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body: estimates of spatial decay independent of boundary
conditions.
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Pures et Appliquées Joseph Liouville, F-62228 Calais, France.

Abstract

We consider the incompressible time-dependent Navier-Stokes system with Oseen
term and terms arising in stability problems, in a 3D exterior domain. No boundary
conditions are imposed. We consider L2-strong solutions, that is, the velocity u is
an L°-function in time and L“-integrable in space for some k € [1,3) and some
Kk € (3,00), the spatial gradient V,u is L?-integrable in space and in time, and the
nonlinearity (u-V,)u is L2-integrable in time and L3/ 2-integrable in space. It is shown
that if the right-hand side of the equation and the initial data decay pointwise in space
sufficiently fast, then v and V,u also decay pointwise in space, with rates which are
higher than those provided by previous theories.
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1 Introduction

We consider the Navier-Stokes system with Oseen term and perturbation terms,

u —Agu+ 17010+ 7(U - Vo)u+7(uw- VU +7(u-Vy)u+Ver=f, (1.1)
diveu =0 in Q° x (0,7p),

where Ty € (0,00] and Q° € R? is an exterior domain defined by Q° := R3\Q, with Q
an open, bounded set in R? with connected Lipschitz boundary. The unknowns of this
problem are the functions u : Q° x (0,Ty) + R? (velocity) and 7 : Q° x (0,Tp) — R
(pressure). The parameter 7 € (0,00) (Reynolds number) is given, as are Tp, the function
f Q% x (0,Ty) — R? (volume force), and the function U : Q° + R3. If U = 0, the
preceding system reduces to the Navier-Stokes system with Oseen term, describing the
flow of a viscous incompressible fluid around a rigid body, which is represented by the
set 2. In this model the fluid is supposed to fill all the space around that body. The
case of nonvanishing U arises when stability of a stationary flow around a rigid body is
studied ([49], [47], [19]). In this situation, U is the velocity part of a solution (U, II) of the
stationary Navier-Stokes system with Oseen term

~ AU+ 710U +7(U-V)U+VIL=F, divU =0 in Q". (1.2)
Our aim is to show the estimate
0%u(z, 1) < € (2| v(@)) "1 fora. e.t € (0,Th), a. e. 2 € Br,* := R\ Bpy, (1.3)

and a € N}, |a| < 1, under the assumptions that |f(x,t)| and |Up(x)| decay sufficiently
fast for || — oo and the zero-flux condition

/ u(t) -ndo, =0 for t e (0,Tp) (1.4)
o0



holds, where n(®) denotes the outward unit normal to Q. Condition (1.4) means that the
net mass flux through the boundary is zero. If this condition is not fulfilled, we prove the
weaker inequality

10%u(z,t)| < € ((|z]v(z) )_1_|a|/2 for ¢, z, « as in (1.3)). (1.5)

The constant € in and is independent of = and t (spatial decay uniform with
respect to time). The requirement || < 1 means we estimate the velocity u (o = 0) and
its spatial gradient V,u (Ja| = 1). The function v appearing on the right-hand side of
and is defined by v(z) := 1+ |z| — 71 for z € R3. The parameter Ry is some
fixed positive real with Q C Bg,.

Estimates like ([1.3)) and (|1.5)) are interesting because they are often associated with phys-
ical phenomena that can be observed macroscopically. For example, the presence of the
function v on the right-hand side of and is usually interpreted as a mathematical
manifestion of the wake extending downstream behind the rigid body.

We establish ((1.3) and for L2-strong solutions of . This type of solution involves
only the velocity u, whose regularity is described by the relations v € L™ ( 0,71y, L1 (ﬁc)?’ )
for some ¢ € [1,3) and some ¢ € (3,00), Vyu € L*(0,Tp, Lz(ﬁc)g) and (u- Vy)u €
L*(0,Tp, L3/2(§C)3). Equation is satisfied in the sense that

To
/0 /Q (*so’(w u(z,t) - 9(x) + ¢(t) [ Vau(z,t) - V() (1.6)
+ (7 0zyu(z, t) + GU, ) (@, t) — f(z,t)) -ﬁ(x)}) dz dt

—(0) /Q Uo(z) - 9(z)dz =0 for o€ CF([0,Th)), 9 € O35, (@),

where
GU,u)(z,t) ==7[ (u(w,t) - Va)u(z, t) + (U(z) - Vo )ulz, t) + (u(z,t) - V)U(z)] (1.7)

forz e Q, te (0,Tp). We do not impose any boundary conditions on w. In fact, in concrete
physical situations it is not always clear what is the right choice of such conditions, and
in some cases the usual no-slip condition is not appropriate. Therefore we think it is
an interesting feature of our theory that inequalities and hold on the basis of
regularity assumptions on u only, irrespective of any boundary conditions.

As mentioned above, the function U appearing as a coefficient in ([1.1)) is the velocity part
of a solution to (1.2)). However, we will not need this fact. Instead we only assume that
Ue LSQ)PnwhiQ9, VU e L>@Q°°, divU =0, (1.8)

loc

0°U ()] < € (2] v(x)) 72 for 2 € Bry*, a € Ny with |a| <1,

for some Ry € (0,00) with Q C B R, - Existence of a weak solution to defined only
in terms of velocity U and satisfying the relations U € LS(Q%)?, VU € L?(Q%)? is known
to hold under Dirichlet boundary conditions for example, and, of course, under suitable
assumptions on F' ([32, Theorem X.4.1]). As for inequality in (L.8), it has been shown
to be valid, irrespective of boundary conditions, for any solution U to with the
preceding regularity properties, provided F' decays sufficiently fast. We refer to [26] for a



proof in a more general situation (flow around a rigid object performing a translation and
a rotation).

Concerning f and Uy, we assume f € L2(0,T0, Lq(ﬁc)?’) for ¢ = 2 and for some ¢ €
(1, 6/5), and Uy € L2(Q°). As for conditions on spatial decay of f and Up, they enter
into our theory only via the spatial decay properties of two volume potentials, denoted
by () (g) and 37 (V), mapping from R3 x (0, 00) into R3 and associated with functions
g€ L. (0,T), L9(A)?) and V € LY(A)3, where A may be any measurable subset of R?,

loc

g € (1,00) and T € (0, 00]. These potentials are defined by

R (g)(z, t) := /0 . Az —y,t—s)-g(y,s)dyds (t€(0,00), a. e.xz €R?), (1.9)

IO W) (@, 1) = /R Az —y,t)-V(g)dy (te(0,00), z € R?). (1.10)

Here g and V stand for the zero extension of g and V to R3 x (0, 00) and R3, respectively.
The function A, defined in (3.3)), is a fundamental solution of the time-dependent Oseen
system

' — Apu+ 7O u+ Ve = f, divyu = 0. (1.11)

We refer to Lemma and for more details about the definitions in ([1.9)) and ((1.10)).
For the proof of (|1.3), we will require there are constants Cyr,, R, € (0,00) such that

92 [ (f1Bs," % (0,T0)) + 37 (Wl B, ) )@, )| < Cpa (Jalwla)) /102

(1.12)
for a. e. t € (0,00), a. e. x € BRf,UOC and for o € N} with |a| < 1, where Sy € (0,00) is
some arbitrary but fixed parameter with Q C Bg,. Finding conditions on f and Uy such
that holds is a problem completely separate from the rest of our theory. We will
not address this problem here. Instead, at the beginning of Section 6, we will state such
conditions as well as references in literature where is derived from these criteria.
For the proof of ([L.5)), the exponent —1 — |a|/2 instead of —5/4 — |a/2 is sufficient in
. Criteria on f and Uy on this variant of will also be given at the beginning
of Section 6.

The function R(7) (f|Bs,” x (0,Ty)) + 37 (Uy| Bg,*) satisfies the time-dependent Oseen
system with the zero extension of f|Bg,” x (0, Tp) to R? x (0, 00) as right-hand side,
and with the zero extension of U()]BisoC to R3 as initial data. So this function represents
some sort of background flow independent of the rigid object, whereas our focus will be on
the spatial decay of the function u — (") ( f|Bs, x (0, To)) — 37)(Up| Bs,*), which may
be interpreted as the perturbation generated by the presence of the rigid body, and thus
constitutes the interesting part of the flow.

We will not need any smallness conditions, and we will not use any regularity results for
solutions to the Navier-Stokes system, except in the sense that existence of a solution
u as specified above is admitted. Existence results for such a function u additionally
satisfying Dirichlet boundary conditions may be found in literature. For example, in the
case U = 0, Heywood [36, Theorem 2-4, 6 and 2’|, constructed a solution u such that
u € LOO(O, To, H1(§C)3) and V,u € LQ(()7 Ty, L? (ﬁc)g). This means in particular that u
belongs to L> (0, Tp, Lr(ﬁc)?’) for r = 6 and r = 2. We further refer to Solonnikov [51]
Theorem 10.1, Remark 10.1 with p = 2], and to Neustupa [46]. These two authors admit



a nonvanishing function U. Mild solutions to (1.1]), not covered by our theorey here, were
constructed by Miyakawa [44, Theorem 5.2] and Shibata [49, Theorem 1.4]. Of course, all
these references require smallness conditions if T = oo.

Concerning previous articles related to the present one, the only references we know impose
Dirichlet boundary conditions, and they either require smallness assumptions, or they
suppose the zero-flux condition while only obtaining a decay rate as in . More
specifically, Knightly [40] considers a system more general than . In particular he
admits that the velocity of the rigid body changes with time. However, several parameter
are supposed to be small, various other restrictions are imposed, and decay properties are
not expressed in terms of negative powers of |z|v(x). Mizumachi [45] proved for
L?-strong solutions to satisfying homogeneous Dirichlet boundary conditions, under
the assumptions f = 0, U = 0, T' = o0, initial data close to some solution of the stationary
problem , djuk(t) and 7(t) bounded with respect to the norm of L!'(99) uniformly in
t € (0,00) ([45), (2.42)]), and |u(x,t)| tending to zero for |z| — oo uniformly in ¢ € [T, 00),
for some T' € (0,00); also see [52], p. 752] for a short discussion of the assumptions and
results in [45]. In [I6], we derived for the same type of solutions as considered here,
but under Dirichlet boundary conditions with data satisfying . In the work at hand,
we improve the theory in [16] by establishing the stronger estimate if the zero flux
condition holds, and the same one, that is , without this condition, in both cases
without imposing a boundary condition.

The decay bounds in are best possible in the sense that they coincide with those
obtained for weak solutions to the linear system if these weak solutions are L*-
integrable with respect to the time variable, if their spatial gradient also has this property,
and if these solutions additionally fulfill (1.4)); see [22, Theorem 5.2]. Note that in [21],
[22], LP-integrability with respect to time of solutions to was shown to be linked
with spatial decay rates of these solutions. If does not hold, our result, that is,
inequality , is also in accordance with the linear case. Of course, there may be certain
particular boundary conditions associated with leading to even stronger decay rates.
But this is a different problem. Here we are interested in asymptotic behavior valid for
any boundary conditions.

