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Ellipsoidal Set-Membership State Estimation for Multi-Output Systems
with Interval Uncertainties

S. Ben Chabane, C. Stoica Maniu, T. Alamo, E. F. Camacho, D. Dumur

Abstract— This paper presents a new online ellipsoidal guar-
anteed set-membership state estimation approach for Multi-
Output linear systems with interval uncertainties, bounded
perturbations and measurement noises. The ellipsoidal set
containing the real state of the system is computed at each
sample time. This approach consists in online minimizing the
radius of the ellipsoidal state estimation set by solving a Linear
Matrix Inequality optimization problem. Interval uncertainties
are considered in both the evolution matrix and the observation
matrix. An illustrative example is analyzed in order to show
the advantages of the proposed approach.

Index Terms— set-membership state estimation, ellipsoidal
set, interval uncertainty, Linear Matrix Inequality.

I. INTRODUCTION

Knowledge of the system state plays a very important role
in systems monitoring and control. However, in many cases
the full state is not directly measurable and an estimation
of the system state is required. In addition, the presence of
disturbances and measurement noises makes this estimation
more difficult. Using the available online measurements and
a dynamic model of the process, the idea is to compute the
best estimate of the state variables at the current time, despite
the possible perturbations and measurement noises.

More often, the state estimation problems are solved by
implementing a stochastic approach based on a probabilistic
description of the perturbations and measurement noises [1].
This requires to assume that the individual perturbations are
realizations of random variables characterized statistically by
their average, covariance, probability density etc. However,
sometimes the probabilistic assumptions are difficult to ver-
ify. Thus, it may be more realistic to assume that the errors
belong to compact bounded sets. This corresponds to the
deterministic approach or the set-membership estimation [2],
[3], [4], [5], where perturbations are considered unknown but
bounded. In set-membership estimation approaches, the evo-
lution of system states at each time instant is not described
by a point in the state-space but by a set consistent with the
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measurements, the perturbations, the uncertainties and the
noise. This set guarantees to contain the real state. While
their use was severely restricted in the 80s due to the low
capacity of available computers, these approaches have been
widely used over the last two decades by many researchers
[6], [7], [8], [9].

Several domain representations are used to bound the
set of all possible states of the system consistent with the
measurements and perturbations, such as polytopes [10], par-
allelotopes [7], zonotopes [11], [12], [13], [14], [15], [16] and
ellipsoids [17], [18], [19], [20]. Ellipsoidal estimation has
increased the attention among researchers in the last decades.
Indeed, ellipsoids are widely used due to the simplicity of
their formulation and resulting estimation stability properties
[21]. This topic is considerably covered in [17], which in
particular provides an exhaustive solution of the problem for
the sum and the geometrical difference of ellipsoids. Less
efforts have been devoted to the study of other important
operations, such as the union and the intersection, although
the construction of external approximations for the inter-
section of ellipsoids plays a key role for control design in
dynamical systems with ellipsoidal constraints. To minimize
the size of the estimation ellipsoidal set, two methods are
mainly considered. Firstly, the determinant-based criterion is
minimized [18], which is equivalent to minimize the volume
of the ellipsoidal set. Secondly, the minimization of the
trace criterion, which is equivalent to minimize the sum of
squares of the half length of the axes of the ellipsoid, is
considered in the literature [18]. These two methods offer
low complexity suitable for online implementation, but with
a loss of accuracy compared to the polytopic estimation [18].

In addition, zonotopes are proposed to obtain a better
estimation accuracy than ellipsoids. To minimize the size of
the zonotopic estimation, several methods are proposed in
the literature. In [12], a method based on the Singular Value
Decomposition is used in order to obtain a zonotopic outer
approximation of the intersection of the uncertain trajectory
and the region which is consistent with the measured output
vector. In [13], the minimization of the segments and the
volume of the zonotope are used. The segments minimization
method is faster but less accurate than the minimization
of the volume of the zonotope. In [14], the minimization
of the P-radius of the zonotope leads to a good trade-
off between the rapidity of the segments minimization and
the estimation accuracy of the volume minimization of a
zonotope. The P-radius minimization zonotopic method [14]
is the only existing zonotopic method used for linear systems
with interval uncertainties affecting the evolution matrix.



