
HAL Id: hal-02508852
https://hal.science/hal-02508852

Submitted on 16 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ASTERIOS Checker : A Verification Tool for Certifying
Airborne Software

Amira Methni, Emmanuel Ohayon, François Thurieau

To cite this version:
Amira Methni, Emmanuel Ohayon, François Thurieau. ASTERIOS Checker : A Verification Tool
for Certifying Airborne Software. 10th European Congress on Embedded Real Time Systems (ERTS
2020), Jan 2020, Toulouse, France. �hal-02508852�

https://hal.science/hal-02508852
https://hal.archives-ouvertes.fr

ASTERIOS Checker : A Verification Tool for Certifying
Airborne Software

Amira Methni1, Emmanuel Ohayon1, and François Thurieau2

1 Krono-Safe – Massy, France
{amira.methni, emmanuel.ohayon}@krono-safe.com

2 Safran Electronics & Defense – Massy, France
francois.thurieau@safrangroup.com

Abstract. As the number of embedded systems has grown regularly over the past
decades, the development and certification costs of safety-critical software has increased
accordingly. For the aeronautics industry, certification activities are covered by DO-178C,
which provides guidance for developing airborne software; and its companion document
DO-330 covers the qualification of tools used for the development of such software.
In this paper, we present ASTERIOS , a solution for the design, generation and execu-
tion of safety critical real-time applications; then we present the certification strategy we
advocate for systems developed using our technology. This strategy relies on the use of
an automated verification tool called ASTERIOS Checker , qualified in accordance with
DO-330. This paper presents the technology behind the code generation engine of AS-
TERIOS and the verification activities automated by ASTERIOS Checker . It shows how
the use of such an automated, qualified tool enables to benefit from design abstractions
and relatively complex code generation engines while developing certified systems at the
highest level of certification.

Keywords: DO-178C, DO-330, ASTERIOS , Psy model, real-time, certification

1 Introduction

Embedded systems have spread across all major industrial fields: automotive, industry, medical
devices, and of course aerospace. As they become increasingly complex, their design and reliabil-
ity become challenging. For safety-critical software, the stakes can be huge as their failure may
lead to the loss of entire, potentially costly systems, or even put human lives at risk. Obviously,
such systems require a high degree of quality in order to ensure an adequate level of confidence
to them. For airborne systems, DO-178C [14], Software Considerations in Airborne Systems and
Equipment Certification, provides guidance for developing software. DO-178C aims to apply a
rigorous development process in order to prevent the occurrence of errors and guarantee the
safety and reliability of airborne software. It defines five assurance levels, depending on the risk
and the effects of a failure of the system, commonly referred to as DAL (Development Assurance
level). Level A (DAL-A) is the highest one and is applied to software for which failure could
cause a catastrophic event like death.

Designing safety-critical real-time applications meeting DO-178C is not an easy task. There
are a few certified hard Real Time Operating Systems (RTOS) supporting such applications,
such as VxWorks [4] or PikeOS [6]. For those solutions, it is still up to the user to certify the
application to be run by the RTOS. To that end, ANSYS [7] provides the ANSYS SCADE
solution, a model-based embedded software development environment with a code generator
qualified at TQL-1, to design and generate software systems certified under DO-178C level A,
among other norms. MathWorks [3] provides Code Inspector, a verification tool, qualified at
TQL-4 and used to check the equivalence between the software model designed using Simulink
and the C code generated by their tool RTW. However, the hard real-time constraints expressed

2 A. Methni et al.

locally or throughout the systems are out of the scope of these tools, and remain to be written as
configuration tables for the underlying RTOS. This comes by with a hard and costly integration
process.

Krono-Safe [1] proposes the ASTERIOS technology, which was originally developed with the
French Alternative Energies and Atomic Energy Commission (CEA) [2]. It provides a set of tools
to design safety-critical real-time applications, supporting single and multi-core architectures,
along with a small foot-print real-time kernel (RTK) in charge of running the application on the
embedded platform. ASTERIOS defines a real time programming model called Psy (for Parallel
SYnchronous), based on the time-triggered approach [12,8] (more recently referred to as Logical
Execution Time [10,11]) to express the real-time architecture with timing, communication and
spatial partitioning constraints.

