := {(x, y) : x− y = 0, x− y ≤ 0},
the only equality constraint has a non-zero gradient, so it is linearly independent.
However, there is no d ∈ R such that

d = 0 and d < 0.

Thus, GNEP-MFCQ fails to hold for the uGNEP at (x∗, y∗).

Even though the previous example appears to be a drawback, our main
result of this section proves that GNEP-CQs might be sufficient even when
dealing with the uGNEP.

Theorem 3.2. Consider the GNEP with Assumption 1.1. Let x∗ ∈ X(x∗) such
that GNEP-GCQ holds at x∗. There exist (λ, γ) such that (x∗, λ, γ) satisfies (7)
with ε = 0 and

λν,µ = γν,µ = 0 ∀µ 6= ν, (9)

if and only if x∗ is a solution of the GNEP.

Proof. Assume that there exist (x, λ, γ) satisfying (7) with ε = 0 and (9). Notic-
ing that (6) with (9) is equivalent to (7), we have that

(
x, (λν,ν)Nν=1, (γ

ν,ν)Nν=1

)
is a KKT-GNEP point. The implication follows by the convexity assumptions
ensuring that the KKT conditions are necessary and sufficient here.

Let x∗ be a solution of the GNEP. Then, under the assumptions of the
theorem, x∗ is also a KKT-GNEP point, that is there exists (λ∗, γ∗) such that
(x∗, λ∗, γ∗) satisfies (6) (with ε = 0). Therefore, (x∗, λµ,ν , γµ,ν) such that (9) is
satisfied and (λν,ν , γν,ν) = (λ∗, γ∗) verifies (7) with ε = 0.

Figure 1 illustrates the link between the set of solutions and the set of KKT
points of the GNEP and its shared constraint approximation uGNEP. It sums
up Theorem 2.1, Theorem 3.1 and Theorem 3.2. In particular, the figure and
Example 3.1 illustrate the fact that a stronger condition than GNEP-MFCQ is
required in order for the KKT-uGNEP conditions to be a necessary optimality
condition of the uGNEP.

4. A Strategy to Describe the Solution Set of the GNEP

In previous sections, we introduced a GNSC approximation of the GNEP.
We pointed out in the introduction that the large majority of computational
approaches to approximate the solution set of the GNEP focus on the GNSC
with Assumption 1.1. Therefore, in this section, we present a general strategy
for the GNSC and apply it for the uGNEP.
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SOLGNEP

KKTGNEP

SOLuGNEP

KKTuGNEP

Figure 1: Link between the set of solutions of the GNEP and uGNEP as well as the set of
KKT points of the GNEP and uGNEP assuming GNEP-GCQ holds. Recall that with the
convexity assumption SOLGNEP = KKTGNEP .

4.1. A Strategy to Describe the Solution Set of the GNSC

In [36], the authors reformulate the GNSC as a family of parametrized vari-
ational inequalities leading to what they called the price-directed parametriza-
tion. Recall that for a GNSC, we have gν = g (mν = m) and hν = h (pν = p)
for all ν.

Given a parameter (λ, γ) ∈ RNm × RNp, the method consists in computing
the variational equilibrium of the game where the ν-th player’s problem is now

min
xν∈Rnν

θν(xν , x−ν) + g(xν , x−ν)Tλν + h(xν , x−ν)T γν

s.t. xν ∈ Xν(x−ν).
(10)

A variational equilibrium of this parametrized game is a solution of VI(Fλ,γ , X)
where

Fλ,γ(x) :=
(
∇xνθν(x) +∇xνg(xν , x−ν)Tλν +∇xνh(xν , x−ν)T γν

)N
ν=1

.

The following result is a sum up of results of [36]. We assume that GNEP-
GCQ holds in order to ensure that the set of Lagrange multiplier of the game
is non-empty.

Theorem 4.1 (Theorem 3.2 and Theorem 3.3 [36]). Consider the GNSC. As-
sume GNEP-GCQ holds at any feasible point, then⋃

(λ,γ)∈W

VI(Fλ,γ , X) ⊇ KKTGNEP

10



where W := RNm+ × RNp.
Conversely, for any (λ, γ) ∈ RNm × RNp and any (x∗, λ∗, γ∗) satisfying the

KKT conditions (6) (with ε = 0) for the parametrized game (10), then

g(x∗)Tλ∗,ν = 0,∀ν =⇒ x∗ ∈ KKTGNEP.

The reversed implication holds if GNEP-LICQ holds at x∗.

Furthermore, under Assumption 1.1, it also holds SOLGNEP = KKTGNEP.
Based on this result, we can explore the space W and solve variational inequal-
ities whose solutions are equilibria of the GNEP.

