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ABSTRACT Cache Side Channel Attacks (SCAs) have gained a lot of attention in the recent past. Since,
these attacks exploit the caching hardware vulnerabilities, they are fast and dangerous. Detection of cache
side channel attacks is an important step towards mitigating against such hostile entities. Researchers have
already proposed different techniques to detect cache side channel attacks. This paper provides a detailed
survey of literature related to the state-of-the-art detection techniques for cache based side channel attacks.
We identify a set of important characteristics that can be used to characterize a CSCA (cache side channel
attack) detection technique. We use the identified features to compare and contrast the most important
detection techniques and provide the important observations.We also identify some of the challenges that the
research community will have to resolve in future to improve the efficiency of cache side channel detection
techniques. To the best of our knowledge, this is the first work to do such a study. We believe that this paper
will prove useful to researchers in the area of systems security.

INDEX TERMS Cache-based side channel attacks (SCAs), cryptography, survey, detection, machine
learning, anomaly & signature detection.

I. INTRODUCTION
Information security is becoming a major concern with
each passing day as innovative and smart security attacks
keep on appearing. With the emergence of new fields like
IoT, Blockchain, Cloud-Computing and Cyber-Physical Sys-
tems (CPS), the amount of produced digital data has increased
exponentially over the past few years. Roughly 2.5 quintillion
bytes of data is produced each single day according to IBM
Big Data Research. Since it is expensive to process such big
amounts of data on end-user devices, any required processing
on this data is usually done in centralized computing environ-
ments (i.e. Cloud Systems). Cloud Computing platforms have
been continuously evolving with their increasing use. Current
cloud computing facilities are provided in various forms like
Software-as-a-Service (SaaS), Platform as-a-Service (PaaS),
and Infrastructure-as-a-Service (IaaS) [1]. Such services
extensively use virtualization technology to provide isolated
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processing capability to users without any interference. Mul-
tiple Virtual Machines (VMs) are executed on the shared
hardware resources which create a possibility of security
breaches. Malicious VMs that share hardware resources
(co-reside) with other VMs (referred as victim VMs) can
obtain their information [2]–[4] and perform Side Channel
Attacks (SCAs) on victim VMs [5], [6]. Significant amount
of research has been performed in the field of cryptography
leading to the development of different crypto-algorithms
like ECC, AES, RSA, and ElGamal etc. Theoretically, these
algorithms are very hard to break and require enormous com-
puting power. For instance, for a 128-bit AES key, it would
take 5.4 × 1018 years to crack the AES using a computer
capable of performing 106 decryption operations per µs [7].
However, many research works have shown that crypto-
systems, such as AES, can be compromised due to the vul-
nerabilities of the hardware on which they run. Side Channel
Attacks (SCAs) do not target the algorithm of crypto-systems
itself. Rather, they target the underlying implementation of
systems on which these crypto-systems execute [8] as shown
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FIGURE 1. Unintended Side-Channel information leakage.

in Figure 1. SCAs can use a variety of physical parameters,
e.g., power consumption [9], EM (electro-magnetic) radia-
tion [10], memory accesses or fault occurrence [5], [11]–[18]
to extract secret keys/information. The baseline idea here is
that the SCAs can analyze the variations in the previously
mentioned parameters during the execution of crypto-systems
on a particular hardware and can determine the secret
information used by crypto-systems based on the observed
parameters.

In modern processors, memory is used in a hierarchy
(registers, caches, main memory (RAM) and storage) to
improve performance of running processes by exploitation
of spatial and temporal locality found in the accessed data.
The level closest to the processor, i.e., registers, is fastest to
access but limited in number. The next level of hierarchy is
composed of caches that are used to hold part of the main
memory, which is to be accessed frequently. Modern Intel
processors consist of hierarchical caches up to three different
levels (i.e., L1, L2, and L3) that vary in their sizes and
response times. Last level of cache (L3) is usually shared
among multiple cores in modern Intel processors. Cache side
channel attack (CSCA) is a special type of SCA in which
a malicious process deduces secret information of a victim
process by observing its use of caching hardware [19]. In this
paper, we focus on Cache Side Channel Attacks (CSCAs)
in Intel’ x86 Architecture based processors. Different cache
properties of Intel’s Architecture like inclusivity and flushing
have also been used as vulnerabilities [5], [14], [20]. Inclu-
sivity ensures that the cache blocks or lines present in higher
level of cache would also be present in lower level caches.
Flushing (eviction of any cache line with a particular address
in all levels of cache) has been made possible with the help
of instructions like CLFLUSH in Intel’s x86 Instruction Set
Architecture (ISA). CSCAs on other architectures like ARM
have also been shown to be practical [21]–[23].
Contributions: This paper presents a survey of techniques

that have been proposed to detect cache based side channel
attacks. We classify these techniques into different categories
based on their design characteristics. We provide a compari-
son of these techniques using a broad set of parameters and

TABLE 1. List of acronyms.

FIGURE 2. Paper organization.

enlist important findings, a high-level synthesis, and future
possibilities based on our analysis of the surveyed techniques.
A list of acronyms that will be used in this paper is shown
in Table 1. The organization for the rest of this paper is
shown in Figure 2. Section 2 discusses the background of
CSCA and the most popular techniques that have been pro-
posed to perform and mitigate such attacks. Section 3 defines
and explains the most important set of parameters that can
be used to compare different CSCA detection mechanisms.
Section 4 presents a detailed survey of the CSCA detec-
tion techniques found in literature. Section 5 provides a
summary of the most significant findings of this study and
Section 6 concludes this paper.
Scope: Many countermeasures and mitigation techniques

have been proposed against CSCAs in literature. However,
we limit the scope of this work to only CSCA detection
approaches. CSCAs are possible on different attack targets.
However, this work only considers CSCA attacks against
crypto systems. Moreover, only CSCAs in x86 architecture
are considered, while they have shown to be possible on other
architectures (like ARM) as well.

II. BACKGROUND ON CACHE BASED SIDE CHANNEL
ATTACKS AND THEIR MITIGATION
In this section, we will discuss the classification of cache
side channel attacks, different techniques that have been
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FIGURE 3. Working principle of Prime+Probe (AAS: Attacker Addr. Space, VAS: Victim Addr. Space).

proposed to perform such attacks and mitigation solutions
that have been presented against these cache side channel
attacks. We will also discuss any works that are related to our
paper. Readers who already have a background knowledge of
cache side channel attacks can skip this section.

A. CLASSIFICATION OF CACHE SIDE CHANNEL ATTACKS
Different classifications of CSCAs based on different fac-
tors can be found in literature [24], [25]. The inherent fea-
ture that most of the cache side channel attacks exploit is
the cache timing and access patterns. In order to make an
attack possible, usually the attacker needs to identify the
victim’s memory addresses by observing the shared cache
with the victim. Further, an attacker would also have to
determine if a particular memory access by the victim results
into a hit or a miss. Mostly attackers observe the victim’s
memory accesses indirectly rather than directly. Therefore,
cache side channel attacks can be classified into Access
Based Attacks (e.g. Prime+Probe, Flush+Reload) and Tim-
ing Based Attacks (Evict-and-Time, Cache collision) [24].
In Access-Based attacks, after the interference of attacker
with the victim, the attacker observes the time that each of
its memory access takes. It is assumed that the attacker will
have logical access to a shared cache used by the victim pro-
cess. In Timing Based Attacks unlike Access-Based attacks,
attacker measures the execution time of a security critical
operation performed by the victim rather than measuring the
time of its own memory accesses [24].

Another classification of CSCAs is done by Page et al [25],
according to which CSCAs are categorized into two types;
Time driven and Trace attacks [25]. These attack types
are based on the type of information leaked by the attack.
Time-driven attacks commonly named as timing attacks
depend on quantifiable execution time which relays infor-
mation of secret cryptographic operations. This informa-
tion is useful during the encryption process where number
of cache hits and misses relay variable timing informa-
tion. Timing difference of cache hits and misses allows
the attacker to know the interesting addresses where vic-
tim is operating. Once this information is revealed, attacker
is able to retrieve entire secret key. Thus, such timing

attacks are capable of measuring entire execution time effi-
ciently. Time-driven attacks are further categorized into
active time-driven cache attacks and passive time-driven
cache attacks. In passive time-driven attacks, attacker has no
direct influence on victim’s machine and attacker is unable
to probe the timing information directly [26], [27]. In active
time-driven attacks, the attacker actively influences the vic-
tim’s machine because it can execute directly on victim’s
machine. Therefore, attacker is well informed about timing
information of victim by which it can manipulate a lot of
information [26], [28], [29]. Trace-driven attacks manipulate
the trace of victim’s accesses [25], [30]–[33]. This type of
attack focuses to access the cache line which is frequently
used by victim.

B. TECHNIQUES OF CACHE SIDE CHANNEL ATTACKS
This sub-section discusses most of the famous techniques that
have been proposed to perform CSCAs.