Several works on interval observers have been developed for
these uncertain dynamical systems [22], [23], [24]. The main
difficulty arising when dealing with interval observers [25] is
the dependency problem, which is an important consequence
of the so-called wrapping effect for uncertain systems.

In this context, the aim of this paper is to propose a
new online ellipsoidal set-membership estimation approach
for linear uncertain systems with bounded perturbations,
measurement noises and interval uncertainties on both the
evolution matrix and observation matrix. In this approach,
the novelty consists in proposing an online ellipsoidal state
estimation procedure based on the minimization of the ellip-
soid radius which allows to take into account simultaneously
bounded perturbations, measurement noises and inverval un-
certainties both in the evolution and the observation matrices.
This result is based on the use of the S-procedure for
quadratic functions [26]. It offers less conservative results
than the estimation obtained by the off-line P -radius-based
zonotopic estimation method [14] due to the minimization
of the ellipsoidal radius at each time instant. The ellipsoidal
estimation was initially developed for linear systems with
bounded perturbations and measurement noises in [27], while
considering an interval evolution matrix in [28]. The origi-
nality of the present paper is to extend this method to the case
of linear time-invariant systems with bounded perturbations,
bounded measurement noises and interval uncertainties in
both the evolution and observation matrices. Considering
structured uncertainties in the observation matrix is a main
issue for sensor fault detection and isolation.

This paper is organized as follows. The state estimation
problem is formulated in Section II. Section III focuses on
the main results of this paper, presenting a new approach
for guaranteed ellipsoidal state estimation for linear time-
invariant systems with interval uncertainties. Section IV
proposes an illustrative example showing the advantages of
the proposed method. Finally, some concluding remarks and
perspectives are drawn.

Notations An interval [a, b] is defined by the set
{x ∈ R : a ≤ x ≤ b}. The set of real compact intervals
[a, b], with a, b ∈ R and a ≤ b, is denoted by I. The
unitary interval B is defined by the interval [−1, 1]. A box
([a1, b1], . . . , [an, bn])> ⊂ Rn is an interval vector. A unitary
box Bn is composed by n unitary intervals. An interval
matrix is defined by [M ] ⊂ In×m, with aij ≤ mij ≤ bij ,
i = 1, ..., n, and j = 1, ...,m, with mid[M ]ij =

aij+bij
2 and

rad[M ]ij =
aij−bij

2 defining its center and radius, resp. A set
V[M ] defines the set of all vertices of the interval matrix [M ].
A polyhedral set X in a finite-dimensional euclidean space
is given by the set {x ∈ Rn : Ax ≤ b, A ∈ Rm×n, b ∈ Rm}.
M � 0 denotes a positive definite matrix. A bounded
ellipsoid E(P, x̄, ρ) is defined by E(P, x̄, ρ) = { x ∈ Rnx :
(x−x̄)>P (x−x̄) ≤ ρ }, with P = P> � 0 its shape matrix,
x̄ ∈ Rnx its center and ρ ∈ R∗+ its radius.

II. PROBLEM STATEMENT

Consider the linear discrete-time invariant system:{
xk+1 = Aδxk + Eωk
yk = Cδxk + Fωk