4.2. A Strategy to Describe the Solution Set of the GNEP

In the previous section, we reformulate the GNSC as a family of parametric
VIs. This approach can be used to compute all the KKT-uGNEP points. In
Theorem 3.2, we proved that a solution of the uGNEP is also a solution of the
GNEP if there exist (α, β) such that (x∗, α, β) satisfies (7) with ε = 0 and (9).
Here, we benefit from the fact that given a point x∗, the KKT system is linear
with respect to the Lagrange multipliers, which eases the computations.

Remark 4.1. Deciding whether there exists such (α, β) can be done by solving
a linear least square problem with bound constraints. Furthermore, if there is
only equality constraints or if GNEP-LICQ holds at x∗, the least square reduces
to a linear system.

Our strategy will be to enumerate the parameters (λ, γ). It is to be noted
that, unless GNEP-LICQ holds, the Lagrange multipliers are not unique for a
given x∗. Moreover, the set Λ(x∗) might even not be bounded unless GNEP-
MFCQ holds [24]. In order to design an efficient discretization we introduce an
upper bound on the Lagrange multipliers, denoted T , such that

T := sup
x∗∈SOLGNEP

inf
(λ,γ)∈Λ(x∗)

‖(λ, γ)‖2. (11)

According to [36, Theorem 3.4], the right-hand side is well-defined whenever
the solution set of the GNEP is bounded and GNEP-SBCQ holds for all x∗ ∈
SOLGNEP . We will discuss in Section 5.2 (page 13) how such constant can be
found.

We state in Algorithm 1 the overall strategy to describe the solution set
of the GNEP. In the following section, we will discuss some insights in the
implementation of this strategy. In particular, Theorem 5.1 (page 12) will make
the link between the discretization of the setW in Theorem 4.1 and the precision
required in step 5.

5. Implementation of the Method

In this section, we make several remarks relative to the implementation of
the method to track the solution set of a GNEP.
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Data: T : bound on the Lagrange multipliers ;
1 Begin ;

2 Γ := Define a discretization of [0, T ]Nm × [−T, T ]Np;
3 S := ∅;
4 for (λ, γ) ∈ Γ do
5 X := Compute the solutions of VI(Fλ,γ , X);
6 X+ := Discard from X the points x∗ that does not satisfy:

∀ν ‖gν(x∗)Tλν‖2 = 0 and ∃(α, β) ∈ Λ(x∗);
7 S := S ∪ X+;

8 return: S
Algorithm 1: Strategy to describe the solution set of the GNEP.

5.1. Discretization

The method presented in Algorithm 1 consists in an enumeration of the
vector (λ, γ) over the discretization space Γ ⊆ [0, T ]Nm × [−T, T ]Np. The most
direct approach is to discretize this space with a step δ > 0. This step must be
chosen sufficiently small (with respect to the precision required for the whole
problem and the one used to solve the variational inequality), otherwise the
vector (λ, γ) chosen might not be close enough to a Lagrange multiplier of the
problem. This motivates the following stability result for a general GNSC.

Theorem 5.1. Consider the GNSC (so gν = g and hν = h for all ν). Assume
that g and h have bounded gradients with constants respectively denoted Lg and
Lh. Let x∗ be a KKT-GNEP point with Lagrange multipliers (λ∗, γ∗). Given
ε > 0. Then, for every (λ, γ) ∈ B((λ∗, γ∗), δ) with

δ ≤ ε((m+ p) max(Lg, Lh))−1, (12)

the point x∗ is an ε-solution of VI(Fλ,γ , X), that is

Fλ,γ(x∗)T (y − x∗) ≥ −ε‖y − x∗‖2, ∀y ∈ X.

Proof. Since x∗ is a KKT-GNEP point with Lagrange multipliers (λ∗, γ∗), it is
a solution of the variational inequality VI(Fλ

∗,γ∗
, X). So,

Fλ
∗,γ∗

(x∗)T (y − x∗) ≥ 0, ∀y ∈ X.

Let (λ, γ) ∈ B((λ∗, γ∗), δ), so (λ, γ) = (λ∗, γ∗) + (dλ, dγ) with ‖(dλ, dγ)‖2 ≤ δ,
and we get

Fλ−dλ,γ−dγ (x∗)T (y − x∗) ≥ 0, ∀y ∈ X.

Using that F is affine in γ and λ it follows that(
Fλ,γ(x∗)−

(
∇xνg(x∗)T dνλ +∇xνh(x∗)T dνγ

)N
ν=1

)T
(y − x∗) ≥ 0, ∀y ∈ X.
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Using that aT b ≤ ‖a‖‖b‖ we obtain

Fλ,γ(x∗)T (y−x∗) ≥ −‖
(
∇xνg(x∗)T dνλ +∇xνh(x∗)T dνγ

)N
ν=1
‖2‖y−x∗‖2, ∀y ∈ X.