1) PRIME AND PROBE TECHNIQUE
Prime+Probe attacks belong to the category of Trace Driven
attacks and are common to exploit last level shared caches
across multiple cores. Many CSCAs have made use of this
technique: [6], [12], [20], [22], [34]–[39]. A prime+probe
attack works in two phases (prime phase and probe phase)
as show in Figure 3. During the prime phase, attacker fills
the shared cache with its own data as shown in Figure 3a.
Attacker then goes to an idle mode and waits for victim
to execute which will use few of the cache sets primed by
the attacker as shown in Figure 3b. During the probe phase
(shown in Figure 3c), attacker tries to load the data from
the cache that it had primed (filled) earlier. If any of the
cache sets have been overwritten by the victim process, it will
take longer for attacker to access them (as they will have to
be brought from main memory due to cache replacement).
This way, attacker can get to know if the victim has used
particular addresses and can extract secret data from this
information.

This technique has been used at different cache levels
like L1-data (L1-D) cache [35], [36], L1-instruction (L1-I)
cache [40] and Last Level Cache (LLC) [41].
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FIGURE 4. Working principle of Evict+Time.

FIGURE 5. Working principle of Evict+Reload.

2) EVICT AND TIME TECHNIQUE
This technique falls under the class of Time-Driven attacks.
It works in a three-step process as shown in Figure 4. In the
first step, as shown in Figure 4a attacker adds its own data in
the cache. In the second step, attacker lets the victim process
to execute normally, loads back its cache sets and notes
the time of execution of the victim as shown in Figure 4b.
In the third step, as shown in Figure 4c the attacker program
removes a cache set (call it ‘X’) and lets victim execute. Then
attacker analyses the variation in execution time of the victim
process based on which it can be inferred if the line ‘X’
was accessed by the victim process or not (Figure 4d). Some
of the implementations based on this technique of attack
are: [12], [16], [35], [42].

3) EVICT AND RELOAD TECHNIQUE
Evict+Reload (E+R) is a variation of Evict+Time
(E+T) [15]. As shown in Figure 5, this technique works in
two step. The first step is the eviction of cache sets shown
in Figure 5a. The attacker then lets the victim run normally
(Figure 5b). In the next step, the attacker reloads the data
from cache and measures time of access to determine if it
is a hit or a miss as shown in Figure 5c. Based on this
information attacker can determine if the victim accessed
particular address or not.

4) FLUSH AND RELOAD TECHNIQUE
Flush+Reload [5] shown in Figure 6, belonging to the
class of Trace-Driven and Access Based attacks, relies on

page sharing. There exist numerous cache attacks that used
Flush+Reload technique: [11], [18], [20], [43]–[46]. In the
first step of the attack (Flush), the attacker process evicts
a shared cache set using available privileged instruction of
CLFLUSH, shown in Fire 6b. Attacker lets the victim execute
normally after flushing a shared cache line. In the next step
of the attack (Reload), the attacker reloads the shared cache
line andmeasures the loading time as shown in Figure 6c. The
measured time indicates if the shared cache line was accessed
by the victim or not.

5) FLUSH AND FLUSH TECHNIQUE
Flush+Flush [14], also belongs to the class of Trace-Driven
attacks and replaces the Reload step of a Flush+ Reload
attack with a Flush. This attack relies on measuring the
execution time ofCLFLUSH instruction as shown in Figure 7.
In the first phase of the attack, the attacker evicts/ flushes

a particular cache line from the shared (with the victim)
address space 7b. The attacker then lets the victim process
execute normally which may or may not access the flushed
cache line. In the second phase, the attacker flushes the
same cache line and measures the time that the flushing
operation takes as shown in Figure 7c. Using the measured
time of the flushing (which would vary depending on the
existence of target cache line in the cache), attacker can
determine if the victim accessed that cache line or not during
its normal execution. Since, attacker does not make any extra
cache accesses/reads, it is harder to track this type of attack.
That’s why Flush+Flush is considered to be a stealthy attack.
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FIGURE 6. Working principle of Flush+Reload.

FIGURE 7. Working principle of Flush+Flush.

Moreover, this type of attack is very fast. However, it is
thought of havingmore noise and normally results into higher
error rates compared to F+R and P+P attacks [5], [14], [30].

C. MITIGATION OF CACHE SIDE CHANNEL ATTACKS
Various research works have focused on the mitigation
of cache side channel attacks in the recent past. Some
of these techniques focus on resource isolation by par-
titioning caches either through software or in the hard-
ware [31], [47], [47], [48], [48]–[52]. Partitioned portions of
the cache are essentially reserved for the protected program
and this non-interference avoids CSCAs to work. Due to
cache partitioning / reservation, these techniques impose sig-
nificant performance bottlenecks. Further, they also increase
hardware overheads due to the need of specialized hard-
ware features like in [50]. Another technique that has been
proposed as a defense against CSCAs is the randomization
of the mapping between memory and cache sets [53]. This
way same addresses of different applications can be mapped
to different sets in the cache thus thwarting possibility of
CSCAs. Another approach to mitigate CSCAs is the addition
of noise either in HPCs or clock sources (used for time mea-
surements). This has been done both in the software [54]–[56]
and hardware [57].

Although a lot of research efforts have been done
to propose novel mitigation techniques against malicious
side-channel attacks, such techniques still need improve-
ments. Mitigation techniques generally focus on a specific
vulnerability and don’t provide an all-weather protection as
it can be expensive and complex. At the same time, there
has been a continuous progress in the domain of attacks
which keep on getting complicated and stealthier. Therefore,
the gap between the demands of a CSCAmitigation technique
and what they offer is increasing as well. We argue that
in this scenario, CSCA detection techniques can work in
synergy with CSCA mitigation and prevention techniques to
simplify their design and performance cost. CSCA mitiga-
tion and prevention techniques would be activated only if a
detection technique raises an alarming flag. CSCA detection
techniques have to be accurate and fast in order to be useful
when coupledwith CSCAmitigation techniques. Researchers
have proposed various techniques to detect cache based side
channel attacks. It is important to understand the existing
CSCA detection mechanisms and identify any improvements
that can be done. Despite the importance of CSCA detection
techniques, there does not exist any work that tried to survey
current CSCA detection techniques. Our paper discusses the
details of state-of-the-art CSCA detection techniques and
compares them using a common set of parameters.
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D. RELATED SURVEYS
There exist a few survey papers which review side channel
attacks in general or cache side channel attacks in specific.
However, we have not been able to find any work that focuses
on the review of research works that performed run-time
detection of cache based side channel attacks (CSCAs).
Szefer [58] broadly reviewed various microarchitectural side
channel attacks along with their defense mechanisms that
have been proposed so far. Ge et al. [13] also surveyed
microarchitectural side channel attacks specially in cloud
systems and discussed future trends and possible solutions
for such attacks. Ge et al. [30] enlist a variety of cache side
channel attacks andmitigation strategies specifically onmod-
ern hardware. Similarly, [59] discusses different software and
hardware attacks and also studies the performance overheads
of different measures against attacks specifically for AES
crypto algorithms. Lyu and Mishra [60] studied CSCAs on
famous encryption algorithms alongwith their countermea-
sures. Kong et al. [52] studied hardware-software techniques
for a defense for CSCAs. Jin [61] discussed the basic con-
cepts of hardware security in general. Zhou and Feng [62]
surveyed various approaches to perform side channel attacks
and their mitigation techniques. Younis et al. [63] provided
an extensive analysis of CSCAs in cloud systems and com-
pared few CSCA mitigation and detection mechanisms. The
comparison is performed using three categories of CSCAs
(Prime+Probe, Flush+Reload and Flush+Flush). The CSCA
detection techniques that were evaluated and compared
in detail include HomeAlone detection solution [64] and
two-stage detection technique [10]. We will discuss these
techniques in detail later on.

III. FACTORS USED FOR COMPARISON OF CSCA
DETECTION TECHNIQUES
We identify a number of important factors that can be used
to compare and characterize the proposed CSCA detection
techniques. It should be noted that this list is not exhaustive,
but a list of the most important factors that we recognized
based on the studied CSCA detection techniques.

A. DETECTION ACCURACY
Detection accuracy should be considered to be the primary
metric to judge any intrusion detection mechanism. Since,
detection of side channel attacks is a binary classification
problem, detection inaccuracy can be further divided into
false positives (cases when a no-attack condition is detected
as an attack) and false negatives (cases when an attack con-
dition is detected as no-attack) to analyze detection results
in details. Two of the commonly used metrics that have been
used to represent detection accuracy in the reviewed literature
are Percentage Accuracy and F-score. The reason for using
F-score often over percentage accuracy is following: F-score
is generally not influenced by data sets in which one class
might have much more number of samples (also known as
skewed class) than the other classes.

B. DETECTION SPEED
The speed with which an attack is detected is another impor-
tant indicator for evaluating any detection proposal. Detection
speed is usually a trade-off between overhead of a detection
system and timely intrusion detection. Detection speed is a
function of the crypto-system (which the attack is targeting)
and the attack itself and should be considered accordingly.
For example, Flush+Reload on RSA is a single-encryption
round attack and for detection to be useful the attack should
be detected before half of the total bits are encrypted.
On the other hand, Flush+Flush on AES requires hundreds
of encryption rounds to be successful, so its detection can be
useul even if it is done after number of encryption rounds.
Few of the mostly used metrics to indicate detection speed in
literature include: the absolute time, the number of encryption
rounds being performed by the crypto-system and the number
of bits being encrypted by the crypto-system by which a
detection mechanism is capable of detecting an attack.