Let us indicate how we proceed in our proof of and . There are two main steps.
In the first (Section 5), we consider a weak solution to the time-dependent Oseen system
. As in the case of the solution to introduced above, this solution to
involves only the velocity u. If we leave aside some technical subtleties, its regularity
may be characterized by the relations u € LV(O,TO, Lq(ﬁc)3) with v = 2 and v = oo,
and V,u € L2(O,T0, Lr(ﬁc)g), for some ¢, 7 € (1,00). The right-hand side f, in the
simplest case, is supposed to belong to LQ(O, Ty, Lp(ﬁc)?’) for some p also in (1,00). We
will consider u|Bg,” x (0, Tp) instead of u, with Sy introduced following . In this way
we avoid smoothness conditions on 9€2 going beyond the assumption that € is Lipschitz
bounded. At first we will suppose Ty = oo and Uy = 0, and construct a function & such
that &(t) is the gradient of a harmonic function on an open set slightly larger that Bisoc,
and such that v — € is a continuous mapping from [0, 00) into certain LP-spaces on this
larger set (Theorem [5.1). Due to the conditions Ty = oo and Uy = 0, this result may be
established by reducing it — via a Fourier transform with respect to the time variable — to
Oseen resolvent estimates. After that, we will show that u — € is continuous also in the
case that Uy does not vanish, but still with Ty = oo (Corollary . Here the principal
auxiliary result is an L2 — L%-estimate of the spatial gradient of the solution to the Cauchy



problem for the heat equation in R3 x (0,00) (Theorem [4.1). The continuity of u — &
on [0,00) will allow us to apply [22] Theorem 5.2], which yields a decay estimate of the
function u — R (f |Bs,” x (0, To)) — 37Uy Bs,*) and its spatial gradient, incidentally
without requiring anything with respect to pointwise spatial decay of f or Uy. The decay
bound obtained for this function is the same as the one in if w fulfills the zero flux
condition ([.4)); otherwise we will get the bound in (Theorem[5.2). This result is then
carried over from the case Ty = oo to Ty < 0o (Theorem , a step which is surprisingly
difficult; see the remarks preceding Theorem

In the second part of our proof (Section 6), we will consider as an Oseen system
([1.11) with right-hand side f — G(U,u), where G(U,u), defined in (L.7), contains the
nonlinearity. We will evaluate 9% [u — R ( f — G(U,u)|Bs,” x (0,Tp) ) — 37 (Us|Bs, ) ]
by applying the results of Section 5, and 0% [9‘{(7) (f|Bs,” x (0,Tp)) + ’J(T)(U0|Bigoc)] by
using , where o € N3, |a| < 1. In this way we get a decay bound for the function
¢ [u+ R 7) (G(U,u)[Bs, x (0,Ty)) ] (Corollary . This will leave us to consider the
function 92K (G(U,u)|Bs,” % (0,Ty) ), which, by [16, Section 4], is known to admit the

bound € (|z|v(z) )717|a‘/2 for large values of |z| and any ¢t € (0,7Tp), as required in the
proof of , but only if w satisfies Dirichlet boundary conditions as well as . We
will discuss how to obtain this bound without such conditions (Theorem [6.2)). After that
we will improve this result, estimating the preceding function by € ( || v(x) )_5/4_|a‘/2
(Theorem [6.3). The proof of is then complete (Theorem [6.4]).

A remark is in order with respect to the role of the function Up. Again consider our solution
u of as a weak solution to the Oseen system with right-hand side f — G(U,u).
Fix a number S; € (0, Sp) with Q C Bg,, where Sy was introduced following . Then,
by our linear theory (Corollary , there is a function € — already mentioned above —
which maps (0, Tp) into L"(Bg,)? for any r € (3/2, oo) and which is such that &(t) is the
gradient of a harmonic function for any ¢ € (0,7p), and u — € is continuous as a mapping
from [0, Tp) into certain LP-spaces on BSIC. In particular equation 1) with © — € in the
role of u is satisfied for any ¥ € Cg5, (Bg,"). In other words: u — € is a weak solution to
in Bg,” x (0,Tp) with right-hand side f — G(U,u)|Bs, " x (0, Tp). Thus, according to
[22, Corollary 5.9] and its proof, the function Uy|Bg,  may differ from (u— €)(0)|Bs," only
by the gradient of a harmonic function, and this gradient decays as O(|z|~2) for || — co.
This decay rate increases to O(|z|™3) if (u — &)(0) — Uy satisfies a zero flux condition on
O0BpR for some R € (Sp,00). But the two functions (v — €)(0) and Uy need not coincide
(22, Lemma 5.10]).

It might be suggested to simplify the proof of and by replacing the weak
solution u of introduced at the beginning of this section by a weak solution u of
in R3 x (0,7p) with modified right-hand side, where @ is such that u(t)|Bg = u|Bg
for some S € (0,00) suitable large. However, we could not introduce such a function @
without generating distributions with respect to the time variable on the right-hand side
of the system. And once such distributions are present, we could not prove any decay
estimates for u.

Let us mention some references more distantly related to the work at hand. In [2], [3],
solutions to with U = 0 and to are estimated in weighted LP-norms, with the
weights adapted to the wake in the flow field downstream to the rigid body. Reference [20)]
by the present author combines decay estimates in time and in space, as a continuation of
[15] (Oseen system ([L.11))) and [16] (stability problem (L.1))), with the same assumptions,



methods and rates of spatial decay as in these latter references. Various technical aspects
of the theory in [15], [I6] and [20] are dealt with in predecessor papers [§] — [14]. Questions
of existence, regularity and stability related to and are addressed in [2§], [29],
[301, [33] [35], [36], [38], [39], [41], [43], [44], [49], [51].

There are a number of articles dealing with the spatial asymptotics of solutions to the
Navier-Stokes system without additional terms, in particular without Oseen term. As
examples we cite [5], [6], [I7] and [54]. A more extensive list of references may be found in
[17]. However, the asymptotics in question do not take account of the wake phenomenon,
which is linked to the presence of an Oseen term in the differential equations. So we do
not think that appropriate decay estimates related to may be obtained on the basis
of a theory on spatial decay of solutions to the Navier-Stokes system without additional
terms. An exception in this respect is the whole-space case, for which Takahashi [52] p.
758] was able to use such an approach, via a change of variables, but under smallness
conditions and with U = 0.

2 Notation. Some auxiliary results.

The symbol | | denotes the Euclidean norm of R" for any n € N, the length o +ag + a3 of
a multi-index « € Ng, as well as the Borel measure of measurable subsets of R?. When we
write |A| for some A € R3*3 we mean the Euclidean norm of A considered as an element
of R%. For R € (0,00), € R3, put Br(z) := {y € R : |z —y| < R}. In the case x = 0,
we write Bg instead of Bg(0).

The set Q C R3 and the parameter 7 € (0,00) introduced in Section 1 will be kept fixed
throughout. Recall that €2 is open and bounded, with connected Lipschitz boundary, and
that n(®) denotes the outward unit normal to Q. We put Qp := B r\Q. Further recall that
in Section 1, we introduced the function v : R3 + [1,00) by setting v(z) := 1 + |z| — 21
for z € R3.

For n € N, I C R", let x; stand for the characteristic function of I in R™. If A C R3,
we denote by A¢ the complement R*\ A of A in R3. Put ¢; := (6)1<j<3 for 1 <1 < 3
(unit vector in R3). If A is some nonempty set and v : A — R a function, we set
[Y]oo :=sup{|y(z)| : z € A}. If R, S € (0,00) with S < R, we write Ap g for the annular
domain Bgr\Bs.

Let p € [1,00), m € N. For A C R? open, the notation | ||, stands for the norm of the
Lebesgue space LP(A), and || ||, for the usual norm of the Sobolev space W™P(A) of
order m and exponent p. If A C R3 possesses a bounded C?-boundary, the Sobolev space
WrP(DA) with r € (0,2) is to be defined as in [31, Section 6.8.6]. Let B C R3 be open.
The spaces L] (B) and W,,"%(B) are defined as the set of all functions V from B into R
or C such that V|A € LP(A) and V|A € W™P(A), respectively, for any open, bounded set
A C R? with 4 C B. We put VV := (9 V;)1<jk<s for Ve Wo1(B)3.

Let V be a normed space, and let the norm of V be denoted by | ||. Take n € N.
Then we will use the same notation || || for the norm on V" defined by ||(fi,..., fu)| =
(Z?:l I £511? )1/2 for (f1,..., fu) € V™. The space V3*3, as concerns its norm, is identified
with V7.

For open sets A C R3, we define Ce,(A) ={V € C§°(A)? : divV = 0}, and we write



L5 (A) for the closure of C%, (A) with respect to the norm of LP(A)3, where p € (1,00).
This function space L5 (A) ("space of solenoidal LP-functions”) is equipped with the norm

I {lp-

Let B be a Banach space, p € [1,00] and J C R an interval. Then the norm of LP(J, B)
is denoted by || HLP(JB)' Let a,b € RU {oo} with a < b. We write LP(a,b, B) instead of

Lp( (a,b), B ) Moreover, we use the expression Lf c( [a,b), B ) for the space of all functions
v : (a,b) — B such that v|(a,T) € LP(a,T, B) for any T € (a,b). The space L} (a,b, B)
is defined as usual. Let T € (0,0¢], A C R? open, p € [1,00], ¢ € (1,00) and n €
{1, 3}. Then we write || [[¢p7 and || ||gpr instead of || |zeo,7, La(ayr) and | [[Lo®,zaayn)
respectively. For an interval J C R and a function v : J — I/Vlicl (A)3, the notation V,v
stands for the gradient of v with respect to x € A, in the sense that

Vau: J = Lh (A)3, Vau(t)(z) = (aajk(vj(t) ) (@) )1<]— o ted zeA

(spatial gradient of v). Similar conventions are to be valid with respect to the expressions
Agv, divyv and Oz ;v.

Concerning Bochner integrals, if J C R is open, B a Banach space and w : J — B an
integrable function, it is sometimes convenient to write B— [; w(t) dt instead of [, w(t) dt
for the corresponding B-valued Bochner integral. For the definition of the Bochner integral,
we refer to [55) p. 132-133], or to [37, p. 80 ff.].

Let n € N. For the Fourier transform f of a function f € L*(R"), we choose the definition
f&) = (2m) /2 Jgn €777 f(2) dz (€ € R"), and we define the inverse Fourier transform f
of f by f(&) = (2n)"/? Jan €57 f(2) dz(€ € R™). Analogous definitions and notation are
to hold for the Fourier transform and the inverse Fourier transform of functions belonging
to L2(R™), LP(R™, B) or LP(R™, By + ... + By), where p € {1, 2}, k € N and B, By, ..., By
are Banach spaces.

We write C' for numerical constants and C(v1, ..., 7,) for constants depending exclusively
on paremeters 71, ..., v, € [0,00) for some n € N. However, such a precise bookkeeping
will be possible only at some places. Mostly we will use the symbol € for constants whose
dependence on parameters is not indicated. Sometimes we write €(71, ..., 7,) in order
to insist that the constant in question is influenced by the quantities ~1,..., v,. But in
such cases, other parameters enter into this constant as well. However, a constant €
never depends on quantities in a list introduced with the word “for” and preceding or
following the inequality under consideration. In particular a constant denoted by € is
always independent of the variable t.

The following simple version of Young’s inequality for integrals will be used frequently. We
state it here in order to make precise what exactly we refer to when we mention “Young’s
inequality”.

Lemma 2.1 ([1I, Corollary 2.25]) Letn € N and q € [1,00]. Then

(L.

We point out some estimates involving the weight function v, beginning with an integral
of negative powers of |z|v(z).
Lemma 2.2 (|21, Corollary 3.2]) Let v € (2,00) and R € (0,00). Then the integral
[5e (|| v(z)) " dz is bounded by C(y) R-72.