(13)
By definition of δ and using ‖(dλ, dγ)‖2 ≤ δ, we have

‖
(
∇xνg(x∗)T dνλ +∇xνh(x∗)T dνγ

)N
ν=1
‖2 ≤ max

ν
‖∇xνg(x)T dνλ‖2 + ‖∇xνh(x)T dνγ‖2

≤ δ(m+ p) max(Lg, Lh) ≤ ε.
(14)

Finally, combining (13) and (14), x∗ is an ε-solution of VI(Fλ,γ , X).

This result gives a theoretical justification on the choice of the discretization
step δ as a function of the data and the expected precision in the computation
of the variational inequality.

In [36], the authors proposed an adaptive sampling, which first runs the
algorithm with a ”large” discretization step to, then, select the zones where
further discretization is needed. Theorem 5.1 supports this approach if in the
first run(s) we are less demanding with the VIs.

In the case of random sampling, Theorem 5.1 justifies the density required,
and therefore the number of random points used, as a function of the precision
used to solve the VIs.

From Theorem 5.1, we can deduce the same type of result for the solutions
of the classical GNEP via the uGNEP with multipliers satisfying (9).

Corollary 5.1. Consider the GNEP. Assume that for all ν, gν and hν have
gradients bounded by constants respectively denoted Lg and Lh. Let x∗ be a
KKT-GNEP point with Lagrange multipliers (λ∗, γ∗). Given ε > 0. Then,
for every (λ, γ) ∈ B((λ∗, γ∗), δ) satisfying (12) there exists an ε-solution of
VI(Fλ,γ , X).

5.2. Regarding the constant T

We discussed previously the interest of having an upper bound on the La-
grange multipliers. The following result shows how such a constant can be found
in practice. Beforehand, we introduce a few notations.

For a given matrix A ∈ Rm×n, denote by A+ ∈ Rn×m its Moore-Penrose
pseudo inverse. This concept generalizes the inverse of a matrix to the case of
rectangular matrices. In particular, when A has linearly independent columns,
then A+ = (ATA)−1AT . We will denote by AνI,J ∈ Rnν×|I|+|J | the transpose

jacobian matrix of the player ν, i.e. AνI,J := (∇xνgνI(x∗)T ,∇xνhνJ (x∗)T ) with
I ⊆ {1, . . . ,mν} and J ⊆ {1, . . . , pν}.

Theorem 5.2. Assume that GNEP-SBCQ holds for all x∗ ∈ SOLGNEP. Fur-
thermore, assume that for all ν there exists constants Lν1 and Lν2 such that for all
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x∗ ∈ SOLGNEP and for all I ⊆ {i = 1, . . . ,mν : gνi (x∗) = 0},J ⊆ {1, . . . , pν}
it holds

‖∇xνθν(x∗)‖2 ≤ Lν1 , and, ‖(AνI,J )+‖2 ≤ Lν2 . (15)

Then, T defined in (11) satisfies

T ≤ max
ν

Lν1L
ν
2 . (16)

Before moving to the proof let us recall the following technical lemma.

Lemma 5.1 ([1]). Let {ai | i = 1, . . . , p}, {bi | i = 1, . . . ,m} and c be vectors
in Rn and α ∈ Rp+, β ∈ Rm multipliers such that

p∑
i=1

αia
i +

m∑
i=1

βib
i = c.

Then there exist multipliers α∗ ∈ Rp+ and β∗ ∈ Rm with supp(α∗) ⊆ supp(α),
supp(β∗) ⊆ supp(β) and

p∑
i=1

α∗i a
i +

m∑
i=1

β∗i b
i = c.

such that the vectors

{ai | i ∈ supp(α∗)} ∪ {bi | i ∈ supp(β∗)}

are linearly independent.

Proof of Theorem 5.2. Let x∗ be any generalized Nash equilibrium and fix ν.
Since, GNEP-SBCQ holds at x∗, then there exists (λ, γ) ∈ Λ(x∗) such that(

∇xνgν(x∗)T ,∇xνhν(x∗)T
)( λ

γ

)
= −∇xνθν(x∗).

Now, according to Lemma 5.1, there exists I ⊆ I(x∗) and J ⊆ {1, . . . , pν} such
that there exists (α, β) ∈ Λ(x∗) satisfying αi = 0 (i /∈ I), βj = 0 (j /∈ J ),

AνI,J

(
αI
βJ

)
= −∇xνθν(x∗), (17)

and such that the columns of AνI,J are linearly independent. Hence it follows
that (α, β) satisfying (17) is unique and the non-zero terms are given by(

αI
βJ

)
= −(AνI,J )+∇xνθν(x∗).

Finally, using (15) we get

‖(α, β)‖2 ≤ ‖(AνI,J )+‖2‖∇xνθν(x∗)‖2 ≤ Lν1Lν2 .

Since x∗ and ν have been chosen arbitrarily we obtain (16).
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6. Illustrative Examples

In the following examples, we show numerical illustrations of the proposed
method to describe the set of generalized Nash equilibria. These results are
coded in Julia. For each case, we compute the value of T . The algorithm is run
a first time with a ”large discretization” with δ = 0.5 and ε = 10−1, and then,
we run it again with δ = 0.1 and ε = 10−2.