C. DETECTION OVERHEAD
Nothing is free. The detection mechanism will always incur
some performance overhead depending on its complexity
and the level of implementation. Detection overhead can
be defined as the slowdown of the process to be protected
due to the implemented detection mechanism. The detection
overhead will be determined by the detection granularity
which specifies how often the detection mechanism would
be activated to make a decision based on the information
provided. Secondly, the perceivable detection overhead is
related to the implementation of the detection mechanism as
well.

It is important to note that in this work we mainly consider
the runtime detection overhead. There exist other types of
overheads as well like time to train and implement a particu-
lar detection strategy. However, such overheads are usually
one-time (or rare) and can be considered insignificant in
comparison to runtime detection overhead.

D. USED ATTACKS
There are various techniques to perform cache side channel
attacks (CSCAs) as discussed in the previous section. The
difficulty of detection of a CSCA varies depending on the
used technique and the crypto-system under consideration.
For example, Flush+Flush attack is considered to be more
stealthier compared to Flush+ Reload attack [14]. Therefore,
in order to perform a comparison of CSCA detection tech-
niques it is essential to identify particular attack techniques
along with the crypto-systems that were used to evaluate the
working of a detection mechanism for CSCA.

E. IMPLEMENTATION LEVEL
CSCA detection mechanism can be implemented at different
levels in a computer system. The possible implementation
levels include: victim application (crypto-system) itself, as a
separate application/process, within the operating system,
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inside each Virtual Machine (VM) or directly inside the
hardware. It is important to compare CSCA detection tech-
niques based on how they are physically implemented as
each level of implementation will have its own strengths and
weaknesses. For example, implementing a CSCA detection
mechanism as a separate application can be slow, but such
a solution can work with legacy systems/hardware. On the
other hand, a detection mechanism implemented inside the
hardware will be fast but will not be portable to legacy
systems/hardware.

F. USE OF HARDWARE PERFORMANCE COUNTERS (HPCs)
Hardware performance counters (HPCs) are special purpose
hardware registers available in most of the modern pro-
cessor families. HPCs are used to monitor performance of
applications by counting a number of microarchitectural and
architectural events (like cache misses, executed instructions,
branchmispredictions etc.) during the application’s execution
on the hardware. Intel x86 based processors [65] provide
access to hundreds of hardware events that can be tracked
using HPCs. However, due to limitation of the number of
physical registers, only a few of the events can be monitored
simultaneously (usually 4 to 8). Different libraries and APIs
like PerfMon [66], OProfile [67], Perf tool [68], Intel Vtune
Analyzer [69], and PAPI [70] can be used to configure and
read HPCs. Most of the CSCA detection mechanisms have
tried to use HPCs in their detection algorithms. Therefore,
it is significant to observe how do the used HPCs differ across
CSCA detection approaches.

G. USE OF MACHINE LEARNING (ML) MODELS
Machine learning techniques have influencedmany fields and
are gaining popularity in the field of information security
as well [71]. Differentiating an attack from a non-attack
case is basically a classification problem. Many side-channel
detection techniques have used ML models (classifiers) to
distinct attacks and non-attacks. Majority of the supervised
machine learning classifiers fall into two classes of linear
and non-linear models. Commonly used ML classifiers in
CSCA detection techniques inlcude: Linear Discriminant
Analysis (LDA), Logistic Regression (LR), Support Vector
Machine (SVM), Random Forest, Decision Tree, K-Nearest
Neighbor (KNN) and Neural Networks (NN). Details of these
ML models can be obtained from these soruces: [72]–[74].
Each machine learning algorithm has different structure
and will have different computational and memory cost
for training and performing an inference decision based
on the trained model. Therefore, analysis of types of ML
models used in a side-channel detection technique becomes
an important parameter to compare different detection
techniques.

H. DESIGN CATEGORY
Most of the side-channel detection techniques can be
divided into two basic categories based on their design:

Signature based detection and Anomaly based detection.
Signature based detection approaches rely on signature of
‘‘known side-channel attacks’’ which usually consist of
selected hardware events that will be affected by those
attacks. At run-time, program execution is compared with
the already generated signatures and in case of a match an
attack is detected. Such detection approaches usually show
very good accuracy in detection of known attacks [75].
However, they might suffer from low accuracy for detec-
tion of unknown or modified attacks [75]. Anomaly-based
detection approaches generate model of the behavior of nor-
mal/benign applications. Any significant ‘‘deviation’’ from
such model will be considered an attack. Anomaly-based
detection techniques are capable of identifying unknown or
modified attacks [75]. However, they can have high false
positive rates [75] as it is hard to build models including every
possible benign application andmany benign applications can
resemble cache based side channel attacks due to their high
memory usage.

Some research works [75], [76] have also combined both
anomaly and signature based detection designs to achieve
better results.

I. OTHER FACTORS
A couple of other factors that can prove to be valuable
while comparing different detection techniques include:
Load/Noise: This refers to the use of load/noise in the
background while evaluating the proposed attack detection
mechanism. It is important for the robustness of a detection
technique to perform well when the system is under load
(as would be the case most of the times, when attacks take
place). Attacker Identification: This checks if the detection
mechanism can also identify the actual process performing
the attack. If the attacker is also identified it makes it much
easier for mitigation techniques to deal with system under
attacks.

IV. SURVEY OF CSCA DETECTION TECHNIQUES
This section discusses in detail the surveyed literature about
detection of cache based side channel attacks. Table 2 pre-
sented in next section summarizes and shows a comparison
of all surveyed CSCA detection techniques on a common set
of parameters. The reader should use special care while com-
paring different detection techniques based on the metrics (of
Table 2) as the point of reference of some of these metrics
(like detection accuracy, detection speed) could be different.
For example, the reported detection accuracy of two tech-
niques can be based on different attacks. As discussed in the
previous section, CSCA detection techniques either employ
anomaly based detection, signature based detection or a com-
bination of both. Majority of the CSCA detection techniques
are signature based techniques: [77]–[85] or a combination of
both signature and anomaly based techniques [75], [76], [86].
Figure 8 shows a classification of CSCA detection techniques
based on their fundamental design type.
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TABLE 2. Summary of the reviewed CSCA detection techniques.

1) SIGNATURE-BASED DETECTION TECHNIQUES
One of the earliest CSCA detection works was done by
Demme et al. [77] who tried to detect malware and CSCAs

based on signatures. Demme et al. [77] claimed to use
hardware performance counters (HPCs) for the first time to
solve the problem of malware and side-channels detection.
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FIGURE 8. Classification of CSCA detection techniques.

The proposed machine learning (ML) based detection tech-
nique relies on performance counters which are sampled
at regular intervals and used as input feature vectors to
ML models/classifiers. The particular ML classifiers used in
this work include: K-Nearest Neighbor (KNN) [87], Deci-
sion Trees [88], Random Forest and Artificial Neural Net-
works (ANN) [89]. Demme et al. [77] used a case study of
Prime+Probe (P+P) type of side channel attacks to evalu-
ate their proposed CSCA detection mechanism. Importantly,
their proposed detection mechanism is able to detect the
attack process as well. Their experiments relied on OpenSSL
as a victim process and a set of benign processes from dif-
ferent benchmark suites SPEC-CPU2006 [90], PARSEC [91]
and other applications like games, web browsers and graphics
editors. They used variants of Prime+Probe attack to gener-
ate training and evaluation data for ML algorithms. Results
show that all of the used ML models (KNN, Decision Trees,
Random Forest and ANN) are able to detect all of the attack
threads without any false positives. The authors also pre-
sented a possible hardware implementation of their detector
which would consist of four basic blocks: Data Collector,
Data Analyzer, Action System and Secure Updater. The pos-
sible design choices to implement the detector module in
hardware include: separate cores, accelerators, µ-controller,
FPGA or a coprocessor [77]. This is the only work out of the
surveyed research works that proposed a possible hardware
implementation of their detection module.

Another approach named SCADET [92] is a signature-
based detection tool, which detects Prime+Probe attack.
Instead of using HPCs (hardware performance counters), this
approach uses high-level semantics and invariant patterns of
attack (targeting I-cache, D-cache and LLC). Results show
that SCADET provides high accuracy but they lack discus-
sion on detection speed and performance overhead of the
mechanism. Authors report that, in some cases, system pro-
vides false alarms under load conditions. Moreover, the trace

analysis time in this approach is very long (notable irregu-
larities when trace exceeds a certain size), which renders the
solution not suitable for run-time detection.

Allaf et al. [78] also presented a signature based CSCA
detection mechanism that uses Machine Learning (ML)
to generate signatures which are representative of attacks.
Allaf et al. [78] used three ML algorithms namely Neural
Networks [89], Decision Trees [88] and K-Nearest Neighbor
(KNN) [87] to detect cache based side channel attack specif-
ically on AES crypto-system. The particular side channel
attacks used in their work are Flush+Reload (F+R) and
Prime+Probe (P+P). A data set containing values of seven
different hardware performance counters which include core
cycles, reference cycles, core instructions and other four fea-
tures having the best effect on classification of attack and
no-attack scenarios for the used attacks is collected during
execution of processes (attacks and benign processes). This
data set is used for both training and validation of machine
learning algorithms. The data set covers two scenarios: with
and without any noise in the background when attacks and
victim programs are running. Integer and Floating-point
categories of SPEC-CPU2006 benchmarks (SPEC-int and
SPEC-fp) [90] are executed in the background to simulate
noise/load conditions.