The Psy model was originally created for the OASIS technology [9], used in the field of
nuclear energy. A set of compilation tools produces the executable object code of the applica-
tion along with runtime tables that implement the temporal behavior, and configure the RTK
according to the underlying hardware specificities. In order to certify applications written with
ASTERIOS , Krono-Safe proposes ASTERIOS Checker , a qualified automated verification tool.
It allows to claim certification credits for automatically checking the conformity of the real-time
application configuration generated with ASTERIOS .

After a brief overview of the ASTERIOS technology in section 2, this paper sketches the
certification strategy adopted to qualify the ASTERIOS tool suite for aerospace applications
(section 3.1). We provide our experience report on developing and qualifying a verification tool
in compliance with DO-330 [5], meant to be used in the process of certifying a system produced
by a complex, non-qualified code generation toolchain. We also provide a description of one of
the most interesting functions implemented by our tool: the verification of the static scheduling
plan. At last, we report about the first-hand foreseen experiences of using ASTERIOS Checker
for aerospace industrial application at Safran Electronics & Defense.

2 ASTERIOS Technology Overview

2.1 Psy Concepts

Fig. 1: An Elementary Action

The Psy model is a parallel and multi-tasking model where an application is composed of
Agents (much like Unix processes). An agent is the execution unit in Psy : it is a sequence of
execution windows, called Elementary Actions (EAs) that share the same execution context.
As illustrated by Fig. 1, an EA is a sequence of instructions whose execution is constrained
by an earliest start date ds and a deadline de. For simplicity, the EA represented above is not

ASTERIOS Checker : An Automated Qualified Verification Tool 3

preempted, but we note that depending on the scheduling policy, the EA can be executed in
several timeslots, as long as its total execution span remains between the EA boundaries. An
EA has a CPU budget b that defines the CPU time granted to complete its execution. This
time is target-dependent and represents the processing of the task, including the CPU time
required to run system services such as inter-task communication.

Since the Psy model is based on a Time Triggered approach [12,9], evolutions of the system
are virtually made visible only at fixed instants in time, known at compile-time. The boundaries
(ds, de) of all EAs correspond to synchronization points of the real-time application, called
Temporal Synchronization Points (TSP). TSPs define the cadence of tasks, and are also the
formal instants in time where the global state of the application can change. To express the
timing behavior on EAs, Psy introduces the concept of sources. A source is basically a periodic
hardware interrupt (e.g. delivered by a hardware timer) also called a tick : the source sets the
smallest time unit for defining EAs boundaries. Thus, a TSP in the system always corresponds
to a source tick. All those concepts are implemented by the PsyC programming language.

2.2 The PsyC language

/* Declare a clock of period 2 (i.e. tick every 2 ms) and a clock of period 3
* (i.e. tick every 3 ms).
*
* 0 1 2 3 4 5 6
* realtime |---|---|---|---|---|---|->
*
* c2 |-------|-------|-------|->
*
* c3 |-----------|-----------|->
*/

source realtime;
clock c2 = 2 * realtime;
clock c3 = 3 * realtime;

/* Below , an agent declaration . ‘‘uses ’’ defines the source on which the
* agent is synchronized . ‘‘starttime ’’ defines the earliest start date of
* the first EA. The latter is considered as an "advance" from 0. The agent
* starts at the third tick of c2 , so at 6 ms. */

agent Ag0(uses realtime , starttime 3 with c2)/* 0:AG */
{

/* "start" is the entry point of the agent. It is executed infinitely
* i.e. equivalent to a loop in C. The agent can define multiple bodies
* but we do not introduce them here. */

body start
{

/* ‘‘f1()’’ must be executed before the next tick of clock c3 */
f1(); /* User C code */
timebudget B1 , advance 1 with c3; /* 1: ADV */

/* The expression ‘‘something ’’ cannot be evaluated offline by the
* compiler: it may be for instance the result of an I/O operation */

if (something)
{

/* ‘‘f2()’’ must be executed before the next tick of c2 */
f2(); /* User C code */
timebudget B2 , advance 1 with c2; /* 2: ADV */