R

q 1/q
[ vV a) " <oV, for ve @), v e @),



Lemma 2.3 ([25, Lemma 4.8], [23, Lemma 2.1]) v(z—y) ' < C (1 +y|) v(z)! for
z,y € R3.

Theorem 2.1 ([21], (4.1)]) Let p € (1,00), K € (0,00). Then

/ (|z—rtel> +t) #dt < C(u, K,7) (|| v(2) )7““/2 for z € By (2.1)
0

We will need the following estimates from [42].

Theorem 2.2 There is n € N such that for x € R3,

/Rg(u o= vle =) (W + ) v(y) dy

< O ((1+ |2)) v(w)) ™ (max(1, In|z[})",
/R (Al =y u@—y) " A+l 2y dy < OO+ o) (@)™ (max{L, nfal})"

Proof: See [42], (1.39), Remark 3.1, and the proof of Theorem 3.2 and 3.3]. O

We state a Sobolev inequality in exterior domains.

Theorem 2.3 Let A C R3 be open, bounded and with Lipschitz boundary. Take q € (1,3).
Then, for V € Wllo’j(ZC) with VV € LI(A%)? and with V € LF(A°) for some k € (1,00),
the relations V € L3/ G~ (A% and 1Vll3g/(3=q) < €IV lg hold.

Proof: This theorem may be deduced from [32] Theorem II1.6.1]; see [I8, Theorem 2.4]
and its proof. O

The next theorem serves to introduce the Helmholtz-Fujita decomposition, and to recall
some of its properties.

Theorem 2.4 Let A C R? be open, bounded, with Lipschitz boundary. For q € (1,00),
(4)

there is a linear bounded operator P, := Py : LI(A%)? — LLI(A") and a linear operator
G, = GV 1 LIATY s WHI(AY) with VG,(F) € LI(A%)3, Py(F) + VG,(F) = F for
F € Lq(Z:)g, P,(V) =V for V€ LL(AY), and P,(VII) = 0 for 11 € V[/li’cq(ﬁ) with
VII € L1(Q°)3. Moreover Py =Py for q € (1,00).

Proof: See [32, Section III.1]. Some additional details may be found in [I8| proof of
Theorem 2.11 and Corollary 2.3]. O

We will need certain properties of Bochner integrals. To begin with, we recall a basic tool.

Theorem 2.5 Let B1, By be Banach spaces, A : B1 — By a linear and bounded operator,
n €N, J CR" an open set and f : J — Bi a Bochner integrable mapping. Then
Ao f:Jw Bg is Bochner integrable, too, and A(By — fdew) = By — fJA o fdx.

Proof: See [55, p. 134, Corollary 2], [37, Theorem 3.7.12]. O
As a consequence of Theorem [2.5] a linear bounded operator between two Banach spaces
commutes with the Fourier transform:

Corollary 2.1 Let By and By be Banach spaces, and let T : By — Bs be a linear and
bounded operator. Take n € N and v € L*>(R™, By). Then T ov € L*(R™, By) and T 0¥ =
(T ov)™.



Proof: Put g(R,§) := By — fBR(2 7)"2 e 8% y(z) dx for R € (0,00), £ € R™, and let
h(R,&) denote the Bs-valued Bochner integral obtained by replacing v(x) by (1 o v)(x)
in the preceding definition. Let || ||, denote the norm of B;, for j € {1, 2}. Then
Jzn 10(6) — 9(R, )[IB, ¢ — 0 and f]Rn (T o v)"(€) — h(R,&)||,dE — 0 for R — oo
by the definition of ¥ and (T o v)". But Theorem [2.5 . yields that T'(g(R,€)) = h(R,§)
for £ € R™, R > 0, so the second of the preceding convergence relations yields that
Jan (T o) (&) =T (9(R,€) )5, d€ = 0 (R — 00). On the other hand, the boundedness
of T allows to conclude from the first that [p, [|7(7(£) — g(R,€))|I%, d€ = 0 (R — o0).
Thus the corollary follows. O

We state a density result, already used in [22], in LP(J, B) for Banach spaces B and
p € [1,00).

Corollary 2.2 ([22, Corollary 2.1]) Let B be a Banach space, A a dense subset of
B, pe[l,0), n € Nand J C R" open. Then the set of sums Z;?:l @ja; with k €
N, p; € C°(J) and aj € A for j € {1, ..., k} is dense in LP(J, B).

Compatibility result for Bochner integrals with values in LP-spaces are treated in the
ensuing two lemmas.

Lemma 2.4 (|21, Lemma 2.3]) Let m,n € N, J C R" and U C R™ open sets, q €
[1,00) and f : J + Li(U)? integrable as a Bochner integral in LI(U)3. Then there is a
measurable function g : U x J +— R3 such that f(t) = g(t) a. e. inU, fora. e. t € J. We
identify f with g. Then [;|f(z)(z)|dz < oo and [, f(z)(z)dz = (LYU)*— [, f(z)dz)(x)
fora. e xeU.

Lemma 2.5 ([22, Lemma 2.2]) Let J C R be an interval, n € N, B C R" and A C
B open sets, q1, g2 € [1,00) and f : J — L% (B)3 a Bochner integrable mapping with
f)l|A E L%(A ) fort € J and f|A J +— L%2(A)3 Bochner integrable as well. Then
(L (B)3 — [, f(s)ds)|A = L=2(A) — [, f(s)|Ads.

The next theorem recalls a basic result about functions with values in Banach spaces.

Theorem 2.6 ([27, Theorem 8.20.5]) Let B be a reflexive Banach space, J C R™ open
and q € (1,00). Then the dual space of L(J, B) is isometrically isomorph to LY (J, B').

We state a criterion for the existence of a weak derivative of a function with values in a
Banach space.

Theorem 2.7 Let B be a Banach space, a, b € R with a < b, w, g € L'(a,b, B) and

f;(’(t)n( ) = —f ¢(¢) ( )dt for ¢ € C§° (( )), n € B/ Then there is
LEECO([a,b], B) with w(t) = w(t) for a. e. t € (a,b), w(b) — fg t)dt, w e
Whl(a,b, B) and w' = g.

Proof: The theorem follows from [53, Lemma 3.1.1]. O

A variant of Fubini’s theorem for Bochner integrals will be useful:

Theorem 2.8 ([37, Theorem 3.7.13]) For j € {1, 2}, let J; C R be measurable. Let
B be a Banach space, and let f: Jy X Jy — B be integrable as B-valued Bochner integral.
Then the function f(&1, -) : Jo — B is integrable in the same sense for a. e. & € Jp, the
function & — sz f(&1,&)d& (&1 € Ji) is also integrable as B-valued Bochner integral,

and le fJ2 f(£1562) d&2 d&y = fJ1><J2 f(flaéb) d(€1562)'



We will need Plancherel’s equation for functions with values in Banach spaces. Since its
proof is not too long, and because we do not know a reference, we indicate this proof.

Theorem 2.9 Let B be a reflexive Banach space, n € N and v € L*>(R", B). Then v €
L*(R", B) and ||v|| 12&n 5y = [0/l 2Rn,5)-

Proof: For any Banach space A, let D(A) denote the set of sums 25:1 pja; with k €
N, ¢; € S(R") and a; € A for j € {1, ..., k}, where S(R") stands for the usual space
of rapidly decreasing functions on R™. According to Corollary the set D(A) is dense
in L2(R", A). Let (,) : B’ x B — C denote the usual dual pairing of B’ and B. For
b € B, define (V/,v) : R” — R™ by (V/,v)(z) := (¢/,v(x)) = (b ov)(z) for x € R™. Let
h € D(B’). Then we may choose k € N, ¢; € S(R") and b}, € B for 1 < j < k with
h(z) = Z?:l @j(x) b (x € R"). By Corollary m we have ((0},v))"(z) = (¥),9(2)) (= €
R™), so by Parseval’s equation for functions from L?(R"™),

k k
[ @) v@yde =37 [ i) 0 v d =" [ G @) a)ds (22)
j=1 Jj=1

_ / (), B()) d.

On the other hand, B is reflexive, so we have L?(R", B) = L?*(R", B') (Theorem [2.6).
Therefore, since D(B’) is dense in L?(R", B’), we obtain that

10l L2(rn, ) = sup{/]R (h(z), v(z)) dz : h € D(B'), ||hll2@n, 5y = 1},

with an analogous formula being valid for v. Moreover, since the Fourier transform maps
the space S(R™) bijectively onto itself, we have {h : h € D(B')} = D(B’). The theorem
now follows with ([2.2)). O

3 A theorem on the Oseen resolvent. Some fundamental
solutions and potential functions.

Our first theorem reproduces an aspect of the theory in [34]. Further indications and
references may be found in the [24] proof of Corollary 4.1].

Theorem 3.1 Let A C R3 be open, bounded, with C*-boundary. Take q € (1,00), and
define D(Ay) := W21(A)3 W U(AY)3 N LL(AY), Ay(U) := P,(AU) for U € D(A,), with
the operator Py = PéA) introduced in Theorem .

Then A, is a linear and densely defined operator from D(A,) into LL(A®). The set

C\(—00,0] is contained in the resolvent set o(Aq) of Aq. Let I, denote the identical map-
ping of LL(A®) into itself. Then the operator (X 7, + Ay) "' is holomorphic as a function

of A € o(Ay) with values in the space of linear bounded operators from Lg(AC) into itself.

Ford € [0, 1), the inequality | AT, +Ay) " (F)|lq < €|A\|71||F ||y holds for F € LL(A%), \ €
C\{0} with |arg \| < 9.

We define the fundamental solution 91 of the Poisson equation ("Newton kernel”) by
setting M(z) := (47 |z|)~! for z € R3\{0}. For A C R? open and bounded with Lipschitz
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boundary, and for any ¢ € L}(0A)3, we define the surface potential F(¢)(x) := F(¢) :
R3\OA > C? by setting

3(0)(x) := /M(V’ﬁ)(w —y)n'(y) - d(y)do, for z € RN\OA, (3.1)

where n(4) : 9Q — R3 denotes the outward unit normal to A. The next theorem, which
the title of this section alludes to, and which we take from [24], deals with the Oseen
resolvent problem

AV 4+ 70,V +\V + VIL = F, divV = 0.

It shows how i£ V(¢ € R) may be estimated with respect to certain LP-norms by the
right-hand side F' and the boundary data. These latter data, however, do not appear
explicitly because they are evaluated by the term £ introduced below.

Theorem 3.2 ([24, Corollary 7.1]) Let A C R3 be open and bounded with Lipschitz
boundary. Take S € (0,00) with A C Bg. For q € (1,00), let Py = PSBS) be defined as in

Theorem I, and Ay as in Theorem and F(¢) for ¢ € LY(0Bs)? as in , each
time with A replaced by Bg.

Let ng € N and let D1y s Prg» q(() ), qé) and q1 belong to (1,00). Put ppy+1 == q1 and
¢:=min({g§"”, ¢, a1} U{p; : 1<j <no}).