In most of these examples, the parametric VIs are satisfying a monotonicty
property ensuring that their solutions are unique. This motivates the use of a
local method to compute an approximate solution. We implemented the pro-
jected reflected gradient method for VIs described [33] in a straightforward way
using Ipopt to compute the projections.

6.1. Example 1: River basin pollution game

Consider the 3-player river basin pollution game studied in [30].

min
x1∈R

(α1x1 + β(x1 + x2 + x3)− ξ1)x1

s.t.

{
x1 ≥ 0, 3.25x1 + 1.25x2 + 4.125x3 ≤ 100,

2.29115x1 + 1.5625x2 + 2.8125x3 ≤ 100,

min
x2∈R

(α2x2 + β(x1 + x2 + x3)− ξ2)x2

s.t.

{
x2 ≥ 0, 3.25x1 + 1.25x2 + 4.125x3 ≤ 100,

2.29115x1 + 1.5625x2 + 2.8125x3 ≤ 100,

min
x3∈R

(α3x3 + β(x1 + x2 + x3)− ξ3)x3

s.t.

{
x3 ≥ 0, 3.25x1 + 1.25x2 + 4.125x3 ≤ 100,

2.29115x1 + 1.5625x2 + 2.8125x3 ≤ 100,

where
α1 = 0.01, α2 = 0.05, α3 = 0.01, β = 0.01,

ξ1 = 2.9, ξ2 = 2.88, ξ3 = 2.85.

This GNEP has two shared constraints. Since this example has shared con-
straints, it falls back into the context of previous studies [22, 36]. We use it as
a validation tool and we refer the reader to the aforementioned papers for more
details on possible improvements.

Since the pseudo-gradient is strongly monotone, the unique variational equi-
librium is x = ( 4673

221 ,
5754
359 ,

567
208 )T ≈ (21.14, 16.03, 2.73)T (only the first constraint

is active at this point). Furthermore, since the constraints are separable (i.e.

g(x) =
∑N
ν=1 gν(xν)), by [36, Proposition 3.1], the parametrized variational

inequalities are also strongly monotone, and therefore have a unique solution.
GNEP-GCQ holds for this problem. Moreover, GNEP-LICQ is also satisfied

unless the two constraints are simultaneously active or one of the two constraints
is active at xi = 0 (i = 1, 2, 3).
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Figure 2: River basin example with ε = 10−2, T = 2.86 and δ = 0.1.

Using (16), we compute the constant T := maxν=1,2,3 Tν . For player 1 (T1),
since 100

1.5625 ≥ x2 ≥ 0 and 100
4.125 ≥ x3 ≥ 0, it holds that 2.86 ≥ ∇x1θ1(x) ≥

1.9775. The bounds on the gradient of the 3 constraints are 3.25, 2.29115 and
1. So, T1 = 2.86. Following, the same reasoning for players 2 and 3 would give
T2 = 2.78 and T3 = 2.83. So, T = T1 = 2.86.

Results are presented in Figure 2. We note that our results are qualitatively
similar to the price-directed parametrization approach with grid sampling con-
sidered in [36].

6.2. Example 2: A-8, [17]

Consider the 3-player game from [17]

min
x∈R

−x

s.t.

{
z ≤ x+ y ≤ 1,

x ≥ 0,

min
y∈R

(y − 0.5)2

s.t.

{
z ≤ x+ y ≤ 1,

y ≥ 0,

min
z∈R

(z − 1.5x)2

s.t.
{

0 ≤ z ≤ 2.

As shown in the aforementioned reference the problem has infinitely many so-
lutions given by {(α, 1−α, 1.5α)T : α ∈ [1/2, 2/3]}. The corresponding uGNEP
is the following GNSC:

min
x∈R

−x

s.t.

{
z ≤ x+ y ≤ 1,

x ≥ 0,

min
y∈R

1
2 (y − 0.5)2

s.t.

{
z ≤ x+ y ≤ 1,

y ≥ 0,

min
z∈R

1
2 (z − 1.5x)2

s.t.

{
z ≤ x+ y ≤ 1,

0 ≤ z ≤ 2.

The solution set of the uGNEP is the set {(α, 1 − α, 1.5α)T : α ∈ [1/2, 1]}.
Indeed, the solution of the first player problem satisfy x∗ = 1 − y∗, therefore
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x + y = 1 for any (x, y) in the solution set. Consequently, the new constraint
z ≤ x + y in the third problem is active only if z∗ = 1, which is a solution of
the third problem whenever x∗ ∈ [2/3, 1].