(1)

where xk ∈ Rnx is the state vector of the system and yk ∈
Rny is the measured output vector at sample time k. The
vector ωk ∈ Rnx+ny contains both of the state perturbations
and the measurement perturbations (noise, offset, etc.), which
can be non-correlated. It is assumed that the perturbations
ωk are bounded by the unitary box Bnx+ny and the initial
state x0 is bounded by the ellipsoid: E(P0, x̄0, ρ0) = { x ∈
Rnx : (x − x̄0)>P0(x − x̄0) ≤ ρ0 }. Matrices Aδ , Cδ ,
E, and F have the appropriate dimensions, with the pair
(Cδ, Aδ) detectable (see [29] for the detectability of linear
time invariant systems with interval plants). An additional
assumption is to consider a quadratically stable interval
matrix [A] for a common quadratic Lyapunov function.
Aδ and Cδ are constant unknown matrices belonging to
interval matrices [A] and [C], which permits to structure the
uncertainties ∆Aδ and ∆Cδ as follows:{

Aδ = mid[A] + ∆Aδ,
Cδ = mid[C] + ∆Cδ.

(2)

If nAδ (resp. nCδ ) is the number of the uncertain terms δi ∈
B (resp. δj ∈ B) of ∆Aδ (resp. ∆Cδ), with i = 1, . . . , nAδ
(resp. j = 1, . . . , nCδ ), then the uncertain part ∆Aδ (resp.
∆Cδ) can be decomposed into elementary parts:

∆Aδ =

nAδ∑
i=1

Aδiδi (resp. ∆Cδ =

nCδ∑
j=1

Cδjδj). (3)

The attentive reader can notice that nδ = nAδ + nCδ .
At time k > 0, consider an ellipsoid E(P, x̄k, ρk) that

contains the real system state xk, with x̄k the nominal
estimated set. The aim of this paper is to provide at time
k+1 an optimal ellipsoidal estimation E(P, x̄k+1, ρk+1) that
guarantees to contain the state xk+1.

III. MAIN RESULTS

This section focuses on the construction of the ellipsoidal
guaranteed estimation set containing the real state of the
system (1). Suppose that, at time k, the ellipsoidal set
E(P, x̄k, ρk) is an outer bound of the system state. Suppose
also that a measured output yk is obtained at sample time
k. Based on the minimization of the radius of the ellipsoidal
estimation set at each sample time k, an outer bound of the
online ellipsoidal state estimation is computed here, in the
general context of the uncertain system (1).

Knowing that ωk ∈ Bnx+ny , it is possible to take
into account its structure to avoid the vertex enumeration
problem. Therefore, the element-wise formulation of ωk =
[ωk1 ωk2 . . . ωknx+ny

]> ∈ Bnx+ny allows writting |ωk| ≤
1 and ω>k ωk ≤ 1. Denote by ei, i = 1, . . . , nnx+ny ,
the columns of the following identity matrix Inx+ny =[
e1 e2 . . . enx+ny

]
. This permits to write ω>k eie

>
i ωk ≤

1, i = 1, . . . , nx + ny. Then, denoting by Ti = eie
>
i the



matrix having only the element (i, i) equal to 1, it leads to
the scalar inequalities ω>k Tiωk ≤ 1, i = 1, . . . , nx + ny .
This result is further used by the following property.

Property 1: Consider a positive definite matrix S ∈
R(nx+ny)×(nx+ny) and the positive real scalars ρ > 0 and
τi ≥ 0, i = 1, . . . , nx+ny . If the conditions (4) are verified:

ω>k Tiωk ≤ 1, i = 1, . . . , nx + ny, (a)
nx+ny∑
i=0

τi < ρ, i = 1, . . . , nx + ny, (b)

nx+ny∑
i=0

τiTi � S, with S � 0, (c)

(4)

then the following inequality holds 1
ρωkω

>
k ≺ S−1.