}
}

}

Fig. 2: PsyC Application Example

The PsyC programming language is an extension of the C syntax: the additional keywords
and grammar rules defined by PsyC implement the Psy concepts. Fig. 2 illustrates a simple

4 A. Methni et al.

example of an agent called Ag0. To define when an EA can start and stop, the PsyC introduces
the keyword advance. The latter defines the deadline of the current EA and the start date of
the next EA. Its arguments are a literal integer expression and an optional with qualifier to
use a different clock than the base clock of the agent. The semantic of an advance n with c
statement is as follows: from the current date, advance to the nth tick of the clock c. For example,
at date 5, advance 3 with c2, advances the time up to the date 10. The timebudget qualifier
enables to define the CPU time allocated to the EA completing its execution on this advance

statement, or a portion of it. For the example of Fig. 2, the EA covering f1() has a budget of
B1. The values of those budgets are set in a separate file with a straightforward syntax (.bgt
file). Note that the end-user is expected to provide the CPU budgets that is consistent with his
estimations of the corresponding WCET (Worst Case Execution Times). ASTERIOS comes
with a set of profiling features to help the end-user in this process.

The code of an agent is defined inside a body, which by default is an infinite loop. Several
bodys can be defined, and dynamic transitions between the bodies can be specified to easily
implement a temporal finite-state machine.

Communications in Psy do not use shared variables or memory locks as it would be a source
of non-determinism. Instead, communications are serviced through two deterministic channel
types: sampled data flows, called temporal variables, and FIFO messages, called streams. For
the sake of concision, we won’t go into more details here; interested readers can refer to [13] for
more information about the deterministic communication paradigm, and other advanced Psy
concepts.

2.3 The ASTERIOS suite

Fig. 3: ASTERIOS Suite Overview

The ASTERIOS suite consists in the following elements (from right to left on figure 3):

– The real-time kernel, called ASTERIOS RTK (or RTK for short). It is responsible for
tasks scheduling, enforcing spatial partitioning between tasks, and managing errors. It is
made of two software components: one generic, and one hardware specific, called the Board
Support Package (BSP). It is written mainly in C, with some low-level functions written in
assembly language in the BSP. The RTK also provides a micro-kernel service layer called
the psyslayer, mostly in charge of implementing the communication services. It is designed
to execute functions with different DALs by an end user using ASTERIOS solution.

ASTERIOS Checker : An Automated Qualified Verification Tool 5

– The end-user application, including the real time architecture designed in Psy and the
functional code developed by the user. These elements are defined through:
1. .psy file(s) describing tasks real-time behavior, timing and communication constraints

in PsyC,
2. .c, .o and .a files implementing the functional code of the tasks,
3. .bgt file(s) defining CPU budget times for the user code,
4. .json file(s) specifying the configuration of the target i.e., stack sizes, allocation of tasks

to cores, etc.
– The configuration of the RTK for the end-user application, called the ASTERIOS Runtime.

It contains data used by the RTK to manage the scheduling of the tasks, the memory sizing
and partitioning, and core allocation. These data depend on the real time architecture Psy
defined by the user, and are automatically generated by our compiler.

From the task cadence and the list of required CPU budget times defined by .psy and .bgt
files, the ASTERIOS tool chain computes offline a preemptive static scheduling table, called
Repetitive Sequence of Frames (RSF). It is composed of intervals of fixed duration, where each
interval contains a sequence of frames. A frame is a fixed CPU time allocated to a single agent,
or an idle frame.

ASTERIOS RTK’s scheduler main functionality is to follow the RSF exactly as provided by
the toolchain. Tasks notify the scheduler when an EA has completed, and the latter switches to
the next frame. When an EA does not complete within the requested budget time, the scheduler
detects the error and applies a sanction configured by the user.