Let € € R with |¢] > 1, FO) € LPi(A° for 1 < j < ng, VW € Lo (A%)3 0 WL (A%)?
and VV W e L1 (A%)? for pe{l,2}. Put V:=vW £V and suppose that

/ (VV VI+ (to1V +i€V — ZF )dw-Ofom?ECOU(AC), divU = 0. (3.2)
A°

(This means in particular that V is a weak solution of the Oseen resolvent problem.) Put
= VO + [V o + [TV g,

Then there are functions UY) € W2Pi(Bg“)? for 1 < j < ng+ 1, UM*2) ¢ C=°(Bs%)? as
well as ¢ € LI(0Bg)3 with the following properties:

no—+2
VIBs" =Y UV, UV = (16T, + Ap) " (P, (FVIBs) ), lEUV Iy, < €||FD),

1€ (U(”O+2) —3(9))|Bglr < €(r,R) £, and if r € (3/2, o0) and again R € (S,0), then

13(0)|Bgll» < €(r, R) £. The constants in the preceding estimates do not depend on &. The

for 1< j < mo, UMV, . < €L, |6y < €L Ifr € (1,00), R € (8,00), then
function S(gb} is defined as in with A = Bg.

Let $) denote the usual heat kernel in 3D, that is,

9(z,t) = (4mt)3/? e 1P/ for 2 e R te (0,00), H(2,0):=0 for z € R*{0}.

Thus, in our context, §) is defined on B := (R3 x (0,00) ) U ((R3\{0}) x {0}).

Theorem 3.3 The relations $ € C®(B), [psH(z,t)dt = 1 for t € (0,00) hold. If
a € N, o € Ny, the inequality |0207 H(z, )\ < C(a,a) (|2]? + 1)~ BHel+29)/2 s yalid for
zeR3 te€(0,00).
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Proof: See [50] for the preceding estimate. O

The estimate in Theorem in the case |a| = 2, 0 = 0 allows to define the velocity part
I" of a fundamental solution to the time-dependent Stokes system,

Lik(z,t) := 9(2,t) I +/ 0z;021.9(2,s)ds for (z,t) € B, j ke {1, 2, 3},
t

and the velocity part A of a fundamental solution to the time-dependent Oseen system

(1.11)),
Aji(z,t) =Tjp(z —1ter, t) for (z,t) € B, j,ke{l,2, 3} (3.3)
We will need the following properties of A.

Lemma 3.1 ([2I, Lemma 3.3, Corollary 3.3]) For 1 < j <3, z € R, t € (0,00),
the relations A € C*(B)3*3 and 22:1 0z \ji(z,t) = 0 are valid. Moreover

|09 (2,8)] < C(7) (|2 — Tter* + ) G2 (2 e Rt € (0,00), @ € N, |a] <2).(3.4)
Let K > 0. Then
02 (2, 8)] < C(r, K) [ X(0,5)([2]) (|2 + )~ HeD/2 (3.5)
+X(K7m)(|z\) (|z] v(z) + t)_(3+|a|)/2] for z, t, a as in .

Theorem 3.4 ([21, Corollary 4.1]) Let R, R € (0,00) with R < R, p,q € [1, o0].
Then

t /
/0 /B O2OPA(z — y,t — 5) - uly, s) dyds < € ([z] p(z) ) CHTIDZFVC) Yy
R

fort € (0,00), u€ LP(0,t, LY(Bg)*), z € B%, a, B e N with |a| <1, |8] < 1.
We introduce the first of our potential functions.

Lemma 3.2 ([21}, Corollary 3.5]) Let A C R? be measurable, q € [1,00), V € Li(A)3,
and let V the zero extension of V to R®. Then Jzs 0%A(z—y,1)-V(y)|dy < oo for a € N}
with |o| <1, z € R®, t € (0,00). Thus the volume potential 37 (V) introduced in
1s well defined.

The derivative 82,37 (V) (z,t) exists and equals Jgs Ot A(x — y, ) - V(y)dy for z,t as
above, and for I € {1,2,3}. The functions 3 (V) and dx,37) (V) are continuous in
R? x (0,00). If ¢ > 1, then |[I7(V)]lg < C(a,7) |V ]lg-

We will need a variant of 3 (V).

Lemma 3.3 Let ¢ € (1,00), A C R3 be measurable, V € Li(A)3. Write V for the zero
extension of V to R3. Then [, 107026 (z—y, t) V(y)|dy < oo forz € R?, t € (0,00), o €
N3, o € {0, 1} with |a|+20 < 2. Therefore we may define the function HO (V') by setting
HO(V) (1) := Jzs H(z —y, 1) V(y)dy, HO(V)(z,0) := V(z,0) for z € R®, t € (0, 0).
Then HOO(V) belongs to CO([0,00), LI(R®)?) and the estimate IHOV)Y D)l < CIV g
holds for q € (1,00). Moreover, the derivative O70H O (V) (x,t) exists and equals the
integral [gs 07039 (x — y, t) YN/(y) dy for z, t, a, o as above, and is a continuous function
of (z,t) € R x (0,00). The equation OHO (V) — A,HO (V) = 0 holds. Let W € LEL(R3).
Then div,HO (W) = 0.
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Proof: All the claims of the lemma except the relation H( (V) € C°([0,00), LI(R?)?)
and the equation div,#(?) (W) = 0 follow by the same arguments as used in [2I} proof of
Corollary 3.5] with respect to (7 (V). The continuity at ¢t = 0 of #(7(V) as a mapping
from [0,00) to L4(R3)3 holds by a simplified version of the proof of [21, Theorem 3.3].
Continuity at ¢ > 0 may be shown by the same reasoning as in [21, proof of Corollary 3.6].
Let ¢ € CF5, (R3). By a partial integration in the integral [5, Z?Zl 0y;iH(x—y, t) o(y) dy,
we obtain div,H® (¢)(z,t) = 0 for z € R3, t € (0,00). There is a sequence (¢,) in
CG%, (R3) with [[W — ¢y lg — 0. As a consequence of Theorem [3.3| and Hélder’s inequality,
we get || Vo HO (W —¢,) ()|, < Clq) tEIH3/D/2 W ¢, |, (n € N). Thus we may conclude
that div,H (W) = 0. O

We turn to the definition of another potential function.

Lemma 3.4 Let Ty € (0,00], A C R3 measurable, ¢ € [1,00) and f a function from
L}L.(10,Ty), LI(A)®). Let f denote the zero estension of f to R® x (0,00). Then the

loc
integral [ps |[09A(x — y,t — o) - f(y,0)|dy is finite for any x € R3, t € (0,00), 0 €
(0,t), a € N3 with |a| < 1. Moreover, for a. e. t € (0,00) and for o as before, the integral
fot Jgs 109A(z — y,t —0) - fly,0)|dydo is finite for a. e. x € R3. Thus we may define
RO (f)(x,t) as in for such t and . The relation R (f)(t) € VVZ{)CI(RS)?’ holds for
a. e. t € (0,00), and AR (f)(t)(z) = fg Jgs OxiA(z —y, t —0) - fly,0)dydo for such
t,a. e. x € R, and forl € {1, 2, 3}.

Moreover the integral f(f | Jps Az —y,t—s)- f(y, s)dy|ds is finite for any t € (0,00) and
for a. e. x € R3. Thus the function %(T)(f) is well defined even for any t € (0,00)
(instead of only for a. e. t € (0,00)) and for a. e. x € R3.

Proof: |21, Lemma 3.8, Corollary 3.7]. O

The next lemma deals with still another potential function, this one defined on the surface
of an open bounded set.

Lemma 3.5 Let q € [1,00], Ty € (0,00}, A C R3 open and bounded, with Lipschitz
boundary, ¢ € Li,.([0,To), LY (OA)*), ¢ the zero extension of ¢ to DA x (0,00). For

loc
t € (0,00), * € R3N\OA, a € N3, the term [02A(x — y,t — s) - ¢(y, s)| is integrable as a
function of (y,s) € DA x (0,t). Define B (¢) := BT (¢) : (R}\DA) x (0,00) — R? by

B (p)(z,t) := /Ot » Az —y,t—s)- 5(y, s)doyds for x € R®\OA, t € (0,00).

Then, for anyt € (0,00), the integral fg Jou Mz—y, t—s)-g(y, s) doy ds as a function of x €
R3\ A belongs to C°(R3\ A)3, and 9207 (¢)(x,t) = fg Joa OSM(x—y,t—s)-¢(y, s) doy ds
for a € N3, z € R3\ A.

Proof: The function A is C* on R3 x (0,00) (Lemma , so the lemma follows from
Lebesgue’s theorem. O

We introduce another kernel function, which is a truncated version of A, and whose def-
inition involves fixed numbers Sy, Ry € (0,00) with Sy < Ry, the mean value R; :=
(Ro + So)/2 of these numbers, and a function o € C§°(Bg,) with ¢[Bg i (ry—s)/4 =
1, 0 < g < 1. However, since this definition would need some preparation, but we will
not work with it, we do not restate it here, referring instead to [2I} (3.13)]. In the ensuing
theorem, we collect those properties of this kernel which will be relevant in what follows.
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Theorem 3.5 There is a function & := SR, s, oo : B, X Br, % [0,00) = R>*? with the

following properties.

Let x € By, r € [0,00). Then &(z, - ,r) € C>(Bpg, )>*3, 22:1 0yk®k(z,y,7) = 0 for

1<j<3, y€ Bg,, and &(z,y,r) = Az —y,7) fory € Bs, 1 (Ro—S0)/4-

Let x € By, q € (1,00). Then the mapping v — &(x, - ,r) (7“ € [0,00)) belongs

to C*([0,00), WH(Bg,)3*®). Thus a function G' € C°([0,00), Wh1(Bg,)3*3) may be

defined by the condition ||(&(z, - ,r +h) — &(z, - ,7))/h— G'(r)|1,4 = 0 (h — 0) for

r € [0,00). We write 0,8 (z,y,r) instead of G'(r)(y) (r € [0,00), y € Bg,).

Let r € [0,00), q € (1,00).

Let 0 € {0, 1}, and define L(z) : Bgr, + R¥3 by L(x)(y) = 076(x,y,r) for x €

B, y € Br,. Then L(z) € C°(Bg,)*** N WhY4(Bg,)*>** for x € B, and L considered

as a mapping from Bf, =~ into Wh4(Bg, )33 is partially differentiable on BiROC. Thus we

may define DinL : Br," — WhY4(Bg,)>*3 by the condition ||(L(z + hen) — L(z))/h —

D L(2)|l1.4 — 0 (b — 0), form € {1, 2,3}, 2 € Bg, . Instead of D,y L(z)(y), we write

0ry, 026 (x,y,1).

Let I € {1, 2,3} and define L(z) : Br, — R¥3 by L(z)(y) = oy®(z,y,r) for v €

B, y € Br,. Then L(x) € C§°(Bg,)**® N LY(Bg,)**® for x € B}, , and L considered as

an operator from By into Li(Bg,)**3 is partially diﬁerentmble on Bigoc. Thus we may

define Dy, L - Br," — Lq(BR )3%3 by the condition H( L(z+hem)—L(z) )/thmE(x)Hq —
0(h—0)(me{l,2, 3}, z€Bg,). Instead of D, L(x)(y), we write 82,0y & (x,y, 7).

Let g € (1,00), p € [1,00]. Then

/B 10207006 (2, y,t) - V(y)|dy < € (x| w(x) ) EHH 2y, (3.6)
Ry
for Ve LY(Bpg,)?, t € (0,00), € B, , o, B € N3, o € {0, 1} with |a| <1, |8] + 0o <1,

/ /B 102070 ® (2,4t — 5) - vy, )| dy ds < € (| w(z) )" CHPF I 1y (37)

fort, x, a, B, o as in , and for v € LP(O,t, Lq(BRl)?’).
Proof: |21, Lemma 3.11, 3.12, 3.13]. O

We note a consequence of the preceding theorem.