Proof: From (4.b), it is trivial to see that ρ >
nx+ny∑
i=0

τi ≥

0. Multiplying left and right the expression (4.c) by ω>k
and ωk, respectively, and then successively using (4.a) and
(4.c), leads to the following scalar formulation ω>k Sωk <

ω>k (
nx+ny∑
i=0

τiTi)ωk =
nx+ny∑
i=0

τi(ω
>
k Tiωk) ≤

nx+ny∑
i=0

τi <

ρ. This can be rewritten as ρ − ω>k Sωk > 0, with
S � 0 and further reformulated using the Schur com-

plement:
[

ρ ω>k
ωk S−1

]
� 0, S � 0 or equivalently[

S−1 ωk
ω>k ρ

]
� 0, ρ > 0. Applying again the Schur

complement [26] gives S−1−ωkρ−1ω>k � 0, ρ > 0, which
leads to 1

ρωkω
>
k ≺ S−1. �

Finding a guaranteed ellipsoid which contains the state
vector xk at each sample time k is formulated by the
following theorem.

Theorem 1: Consider an initial state vector x0 and at
sample time k assume that xk ∈ E(P, x̄k, ρk), with P =
P> � 0 and ρk > 0. If there exist a matrix Yk ∈ Rnx×ny ,
a matrix S = S> � 0 in R(nx+ny+nδ)×(nx+ny+nδ) and the
scalars ρk+1 > 0 and β ∈ (0, 1) for which the following
LMI holds for all Aδ ∈ V[A] and Cδ ∈ V[C]:

min
β,Yk,S,ρk+1

ρk+1

subject to


βP ∗ ∗

PAδ − YkCδ P ∗

0

 E>P − F>Y >k
A>k

−C>k Y >k

 S

 � 0,

ρk+1 − βρk > 0,
β < 1

(5)

with ∗ denoting the terms required for the symmetry of
the matrix and Ak =

[
PAδ1 x̄k ... PAδnAδ

x̄k
]

and

Ck =
[
Cδ1 x̄k ... CδnCδ

x̄k
]
, then the system state xk+1

at time k + 1 is guaranteed to belong to the ellipsoid
E(P, x̄k+1, ρk+1),∀ωk ∈ Bnx+ny+nδ , ∀Aδ ∈ [A] and ∀Cδ ∈
[C], with the following notations:

Yk = PLk, (6)
x̄k+1 = mid[A]x̄k + Lk(yk −mid[C]x̄k) (7)

Remark 1: The gain Lk is computed online at each sam-
ple time. This improves the convergence of the estimation
compared to the technique proposed by [14] which considers
a fixed gain.

Proof: Denote by zk = xk − x̄k the error between the
real state and the nominal estimated state at time k. At time
instant k+1, the error zk+1 is given by zk+1 = xk+1−x̄k+1.
After regrouping the terms in xk, ωk and x̄k and replacing
mid[A] and mid[C] as detailed in equations (2) gives:

zk+1 = ALkzk + ηLk + (∆Aδ − Lk∆Cδ)x̄k, (8)

with ALk = Aδ − LkCδ and ηLk = (E − LkF )ωk.
In order to verify the result, the next step is to prove the
following expression:

z>k Pzk ≤ ρk ⇒ z>k+1Pzk+1 ≤ ρk+1. (9)

Consider F0(zk) = ρk+1 − (ALkzk + ηLk + (∆Aδ −
Lk∆Cδ)x̄k)>P (ALkzk + ηLk + (∆Aδ − Lk∆Cδ)x̄k) =
ρk+1−z>k+1Pzk+1 and F1(zk) = ρk−z>k Pzk. Using the S-
Procedure defined in [26], expression (9) is verified if there
exists β > 0 such that F0(zk) − βF1(zk) ≥ 0, ∀ωk ∈
Bnx+ny , ∀Aδ ∈ [A] and ∀Cδ ∈ [C], which is equivalent to:

z>k+1Pzk+1 + β(ρk − z>k Pzk) ≤ ρk+1.