Allaf et al. [78] also processed training data before using
it to train ML classifiers. The dimensions of training data
are first reduced using a technique of Principal Compo-
nent Analysis (PCA) [93]. The data is then passed through
a well-known optimization algorithm called L-DFGS [94],
which is known for its affinity towards smaller data sets. The
particular decision tree used in their work is C4.5 [95] which
is a famous tree-based statistical classifier. Evaluation of
the proposed technique on an Intel Xeon (X5650) processor
shows that the best classification success rate is shown by
Decision Tree which is 0.97% for F+R and 0.98% for P+P
attacks in case of no SPEC benchmarks in the background.
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The accuracy is reduced in case of background SPEC bench-
marks (specially in case of SPECfp benchmarks, which
according to authors’ claimmake heavier use of CPU compo-
nents specially caches compared to the integer benchmarks).
However, decision trees still have better accuracy compared
to other methods under noisy conditions. Results further
show that the detection framework (which learns at run-time)
is able to learn the behaviour of malicious process in less
than 1 second inworst case, which authors claim is very fast in
comparison to 50 seconds required for retrieval of entire key
bits by an F+R attack implementation done by [96] on the
used machine. Results also show that decision trees are less
efficient (have low detection speed) compared to the other
methods but show better accuracy.

Later, Allaf et al. [79] used Machine Learning to gen-
erate signatures of malicious loops of attack processes to
detect them at run-time. Allaf et al. [79] specifically used
K-Nearest Neighbor (KNN) classifier to detect malicious
loop activity within Flush+Reload (F+R) attack do detect
attacks without the need of observing any synchronization
between attacker and victim process as some other tech-
niques [75], [76] do. The used machine learning model
is trained using three features of L1, L2 and last-level
cache (LLC) misses. Selected benchmarks (bzip2, gcc,
bwaves, dealII) from SPEC-CPU2006 [90] benchmark suite
are executed in the background to create realistic system
conditions. Programs are profiled by reading performance
counters at time intervals of 0.02µs, which is the time that a
single run ofmalicious loop of F+R attack takes. N number of
profiled samples are grouped together and are represented by
the average of those samples. These representative samples
are fed to K-NN classifier to make classification decision.
The experimental evaluation of the presented model on an
Intel Xeon system shows that it can achieve an accuracy
of 99% on native system and 96% on a cloud system, with-
out any extra overhead on cloud system. However, authors
declare that this mechanism would not work for other attacks
like Prime+Probe considering the differences in working of
malicious loop in the attack. Moreover, authors claim that
the trained classifier does not need to be re-trained to detect
hostile processes in a new environment.

Some of the research works belonging to the cate-
gory of signature-based detection that have been done
recently include: [85], [97]–[99]. One of these works
done by Mushtaq et al. [85] targets stealthier CSCAs like
Flush+Flush (F+F). Mushtaq et al. [85] proposed NIGHTs-
WATCH to detect cache-based side-channel attacks at
run-time using ML models (LDA, LR, SVM). Different
hardware performance counters are used to profile victim
cryptosystems RSA and AES under attack and no-attack
scenarios to train ML models. NIGHTs-WATCH is embed-
ded into the cryptosystems to profile them at run-time
using HPCs and apply trained ML models to detect pres-
ence of any side-channel attacks. The particular case stud-
ies used to evaluate NIGHTs-WATCH include Flush+Reload
and Flush+Flush attacks. NIGHTs-WATCH being a run-time

detection mechanism is evaluated using a variety of metrics
like detection accuracy, speed and overhead. Evaluation of
the proposed detection technique shows that it can achieve
a high detection accuracy with little performance overhead
for both attacks even under noisy conditions. Specifically,
it is shown to have a detection accuracy of 99.51%, 99.50%
and 99.44% for Flush+Reload attack under no, medium and
high noise at very high detection speed (within 1% comple-
tion of a single RSA encryptions). For Flush+Flush attack,
the detection accuracy is shown to be 99.97%, 98.74% and
95.20% for no, medium and high noise at high detection
speed (within 12.5% completion of 400 AES encryptions
which is the minimum number of encryptions required for
a successful attack). Performance overhead of the detection
module is less than 2% in both cases. Later on, this work was
extended byMushtaq et al. [97], [98] to include Prime+Probe
and other variant attacks under both RSA and AES crypto-
systems. These approaches also use ML models (LDA, LR,
SVM, QDA) and HPCs to detect different variants of these
attacks at run-time. Reference [98] shows a high detection
accuracy of up to 99.51% for Flush+Reload attack on RSA,
incurring a performance overhead of 1.63% and 99.99%
accuracy on AES while incurring a maximum performance
overhead of 8.28%. The experimental results show consis-
tency for Flush+Flush attack on different implementations
of AES as well. Reference [97] show detection accuracy
of > 99% for Prime+Probe attack and their variants run-
ning on AES crypto-system with performance overhead of
3− 4% at the highest detection speed.
Some of the signature based detection techniques don’t

rely on Machine Learning to learn attack signatures. Rather
they use thresholds of particular hardware events to deter-
mine if an attack is in place. Examples of such works
include: [80]–[82], [84]. One of these works, done by Math-
ias Payer [80], utilizes the values of cache miss rates and page
faults of processes to detect an attack. Mathias Payer [80]
proposed an attack detection frameworkHexPADSwhich can
detect cache based side channel attacks along-with Rowham-
mer [100] and CAIN [101] attacks. HexPADS reads status
of different performance counters like total executed instruc-
tions, total LLC accesses and total LLC misses. It also uses
kernel information of processes like total page faults. Same
type of detection technique is used for both row-hammer
and cache side channel attacks and does not distinguish
between the two. The proposed detection mechanism basi-
cally continuously monitors the cache accesses and misses
of all processes. If cache miss rate of a process is found to
be higher than 70% i.e. greater than 70% of cache accesses
results into misses, and the same process has a low num-
ber of page-faults, the process is detected to be an attack.
The evaluation of the proposed detection technique is done
using following attacks: cache template attacks [15] based on
Flush+Reload (F+R) and an enhanced version of C5 [102]
based on Prime+Probe (P+P) attack. Performance overhead
of the detection framework is measured by executing SPEC-
CPU2006 [90] and PARSEC [91] benchmark suites when
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detection framework is active, indicating that the mean of
overhead (loss in performance of executed benchmarks) is
less than 2%. Experiments show that HexPADS can detect
both attacks successfully. However, it is not evaluated using
any realistic load/noise conditions.

Another threshold based technique which is similar to the
one proposed by Mathias Payer [80] has been presented by
Peng et al. [81]. Peng et al. [81] used cache miss rates
and data-TLB miss rates to recognize cache side-channel
attacks. They showed that cache side channel attacks like
Flush+Reload (F+R) have high cache miss rates but low
dTLB (Data Translation Lookaside Buffer) miss rates. The
detection mechanism scans all running processes on a system
and observe the values of performance events specifically
cache and dTLB miss rates for these processes. A detec-
tion flag is raised if the cache miss rate is found to be
above and dTLB miss rate below a particular threshold.
Variants [5], [15], [102] of Flush+Reload type of CSCA are
used for evaluation of the proposed technique. Experimental
results show that this technique is able to discriminate cache
based side channel attacks from benign processes and other
timing attacks accurately. Experimental analysis does not
present other run-time detection evaluation metrics like speed
and overhead.

The work of Briongos et al. [82] also depends on the
comparison (of encryption times) with set thresholds to deter-
mine the occurrence of CSCA. Briongos et al. [82] built a
timing model to discriminate if a process is being attacked
or not. Cache based side channel attacks on AES encryp-
tion system are considered in this work. As shown in [82],
the distribution of AES encryption times under attack and
no-attack cases shows an observable distinction when no
other processes are executing on the CPU. Authors conclude
that in such a case encryption times above a threshold would
be highly indicative of an attack. To create a realistic scenario,
authors experimented with running of other workloads in
the background along-with an attack. The first case involves
running Lookbusy program [103] in the background, which
is a CPU-centric workload designed to stress computational
capability of a processor. The distribution of encryption times
in this case shows that the peak heights indicating non-attack
cases rise. In the second case, a memory benchmark Rand-
Mem2 [104] is used to stress memory system by performing
random accesses to memory. The results in this case showed
that this process only caused a single cache miss for one
encryption at maximum and affects lower than 1% of encryp-
tion rounds. This infers that the CPU consumption will have
more effect on time distribution (which is to be used in the
detection process). Based on these observations, the proposed
cache side channel attack detection algorithm uses the time
distribution of encryption algorithm. The method uses last
200 samples of encryption times at any time instance. From
these samples, a histogram is created (using time intervals
of 20 cycles). Peaks of this histogram are found using a
windowing operation. The height of these peaks are used to
decide if an attack is active or not. Experimental results show

that the proposed detection algorithm achieves a detection
accuracy greater than 96% (false positive rate of 5%). It is
shown that the false positive rate can be further reduced to
0% if initializing stage of victim process is ignored.

Raj and Dharanipragada [84] presented PokerFace to iden-
tify and mitigate cache attacks which compares the memory
bus bandwidth with a threshold level to detect a CSCA. The
proposed framework consists of two components: Poker and
Face (both are implemented as single threads in guest VM).
Poker is responsible for detection of attacks which triggers
Face upon an attack detection. Face then performs cache
obfuscation to make the attack unsuccessful. The attacks
are detected at the level of VM. Poker works by observing
memory bus bandwidth to obtain information regarding cache
accesses. The working of Poker is based on the fact that
during a cache attack the victim VM suffers from significant
degradation in memory bus bandwidth. The evaluation of
the proposed framework is done using Prime+Probe and
Flush+Reload types of cache side channel attacks. Perfor-
mance overhead of PokerFace using STREAM [105], Sys-
bench [106] and PARSEC [91] benchmark suites is found to
be less than 8%.