Corollary 3.1 ([21,, Corollary 4.2]) Let 8 € N3, o € {0, 1} with |8] + o < 1. Let
€ (1,00), and let the function v belong to Lj,.( [0,00), LY(Bg,)*) and the function V to
L(Bg,)3. Define

t
Fat)i= [ [ 00je(yt =) viys)dyds, Hat)i= [ 8.0 Vig)dy
BRl BRl
for z € Br,, t € (0,00). Take a number | € {1, 2, 3}. Then the derivatives dx;F(z,t)

and Ox H (xz,t) exist pointwise, and they equal fg fBR 8xl8§85(’5($, y,t — ) -v(y,s)dyds
1
and fBR 0x;®&(x,y,t) - V(y) dy, respectively, for x € BROC, t € (0,00)
1
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It will be convenient to subsume a number of terms in a single operator, which we define
here, and whose definition makes sense due to the preceding Corollary

Let A C Bg, be open and bounded with Lipschitz boundary. Put Ag, := Bg, \4, ZR,T =
Ag, x (0,T) for T € (0,00]. Let A C R® x R, Ty € (0,00] such that Zg, 1, C 2. Let
qe€ (1 00) and let v : 2 — R? be such that v|Zg, 1, € C°([0,To), LY(Ag,)*), v(s)|Ar, €
Wl (Ag,)? for s € (0,Tp), and V,0|Zg, 1, € L}, ([0,T0), LY(Ag,)? ). Then, for t € (0,Tp)
and 2 € Bg, , we define

RRQ,SO,L)OO,A TO( / /A Z&wﬁ J: y7 ) : 8ylv(?/7 S) (38)
Ry

—8y1@<$, yvt - 8) ' ’U(y, S) - 85Q5<1‘, yvt - 8) ' ’U(y, S)) dy ds +/A ®<$7y7 0) ’ U(y7t) dy

Ry

Next we reproduce some decay estimates proved in [21], beginning with a decay estimate
of RRy,S0,00,4,1(v). We use the same notation as in definition (3.8) and in the passage
preceding it.

Corollary 3.2 (|21, Corollary 4.3]) Let A, A, Ty, q be given as in (@ and p1, p2 €
1, ] Then, if v : A — R with v|Zg, 1, € C°([0,T0), LY(Ag,)*) as well as v(s)|Ag, €
Wk (ARI) for s € (0,Tp) and Vov|Zp, 1, € LPQ(O,TO, Li(Ag,)? ), and if © € BROC, te

loc

(0,Tp), a € N3 with |a| < 1, the term 0S8R, 80.00,4,1 (V) (2, )] is bounded by

—(3+|al)/24+1/(2 9"
ait + [V AR, [lg) max (|z]v(z)) CHDEH/ER),

¢ (0 Zry max

aprit T I Vav|ZR, 4

Lemma 3.6 ([21, Lemma 4.3]) Let A, A, Ty, q be given as in (@, let Y denote the
outward unit normal to A, and take py, p2 € [1,00]. Then, for v: A R3 with v|Zg, 1, €
LP1(0,Tp, LY(AR,)?), v(s)|Ag, € WY (AR,)? for s € (0,Tp), and V| ZR, 1 belonging

loc

to LP2(0,To, LY(AR,)?), = € B, t € (0,Ty), o € N§ with || <2, 1 € {1, 2,3}, the
term |92 (™A (nl(A) v)(x,t)] is bounded by

2
—(3+ 2+4+1/(2
€ (0] Za, ot + 1501 Zar tllgpae) S (Il 00 o /241/@7)
7j=1

where (nl(A) v)(y,s) == nl(A)(y) v(y) fory € dA, s € (0,Tp).

Lemma 3.7 ([21, Lemma 4.4]) Recall that the Newton kernel N was introduced fol-
lowing Theorem . Let A C Bg, be open and bounded, with Lipschitz boundary, and
with outward unit normal denoted by nY. Put Ap, = Bpg,\A and let ¢ € (1,00).
Then the estimate | [5,(0“VN)(z — y) (n) - V)(y)do,| < €lz|7271l| V||, holds for
V € Li(Ag, > N WHL(AR,)? with divV = 0, t € (0,00), = € Bg, and o € N3 with
la| < 1. If the zero flux condition [, nA) .V do, = 0 is valid, the factor |z|~2712l may be
replaced by |z|~31el.

The potential functions defined above, with the exception of H?), appear in the the
representation formula stated in the ensuing theorem, which constitutes the starting point
of the theory presented in the work at hand.
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The(Eem 3.6 Take E C Bg, open, bounded, with Lipschitz boundary and set Eg, :=
BSO\E‘ Let TO € (0700]7 ng, Mo € N p7 q0, qlapla -ovy Pngy 01, ”'7377610 € (1700)7 and
consider functions u : (0,Ty) — WEHE3, fU) e L ([0,T0), LPi(E")3) for 1 < j <

loc loc .
no, GO € C’O([O,Tg), LQZ(BSO )3 ) for 1 <1 < mq, Ug € LP(E")® with the following
properties:

u|Eg, x (0,Tp) € Lloc( [0, Ty), LqO(Eso)S), divyu(t) = 0 and u(t)|Bs0 o lell ( ) for
te (0,Ty), Voue LL ([0,Tp), L9 (E)?),

/TO/ ) -9+ o(t) [V;cu(t)-V19+7'83:1u(t)-19—f(t)-ﬁ])dazdt (3.9)
(0)/E Up-dde =0 for ¢ € C3°([0,Tp)), 1966’8700(@6),

with f = Z;‘il fU). Define nt50) (y) := Sy'y for y € Bs,. Let t € (0,00). Then there is
a measurable set N; C Bg,* of measure zero such that the equation

0

u(z,t) = RO (Y fDBs,” x (0,T0) ) (@, t) + 37 (Uo[Bs,") (@, ) (3.10)
3 ~
= 0m BT E50) (0™ ) (2, 1) — / (V) (z —y) (nt5) y - uly, t) ) do, + R(u)(x, 1)
=1 8BSO

o

t
_/ @(a;,y,t)Uo(y)dy—/ / ®($,y,t—8)2f(j)(y,8)dyd8
ARy,5 0 JAR, s, j=1

holds for x € Bpr, \N;, where & = Bp, 5., was introduced in Theorem R(u) =
ﬁRO7507¢07350 1, (u) in @), and the annular domain AR, s, at the beginning of Section 2.

Proof: [22] Corollary 5.1, 5.2], with assumptions on u stated at the beginning of [22
Section 5. 0

4 A result on the Cauchy problem for the heat equation.

We do not know a reference for the ensuing estimate of the spatial gradient of the solution
to the Cauchy problem for the heat equation with initial data in L(R?). However, a proof
is required since this result is not easy to establish. We present an argument — applying
a multiplier theorem by Benedek, Calderon, Panzone [4] — which only works if ¢ < 2. The
case ¢ > 2 remains open.

Theorem 4.1 Let q € (1,2]. Then |V H O (U)]|g2:00 < C(q) |Ullg for U € LI(R3)3.

Proof: We establish a framework allowing us to apply [4, Theorem 2|. Let € € (0, 00).
We write B for the Banach space of linear bounded operators from R? into L2( (€,00) )3.
This space B is to be equipped with the usual norm, which we denote by || ||g. We
write || [|12(zz2) for the norm of the space L?[R?, L*( (e, o) )3 |. The space of functions in
L>®(R3)3 with compact support is denoted by L3°(R3)3.

Let j € {1, 2, 3}, and define K¢(z)(a)(t) := 0z;9(x,t)a for z, a € R3, t € (¢,00). Then
by Theorem [Z K@) (@) @))?dt < Clal? [ (=] + )~ 4dt < C’|a|2 (|z|? + €)~3 for
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z,a € R3. Thus K. (z) € B, |Kc(z)||g < C (|z|*+€)~3/2 for x € R3, and Jgs 1Ke(@)||F do <
C 3. In particular K. € L?(R3 B) and K. : R® — B is integrable on compact subsets
of R%. Let U € LP(R3)3. For € R3, the function y IC (IL‘ - y)(U(y)) (y € R3) is
Bochner integrable in L2( (e,00) )3 so we may define (AU)(x) 1= [ps Ke (U(y) ) dy.
The function U € LP(R?)? belongs in particular to LI(R?’) and H(AU)( )HL2((e oo))3 <

Jgs IKe(z — 9)||8 |U (y)| dy. Therefore Young’s inequality and the relation K. € L?(R3, B)
derived above yield that AU € L?*|[R3, LQ((e,oo))S]. Let [AU]" : R3 — L2((e,oo))3
denote the Fourier transform of AU.

Let us justify the equation [AUJNE)(t) = (2m)~3/2e 6Pt (—ig;) U(€) for € € R3, ¢ €
(e,00). To this end, take 1) € C§°( (€,00) )3 and put T'(¢) := f:o CpdtiforC e L2( (e,00) )3.
Then T is a linear and bounded operator from L?( (e, 00) )3 into R, so To[AU|" = [ToAU"
by Corollary . But for € R3, by Theorem and the definition of AU and K. we
have (T o AU)(z) = [gs [ L(z,y,t) dt dy, with L(z,y,t) := ¢(t) 0z (x — y,t) U(y) for
T,y € R3 t € (e, o). Since U € L'(R?®)3, as mentioned above, 1 € Llﬁ, oo))3 and
|0z;9(x —y,t)] < C(Jx —y/* +€) 2 for z, y € R3, t € (¢,00) by Theorem as already
used above, it is obvious that the integral [g; fR3 [21(2m) 732 e718 Lz, y, t)| dt dy dz
is finite for ¢ € R3. Therefore we may apply Fubini’s theorem in the triple integral
Juo Joa S5 @) 73 €160 La,y, ) di dy da. But [( -, D]N(€) = (2m)~*/2 e K for £ €
R3, t € (0,00), so we get by the equations for T'o [AU]" and (T o AU)(x) from above that
f:o B(t)-[AUINE)(t) dt = [P (t)-(27) 32 e 67t (—ig;) U(€) dt. Since ¢ was arbitrarily
taken from C§°( (e, o0) )3, we arrive at the equation for [AU]"(£) claimed above. Therefore
with Theorem

AT 2qz2) = AV iy = € [ [ 165 1R atiTOP de < €102 = €U

Next take y € R? with |y| > 0, z € R3 with |z| > 4|y|, and t € (¢,00). Then the
equation \8%5( y,t) — 0z;H(x,t)| = |f01 S xdzH(x — 9y, t) yp d] holds, so
with Theorem [3 \890]55( y,t) — 0z;iH(x,t)] < (J|> + )72 |y|, where we used the
estimate |x — ﬁy[ > x| — |yl Z 3|z|/4 for ¥ € [0,1], which is valid since |z| > 4]y|. As
a consequence, ||[Kc(z —y) — Ke(z)||p < C ( [(|a]? +1)7° dt)l/2 ly| < C|z|~*|y|, hence
fBi\y\ |Ke(z —y) — Ke(2)|| g dx < C. Now we see that we may apply [4, Theorem 2] with