There is a unique variational equilibrium (1, 0, 1), which is not a solution of

the GNEP. Since the constraints are separable (i.e. g(x) =
∑N
ν=1 gν(xν)), by

Proposition 3.1 [36], the parametrized variational inequalities are also monotone,
and therefore have a convex solution set. We considered x0 = (1, 1, 1)T as an
initial point for each VI.

The uGNEP satisfies GNEP-GCQ, and even GNEP-LICQ unless x = 0 or
y = 0. So, GNEP-LICQ holds at any equilibrium of the uGNEP.

Using (16), we compute the constant T . For player 1 (T1), it holds that
∇x1

θ1(x) = −1.The bound on the gradient of the 3 constraints is 1. So, T1 = 1.
Following, the same reasoning for players 2 and 3 would give T2 = 0.5 and
T3 = 1.5. So, T = T3 = 1.5.

Results are presented in Figure 3 and are coherent with our knowledge of
the solution set.

6.3. Example 4: Non-linear Example

Consider the following 2-player game used in [34]

min
(x,y)∈R2

1
2

(
(x− 1)2 + (y − 1)2

)
s.t.

{
x+ y + z ≤ 3,

(x, y) ≥ 0.1,

min
z∈R

1
2xyz

2

s.t.


x2z2 ≥ 1

2 ,

y2z2 ≥ 1
2 ,

z ≥ 0.1.

The specificity of this GNEP is that the constraints are not linear, although the
constraint set is convex as shown in [34]. The set of generalized Nash equilibria
is {

(α, α,
1

α
√

2
) : α = 1,

1

2
+

1√
2
, 1− 1√

2

}
.

GNEP-LICQ fails to hold at these equilibria because the two constraints are
active for the second player. However, both constraints have the same gradients
whenever x = y, so GNEP-MFCQ holds.

Using the solution set, we compute the constant T := maxν=1,2 Tν . For
player 1 (T1), a straightforward computation shows that T1 = 1. For player 2,
whenever x = y, the KKT system gives T2 = 1

2 .
Applying Algorithm 1 on this instance yields the solution set shown on

Figure 4. Once again, it validates our approach since we recovered the three
generalized Nash equilibria.

6.4. Environment accord model/Environmental pollution control

We build on the model presented in [8] and [47] and its modifications pre-
sented in [18]. Note that the original problem designed for 2 players was also
extended in [10] to 3 players. We consider an extended version of this model for
5 players.
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Figure 3: A8 example with ε = 10−2, T = 1.5 and δ = 0.01 (x0 = (1, 1, 1)).

18



Figure 4: Example 4 with ε = 10−2, T = 2 and δ = 0.1. xz-plane as y is always equal to x.

Let N be the number of countries (i.e. players) involved in the joint imple-
mentation mechanism to reduce greenhouse gases emissions, where each country
aims at maximizing its welfare. The idea behind the joint implementation mech-
anism is that it allows countries with high abatement costs to reach their targets
by investing in countries where the abatement costs are low.

For each country i, let ei denote the (gross) emissions that result from its
industrial production; we assume that these emissions are proportional to the
industrial output of the country thus enabling us to express the revenue R of
the country as a function of ei. Country i’s revenue function is assumed to be
concave and increasing, for instance

ei(bi −
1

2
ei), 0 ≤ ei ≤ bi,

where bi is a given parameter.
Emissions can be abated by investing in projects domestically or abroad.

Let us indicate by Iij the investment made by country i in country j. Let the
investment cost be convex and increasing. We further allow the host country
to have the first-choice option in choosing the available project. Assuming a
quadratic cost function yields for player ν

1

2

N∑
i=1

I2
ii +

N∑
j=1

IijIjj .

The benefit of this investment is assumed to be linear in investment, i.e.
γijIij (the coefficients γij depend on both the investor’s technologies and laws
and the situation in the host country).

The net emission in country i is given by Neti := ei −
∑N
j=1 γjiIji, which

obviously cannot be negative. On the other hand, country i is accounted for the
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emission Ai := ei −
∑N
j=1 γijIij , that is, its own emissions minus the reduction

gained by investing in environmental projects; this quantity must satisfy an
environmental constraint and be kept below a prescribed level Ei > 0.

To conclude the description of the problem, we also assume that pollution in
one country can also affect other countries. We therefore assume that damages
from pollution in one country depend on the net emissions of all countries,
according to a function Di(Netj , j = 1, . . . , N). In [8], this cost is linear and

given by di(
∑N
j=1Netj).

With this setting, the cost function of Player i is

Wi(x) := ei

(
bi −

1

2
ei

)
− 1

2

 N∑
i=1

I2
ii + 2

N∑
j=1

IijIjj

− di
 N∑
j=1

Netj

 .

Denoting xi := (ei, Ii1, Ii2, . . . , IiN ) the i-th players’ problem becomes:

max
xi

Wi(x)

s.t.


0 ≤ ei ≤ bi,
Iik ≥ 0, k = 1, . . . , N,

Ai ≤ Ei,∑N
k=1Netk ≥ 0.