Intel introduced an extension to their instruction set archi-
tecture (ISA) named Intel Software Gaurd Extension (SGX)
to protect the execution of unprivileged programs inside
secure enclaves. Still the privileged programs with malicious
intent can perform side channel attacks on programs inside
a secure enclave. The work of Chen et al. [107] employs
a threshold based design to detect a special case of cache
side channel attacks. Chen et al. [107] proposed Deja-Vu to
detect side channel attacks on programs guarded by SGX.
Privileged attacker regularly preempts the shielded execu-
tion of victim process which is executing inside an enclave.
This leads to unanticipated enclave exits which are known
as Asynchronous Enclave Exits (AEXs). These preemptions
can be observed by the operating system (OS) and a higher
frequency of such preemptions indicate the presence of an
attack. Deja-Vu detects the existence of AEXs to identify
the presence of an attack. Deja-Vu needs a reference clock,
that cannot be compromised, to measure the execution time
of SGX application to be protected. The execution time of
the application at run-time when detection mechanism is
active is compared with the normal run-time (run-time of the
process when no-attack is in place). A time difference above
a threshold indicates the possibility of enclave exits and a
possible attack. To make sure that the used reference clock is
trust-worthy, it is protected by Intel’s hardware transactional
memory (TSX) support. The run-time overhead of Deja-Vu
is found to be less than 5% using nbench [108] benchmark
suite. However, the required instrumentation can increase the
size of enclave binaries by approximately 64%.

An example of the signature based CSCA detection
approaches that uses special data structures (like bloom fil-
ters) is the work of Chouhan and Hasbullah [83]. Chouhan
and Hasbullah [83] used bloom filters [109] to pro-
pose a detection for cache based side channel attacks in
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cloud systems. The use of bloom filters is motivated by the
need to reduce the performance overhead of the detection
mechanism. Chouhan and Hasbullah [83] fed cache miss time
mean values read from performance counters to bloom filters
which detect if the values belong to an attack condition or not.
Bloom filters, due to their fundamental nature, do not lead
to any false negatives. For readers not familiar with bloom
filters, bloom filters are used to decide if a certain element
is a member of a particular set. Once, certain index values
are generated after an hash function is computed on elements
of set under consideration, bits in bloom filter corresponding
to those index values are set to true. For any new element
(for which decision about its membership to the set under
consideration is to be made), it is passed to the hash functions
and it’s seen if bit indexes corresponding to hash functions’
outputs are set to 1 (membership would be true if outputs
are set to 1 and false otherwise). Bloom filters prevent false
negatives, but can lead to cases of false positives. Bloom
filters are supposed to be very efficient to find memberships
of elements in a set as they don’t rely on actual comparisons,
rather use hash functions.

The proposed detection technique of Chouhan and
Hasbullah [83] first records the cache miss patterns of pro-
cesses with the help of performance profiling tools like perf.
Cache miss times (CMT) for these patterns are also calcu-
lated with the help of a timer. Mean of the differences of
each successive CMT is calculated and formed signatures are
stored in a bloom filter. At run-time, the detection mechanism
calculates such signatures again and pass them to bloom filter
to check membership of the signatures under consideration.
If set membership is found to be true, it indicates a high
probability of an attack. The methodology is evaluated with
the help of a cache simulator. Experimental results indicate
that the proposed solution takes around 6 seconds to execute
on the used machine in comparison to 17-25 seconds required
to execute the Flush+Reload attack. The authors claim that
the proposed mechanism should also work for the detection
of unknown cache based side channel attacks.

Signatures based on KVM (kernel virtual machine)
events have also been used in the detection of CSCA.
Paundu et al. [110] proposed a CSCA detection technique in
a virtualized environment using the information of KVM
(Kernel Virtual Machine) events. These events (collected
using ftrace utility [111]) provide information about the host
kernel operations when a guest system is running on it
(i.e. they monitor the guest activity). A machine learning
model SVM (with RBF kernel) is trained using the KVM
events data for specific time sequences. A set of normal
applications (including idle VM, web and mail server appli-
cations) forms the no-attack data set needed to train the
SVM. Experimental evaluation shows a performance over-
head of 0.7% for a host system based on Intel Xeon pro-
cessor (set up with 8 VMs). All three classes of CSCA
techniques (Prime+Probe, Flush+Reload and Flush+Flush)
are used to evaluate the proposed CSCA detection technique.
ROC (Receiver Operating Characteristic) curve of the

trained classifier shows an AUC (Area Under the Curve)
value of 0.99 while classifying attack and no-attack
scenarios.

Yu et al. [64] also presented a signature based two-stage
CSCA detection technique named as CSDA (Cache-based
Side Channel Attack Detection Approach) with a focus on
cloud systems. The two stages of CSDA include detection
at the level of host and guest respectively. CSDA makes use
of shape and regulatory tests which are significant methods
used to analyze detection in covert channels. Shape tests
utilize first order statistics like mean, variance and entropy
to describe different features. Regulatory tests utilize second
order or higher statistics like correlations and mutual infor-
mation found in data. In CSDA, at the level of host detection,
shape tests are executed to reveal the features of attack using
CMS (cache miss sequence). Whereas, guest detection is
the second phase which is dependent on the results of host
detection. During guest level detection, regulatory tests are
conducted to obtain the features of attack which are extracted
from virtual CPU and memory utilization. Two-stage detec-
tion technique of Yu et al. [64] extracts the features of attack
from host and guest and then uses pattern recognition tech-
niques to distinguish attacker VMs from non-attacker VMs.
Experiments reveal that CSDA is able to detect malicious
VMs efficiently in cloud setup. Whereas, no empirical results
on performance overhead, detection accuracy or detection
speed has been found in this paper.

2) ANOMALY-BASED DETECTION TECHNIQUES
There are a few recently proposed research works
[112]–[114] that rely solely on anomaly detection for recog-
nition of CSCAs. Bazm et al. [112] relied on Intel Cache
Monitoring Technology (CMT) [115] and hardware perfor-
mance counters and used Gaussian Anomaly detection [116]
for detection of cache based side-channel attacks at the level
of VMs in Iaas Cloud platforms. The proposed mechanism
shows very good accuracy in isolated conditions but suffer
from high false positives in noisy conditions. Intel Cache
Monitoring Technology (CMT) provides ‘‘fine-grained’’
information of behavior of caches in virtualized environment.
CMT also monitors the use of shared resources such as
last level caches (LLC) in modern processors and provides
statistics like occupancy of LLC by VMs on a particular
physical machine. The information provided by CMT can
be used to improve the detection of side-channel attacks in
VMs. The proposed approach to detect cache side channel
attacks uses some hardware performance counters (LLC
misses and references, iTLB cache misses and accesses)
along-with the information provided by CMT. The model
used for detection of anomalies i.e. GaussianAnomalyDetec-
tion is trained on the data of counters by estimating Gaussian
distribution of all features (after calculating their mean and
variance). Each virtual machine on the physical host acts as
a single data-point in this work and values of performance
counters and LLC-occupancy act as features of that data
point.
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The proposed framework of Bazm et al. [112] consists
of multiple threads: first thread probes the entire system to
gather statistics (performance counters and LLC occupancy)
of all VMs, second thread provides a list of active VMs.
Third thread runs Gaussian anomaly detection using the
gathered statistics to make any detection decisions. The pro-
posed framework is evaluated using an experimental system
based on Intel Xeon running 6 VMs. The particular cache
side-channel attack used in their work is an implementation
of Prime+Probe provided by [14], [117]. Moreover, four
different scenarios are built using an attacker VM, a vic-
tim VM and a CIW VM (VM running compute-intensive
workloads): (1) No Attack, No-CIW, (2) Attack, No-CIW
(3) No-attack, CIW (4) Attack, CIW. Experimental results
indicate that detection module is able to perform detection
with absolute accuracy for first two scenarios. However, it can
result into false positives for cases (3) and (4) with CIW
VMs. Experiments further indicated that iTLB cache miss
rate vary significantly for attacker and CIW VM (attacker
VM shows low iTLB-cache miss rate while CIW VM shows
high iTLB-cache miss rate) and can be used to improve the
accuracy of cases (3) and (4) by reducing false positives.
This finding is similar to what Peng et al. [81] and Payer [80]
found as well. Further, it is shown that the proposed detection
module incurs around 2%performance overhead to the hyper-
visor. However, this overhead might increase with an increase
in the number of VMs.