3 ASTERIOS Checker

3.1 Certification Strategy using Qualified Automated Tools

Since embedded end-user applications may need to be certified up to DAL-A level, both the
generated Runtime and the RTK need to be certified at DAL-A as well. The RTK is bundled
as a standalone binary file with a complete DAL-A certification kit. This approach cannot be
applied to the Runtime though, as it is re-generated for each application. Besides, some ad-
ditional executable code is also generated by the ASTERIOS toolchain into the application
binary file (related to task definition, communication channels instantiation, real-time con-
straints implementation, ...). Obviously, this generated code needs to be certified at DAL-A as
well.

For that purpose, ASTERIOS includes qualified tools as defined by DO-330 [5] to automate
some certification activities, and thus gain certification credits. According to the DO-178C
(§12.2.1), a tool needs to be qualified when it is used to “eliminate, reduce or automate soft-
ware life cycle processes”, without its output being itself verified. Thus, the purpose of Tool
Qualification is to get confidence on the tool’s functionalities and on its output. Section 12.2 of
DO-178C defines three criteria to classify tools used in a certification process, and subsequently
determines the required Tool Qualification Level (TQL).

Criteria 1 are basically development tools, whose “output is part of the airborne software and
thus could insert an error”. In other words, an error in such a tool may impact the safety
of airborne system by inserting erroneous code or data. Examples are code generators,
compilers, linkers, etc.

Criteria 2 are tools “that automate verification process(es) and thus could fail to detect an
error”, and whose output is used to reduce or eliminate both development and verification
activities other than those automated by that tool. Examples include formal method tools
like static code analyzers.

6 A. Methni et al.

Criteria 3 are verification tools that, “within the scope of [their] intended use, could fail to
detect an error”. Examples are test case generators, coverage tools, etc.

Based on the tool criteria and the Design Assurance Level of the software for which the
tool is used, a TQL is assigned. DO-330 [5] provides guidance and objectives for qualifying the
tool depending on its TQL, where TQL-1 requires the most rigorous qualification process, and
TQL-5 the least. The TQL draws a set of qualification objectives, activities, guidance and life
cycle data to be produced. DO-330 defines 76 objectives summarized in 11 tables (Annex A).
The process of qualification is then to demonstrate that each objective is satisfied by the tool.

For DAL-A software, when tools eliminate, automate or reduce processes required by the
DO-178C they should be TQL-1. Thus, if the ASTERIOS suite were to be certified, the code
generation tool chain qualification level would be TQL-1, for which objectives are roughly
equivalent to DAL-A certification for airborne software. But, qualifying the whole tool chain,
along with all its third-party libraries and runtime environment at this level would be tedious,
time-consuming and costly: consider for instance that, the code generator being written in
C++, the whole standard C++ library needs to be qualified as well.

ASTERIOS Checker is a verification tool whose purpose is to automatically verify that the
outputs of the non-qualified code generator — namely the Runtime and the user application,
are compliant with its inputs — namely the source files .psy, .c/.o/.a, .bgt and .json files. The
scope of these verifications is both on the generated C source files, the object files, and the final
binary file meant to be loaded on the embedded hardware. These verifications partially cover
the objectives listed in tables A-4 and A-5 of DO-178C [14]. As such, ASTERIOS Checker is a
Criteria 3 tool, meant to automate some verification activities for a DAL-A system, and thus
needs to be qualified at TQL-5.

The root document of a certification process is the Plan for Software Aspects of Certification
(PSAC): it is the “entry point” for a certification authority, providing both a complete system
overview and a description of the certification plan. This document is used to justify that the
software life cycle complies with the objectives of DO-178C. When qualified tools are used for
some of the certification processes, their intended use and qualification level justification are
provided in the PSAC.

As a third-party technology provider, Krono-Safe can only contribute to the certification
data through a “certification kit”. This kit includes for instance a user manual for the code
generator that defines a usage domain for certification purposes, PSAC elements for the ASTE-
RIOS RTK, and certification considerations for using ASTERIOS Checker which should also
be included in the final PSAC of the end-user.

DO-178C introduces in section 2.5.1 the concept of Parameter Data Item and defines it as:
“a data set that influences the behavior of the software without modifying the Executable Object
Code and is managed as a separate configuration item is called a parameter data item”. The PDI
should be assigned the same software level as the software component using it. The ASTERIOS
Runtime is considered as a PDI: it is a set of binary data generated by the code generator,
whose purpose is to configure the behavior of the RTK e.g. by defining scheduling tables,
configuring communication buffers, or declaring task descriptors. This approach facilitates the
automated verification activities, as the C data structures generated for the Runtime are no
longer considered as generated source code — which they are not in practice: they are only
configuration tables, not executable instructions.