(18)

As in [10], we relax the non-negativity constraint on the net emission by a
non-negativity constraint on its sum. Note that in the resulting GNEP, the
constraints of each problem involving other players’ variables (the last linear
constraint) is the same for all players.

In order to compare our results, we will also consider the case where each
player invests exclusively in local environmental projects (the Autarky model
in [8]). Thus, given the other player’s ej and Ijj , Player i optimizes its welfare
function subject to the environmental and non-negativity constraints, that is

max
ei,Iii

W i(x) := ei

(
bi −

1

2
ei

)
− 1

2
I2
ii − di

 N∑
j=1

ej − γjIjj


s.t.


0 ≤ ei ≤ bi,
Iii ≥ 0,

0 ≤ ei − γiIii ≤ Ei.

(19)

In this case, the problem becomes a classical Nash game.
We now consider two non-shared situations with N = 5 to illustrate the

use of our proposed approach in this article. In the first one, Players 3 and
4 opted for a protective strategy by limiting their own investments abroad by
considering the following constraint:

γ3I33∑N
j=1 I3j

+
γ4I44∑N
j=1 I4j

≥ s,
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for a parameter s ≥ 0. In other words, the weighted proportion of home in-
vestments for both countries must be larger than a certain level s. Hence, we
consider the game where player i’s (i = 3, 4) problem is now

max
xi

Wi(x)

s.t.



0 ≤ ei ≤ bi,
Iik ≥ 0, k = 1, . . . , N,

Ai ≤ Ei,∑N
k=1Netk ≥ 0,

γ3
I33∑N
j=1 I3j

+ γ4
I44∑N
j=1 I4j

≥ s.

(20)

The second non-shared game consider a situation where Player 1 wants to in-
vest only in countries which are significantly reducing their emissions, by the
following constraint:

I1k ≤
1

(ek − E∗k)2
,

for a given E∗ ∈ R4. The idea is to set an ideal emission E∗ and then measure
how far country k is from this target. Hence, we consider the following game
for Player 1 (others are unchanged as in (18)):

max
xi

Wi(x)

s.t.



0 ≤ ei ≤ bi,
Iik ≥ 0, k = 1, . . . , N,

Ai ≤ Ei,∑N
k=1Netk ≥ 0,

I1k(ek − E∗k)2 ≤ 1, k = 2, . . . , N.

(21)

We now proceed by approximating the solution set of each of the four games
with Algorithm 1 for values given below. Note that (19) is a classical Nash
game and can therefore be solved by one variational inequality as the objective
function is strongly convex and the feasible set convex. We also note that (18)
is a GNSC, while (20) and (21) are GNEP. In all the games, the constraint set is
player-convex and the parametric pseudo-gradients (denoted earlier as Fλ,γ) are
strongly monotone, so that each parametric variational inequality has a unique
solution.

We consider b = (100, 100, 100, 100, 100)T and d = (0.1, 0.1, 0.1, 0.1, 0.1)T .
Following [8], we assume that γji = γi for any j, and we take γ = (1.0, 1.2, 2.0, 3.0, 3.4)T .
Hence, with respect to the environmental constraint, it seems interesting to in-
vest in the fifth country. To find Ei, we first solve the (classical) Nash game with-
out any environmental constraints, and therefore no investment. The unique
solution of this problem is

e0 = (100, 100, 100, 100, 100)T .
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Following [8], the motivation of the Kyoto Protocol was to reduce by 5% the
emissions, hence we set E = (95, 95, 95, 95, 95)T .

The solution of the game (19) is given by

x0 = (97.5, 2.5, 97.95, 2.45, 99.0, 2.0, 99.5, 1.5, 99.60, 1.35)T .

and the welfare are

W (x) := (4946.25, 4947.38, 4950.0, 4951.25, 4951.5)T .

It can be noticed that the environmental constraint is active (up to ε) for all
the players. The results are coherent with the choice of γ.

Remark 6.1 (How to find T ). The gradient of the objective function is given
by

∇ei,Iii,Iij ,IikWi =


bi − ei − di
−Iii + diγii

−Iij − 2Ijj + djγij
−Iik − 2Ikk + dkγik


Hence, ‖∇Wi‖∞ ≤ 100. It can also be noted from the solution of (19) that we
have an improved estimate on the bounds of the variables: 100 ≥ ei ≥ 97.5 for
each i, and, 2.5 ≥ Ijk ≥ 0 for each j, k. Considering these improved bounds we
get ‖∇Wi‖∞ ≤ 7.4.

The Jacobian matrix is given by

∇ei,Iii,Iij ,Iikci(x) =

(
1 −γii −γij −γik
−1 γii γij γik

)
.

Hence, ‖∇ei,Iii,Iij ,Iikci(x)T ‖∞ ≤ 7.2. All in all, using Theorem 5.2, an upper
bound on T is given by 53.28.