Briongos et al. [113] proposedCacheShield to detect cache
side channel attacks on legacy software (victim applications)
by monitoring hardware performance events during their exe-
cution. The proposed method is implemented at user level
and does not require any help from the OS/hypervisor and
would be applicable in cloud environments. As indicated by
the authors, this effort is motivated by two main problems
of the other detection mechanisms: high detection perfor-
mance overheads for VMs and requirement of monitoring
of both attacker and victim at the same time. The proposed
attack detection technique, CacheShield, uses an unsuper-
vised anomaly detection algorithm Cumulative Sum Method
(CUSUM) proposed by Page [118]. CUSUM belongs to the
category of change point detection (CPD) [119] algorithms.
CPD algorithms determine when their is a major change in
the characteristic parameters of the system under considera-
tion. Using the infoGain function of WEKA tool [120] and
relief algorithm [121] on a number of hardware performance
events collected for RSA crypto algorithm under attack,
Briongos et al. [113] found that themost relevant/meaningful
event is L3 cachemisses for detection of attacks.CacheShield
monitors performance counters in parallel to any victim
application making it possible to detect attacks that will be
successful during working of a single call of the ‘‘sensi-
tive function’’. Using two clustering algorithms Expectation
Maximization (EM) [122] and Self Organizing Maps [123]
from WEKA tool, authors show that these algorithms are
successfully able to classify attack samples using L3 cache

misses counter.

gk = max{0, gk−1 + log((dna(k)+ 1)/(dn(k)+ 1))} >= h

(1)

CacheShield uses two HPCs: LLC misses (to decide if
an attack is active) and total execution cycles (to decide if
victim application is active or not). If cache misses is found
to be greater than 0, it computes mean of cache misses sam-
ples (µa) and calculates a threshold h based on the calculated
mean (threshold is used to make a detection decision). Then
a detection rule gk (given in (1)) is calculated for a sample k
of cache misses. If gk is greater than the threshold h, an alarm
flag is raised. In (1), dna is the distance between mean of
the cache miss values for a cluster of no_attack samples
and the cache miss value of the sample k . And da is the
distance between mean of the cache miss values for a cluster
of attack samples and the cache miss value of the sample k .
For evaluation of CacheShield, few applications with high
memory usage like Yahoo Cloud Serving Benchmark, Video
Streaming, RandmemBenchmark are selected to create noisy
conditions. Three crypto-algorithms of AES, ESA and ElGa-
mal are used with three famous cache side channel attacks:
Flush+Reload, Flush+Flush and Prime+Probe. Experimen-
tal results indicate that for all attacks CacheShield shows a
detection rate of 100%. Moreover, the attacks against ElGa-
mal are detected before 37% execution of the encryption in
worst-case. For RSA, detection is achieved before 50% of the
execution of decryption algorithm in worst case.

Another anomaly based CSCA detection solution has been
proposed by Kulah et al. [114]. Kulah et al. [114] pre-
sented a semi-supervised method, SpyDetector, to detect
cache-based SCAs at run time under variable load condi-
tions. Detection mechanism is focused on the spy process
which disputes on the shared resources used by the victim
process. SpyDetector determines the shared resources which
are used by the victim process, uses different useful fea-
tures of HPC’s to quantify between normal and abnormal
contentions, correlates victim process associated with these
resources or all the processes which are using the shared
resource of interest and uses anomaly basedmachine learning
approaches to detect abnormal level of contention. SpyDetec-
tor has been validated on CSCAs such as Prime+Probe on
AES, Flush+Reload on AES & ECDSA and Flush+Flush
on AES. Experiments revealed that SpyDetector can perform
at run-time under variable load conditions in both physi-
cal and cross-VM configurations. Experimental evaluation
shows that SpyDetector detects Prime+Probe attack with
an average F-measure of 0.83, Flush+Reload with aver-
age F-measure of 0.99 for physical system and 0.97 for
cross-VM setup and Flush+Flush with average F-measures
of 0.82 for physical and 0.96 for cross-VM setups. The
overall performance overhead for the system is between
0.49% to 3.58%.
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3) ANOMALY + SIGNATURE-BASED DETECTION
TECHNIQUES
As discussed earlier, some of the cache side channel detec-
tion techniques use a combination of both signature and
anomaly based techniques. Examples of such techniques
include: [75], [76], [86]. In the following, we discuss these
techniques in detail.

Chiappetta et al. [86] proposed machine learning based
detection of cache-based side-channel attacks. This work
used three different approaches for detection of cache based
side channel attacks. The first approach is based on corre-
lation. If a correlation is found between a particular pro-
cess and a victim process, it is an indication of an attack.
The motivation behind this approach is that both victim and
malicious processes act in similar ways (similar loops with
similar operations). Experiments show that the number of
last level cache accesses acts as a good parameter to detect
an existing correlation. The second approach is based on
Anomaly Detection. The particular method used is Gaussian
Anomaly Detection [116]. In this work, authors build a model
for malicious processes considering them normal and treat all
other processes (normal) as anomalies. Authors state that the
reason of doing this is that its practically impossible to build a
model including all possible benign processes that can run on
a system. The third approach is based on Neural Networks.
Authors trained Neural Networks based on collected perfor-
mance counters values (instruction and cache related events)
for benign and malicious applications (responsible for attack-
ing through side-channels). The machine learning methods
(anomaly detection and neural network) rely on follow-
ing hardware performance counters: executed instructions,
total execution cycles, L2 cache hits, Last level cache (L3)
accesses and misses. These events are selected based on
experimental evidence. Chiappetta et al. [86] performed the
assessment of Neural Network and Anomaly Detection using
a metric of F-score [124]. The experimental results on an
Intel Xeon machine while evaluating this proposed CSCA
detection mechanism shows that the proposed technique can
detect spy processes performing Flush+Reload [5] type of
side-channel attacks with very high accuracy i.e. an F-score
of 0.93 and 1.0 on AES and ECDSA crypto-systems by Neu-
ral Network. All three proposed methods are able to detect an
attack in 1/5th of the time of attack completion.

Another technique which utilizes both signature and ano-
maly based detection has been proposed by Zhang et al. [75].
Zhang et al. [75] correlated execution of cryptographic appli-
cation on a virtual machine (VM) with the anomalous
behaviour of caches to detect cache side channel attacks
in cloud systems. The proposed mechanism, CloudRadar,
combines anomaly-based and signature-based attack detec-
tion techniques. Once an attack is detected, VM migration
is performed as a countermeasure. CloudRadar serves as a
lightweight patch to the cloud system under consideration.
Zhang et al. [75] also identified that the two most important
requirements for a signature to identify crypto application’s

execution are that it should be unique and should be repeat-
able. They used different types of events like CPU events,
cache events and kernel software events to generate signature
of applications. It is found that some events (like instructions,
branches andmispredicted branch instructions, L1 instruction
cache misses) are better for signature generation compared
to others because of their uniqueness and ability to repeat.
Their experiments showed that only a single feature of total
number of branch operations out of the previously identified
features was good enough to generate signatures and was
used for further experiments. This work uses Dynamic Time
warping (DTW) [125] algorithm to find distance between
two sequences that represent signature and run-timemeasure-
ments of performance counter values from untrusted VMs.
When CloudRadar detects the execution of cryptographic
application on the victim VM, the detection framework
selects two short sub-sequences from the runtime sequence
of performance counter values (cache misses and hits) being
monitored on untrusted VMs. These sub-sequences corre-
spond to ‘‘data points of size w’’ before and after the point of
minimum DTW distance (DTW distance is used to detect the
cryptographic application’s execution and minimum DTW
distance would correspond to the point when crypto appli-
cation starts executing). If the difference between the values
of the selected sub-sequences is found to be larger than a
threshold, possibility of a side-channel attack is detected.
CloudRadar is evaluated using a system consisting of

a controller server, a client server and two hosts cloud
servers. Six different crypto applications belonging to cate-
gory of symmetric and asymmetric crypto-systems are used
for experiments (ElGamal and DSA from GnuPG, AES and
3DES from OpenSSL and hash: HMAC from OpenSSL
and SHA512 from GnuPG). The proposed mechanism is
tested using Prime+Probe and Flush+Reload cache based
side channel attacks. Cloud-Radar is shown to have a 100%
true positive rate (with no false positives) when performance
counters are sampled at intervals of 100µs and DTW thresh-
old is kept between 0.3 and 0.4. Sampling frequency of 1ms
shows worse results while detecting execution of crypto-
graphic applications. With a window size of w = 5 (w is dis-
cussed in previous paragraph), CloudRadar is able to achieve
a false positive rate of 0%with a true positive rate of 100% at a
sampling rate of 1ms. At lower values of w, the false positive
rate is much higher (e.g. false positive rate is 20%-30% at
w = 1). Detection latency/speed of CloudRadar is in the
‘‘order of milliseconds’’ on the used machine. Performance
overhead ofCloudRadarmeasured using a set of crypto appli-
cations, SPEC2006 [90] and CloudSuite [126] benchmarks is
found to be little (within 5%).