The list of certification credits claimed by the use of ASTERIOS Checker are not listed here
for the sake of brevity. We’ll just state that most of the objectives of Table A-4 (Verification
of Outputs of Software Design Process) and A-5 (Verification of Outputs of Software Coding
and Integration Processes) of DO-178C, Annex A are covered by our verification tool for the
generated code and data.

ASTERIOS Checker : An Automated Qualified Verification Tool 7

3.2 ASTERIOS Checker Overview

Activities defined in the previous section are covered by a set a verifications conducted by AS-
TERIOS Checker , which ensures that the code generation toolchain has produced the expected
output. ASTERIOS Checker is currently under development, by a team independent from the
one developing the code generation toolchain. In order to avoid common mode failures, the
checker tool is developed with a different programming language (Python), and uses different
algorithms than those implemented by the PsyC compiler. The typical approach for most of
the verification functions is to avoid comparing the outputs of the PsyC compiler against an
expected output that would be similarly produced by the checker tool. Instead, we always try
to validate that the code or data generated by the PsyC compiler remain within an acceptable
range of possible outputs. This approach is illustrated in the next subsections with the example
of the verification of the scheduling plan.

The verification functions of ASTERIOS Checker are covered by several verification com-
ponents. Each of them is dedicated to detect a specific error that could be introduced by the
code generation toolchain. Three main components of the checker tools are:

– RSF Checker : verifies the scheduling tables, CPU budgets, TSPs projection, execution order
constraints.

– BIN Checker : verifies that the final Executable Object Code (EOC) is consistent with the
memory layout defined by the input configuration files.

– Sizer Checker : verifies the size of the generated communication buffers.

Each component performs a verification function to achieve and to automate some of the
verification activities required to reach DO-178C objectives. For instance, BIN checker claims
certification credits for the objective of Table A-5.7 (Output of software integration process is
complete and correct.). Besides, as the RSF is a Parameter Data Item, RSF Checker satisfies a
part of the objectives of Tables A-4.9 and A-5.8 on software architecture consistency, and PDI
files verification and correctness.

As stated in DO-330, the development of ASTERIOS Checker goes through a complete
software life cycle including planning, requirement, design, verification, validation, quality as-
surance, etc. DO-330 states that for TQL-5 qualified tools, 15 objectives need to be satisfied, two
of which require independence. Compliance to those objectives is proved by providing reports
and qualification artifacts to be evaluated by certification authority.

As stated before, the novelty brought by ASTERIOS Checker as a qualified verification
tool comes from the variety of verification operations that are automated, covering a complete
code generation toolchain that implements an entire programming abstraction. In the next
subsection we focus on the RSF Checker component to illustrate one of the most advanced
verification functions implemented by our tool.

3.3 RSF Checker

RSF Checker ensures that the scheduling plan produced by ASTERIOS is correct with regard
to the Psy architecture and the CPU budgets defined by the user. To do that, it verifies that
for each agent, the RSF provides in order the CPU time for all EAs declared in the .psy file
and that the total CPU times of the frames composing each EA is greater than or equal to the
CPU time required by the user (defined into .bgt files).

To that end, for each agent ag in the application, we build a directed cyclic graph called
Temporal Control Flow Graph (TCFG). The latter captures the temporal behaviors and the
control flow of ag, and is defined by TCFG = (Sag, Tag) where:

8 A. Methni et al.

Fig. 4: TCFG of Ag0. The starttime
is viewed as an advance statement.
Transitions are labeled with symbols
where B1 = 100µs and B2 = 150µs

Fig. 5: RSF. The first interval has a length of 6 source
ticks which is the start time of the application. The
loop length is 3 source ticks

– Sag is the set of states. Each state s ∈ Sag corresponds to a temporal constraint, i.e., an
advance statement in the Psy agent. The set Sag includes one initial state of the graph
called init,

– Tag ⊆ Sag × B × Sag is the set of transitions, where B ∈ N∗ is the set of budgets declared
in .bgt file. Each tr ∈ Tag corresponds to an EA identified by (si, b, sj), which contains the
functional C code between two advance statements si and sj and holds the maximum CPU
time b required for that EA.