Note that the bound computed in the previous remark is not sharp and an
adaptive sampling will be helpful. For the three games, the algorithm is run a
first time with a ”large discretization” with δ = 0.5 and ε = 10−1, and then, we
run it again with δ = 0.1 and ε = 10−2.

Then, we compare this result with those for the shared constraint game
(20). The initial point is x0 completed by zeros for the new variables. We
obtain one solution given by xJI reported in Table B.1 in Appendix B, which
is the variational equilibrium of the game. For this strategy, the welfare values
are

W (xJI) = (4950.21, 4950.29, 4950.68, 4951.28, 4951.5)T .

Note that in the autarky game, by taking x0 and completing by zeros the miss-
ing variables, we have W (x0) = W (x0). Once again at xJI the environmental
constraint is active (up to ε) for all the players and the constraint on the Net is
inactive, which explains why we only consider a relaxation of this constraint in
(18). This solution will be our comparison point with the two variants of GNEP
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introduced above.

Let us consider (20) with s = 4.5. This value has been chosen such that the
non-shared constraint is not satisfied at xJI . We run the method with xJI as
the initial point and with a two-step discretization as previously mentioned.

As preliminary remarks, the set of equilibria obtained is no longer unique
and we do not report the results for player 5 as they are unchanged.

We compare the welfare of the group Player 1-Player 2 against the group
Player 3-Player 4 in Figure 5. It is clear on this figure that all four countries

Figure 5: The graph shows that the welfare of Players 1 and 2, W1 + W2 − 9900, versus
the welfare of Players 3 and 4, W1 +W2 − 9900 at each GNE found. Note that W1(xJI) +
W2(xJI)− 9900 = 0.5 and W3(xJI) +W4(xJI)− 9900 = 1.96.

have lower welfare. In percentages, the first group is losing between 0.002o/oo

and 0.015o/oo while the second group is losing between 0.023o/oo and 0.035o/oo.
Hence, the second group seems to be the one losing the most here. We now
compare the welfare of Players 3 and 4 in Figure 6. Player 3 loses between
0.040o/oo and 0.072o/oo, while Player 4 loses between 0o/oo and 0.006o/oo. Clearly,
Player 3 is the one losing the most in this scenario as Player 4 is compensating
by its interesting investment price γ4 > γ3.

We conclude the study of this game by giving three examples of equilibria in
Table B.1 that are extremal as we give the most advantageous for Players 1 and
2, the most advantageous for Players 3 and 4 and a tradeoff between the two
groups of players. Figure 7 shows the solution set (for the variables e1, e2, e3

and e4) of the games.

Finally, let us now consider (21) with E∗ = (97.5, 97.5, 97.5, 97.5)T . This
value corresponds to the emission of Player 1 in the game (19). We run the
algorithm with xJI as the initial point and with a two-step discretization as in
previous tests.
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Figure 6: The graph shows the welfare of Player 3, W3 − 4950, versus the welfare of Player 4,
W4−4950 at each GNE found. Note thatW3(xJI)−4950 = 0.68 and W4(xJI)−4950 = 1.28.

Figure 7: Solution set (for the variables e1, e2, e3 and e4) of the game (20).

We compare the welfare of Player 1 with the group composed by the four
other players on Figure 8. Note that the figure is scaled in the way that every
equilibrium with positive values is an increase of welfare compared to xJI . We
can see that even if this game seems more restrictive, both groups of players may
increase their welfare. We give in Table B.1 in Appendix B the equilibrium,
denoted xG, which gives the higher revenue for Player 1, whose welfare values
are

W (xG) = (4950.29, 4950.48, 4950.82, 4951.32, 4951.2)T .
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Figure 8: The graph shows the welfare of player 1, W1 − 4950.21, versus the welfare of the
other players, W2 +W3 +W4 +W5 − 19803.75 at each GNE found.

Moreover, from the corresponding equilibrium we can also notice that its overall
emission is reduced compared to the joint implementation.

We can also report from the results that there are equilibria where the play-
ers 1-4 are increasing their welfare except Player 5, which at best equals the
joint implementation welfare. This is not surprising as this player was the one
polluting the most.

7. Conclusion

In this paper we developed a numerical strategy to describe the solution set
of the GNEP. By means of an umbrella approximation of the GNEP, denoted
uGNEP here, we extended the price-directed parametrization of [36] to refor-
mulate the game as a family of parametric VIs. Then, we proved a stability
result showing the theoretical expectation of an implementation by connecting
the discretization step of the parameter space and the precision used to solve
the VIs. We validated our approach on numerical examples from the literature.

In most of these examples the VIs satisfied a monotony assumption ensuring
that their solutions are isolated. This justifies the use of a local method to find
an approximate solution. Further research may focus on the case where the
solutions are not isolated.