A three-step detectionmethod for cache and branch predic-
tor based side channel attacks proposed by Alam et al. [76]
also combines Anomaly and Signature based detection. The
first step is used to detect the anomaly, the second step
finds the class of anomaly (either related to branch or cache
attacks) and the third step correlates malicious process with
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the victim. This correlation is performed to reduce the number
of false positives. At the first step of the method presented by
Alam et al. [76], eight different performance events (branch
instructions retired, branch instructions misses, Last Level
Cache References, Last Level Cache Misses, Instruction
Retired, UnHalted Core Cycles, UnHalted Reference Cycles,
Bus Cycles) are monitored in parallel for a set of benign
and malicious applications. The benign applications include
commonly used Linux tools like cd, gzip, mv etc.. The data
is then smoothed by using a finite impulse response filter
known as Simple Moving Average (SMA) [127]. This filter
calculates the ‘‘unweighted mean of an equal number of
data on either side of an intermediate value’’. Next, the data
is scaled with the help of Standardization [128] such that
it achieves a mean of zero and a variance of one. Impor-
tance of features is then calculated using the technique of
Standard Stability Selection [129]. This data is then used to
train a semi-supervised anomaly detectionmechanism known
as One-Class Support Vector Machine (OC-SVM) [130],
which is configured with a non-linear kernel (RBF). For
the purpose of learning, this algorithm uses data with only
one label. In other words, only the data belonging to one of
the classes is labelled (also known as normal class). If any
abnormality/anomaly is detected using this anomaly detector
(OC-SVM), the process under consideration is passed to
the already trained classifiers to determine the category of
anomaly. The used classifiers in this work include: Random
Forest [89], Adaboost [131], Multi-layer perceptron [132],
Naive Bayes [133] and Support Vector Machine [134]. These
classifiers are trained using the data from execution traces of
different side-channel attacks that include different hardware
events affected by those attacks. Finally to perform the third
step of the proposed approach (correlation of the malicious
process and the victim process), Fast Dynamic Time Warping
(fast-DTW) [135] is used. If similarity between two temporal
sequences composed of performance events is found to be
above a threshold, the abnormal process would be detected
as a side-channel attack. The proposed approach is validated
experimentally with the help of cache side channel attacks
on crypto-systems of AES [24] and Clefia [136] using two
different hardware environments (Intel Core i5-4570 and Intel
Xeon E5-2630 v3). The best accuracy for anomaly detection
module is found to be 100% and 97% for both set-ups at a
sampling granularity of 1ms. The best classification accuracy
is shown by Adaboost classifier which is above 99% for both
setups at sampling frequencies of 10 and 1 ms. The best
accuracy of correlation module for setup 1 is found to be 83%
at sampling frequency of 1ms with a DTW window of size
w = 5 and for setup 2 it is 74% at sampling frequency of 1ms
with a DTW window of size w = 5.
Possibility of side channel attacks can also be identified

by detecting the presence of multiple VMs on same hard-
ware in cloud systems as done by Zhang et al. [137] and
Inci et al. [138]. In a public cloud, same physical machine
may be shared by many VMs. Co-residency of different
VMs on the same physical machine increases the risk of

security breakdown. A VM with malicious intent can use
the shared resources (like caches) on the same physical
machine to attack a victim VM. Zhang et al. [137] proposed
HomeAlone to detect cross-VM side channel attacks by first
detecting the existence of untrusted VM on the same physical
server. HomeAlone is implemented at the level of hypervi-
sor/VM. It works by observing the cache memory activity
on the victim VM. HomeAlone works in three steps: first
step (PRIME) fills up a portion of the shared cache by reading
data from main memory. In the second step (IDLE), it waits
for a specific amount of time while other VMs are running.
In the third step (PROBE), HomeAlone reads the same cache
section and uses time of the reading to determine if this
portion is overwritten by another VM. Any time difference
indicates the presence of shared resources and possibility of
side channel attacks. Experimental evaluation of HomeAlone
is performed using an adversary VM running Prime+Probe
attack. The evaluation shows that the detection accuracy is
improved with the increase in frequency of Prime+Probe
attack or with increased cache sets monitored by Home-
Alone which overlap with malicious VM’s activity region.
A true detection rate of 85% is observed when 1/16th of
cache scanned by HomeAlone overlaps with malicious VM’s
activity region. Further, the maximum performance overhead
(using PARSEC benchmarks [91]) is found to be equal to
4.6% (with most of the cases around 2%).

Inci et al. [138] also focused on the problem of detect-
ing co-location required to perform cross-VM attacks such
as Prime+Probe and Flush+Reload in enterprise clouds.
This work demonstrates three co-location detection methods
named as; cooperative last-level cache covert channel, soft-
ware profiling on LLC and memory bus locking. Co-location
problem is analyzed on threat models of Amazon EC2 Cloud,
Google Cloud Engine and Microsoft Azure. Contribution of
this paper includes; devising a new LLC software profiling
tool which is able to detect application by non-collaborating
co-located victims in cloud, this tool is able to detect without
the help of memory de-duplication and any other sharing
mechanism and describing three co-location methods and
discussing their success on popular clouds (considered as
a threat model). Threat model considers two attack scenar-
ios for cross-VM on public clouds i.e., the target victim is
predefined or the target victim is unknown. Targeted colo-
cation includes identification information of the victim e.g.
IP address. Attacker reforms instances on the cloud until the
targeted victim is co-located on the same physical machine.
Using the IP, attacker can check the server which is creating
CPU load and then co-location tests can be run to verify
the presence of victim. It is very easy to achieve co-location
detection in this case but one needs to run many tests on the
same physical machine as of victim.

For random victim co-location detection, attacker sends
instances on cloud until it is confirmed that instance is not
alone e.g. is co-located with any other VM. The goal is to get
maximum likelihood and reduction in the cost of co-locating
with viable target. Less costly instances use less CPU cores
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which tend to share same hardware at maximum. That is
why such instances have bright chance of co-location. Results
explain that collaborative and non-collaborative co-location
to certain clouds is possible on major cloud services. Pro-
posed mechanism was able to achieve targeted co-location
in Amazon EC2 with the help of LLC software profiling
(for RSA and AES crypto-systems). For memory bus lock-
ing mechanism, memory accesses lead to major degradation
while in covert channel, the method achieves high accuracy.
It is demonstrated in the paper that LLC software profiling
mechanism can be used for co-location detection without use
of memory de-duplication and any other sort of sharing from
victim side. There exist other techniques as well [139]–[142]
to monitor executing guest VMs which can be used for detec-
tion of co-residency and eventually side-channels.

As discussed in Section 2.4, Younis et al. [63] surveyed
and compared two CSCAmitigation techniques (cache flush-
ing [143] and noise injection [144]) and two CSCA detec-
tion techniques (HomeAlone [137] and a two stage detection
technique proposed by Yu et al. [64]). These CSCA detec-
tion techniques have already been discussed in this section.
Younis et al. [63], on comparing these CSCA detection and
prevention mechanisms, found out that Flushing technique
was able to mitigate all the three attacks but injecting
noise was unable to detect Prime+Probe and Flush+Reload
(4-10 times out of 20) which reduces their detection accuracy
to half. For preventing context-switching, cache flushing also
induces a high affect on cache efficiency. It is discussed that
all prevention and detection mechanisms affect the cache
usefulness e.g. solution proposed by Yu et al. [64] slows the
CPU operations to count cache misses which significantly
reduces the effectiveness of cache whereas,HomeAlone solu-
tion flushes the data every time and forces CPU cache to write
it back from main memory which degrades the effectiveness
of cache. The paper further observes that flushing and inject-
ing noise can prevent cache at all levels. Two stage detection
solution [64] can detect CSCAs at all levels, whereas Home-
Alone detects attack at only L2 cache level.

V. HIGH-LEVEL SYNTHESIS
This section will discuss the summary of our findings based
on the study of CSCA detection techniques found in litera-
ture. Table 2 summarizes the discussion on reviewed CSCA
detection techniques. This table shows the extent to which
proposed CSCA detection mechanisms have been evaluated
by the studied papers. Major findings from the surveyed liter-
ature related to CSCA detection mechanisms are following:

• Cache Side Channel Attack (CSCA) detection tech-
niques are largely divided into Signature Based and
Anomaly Based detection techniques.

• Most of the CSCA detection techniques are Signature
based techniques as shown in Table 2. There also exist
few research works that use a combination of Anomaly
and Signature based detection techniques. As mentioned
above, most of the CSCA detection techniques are

FIGURE 9. Number of CSCA detection research works.

actually signature based detection techniques. However,
generally in the domain of information security, signa-
ture based detection techniques have shown to be evaded
with the help of obfuscation [145]. We note that the
similar issue exists in the detection of cache side chan-
nel attacks. For example, assume a detection technique
which uses a signature based on the HPCs (cache events,
and branch events), such that an attack is represented
by high values of cache events but low values of branch
events. If an attacker is aware of the way the detection
mechanism works, the attacker can use obfuscation by
embedding some code in the attack process which will
lead to high branch events as well, thus decreasing the
probability of attack getting detected by the employed
detection mechanism. We have not found any papers
which target this issue and propose obfuscation proof
detection mechanisms.

• As shown in Figure 9, more than 80% of the research
works focusing on detection of cache based side channel
attacks are performed in last 3 years indicating that the
field still lacks maturity.

• Almost all of the reviewed detection techniques use
hardware performance counters available on all modern
processors. A few works [75], [83], [107], [138] don’t
use HPCs but still rely on hardware timers provided by
the processor vendor.

• Machine learning is also used notably for CSCA detec-
tion as 50% of the studied techniques apply machine
learning models to recognize cache side channel attacks.

• It is generally believed that anomaly based detec-
tion techniques are capable of detecting unknown or
zero-day attacks [75]. However, none of the surveyed
research works has shown any empirical evidence of the
capability of detecting unknown or modified attacks.

• We found that almost all of the CSCA detection solu-
tions are purely software-based and there is only a single
work [146] that also proposed a hardware implementa-
tion of the proposed detection technique.

• We also observed that there are many research papers
that missed one or more important evaluation parame-
ters while evaluating their CSCA detection proposals as
shown in Table 2.