Using (8), this is further equivalent to z>k A
>
Lk
PALkzk +

(ηLk+(∆Aδ−Lk∆Cδ)x̄k)>P (ηLk+(∆Aδ−Lk∆Cδ)x̄k)+
2(ηLk +(∆Aδ−Lk∆Cδ)x̄k)>PALkzk−βz>k Pzk−ρk+1 +
βρk ≤ 0, ∀ωk ∈ Bnx+ny , ∀Aδ ∈ [A] and ∀Cδ ∈ [C]
which can be rewritten as:[
zk
1

]> [
A>LkPALk − βP ∗

(ηLk + (∆Aδ − Lk∆Cδ)x̄k)>PALk γ

] [
zk
1

]
≺ 0,

(10)
with γ = −ρk+1 + βρk + (ηLk + (∆Aδ −
Lk∆Cδ)x̄k)>P (ηLk + (∆Aδ − Lk∆Cδ)x̄k), ∀ωk ∈
Bnx+ny , ∀Aδ ∈ [A], ∀Cδ ∈ [C] and ∀zk ∈ Rnx . The
expression (10) is verified, ∀zk ∈ Rnx , if:[

−A>LkPALk + βP ∗
−(ηLk + (∆Aδ − Lk∆Cδ)x̄k)>PALk −γ

]
� 0,

∀ωk ∈ Bnx+ny , ∀Aδ ∈ [A] and ∀Cδ ∈ [C], or equivalently:[
βP 0
0 ρk+1 − βρk

]
− Ã>P−1Ã � 0,

∀ωk ∈ Bnx+ny , ∀Aδ ∈ [A] and ∀Cδ ∈ [C], with
Ã =

[
PALk P (ηLk + (∆Aδ − Lk∆Cδ)x̄k)

]
. Applying

the Schur complement [26] leads to: βP ∗ ∗
0 ρk+1 − βρk ∗

PALk P (ηLk + (∆Aδ − Lk∆Cδ)x̄k) P

 � 0,

∀ωk ∈ Bnx+ny , ∀Aδ ∈ [A], ∀Cδ ∈ [C].
Using the explicit formulation of ALk , ηLk and Yk, the
equivalent expression follows: βP ∗ ∗

0 ρk+1 − βρk ∗
PAδ − YkCδ υ P

 � 0, (11)



∀ωk ∈ Bnx+ny , ∀Aδ ∈ [A], ∀Cδ ∈ [C], with υ = (PE −
YkF )ωk + P (∆Aδ − Lk∆Cδ)x̄k.

Pre-multiplying and post multiplying ∆Aδ in (3) by P

and x̄k gives: P∆Aδx̄k = P
nAδ∑
i=1

Aδiδix̄k =
nAδ∑
i=1

PAδi x̄kδi.

This expression is equivalent to:

P∆Aδx̄k = AkδA (12)

with Ak =
[
PAδ1 x̄k ... PAδnAδ

x̄k
]
∈ Rnx×nAδ and

δA =
[
δ1 ... δnAδ

]> ∈ RnAδ .
In a similar way, post-multiplying ∆Cδ in (3) by x̄k gives

∆Cδx̄k =
nCδ∑
i=1

Cδiδix̄k =
nCδ∑
i=1

Cδi x̄kδi, equivalent to:

∆Cδx̄k = CkδC (13)

with Ck =
[
Cδ1 x̄k ... CδnCδ

x̄k
]
∈ Rny×nCδ and

δC =
[
δ1 ... δnCδ

]> ∈ RnCδ .
Replacing (12) and (13) in (11) gives: βP ∗ ∗

0 ρk+1 − βρk ∗
PAδ − YkCδ ς P

 � 0, ∀ωk ∈

Bnx+ny , δA ∈ BnAδ , δC ∈ BnCδ , ∀Aδ ∈ [A], ∀Cδ ∈
[C], with ς = (PE − YkF )ωk + AkδA − YkCkδC , or
equivalently: βP ∗ ∗

0 ρk+1 − βρk ∗
PAδ − YkCδ Gkr P

 � 0, (14)

∀Aδ ∈ [A], ∀Cδ ∈ [C], ∀r ∈ Bnx+ny+nδ , with
Gk =

[
PE − YkF Ak −YkCk

]
∈ Rnx×(nx+nδ) and

r =
[
ω>k δ>A δ>C

]>
.