By =R3, By = L?((€,00) )3, obtaining that ||AU||LQ[R3 (G Oo))s] < C(q)||U]|qg for U €

L (R3)3. But by Lemma and (AU)(2,t) = 0z, HO(U)(x,t) for x € R, t € (¢,00)
and U as before. Thus

oo 2 1
[/ (/ \8xjH(O)(U)(a:,t)|2dt>q/ dx} @)U, for U € LERY)P.
R3 Me

At this point we exploit the assumption ¢ < 2, which implies 2/¢g > 1. As a consequence,
Minkowski’s inequality for integrals ([Il, Theorem 2.9]) allows to deduce from the preceding
estimate of 0z;HO(U) that |0z;HO(U)|R? x (¢,00)] , (e Loz ) < C(q) |U||4 for

U € LP(R3)3. Since this is true for any € € (0,00), and because the constant C(p) in
this inequality does not depend on ¢, we thus get [|9z;H O (U)|l42.00 < C(q) |U||4 for U as
before. Now let U € L(R3)3, and choose a sequence (Uy,) in C§°(R?)3 with ||U—Uy,l|; — 0.
Then [|02;HO(U,)|lg.2:00 < C(q) [|Unllg for n € N by what has been shown already. On
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the other hand, by Young’s inequality and Theorem

to to 2
/ 102, HO (U, — U)(1)]2 dt g/ (/ |3zj5§(z,t)|dz) dt | U, — Ul
t1 t1 R3

to

2
<c || / (12 + /%) dz) " dt Uy — Uy < C In(ta/tr) [Un = Ull,
RS

t1

forn € N, t1, to € (0,00) with ¢; < ta. From this inequality and the preceding estimate of
102;H O (U,,)||4.2:00 for n € N we may conclude that [|0z; 7 (U)]|g.2:00 < C(q) |U|lg- O

5 Weak solutions to the Oseen system: a representation
formula and spatial decay estimates without assumptions
on continuity of the velocity with respect to time.

When in [22] we derived the representation formula for the velocity part of a solution
to the time-dependent Oseen system , we had to require some continuity of the
velocity with respect to the time variable. In the present section, we obtain an integral
representation without such a requirement if the solution and the right-hand side are L?-
integrable in time. This type of integrability is valid in the case of L?-strong solutions to
the nonlinear problem , as considered in the next section.

As in the passage preceding Theorem we fix numbers Ry, Sp € (0,00) with Sy < Ry
and 0 C Bg,, define Ry := (Sp + Ro)/2, and choose a function ¢y € C5°(Bg,) with
‘P|BSo+(Ro—So)/4 =1, 0 < ¢y < 1. In addition it will be convenient to use a pair of
numbers S1, Sy € (0,Sy) with S; > Sy and Qc Bg,.

All the Fourier transforms appearing in this section are Fourier transforms with respect
to the time variable ¢ € R.

Lemma 5.1 Let A C R® be open, qo, ¢1 € (1,00), u € L*(R, L®(A)*) with u(t) €
WA for t € R and Vu € L*(R qu( ). Then (dzju)" = dxju for le{l,2, 3}.

loc )
Moreover, let ¢ € (1,00), v € LQ(R L1(A)*) and ¥ € C§°(A)3. Put o(t) := [, v(t) - ddx
fort € R. Then o € L*(R) and 9(¢ fA ) -Vdx for £ € R.

Proof: Let ¢ € C§°(A)%, 1 <1< 3, o € {0, 1}. The operator V — [, V - 81(0)1/) dr (V €
LP(A)3 ) is linear and bounded if p = ¢¢ and if p = ¢1. Therefore by Corollary - the
functions pu(t fA 8;@!) dx (t e R) and w(t) := [, dz(t) - ¢ dx (t € R) belong to
L*(R), and 1 u = [L0(&)- O dx, &) = [4] (%Ulv (5) Y dz (£ € R). On the other hand,
w(t) = —w(t) for t e R, so we get ﬁ = —. Since this is true for any [ € {1, 2, 3} and
1 € C§°(A)3, we may conclude that v(€) € W’licl (A)? and 0z0(¢) = [Ozv]"(€) for € € R.
The operator V — [,V -9dx (V € LI(A)*) is linear and bounded, too. So the second
claim of the lemma also follows from Corollary [2.1] with a similar argument. U

Theorem 5.1 Let ng € N, py, ..., pny € (1,00) and f9) ¢ L2(0 0o, LPi(Q°)3 ) for1 <
§ < mng. Put fO(t) :=0 fort € (—00,0), 1 < j < ng. Then there is a sequence (R,) in
(1,00) such that the limit

U9 (t) = lim (@m) V2 (€T, + Ap,) (P, [ F9(€)[B5,°] ) de (5.1)
n—reo (_anR’n)\(_Ll)
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erists in LPi (37526)3 forj € {1, .., no} and a. e. t € R, where Py, is to be chosen as
n Theorem and I, and Ay, as in Theorem in each case with A = Bg, . The

integral in is to be understood as a Bochner integral with values in LPs (Bs,")3. For
jeA{l, ..., ng}, the function U9 belongs to Lz(R, LPs (37520)3 )

Let q(()l), q(()Q), @ € (1,00), ul) € L2(0,c0, Lq(j)(ﬁc)?’) with u(t) € WEHQ)3 and

loc

divyul) (t) = 0 for t € (0,00), and V,ul9) € LQ(O oo, LI (Q°)? ) for j € {1, 2}.
Put u := uM+u® . Suppose that u satisfies with B =Q, f = Z?’il 9, Ty = 0o and
Up = 0. Let q € (1,00) with ¢ < min({g§", ¢\, 1} U{p; : 1 <j < no}). Define ppos1 ==

1 2 1 2
q1, Pno+2 ‘= {4, Pno+3 ‘= Q[() )’ Pno+4 ‘= q(() )7 Pno+5 = Q(() )’ Pno+6 = Q((] )7 Pno+7 =
max{2, q}. Let J C R an interval not reduced to a point. Then there is a set N C R of
measure zero and a number to € J\N as well as functions g € LQ(R, Lq(6352)3 ), GU) ¢

CO(R, LPi (Bislc)?’) for 1 < 7 <ng+ T with the following properties.

Put €(x,t) := €(p)(x, 1) := faBs2 (VM) (z—y) (S3 ' y-0(y,t)) doy fort e R, x € Bg,, with
N introduced following Theorem . Then the limit in exists for any t € R\N, j €
{1, ..., no}, and

no—+7
Z G ®) (1) — 4®) (49)[Bs,“ = GW(t) (1 < k < ng, t € R\N). (5.2)

Moreover €(t) € C™(Bg,)? and div,€(t) = 0 fort € R. Let v € (3/2, 00) and s € (1,00).
Then [[€ll2m + [Vo€lazz < €05) (0 0, + [0, + [Vt 200).

In addition, if R € (S1,00), then for anyt € R, ke {1, .., no}, Z =0 or Z = {k}, with
|Z]:=0if Z=10, and |Z]| = 1 else,

no+7 2
B> G<J><t>rAR,sl||qse:(Zuwﬂquw,g;oﬁ||vzuuq1,z;oo 5.3
Jj=1, j§3Z Jj=1
3 Ul 2O 8960 ) s X (LDl o))
i=1,j¢Z ’

Inequality serves to provide estimates of u — & pointwise in time and locally LY in
space, in terms of L-L%-norms of u, Vu and f1), ..., f("0) The option Z = {k} and the
equation U®) (£) — UF) (tg) = GP)(t) for 1 < k < ng are introduced in order to give access
to an upper bound of G*)(¢) in terms of ||f]Q° x (0,t)|p;,2;¢, instead of only || fI|p; 2,7,
(Theorem . This will be important in the case Ty < 00; see the proof of Theorem

Proof of Theorem We proceed as follows. First we construct a function §g, on
Bg, x R with §g,(§) € COO(Bgl)g, div,Fs,(§) = 0 (£ € R), and such that the mapping
€= (U —Fs,)() (€ € R) may be written as the sum of L%-integrable functions with
values in various Banach spaces. (Here the zero extension of u to R is also denoted by
u.) It will turn out the inverse Fourier transform of the mapping & — & (u — §s,)(§)
is the weak derivative of the function ¢t — u(t) — &(t) (¢ € R), where € is the inverse
Fourier transform of §g, with respect to & € R. From this we may conclude that v — € is
continuous as specified for u — € in the theorem. In a last step we introduce a function
0 € L?(R, LY(0Bs,)*) such that & = €(p), with €(p) defined in the theorem. Actually
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the argument becomes more complicated because we additionally introduce the functions
512 by writing the inverse Fourier transform of certain functions in an explicit way.

Denoting the zero extension of u™, u®, u, dzju and fU) to R in the same way as
the original functions, we may apply the Fourier transform with respect to the time
variable to these functions (1 <1<3 1< j < ng). Theorem then yields that

u) e L*(R, qu( Q)3 ), 8:1;lu(“) € L*(R, Lo (Q%)3 ) and ]T(J\ € L*(R, Lpf(ﬁc)?’) for
we {1, 2}, 1, j as before. Lemma implies that u( k(&) € wh 1(Q )3 and dzyul) (&) =

loc
Oxpu)(€) for 1 <1 <3, £ € R, pu € {1, 2}. As a consequence U(§) € I/Vllocl(ﬁc)?’ and
dxju € L*(R, L© (50)3) for I, £ as before.

Let ¢ € C’gf’a(ﬁc). We point out that each of the functions u® with 1 < p < 2, fU)
with 1 < j < ng, and dzju for 1 <[ < 3 belongs to L?(R, B) for some Banach space B.
Moreover we recall we supposed u to satisfy with E =Q, Uy =0, f= Z?il f(j)
and Ty = 0o. Since u and f9) for 1 < j < ng were extended by zero to R, equation
is then valid even for ¢ € C§°(R), with the integral over (0, 00) replaced by one over R.
Thus the second claim of Lemma and Parseval’s equation for functions from L?(R)
allow to deduce from that

/@(f)/c(ifﬂ(f)-ﬁ—kvxﬂ(f)-Vﬁ—i—r&mu - wa 9)drdé =0
R Q

for ¥ € ng;,(ﬁc), v € Ci°(R), and div,u=0.