VI. TRENDS IN CSCA DETECTION: THE CHALLENGES,
PITFALLS AND PERILS
In this section, we discuss the general trends in cache based
side channel attack detection and the associated challenges
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TABLE 3. List of security papers using HPCs in SCAs.

which need to be considered when devising CSCA detection
techniques.

A. USE OF HPCs IN SECURITY
Hardware performance monitoring counters have been sig-
nificantly used in security attack detection mechanisms.
Therefore, it is critical to understand the limitations [149]
(discussed in next subsection) of these counters in order to
appropriately use them in detection solutions. To lessen the
burden on programmers, a number of utilities and tools are
available to obtain counter information on variable platforms.

We analyzed the papers which use HPCs (hardware perfor-
mancemonitoring counters) for detection of CSCAs as shown
in Table 3. Table 3 also lists the papers which acknowledged
and addressed the problems while sampling HPCs.

B. ISSUES AND LIMITATIONS OF HPCs
The issues and limitations associated with the use of HPCs
are following:

1) NON-DETERMINISM
Hardware performance counters may produce deterministic
results when run in a strictly controlled environment [157].

Deterministic results of hardware performance counters also
depend on the tools which you use for measurement of
results. Generally, the values of hardware performance coun-
ters can vary from 1-10% (during different runs) due to
non-determinism [157]. Only few hardware performance
counters can produce deterministic results like retired instruc-
tion. Many of the other counters which measure events like
cache and cycle counts are not deterministic on modern out-
of-order machines due to various reasons which include:
operating system activity, context switching, hardware inter-
rupts, cost of measuring hardware performance counters,
variations in tools for measurement [157]. Therefore, to use
hardware performance counters for security applications,
it is important to keep this non-determinism in mind and
potentially use such events only in applications where this
non-determinism can be tolerated (or potentially rely only on
deterministic events).

2) MULTIPLEXING ISSUES
Multiplexing allows more counters to be used simultaneously
than are physically supported by the hardware. With multi-
plexing, the physical counters are time-sliced, and the counts
are estimated from themeasurements. Naive use ofmultiplex-
ing could lead to erroneous results that would not be detected
by the user. Erroneous results can occur when the run-time is
insufficient to permit the estimated counter values to converge
to their expected values [158]. Reference [159] also study the
accuracy of performance counter-based measurements. How-
ever, their focus is on the accuracy of measurements when
the number of events to measure is greater than the number
of the available performance counter registers. They compare
two ‘‘time interpolation’’ approaches, multiplexing and trace
alignment, and evaluate their accuracy. Their work does not
address the measurement error caused by any software infras-
tructure that reads out and virtualizes counter values. Thus,
heavymultiplexing of hardware performance counters should
be avoided to prevent incorrect counter values that will be
eventually used by attack detection techniques.

3) PERFORMANCE OVERHEAD
The use of hardware performance counters also introduces a
performance overhead (incurred during the start/stop of coun-
ters and whenever they are read using some programming
interface). The interfaces (used to control and read coun-
ters) introduce an overhead in the form of extra instructions,
system calls, and can cause cache pollution that can change
the cache and memory behavior of the monitored applica-
tion [158]. The cost of processing counter overflow interrupts
can be a significant source of overhead in sampling-based
profiling. The performance cost of using these counters
makes it necessary to only use these counters when necessary
if real time CSCA detection solutions are desired.

C. USE OF ML IN SECURITY
In the recent past, ML has been extensively used in security
domain e.g. malware and intrusion detection: [160]–[167].
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Similarly, ML is employed in detection of CSCAs: [76]–[80],
[85]–[89], [97], [99], [112]. Next, there is a discussion on the
issues associated to the use of ML in CSCA detection.

D. ISSUES AND LIMITATIONS OF ML
As discussed previously, CSCA detection is a binary classifi-
cation problem and ML offers many classifiers for the prob-
lem of detection. However, as a designer of CSCA detection
mechanism, it is important to understand the rationale behind
applying a specific ML algorithm for a particular detection
problem. For example, a fundamental question should always
be asked that if ML will be on overkill for the problem at
hand. The usability of a ML model is generally judged based
on two parameters; the model should achieve high accuracy
and provide less implementation complexity which renders
less performance cost. As we know CSCAs are very stealth
in nature and take microseconds to execute, the detection
mechanism using ML classifiers should be able to perform
early stage detection (before the completion of attack) fol-
lowed by mitigation mechanism to act before the attack
retrieves the victim’s confidential information. To assess the
accuracy of a ML classifier, it is also critical to use proper
metrics (examples include percentage accuracy, F-score) The
adaptability and scalability of a detection mechanism highly
depends on its run-time performance overhead. It is important
that MLmodel has low implementation cost and can be easily
embedded in the detection module. Models which explode in
tree based nature, or perform a lot of forward and backward
tracing, do conditional statements, take into account a lot of
training data points, cost highly in terms of implementation
complexity (although they can be very accurate in decision
making). Therefore, it is crucial to focus on the balance in
terms of detection accuracy and performance overhead before
relying on a ML model for CSCA detection purposes.

VII. CONCLUSION AND FUTURE OUTLOOK
This work is the first effort to perform a detailed survey of
CSCA detection techniques proposed in the last decade or so.
We have identified a broad set of criterion to characterize the
research works on CSCA detection. We discuss the detailed
working of CSCAdetectionmethodologies found in literature
and provide a comparative summary of these techniques.
We found that the research efforts in this domain are on the
rise and there is a space to improve the existing techniques
using innovative ideas. We provide a brief discussion on the
future research directions that can be explored in the field of
CSCA detection.

We believe that a lot of concepts from the field of malware
and intrusion detection can be borrowed to solve the problem
of CSCA detection. The field of malware detection seems
to have more maturity, therefore, a lot of research ideas
[168]–[171] can be adopted for the case of CSCA detection.
We observed that almost 50% of the reviewed research
works utilize machine learning classifiers to detect CSCAs.
Most of these works use multiple machine learning mod-
els. Therefore, it would be interesting to explore the use

of ensemble learning techniques to combine various classi-
fiers and observe the impact on the overall detection results.
As discussed in the previous section, almost all of the pro-
posed CSCA detection solutions work entirely in the soft-
ware. We believe an important future direction would be
to explore possibility of hardware implementation of the
proposed solutions or to think of hardware solutions from
scratch. These hardware solutions can accelerate the response
of detection solutions in the presence of an attack. More-
over, hardware based solutions can lead to faster mitigation
solutions as well without involvement of software or OS.
For example in case a hardware detector detects an attack,
the processor pipeline can be sent a signal to stall instan-
taneously (without any lag due to software involvement) to
make sure that no critical information is lost. Possible choices
for implementation of hardware solutions include: separate
cores or other programmable logic devices/systems (SoCs,
NoCs etc.).

As there are various techniques for CSCAs and new tech-
niques keep on appearing, CSCA detection solutions need
to be more generic and adaptable. What we have observed
from our study of the already published research is that
the proposed techniques usually use a limited set of attacks
to validate their proposals. Moreover, often the proposed
machine learning classifiers are attack specific. We believe
that in future the community needs to come up with more
inclusive solutions and validate them on a wider variety of
attacks. Similarly, the need to build detection techniques that
would work for zero-day, unknown or modified attacks is
evident. We discussed the need for detection based CSCA
mitigation solutions in the earlier part of this paper. However,
we have not seen research works that integrate the two. It is
important to experiment with such ideas as their integration
would expose new challenges that we have not been able to
observe before.

As Machine Learning has been able to help CSCA detec-
tion techniques significantly, there are other areas that can
be applied to solve CSCA detection problem. These areas
include Deep Learning [172], Game Theory [173] and Fuzzy
Logic [174], [160]. These areas have already been exten-
sively applied to solve the problem of malware and intrusion
detection: [160]–[167].

We have also observed that all of the proposed CSCA
detection techniques focus on Intel’x x86 architecture. How-
ever, attacks on other architectures like ARM have also been
proposed [21]–[23]. Now, since characteristics of attacks
on different architectures can be different, the challenges
to detect such attacks can be different on different archi-
tectures. Therefore, it would be worthwile to study detec-
tion of CSCAs on other architectures like ARM. Similarly
attacks on ARM’s support for isolated execution environ-
ment i.e ARM TrustZone have been shown to be possi-
ble [175], [176]. However, a detailed study of such attacks and
demonstration of their detection is still missing.We noted that
the studied proposed detection techniques focus on detection
of cache side channel attacks on cryptographic execution
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(e.g. RSA, AES, ECDSA). However, cache side channel
attacks exist on other targets as well like user and kernel
space ASLR (Address space layout randomization) [177]
and other environments like browsers and non-native code
(e.g. javascript) [21], [178]. In future researchers will have to
come up with detection techniques for attacks against such
targets.

There exist research works [179]–[181] that have proposed
techniques to detect side channel vulnerabilities using pro-
gram analysis. Combining such techniques with CSCA detec-
tion methods can help to reduce burden on CSCA detection
and increase the confidence of detection as well. Moreover,
compiler assistance can prove to be useful in this regard as
well. Such solutions would also help to reduce performance
overheads of run-time detection. It is clear that at the moment
there exist quite a few challenges in this field of CSCA detec-
tion techniques and there is a need to invest more resources
and minds in this domain to solve these critical problems.
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