Pre-multiplying and post multiplying in-

equality (14) by

 I 0 0
0 0 I
0 I 0

 leads to βP ∗ ∗
PAδ − YkCδ P ∗

0 r>G>k ρk+1 − βρk

 � 0,

∀r ∈ Bnx+ny+nδ with ρk+1 − βρk > 0.
Applying the Schur complement gives:[

βP ∗
PAδ − YkCδ P −Gkr 1

ρk+1−βρk r
>G>k

]
� 0, (15)

∀r ∈ Bnx+ny+nδ with ρk+1−βρk > 0. Applying Property
1 to the term r 1

ρk+1−βρk r
>, with ρ = ρk+1 − βρk, means

that ∃S = S> � 0 such that r 1
ρk+1−βρk r

> ≺ S−1 or
equivalently −r 1

ρk+1−βρk r
> � −S−1, ρk+1 − βρk > 0.

Therefore, the following expression is verified:[
βP ∗

PAδ − YkCδ P −GkS−1G>k

]
� 0, (16)

∀r ∈ Bnx+ny+nδ , with S � 0. The constraint (16) can be
further decomposed into:[

βP ∗
PAδ − YkCδ P

]
−
[

0
Gk

]
S−1

[
0 G>k

]
� 0, (17)

with S � 0, ∀r ∈ Bnx+ny+nδ . Applying the Schur Com-
plement and replacing Gk =

[
PE − YkF Ak −YkCk

]
leads to expression (5). Since Aδ and Cδ appear in an affine
way in the LMI (17), the inequality is satisfied if and only
if it is verified for all the vertices of [A] and [C]. �

Given a scalar β ∈ (0, 1) in the first step, an initialization
is required to set the positive definite matrix P .

Remark 2: (Initialisation) Given the rate of the estimation
convergence β ∈ (0, 1), the center x̄0 and the radius ρ0 of
the initial ellipsoid, the matrix P is computed off-line in the
first step (i.e. k = 0) by solving the following optimization
problem:

min
P,S,Y0,ρ1

ρ1

subject to
βP ∗ ∗

PAδ − Y0C P ∗

0

 E>P − F>Y >0
A>0

−C>0 Y >0

 S

 � 0,

ρ1 − βρ0 > 0,

(18)

where A0 =
[
PAδ1 x̄0 ... PAδnδ x̄0

]
, ∀Aδ ∈ [A],

∀Cδ ∈ [C] with:

Y0 = PL0, (19)
x̄1 = mid[A]x̄0 + L0(y0 −mid[C]x̄0) (20)

with y0 the initial measurement. This initialization sets the
matrix P .

Remark 3: The number of scalar decision variables in the
problem (5) is equal to 2 + nxny + (nx + ny + nδ)

2 and
equal to 1 + nx×(nx−1)

2 + nxny + (nx + ny + nδ)
2 for the

initialization problem (18).
Remark 4: (Vertex reduction) The LMI problem (5) has

to be verified in 2nδ vertices. In the general case when
all the elements of the matrices Aδ and Cδ have interval
uncertainties, the value of nδ is equal to n2x+nxny . In order
to reduce the number of vertices to be verified from 2nδ

to 24nx the following optimization problem can be solved
(applying the scaling technique of matrices of Theorem 1 of
[30]):

min
β,Yk,S,ρk+1

ρk+1

subject to
βP ∗ ∗

P mid[A]− Ykmid[C] P ∗

0

 E>P − F>Y >k
A>k

−C>k Y >k

 S

+

+

 0 ∗ ∗
∆2 P rad[A]∆1 + ∆4 Yk rad[C]∆3 0 ∗

0 0 0

 � 0,

ρk+1 − βρk > 0,
β < 1,

(21)
∀∆1 ∈ ∆nx , ∀∆2 ∈ ∆nx , ∀∆3 ∈ ∆nx and ∀∆4 ∈ ∆nx ,
with ∆nx the set of nx×nx diagonal matrices with diagonal
entries equal to 1 or −1.