Here it is important that Uy = 0. The set {p : ¢ € C’go( )} is dense in L?(R), so we
may conclude that for £ € R\{0}, the equations in (3.2) (Oseen resolvent system in a
weak form) are satisfied with A, U, F replaced by €, u( ) and D770 (9)(€), respectively.
At this point, recall the choice of ¢ and pp,4+1 in the theorem, as Well as the numbers
Sa, 81 € (0,Sp) with Sy < S fixed at the beginning of this section. We define £(§) :=
Hﬁ(l)(ﬁ)Hqén + ||a® ({)Hqéz) + [|[V,u(€)lq, for & € R. Then, using Theorem (3.2 with A, S

replaced by Q, So, we get that for £ € R with |£| > 1, there are functions UU)(€) €
LPi(Bg,")? for 1 < j < ng + 1, UMT2(¢£) € C®(Bgs,")?, ¢(€) € LI(0Bs,)* such that
—~ ——c no+2 ; . _ vy ——c
WEBs, =Y, U, UV = (€T, + Ay) Py, [JO(OIBs,]), (5:4)

1
€T @)Ly, < € [FDE)ly, for 1 < j < no, €T, < ELE),

lp(E)llq <€ L&), [T () —F(6(€))]IBE, I < €L(E) ifr € (1,00),
1§ (6(€))|BE, |l < CLE) ifr € (3/2, ),

with all constants being independent of £. The function § ( ¢(§)) is taken from Theorem
with A, S, ¢ replaced by €, Sz, ¢(§) and thus is defined as in with A = Bg,.
References for the definition of 7., A, and Pp, are given in Theorem We put
P(&) :== 0, UY(E) := 0 for 5 € (—1,1), j € {1, ...,ng+2} Then F(¢(&)) =0 for £ €
(=1,1), and the estlmates in are valid for all ¢ € R. We further set U("0+t2+4)(¢) .=
X(-1,1)(§) (u(“ ) (€)|Bs,* for f € R, p € {1, 2}. Recalling the definition of £(§) further
above and the definition of p,,4+3 and pp,44 in the theorem, and referring to the first
equation in , we get for £ € R that

€U 2O a0 < CLE) (€ {1, 2D, QB =30 UPQ). (55)
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For £ € R, we further set
ZU(&) = cUY(&)|Bs,” (j €{l, ..., no+ 1} U{ng+ 3, no + 4}), (5.6)
20t (6) = ¢ [UMHD(€) = F(0(6)) ]IBs," 8, (6) == F(0(€) )[Bs, "
Due to , this means in particular that

() -35,(9))=>_

no+4

o zZ®(¢) for € €R. (5.7)

Recalling that dx;u = O/xl\u for 1 <1 < 3, we get by Theorem and our assumptions on
f9 and u that f0) € L*(R, LP/(Q°)?) and
Hf(j)”pj,Q;]R = Hf(j)Hpj,Q;oo (1 <j< nO)v HEHQ < &, (58)

with 91 := ||qu(<)1>72;OO + [|u® Hq((f),z;oo + || Vzu||g; 2:00- Therefore we may deduce from 1)
(-8), (5-4) and (5.5) that
12905, 2 < €7Dy 200 (1< 5 < ), (5:9)
||Z(j)||p]'12;R <m (nO +1<j<no+ 4)’ ||¢ q,2;R < o, ||3S1||T,2;R < Q:(T)f)ﬁ

if 1 € (3/2, 00), in particular 20) € L*(R, ij(Biglc)?)) for 1 < j < mng+4, ¢ ¢
L?(R, LY(0Bs,)*), §s, € L*(R, L’"(Bislc)?’) if r € (3/2, 00). We further set

PO = [ZOV (1 <j<ng+4), €:=[Fg]", (5.10)

where the term [§g ]V may refer to the space L?(R, L"(Bg,")?) for any r € (3/2, o)

(Lemma . Then Theorem and (5.9) yield that

1Py, 2 < €[ FD 200 (1< G < m0), (5.11)
POy, 2 SEM (ng+1<j<no+4), [|€rar < (r)M ifr € (3/2, o),

in particular PU) € L2(R, L7 (Bg,)?) for 1 < j < ng +4, € € L*(R, L"(Bs,")?) if
r € (3/2, 00).

Let j € {1, ..., ng}. Due to the first inequality in (5.4]), the equation in (5.8), the as-
sumption fU) € L2(0, 00, LPs (Q°)%), and the definition UW)(€) = 0 for £ € (—1,1), we
see that UU) € L2(R, LPi(Bg,")?). Put UV) := [UW]V. Then UV € L?(R, LPi(Bg,")?)
by Theorem [2.90 We further get due to the properties of the Fourier transform that
N = UW] and there is a sequence (Ry) in (1,00) and a zero measure set N; C R
such that R, — oo and the limit in LP/(Bg,")? of the Bochner integral Li(Bg,")? —
f(—Rn Ro\(—1 1)(2 m)~V2 et U (€) d¢ exists for n — oo and equals U (t), for t € R\N;.
Due to the second equation in (5.4)), the term U (¢) in the preceding integral may be
replaced by (i, + Ap, ) ( Py, [f(j)(£)|B752c] ), for £ € R\(—1,1). Therefore the limit
in 1) exists for ¢ € R\V;, and the function 40 defined by this limit coincides with ¢/(7)

on R\N;. Hence 4§40 = [U(l)]v, [ﬁ(j)]/\ =U0, Ul e LZ(R, LPi (Bisgc)s )

By the definition of € (see 1} and 1D we obtain that & (u— &) (€) = Ejifl z0)(¢)
for € € R. We remark that each of the functions u™), 4, ¢ and 20 for 1 < j<mng+4
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belongs to L?(R, B) for some Banach space B; see , and the assumptions on
uM and u(?. We further recall that u = v 4 42 . Thus, taking into account the second
claim of Lemma the preceding equation for (u—&)”", the definition of P(1), ..., P(rot+4))
in , and Plancherel’s equation in L?(R), we find that for any ¢ € C§°(R), 9 €

Cg*(Bs, ),
(u—&‘i)()-ﬁdmdtz/ﬂ{{o\(f)/ i&(u—&)NE)-ddrde (5.12)

/Rw’(t)/ -

no+4 no+4
/ / Zzﬁ 19dxd§:z/ )(t) - O da dt.
Bs,*

le jl

Let n € N with n > S, and abbreviate A := A,, 5,. The preceding equation is true
in particular for any ¥ € C§°(A)3. Moreover, if G € {u — EE, Z?szl PU)}Y, the function
t — G(t)|A (t € R) belongs to L},.(R, LI(A)?), as follows from , the assumptions
on (M) and u®, and because ¢ < p; (1 < j < ng + 4). Thus, since C§°(A)? is dense in
L9 (A)3, and in view of Theorem there is a measurable set N, C R of measure zero
and a continuous function /C,, : R+ LI(A)? such that KC,,(t) = (u — &)(¢)|A for t € R\N,
and such that the equation

t n0+4
Kn(#) = Kon(to) /t $|Ads (t, to € R)

holds. Put M := U{Nn :n €N, n> Si}. Then M has measure zero, and in view of
Lemma we may conclude that

(1= 8)(0) — (u = Oto) = [

to

tn0+4
Z i PU)(s)ds for t, tg € R\M. (5.13)

Let us determine an explicit form of ¢. To this end, recall that ¢ € LQ(R Lq(aBSQ)S)
according to (5.9) so that we may define o := é. Theorem [2 m and (5.9) then yield

llollg2:r < €M, in particular o € L*(R, LY(dBg,)"). (5.14)

Using this function o, we define the function € as stated in the theorem. Since for z €
BS,, y € 0Bg,, we have |z —y[ > (1— Sg/Sl) |z|, we may deduce from Lebesgue’s theorem

that €(t) € C®(Bg," ) and dx;€(t)( faBS OV (z —y) (S y - o(t)(y)) doy (t €
R, =z € Bislc, 1 <1 < 3). Due to thls equation and because A9l = 0, we obtain that
div,@(t) = 0. We may further conclude that [02€(t)(z)| < C(S)|z|~271 ||o(t)|1 <
C(Sy) || =271 o)l (¢, = as before, a € N3, |a| < 1). Thus with (5.14), [|02€||,2r <
C((-2—|af)r+ 3)_1 M for a as before, r € (3/2, 00) in the case o = 0, and r € (1,00)
else.

Let ¥ € C°(Bs, )?. Since |z —y| > S1 — Sy > 0 for x € Bs,*, y € dBg,, the function
y = fB (V) (z — y) - I(x) da; (y € 0Bg,) is bounded. Hence the operator defined
on Lq(OBS ¥ by Vo faBS 2 Ly vy fB (x —y) - ¥(z) drdo, is linear and

2
bounded. Put B(§) := f8352 Slyo(€ stl V‘ﬁ)(m y)-¥(x) dx doy (€ € R). We have
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B ¢ L*(R) and by CorollaryB(t) = IBBSQ Sy ty-o(t)(y) fB—Slv(j‘ﬁ)(w—y) -¥(z) dz doy
for a. e. t € R. Again because |z — y| > 51 Sy >0 for z € Bs,, y € 0Bs,, we may
apply Fubini’s theorem, obtaining that B() = [5— B, c§s, (&) - ddx (£ € R), with Fg, from

, and B(t) = [ fyp,, (VO (x )(s2 y- g(t)( ))doy-ﬁ‘(x)dx (a. e.t € R). The
first of the two preced1ng~equat10ns, Corollary and the definition of & (see (5.10)))
1mply that B(t fB c &(t) - 9dx for a. e. t € R. The second may be rewritten as

= fﬁc (’3 x,t) - 19( ) dx for the same range of t. Thus we have found for such ¢ that
1
fﬁc E(t)-ddx = fﬁc &(x,t)-Y¥(x) dx. Here ¥ was arbitrarily taken from C3°(Bg, )%. But
1 1

&(t) and €(t) belong to L> (Biglc)?’ for example; see for & and the passage following
(5.14) concerning €. Since L? (Bs,“)? is separable, it follows that QE( ) = €(t) fort € R\N,

where IV is some subset of R with measure zero. Therefore with € replaced by &
holds for any t, to € R\(M U N).

Let j € {1, ..., ng}, ¢ € CL(R), ¥ € C3°(Bs, ). Using Plancherel’s equation in R, the
second claim in Lemma 1} 1) and the equation UU) = [i,[(J)]A proved above,
we find that

[ et /B PO vdrdt = [ 156 /B Z0)(€) -9 du de

:/Riga(g) /BS ) - 0 da d§ = / / 4O (1) -9 da dt.

It follows with Theorem there is a zero measure set ]\,/7] C R such that

t —
U9 () — 4V (¢0)|Bg, = LP (Bg, ) — / i PY(s)ds for t, to € R\(M; UN;), (5.15)

to

where the zero measure set N; was introduced above in our discussion of the function U0,
Now put N := U{N :1<j<mng}UMUNUN’ where M was introduced in the
passage preceding (|5 , N in our discussion above of &, and N’ C R is a zero measure set
such that each t € R\N " is a Lebesgue point of u(V), u(? and & considered as a function
from R into L?(B) for some Banach space B. This means uM)(t), u(®(t) and &(t) are
well defined for t € R\N. Further note that for t € R\N, 1 < j < ng, the limit in (5.1))
exists. Moreover with € replaced by & holds for ¢, tg € R\ N, and is valid for
the same range of ¢ and tp and for 1 < j < ng. Recalling the interval J introduced in the
theorem, we may fix some ¢y € J N (R\N). In view of (5.11]), we may define

t
GU(t) := LPi(Bs,")* — / i P (s)ds (1< j <ng+4), (5.16)

to
G4+ (1) .= 1 (40)|Bs, (€ {1, 2}), G (t) := &(t)|Bg,", for t € R.

Recall the definitions of ppyia4, for p € {1, 2} and py,+7 in the theorem. Then it is
obvious with 1-) that GU) ¢ C°(R, L*i(Bg, )3 ) (1<j<no+7).In addition from
equation 1.} valid with & replaced by & as shown above and Lemma [2.5( we get
that (u — € )(t) = Zn°+7 GU)(t) for t € R\N, and by (5 we obtain that G(J)( t) =

U0 (#) — 849 (49)| Bg,© for the same range of t. So we ﬁnally arrive at .
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It remains to establish . To this end, let R € (S1,00) and put A := Apgs,. Let j €
{1, ..., ng}. Since GU) ¢ CO(R, ij(B—Slc)?, and ¢ < pj, the function ¢ — GU)(¢ HIA (t e
R) belongs to C°(R, Lq(ﬁ)?’). In view of the function ¢ — PU)(¢)|A (¢t € R) is in
L} (R, LI(A)?). Let ¥ € C°(A)?, and put

Hy(t) := /~G<J'>(t) -0 dx, hy(t) := —i/gP(j)(t) -0 dx for t€R.