Fig. 4 shows the TCFG of Ag0. Each state holds the value and the clock of its corresponding
advance statement. Exploring the TCFG consists in computing all execution paths of an agent,
starting from init state at date 0. An execution path is a sequence of (si, di) where si ∈ Sag

and di is its exploration date (in source ticks). For Ag0, the execution path starting from init
to 0 : AG is: (“init′′, 0), (“0 : AG′′, 6), (“1 : ADV ′′, 9),

The RSF given by Fig. 5 can be viewed as a finite sequence of intervals RSF = {l1, . . . ln}.
Each interval li is a list of agent’s frames li = {f1, f2, . . . , fm}, where a frame fi is identified by
its given CPU time. Each interval start corresponds to a TSP identified by an absolute date.
The RSF holds a special interval that marks the looping interval (e.g. for Ag0, interval start of
the RSF loop is 9).

The verification of CPU budgets consists in exploring simultaneously the TCFG and the
RSF . More formally, for each transition (si, b, sj) of the TCFG, namely a path (si, di), (sj , dj),
check that:

– di and dj are TSPs in the RSF, and
– b ≤

∑
f1, . . . , fn where f1, . . . , fn are CPU of frames of the interval delimited by [di, dj].

The exploration stops if one of the followings conditions is true:

– a state of TCFG has no corresponding tick in the RSF ;
– the transition (s1, b, s2) of the TCFG has not the sufficient budget in the RSF ;
– the execution path has already been explored.

The verification shall explore all execution paths of each agent in the application. The
execution paths of one agent can be viewed as a tree as illustrated by Fig. 6. The exploration
may stop every time it reaches an “equivalent temporal state”. Two exploration states are said
to be equivalent when they have the same possible futures, thus ensuring that the execution
paths beyond have already been explored.

We notice that the verification scalability is not yet an issue. The tool can explore roughly
250 states per second, when executed on an average workstation from 2016 with the Python 3.6
(CPython) interpreter, enabling to verify the most complex applications of the tool test suite
in a matter of seconds.

ASTERIOS Checker : An Automated Qualified Verification Tool 9

Fig. 6: Tree of all execution paths of Ag0. Equivalent temporal states have the same color.

4 Industrial Application at Safran Electronics & Defense

4.1 Use of Qualified Verification Tools

A major contribution of DO-178C over DO-178B was the refinement of guidelines regarding
the use of tools to automate or avoid altogether some of the certification activities. It has
reinforced the use of Criteria 3 tools in particular, as they “only” require TQL-5 qualification,
while increasing safety by automating otherwise tedious and error-prone verification tasks.

Safran Electronics & Defense uses several such verification tools, including for automating
verification activities on source code produced by non-qualified generators. Experience shows
however that in-house development of verification tools for third-party non-qualified code gener-
ators is difficult and costly, by lack of specification data. Therefore, it makes sense for third-party
technology providers to also offer such qualified verification tools, provided that they can show
evidence of protection against common mode failures; i.e. an error that would cause a failure
of both the generation tool, and of the verification tool supposed to detect that error.

4.2 Supporting a Paradigm Shift with a Verification Tool

The use of the ASTERIOS toolsuite brings novelty (and thus inevitably some part of chal-
lenge) to the certification process of airborne systems. The Psy programming model defines a
design abstraction, which offers by construction key safety properties such as communication
determinism and reproducibility. A byproduct of this abstraction is that the toolsuite can au-
tomate the generation of configuration elements that once were the task of system integrators,
such as the scheduling table. Thus, the use of this technology in a certified airborne system
depends on qualified verification tools to make sure that these safety properties are enforced,
and that the configuration elements were generated accordingly. As such, the transformation
rules verified by ASTERIOS Checker are more complex for instance than those implemented
by a verification tool that enforces a set of coding rules, or one that verifies straightforward
syntactic transformations.