IV. ILLUSTRATIVE EXAMPLE

Consider the linear discrete-time invariant system

(1) with A =

[
0.7 + 0.3δ1 0.1 + 0.1δ2
0.6 + 0.1δ3 0.2 + 0.1δ4

]
, C =[

−2 + 0.1δ5 1
1 1 + 0.1δ6

]
, E =

[
0.05 0 0 0

0 0.02 0 0

]
,

F =

[
0 0 0.05 0
0 0 0 0.05

]
, ‖ωk‖∞ ≤ 1, |δi| < 1, i =

1, . . . , 6. The value of ωk is randomly generated. The initial
state belongs to the ellipsoid E(P0, x̄0, ρ0) with P0 = I2,
x̄0 = [0 0]> and ρ0 = 1 which is sufficiently large to contain
the initial state. In this example, the results obtained by the
proposed approach (5) is compared in terms of accuracy and
complexity to the results obtained by the off-line P -radius-
based zonotopic state estimation [14], [31].

Remark 5: Notice that the P -radius zonotopic estimation
method is developed in the case of a constant known observa-
tion matrix C (only the evolution matrix Aδ is uncertain). To
summarize, an interval matrix Cδ is used with the ellipsoidal
estimation method (5), while a fixed matrix C is used with
the zonotopic estimation [14], [31].

Figures 1 and 2 illustrate the bounds of x1 and x2 after 50
iterations obtained by the online ellipsoidal and the off-line
zonotopic estimations.

Fig. 1. Bounds of x1

The blue dashed lines are obtained by the zonotopic
estimation based on the zontope P -radius minimization,
the magenta dotted lines are obtained using the ellipsoidal
estimation based on the minimization of the ellipsoid radius
(5). The red stars, representing the real state of the system
are situated inside the estimated bounds, which validates the
guaranteed estimation.

In order to facilitate the comparison between these meth-
ods, Fig. 3 and Fig. 4 illustrate the bounds widths of x1
and x2, respectively. The off-line zonotopic P -radius based
method is considered as reference. The better accuracy of the
estimation is obtained using the online ellipsoidal method.

Figure 5 compares the volume of the state estimation sets.
The volume obtained by the ellipsoidal estimation is less

Fig. 2. Bounds of x2

Fig. 3. Comparison of the bounds width of x1

than the volume of the estimation set obtained by the P -
radius-based zonotopic estimation method.

The proposed methods offer a good accuracy compared
to the P -radius-based zonotopic estimation [31] but with
increased complexity due to the online computation of the
ellipsoidal radius. The computation time of one iteration
is equal to 0.1s for the ellipsoidal method (5) considering
interval uncertainties both in the A and C matrices, while
equal to 0.01s using the off-line P -radius-based zonotopic
estimation considering interval uncertainties only in the A
matrix.

The proposed online ellipsoidal estimation method gives
a better estimation (despite considering additional interval
uncertainties on the C matrix) than the estimation obtained
by the off-line P -radius zonotopic estimation due to the
minimization (with a known C matrix).

V. CONCLUSION

A new approach for guaranteed ellipsoidal state estimation
for multivariable linear discrete-time invariant systems with
interval uncertainties (in both the evolution and observation
matrices) and bounded perturbations and measurement noises



Fig. 4. Comparison of the bounds width of x2

Fig. 5. Comparison of the volume of the state estimation sets

has been proposed. This approach is based on the online min-
imization of the ellipsoidal radius of the state estimation set
by solving a Linear Matrix Inequality optimization problem.
This method offers an estimation less conservative than the
estimation obtained by the P -radius zonotopic estimation but
with increased complexity due to the online computation of
the ellipsoidal radius. An interesting perspective is to apply
this method to fault detection and fault tolerant purposes.
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