As stated in the introduction, GNEPs have become an important modeling
tool and the method proposed in this paper opens new avenues. An interesting
perspective of this work is to study the impact of a selection of a solution among
the set of equilibrium obtained for applications.
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Appendix A. Link between GCQ-GNEP and GCQ-uGNEP

The first example shows that GCQ-uGNEP does not imply GCQ-GNEP.

Example Appendix A.1.

min
x,y

x

s.t.

{
x2 + y2 ≤ 0,

−1 ≤ x ≤ 1,

min
x,y

y2

s.t.

{
x− y = 0,

−1 ≤ y ≤ 1.

The only generalized Nash equilibrium is the origin.
Consider ν = 1. GCQ-GNEP fails to hold at this point since Linν(x̄)◦ = {0}

and TXν(x̄−ν)(x̄)◦ = R, while GCQ-uGNEP holds as Linν(x̄) = {0} and so

Linν(x̄)◦ = R (it works also for ν = 2).
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The second example shows that GCQ-GNEP does not imply GCQ-uGNEP

Example Appendix A.2.

min
x,y

x

s.t.

{
x2 + y2 ≤ 1,

−1 ≤ x ≤ 1,

min
x,y

y2

s.t.

{
x+ y ≤ 0,

−1 ≤ y ≤ 1.

The only generalized Nash equilibrium is (−1, 0).
GCQ-GNEP holds at this point since for ν = 1 we have Linν(x̄)◦ = R+ =

TXν(x̄−ν)(x̄)◦ and the second problem (ν = 2) is linear.

min
x,y

x

s.t.


x2 + y2 ≤ 1,

x+ y ≤ 0,

−1 ≤ x ≤ 1,

min
x,y

y2

s.t.


x+ y ≤ 0,

x2 + y2 ≤ 1,

−1 ≤ y ≤ 1.

For ν = 2 we can see that GCQ-QGNEP fails to hold as Linν(x̄)◦ = {0} and
TX̄ν(x̄−ν)(x̄)◦ = R+.

These two examples show that both conditions are independent. Note that
both problems are theoretical and represent a particular situation.

Appendix B. Equilibria for the Environment accord model

This table gives 5 equilibria of the generalized Nash games (18),(20) and
(21) studied in Section 6.4 (page 17).
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xJI xP1 xP2 xP3 xG

99.40 99.37 99.38 99.39 99.20
0.59 0.62 0.61 0.60 0.79
0.01 0.01 0.01 0.01 0.26
0.11 1.16e-7 9.93e-8 2.03e-7 0.27
0.44 0.37 0.39 0.47 0.23
0.65 0.76 0.75 0.69 0.54
99.41 99.38 99.39 99.40 99.45

1.09e-6 9.61e-6 8.32e-6 4.25e-5 1.62e-7
0.69 0.73 0.72 0.71 0.64
0.10 1.08e-7 9.36e-8 1.95e-7 0.09
0.41 0.33 0.36 0.43 0.37
0.62 0.73 0.71 0.65 0.69
99.46 99.27 99.25 99.17 99.41

1.42e-7 5.44e-8 4.78e-8 1.07e-7 1.34e-7
1.40e-7 5.77e-8 5.08e-8 1.14e-7 7.35e-7

1.06 1.59 1.63 1.77 0.97
0.26 3.70e-7 3.67e-7 9.67e-7 0.23
0.45 0.31 0.28 0.18 0.52
99.55 99.50 99.51 99.55 99.57

5.19e-8 3.77e-8 1.02e-7 7.61e-7 1.05e-7
4.50e-8 3.72e-8 9.88e-8 6.77e-7 2.80e-7
4.21e-8 2.15e-8 3.74e-8 1.27e-7 2.75e-7

1.33 1.49 1.46 1.33 1.23
0.16 8.80e-8 0.03 0.15 0.26
99.60 99.60 99.60 99.60 98.85

3.68e-8 1.84e-7 1.88e-7 5.81e-7 8.59e-8
3.09e-8 1.60e-7 1.64e-7 5.10e-7 1.70e-7
2.38e-8 4.48e-8 4.20e-8 1.13e-7 1.32e-7
5.41e-8 1.33e-7 1.54e-7 8.38e-7 1.80e-7

1.35 1.35 1.35 1.35 1.13

Table B.1: The solution of the shared constraint game (18) is given by xJI with
W (xJI) = (4950.21, 4950.29, 4950.68, 4951.28, 4951.5)T . Three solutions for (20) (with
s = 4.5) with respective welfare W (xP1 ) = (4950.13, 4950.22, 4950.48, 4951.25, 4951.5)T ,
W (xP2 ) = (4950.15, 4950.23, 4950.45, 4951.26, 4951.5)T and W (xP3 ) =
(4950.2, 4950.28, 4950.33, 4951.28, 4951.5)T . The equilibrium xG from (21) gives the
following welfare: W (xG) = (4950.29, 4950.48, 4950.82, 4951.32, 4951.2)T .
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