The foreseen applications of the ASTERIOS toolchain and its verification tool by Safran
Electronics & Defense are multiple and include landing systems, engine regulation or inertial

10 A. Methni et al.

navigation. The complexity of these systems varies from 100,000 to 700,000 source lines of
codes: they are made of typically a dozen of periodic tasks of different frequencies, with ratios
going up to 400. Current benchmarks show that this complexity can be easily handled by the
checker tool, in a matter of minutes in worst case scenarios.

The final certification of these systems is planed in three to four years from now.
Looking even further, evolutions of ASTERIOS Checker should support incremental certi-

fication of systems built with ASTERIOS . The Psy programming model encourages a modular
design, by de-coupling the expression of hard real-time constraints from integration consider-
ations such as scheduling tables, or communication buffer sizing (as these elements are gener-
ated). ASTERIOS Checker should therefore facilitate the addition of new features to an already
certified system, by enabling automatic verification of the newly added components only – while
relying on previous verifications performed on the initial version of the application.

5 Conclusion

In this paper, we have presented the ASTERIOS tool-suite with a strong focus on ASTERIOS
Checker : a TQL-5 qualified tool that automates verification activities for certified airborne
applications developed with ASTERIOS . The core of the tool-suite being a non-qualified source-
to-source compiler and configuration generator, ASTERIOS Checker is a key element in the
certification strategy of such airborne applications.

Past and current experiences both at Krono-Safe and at Safran Electronics & Defense show
that, when possible, qualifying an automated verification tool for generated applications is a
more tractable and less costly approach than qualifying code generators themselves. Besides,
in the present case, the verification functions can show a relative algorithmic complexity for a
qualified tool, enabled by the fact that “only” TQL-5 is required.

References

1. http://www.krono-safe.com/
2. http://www.cea.fr/
3. Simulink Code Inspector. www.mathworks.com
4. VxWorks. https://www.windriver.com/products/vxworks/
5. DO-330: Software Tool Qualification Considerations (Dec 2011)
6. PikeOS Safe Real-Time Scheduling. Tech. rep., SYSGO (2016)
7. ANSYS: ANSYS SCADE Suite. https://www.ansys.com (2019)
8. Chabrol, D., Roux, D., David, V., Jan, M., Ait Hmid, M., Oudin, P., Zeppa, G.: Time- and Angle-

Triggered Real-Time Kernel. In: 2013 Design, Automation Test in Europe Conference Exhibition
(DATE). pp. 1060–1062 (2013)

9. Chabrol, D., Vidal-Naquet, G., David, V., Aussagues, C., Louise, S.: OASIS: A chain of development
for safety-critical embedded real-time systems. In: 2nd European Congress Embedded Real Time
Software. (ERTS 2004). pp. CD–ROM Proceedings – 10 pages. Toulouse, France (Jan 2004)

10. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: A time-triggered language for embedded
programming. In: International Workshop on Embedded Software. pp. 166–184. Springer (2001)

11. Kirsch, C.M., Sokolova, A.: The logical execution time paradigm. In: Advances in Real-Time Sys-
tems, pp. 103–120. Springer (2012)

12. Lemerre, M., Ohayon, E., Chabrol, D., Jan, M., Jacques, M.: Method and Tools for Mixed-
Criticality Real-Time Applications within PharOS. In: 2011 14th IEEE International Symposium
on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops. pp. 41–48
(March 2011)

13. Ohayon, E.: Deterministic Real-Time Communication Paradigm. http://www.krono-safe.com/

deterministic-real-time-communication-paradigm
14. RTCA DO-178, R., EUROCAE: Software Considerations in Airborne Systems and Equipment

Certification (2011)

http://www.krono-safe.com/
http://www.cea.fr/
www.mathworks.com
https://www.windriver.com/products/vxworks/
https://www.ansys.com
http://www.krono-safe.com/deterministic-real-time-communication-paradigm
http://www.krono-safe.com/deterministic-real-time-communication-paradigm

	ASTERIOS Checker: A Verification Tool for Certifying Airborne Software