Then by ((5.16) -, Theorem |2 . 5|and standard results of analysis on R, we have Hy € C°(R)N
VVI})CI( ), hy € L},.(R), and H), = hy. Fix some function {; € C*([0,1]) with (o(0) =
0, ¢o(1) = 1. Let t € R, and put ((s) := (o(s —t+ 1) for s € [t — 1, t]. Then ¢, Hy
belongs to CO[t—1, thNWh((t—1, t)), and ({ Hy)' = ¢ ho+ G Hy € LY((t-1, t))
Hy(t j; (Gt ho + ¢ Hy)(s) ds. This is true for any ¥ € C§° (A)3. Therefore GU)(t)|A =

Lq(A) ft_l( i P9 + ¢ GU))(s)|Ads by Theorem and the definition of Hy and
hg. Let k € {1, ..., no} and Z =0 or Z = {k}. Then it follows that

no+4 4 . t no+4 ' no+4 ' _
> a0id= [ [mia Y PP+g (Y 60— 1216W)]6)|Ads
j=1,j¢2 =1 j=1,j¢2 j=1

For p € {1, 2, 3}, the function G("0+4+1) is constant. Since ftt,l ¢/ds = 1, and because
equation (5.2)) is already proved, we arrive at the equation

no+7 n0+4 _
> GY®)A= / i PY 4 ¢ (u—e€—1[21GP)](s)|Ads. (5.17)

j=1,j¢Z J=1 J%Z

But ¢ < pj for 1 < j < ng +4, so |[P9(s)|All, < C(R)||PY)(s)|A], < C(R) PO (s)]p,
for such j and for s € (t — 1, t), hence with (5.11]),

no+4 no+4 no

/t Y WPl <R Y 1P lar <€ 3 15Dy ).

J=1,j¢Z j=Lj¢Z j=1,j¢Z

Similarly the inequality ftt_l ||u(s)|g\|qu < C(R) 25:1 ||U(j)Hq(()j)72;oo < C(R) M holds

because ¢ < q(] (7 € {1, 2}). Furthermore, since [|€||; 2.00 < €M for r € (3/2, co) by our

results on & , we get ftt_l H(’E(s)]ZquS < C(R) [|€]|max{2, q},2:00 < €. Therefore (5.17)
implies that

no+7 ) _ no ) t -
| Y GO, <e( Y 18z + ) +12] [ IGP(s)IAl, ds.
j=1,j¢Z j=1,i¢72 =t

But G*)(s) = U®)(s) — 4P (t9)|Bs,” for s € R\N according to (5.2). Thus inequality
(5.3) follows from the preceding estimate. This completes the proof of Theorem O

In the following corollary, we drop the assumption Uy = 0 in (3.9)) imposed in the preceding
theorem.

Corollary 5.1 Let ng €N, pi, ..., pn, € (1,00), fU) e L2(0 oo, LPi(Q°)3 ) for1<j <
no. Let q1 € (1,00) be such that

IVaHO OIS x (0,2)llgy 22 < Clar) [Ullgy for U € L (&2, (5.18)
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with 7—[ ) defined in Lemma (This condition is satisfied if 1 € (1,2]; see The-
orem ) Let Uy € qu(R?’), g0 € (1,00), u € L2(0,00, L®(Q)3) with u(t) €
I/Vllo’cl(ﬁc)3, divyu(t) = 0 for t € (0,00), and Vyu € L*(0,o00, qu(ﬁc)g). Suppose

that u verifies with E = Q, Ty = oo and [ = Z?il fU. Let ¢ € (1,00) with
g < min({go, 1} U{p; : 1 < j < no}), and put ppyyj == q1 for j € {1,2,5,7,9},
Pro+j = qo for j € {4,6}, and ppy+3 = ¢, Pno+s := max{2, q}. Then there is a zero mea-
sure set N C R, a number tg € (—=1,0\N and functions o € L*(R, L%(0Bs,)?), Gl ¢
CO([0,00), LPi(Bg,“)?) (1 < j < ng +9) with the properties to follow.

The limit in defining the function U0 egists for anyt € R\N, 1 < j < ng. Introduce
the function € as in Theorem[5.1 Then

no+9
(w=e) 1) = G9), GW(t)=uM(t) - 4P (k) Bs,* (5.19)
j=1

fort € (0,00)\N,1 < k < ng. Moreover €(t) € C®(Bg,")* and div,&(t) = 0 for t € R.
Let r € (3/2, 00) and s € (1,00). Then

1€]]r.2;

() (lullgo, 2100 + [[Vatullgr 2:00 + [Uollgr)-

In addition, if R € (S1,0), k€ {1, ..., No}, Z =0 or Z = {k}, then for any t € [0, 00),

no+9
Z Gt O)[Ars llq < €(R) (HUqu,?;oo + [IVaullgr.2:00 + 10ollg; (5.20)
j=1 J%EZ
+ Z I/ J)Hpg,? 00 2] ||( (k)(to))MR’Sl x (-1, t)”Ll(t*I,t,L‘I(AR 51)3))'
J=13¢Z '

Proof: Abbreviate H := H(O)(U;). By Lemma we have |H(t)]lq, < C(q1) ||Uollq, and
H(t) € C*(R¥) for t € (0,00), H € C(R3 x (0,00))* and div,H = 0, dH — A,H = 0.
The same reference yields that # is a continuous mapping from [0, 0o0) into L9 (R3)?, where
#H(0) = Up by the definition of H above. Fix a function 79 € C*°(R) with ~[(—o00,1] =
1, 70[[2,00) = 0, 0 < 4 < 1. Then define H(z,t) := y(t) H(z,t) for z € R?, t €
(0, 00). The properties of H listed above immediately imply that || (¢ )||q,1 < Cl(q) ||U0Hq1
and H(t) € C2(R3)3 for t € (0,00), H € C(R? x (0,00))3, div,H = 0 and H €
C°([0,00), L9(R?)?) with H(0) = Up. By our assumptions on ¢ we get || VoH]|g 2:00 <
IV HIR? % (0,2)]|g1.2:2 < C(1) |Uoll gy » in particular V, H € L2( 0,00, L% (R?)?). Since H
vanishes on (2,00), it follows from the estimate ||#()|lq, < C(q1) |Uollg, (t € (0,00)) that
also H € LQ(O,oo, L9 (R3)?) and [Hlg1.2:00 < C(q1) |[Uollg, - Define the function f(ro+1)
by setting fM0+D(¢) = —f(t) H(t) — 70(t) O21H(£)|Q° (¢ € (0,00) ). Recalling that
Pno+1 = @1 by the definition of p, 41 in the corollary, and using the preceding estimate
of || VoHllgy 2500 and || Hllqy 2500, we obtain || £ ]y, . 200 < Clgr, 1loo) [[Uollgs - Sinee

OH — AgH =0, we further get O;H — AyH + 7 0z1H(t) = — f(™0+D) and therefore
/ / )+ o(t) [VoH(E) - VI + 70z H(E) -9+ frotD(). 19]) dz dt
A

a>/%<a>-ﬁda:=o for a € (0,5¢), ¢ € G ([0,00)), ¥ € G55 ().
a° ’
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Since H € CO( [0,00), L% (R3)3 ), the preceding equation remains valid for a« = 0. Recalling
that H(0) = Uy, we thus see that equation 1' holds with #H in the role of u and with
E=Q, Ty=oc and f = —fnotl),

Now put w := u — H. Then w(t) € VVllocl(Q )% (¢t €(0,00)), Vow € L*(0, 00, qu(ﬁc)?’)
and divyw = 0. We recall that 7—[ € L*(0,00, L7 (R*)?) and u € L*(0, 00, qu(ﬁc)?’),
and we observe that equation (3.9)) is valid with w and f replaced by w and ZnOH (),
respectively, and with £ = €, T(] = 00, Up = 0. Thus all assumptions of Theorem -
are satisfied if the numbers ny, q(()l), q(()2) and the functions u, u®), u® are replaced by
no + 1, qo, 1, w, v and —ﬁ@c x (0,00), respectively, and pp,+1 and ot are cho-
sen as above, and if J = (—1,0]. This theorem then yields existence of a zero measure
set N C R, an element ty € (—1,0]\N and functions o € L*(R, L(dBg,)%), GU) €
C°(]0,00), LPi (Bg,")? ) (1 < j < ng+ 8) such that the statements of this theorem hold

with ng, q(() ), q(()Z), u, uV, u(? replaced as specified above, and with J = (-1, O].

Take r € (3/2, 00), s € (1,00). With the function & defined in Theorem [5.1} we have
€(t) € C*(Bs,")* (t € R), divy€ = 0, and ||€[lr2x < €(r)M, | (s) M,
where 9 is an abbreviation for ||u|g.2:00 + [|H]2° x (0, 00 thgoo + HV ( )thgpo
But the estimates of H given above yield M < € (ullg.200 + |Vetillg.200 + [Uolla);
so we obtain the upper bounds of ||€||,2.r and ||[VE|s2r claimed in the corollary. In
view of the replacements listed above, equation is valid with w in the role of v and

with the upper bound ng + 8 instead of ng + 7 in the sum on the right-hand side. If
R e (S1,00), ke {l, .., ng}, K =0 or K ={k}, inequality (5.3 takes the form

no+8 no

| > V®Ars |, <ec(M+ 3 15Dl 200 (5.21)

J=1,5¢Z j=1,j¢Z

+|Z’ H(ﬂ(k) *u(k)(tO)MAR,& X (t -1, t)HLl(t—l,t, Li(Agr 51)3>) for t €R.

Put GU) .= GUW|Bg,“ x [0,00) (1 < j < ng +8), G019 .= H|Bg,“ x [0,00). Again
by the properties of H derived above, and by the definition of p,,4+9 in the corollary,
we see that G079 € C([0, 00), LPro+9(Bg,)%) and |yg(”0+9>(t)||pn0+g < €|Uollg (t €
[0,00) ). Equation follows from the modified version of described above and the
definition of w and G079, We further recall that || f(0+1) [png +1,2:00 and [|G(no+9) () lppyo
for t € (0,00) are bounded by € ||Up||q,, and we note that because ¢ < ¢, the inequality
1GTotN (1) AR, [l4 < C(R) |G (t)| AR, ||¢, holds for R € (Sy,00), t € (0,00). Due to
these relations and the estimate of 9t given above, inequality becomes an immediate
consequence of . O

The ensuing corollary introduces a representation formula for a velocity u given as in the
preceding corollary.

Corollary 5.2 Consider the situation in C’omllary with 6, g(j), pj (1<j<ny+9)
introduced as in that reference. Put v(t) := u(t) — (’E(t) ( ). By , we may
suppose without loss of generality that v(t) = Zn°+9 I (t) for t € (0 00). As in Theorem
0

put n(50) () == 0_1 y fory € 0Bg,. Then fort € (0,00), there is a zero measure set
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Ny C BROC such that
u(z,t) = E(x,t) (5.22)

RO (f) (2, 1) + 37 (Uo[Bs, ) (=, 1) ZameBsw(nl‘S@ v)(z,1)
=1

- /63 (V‘J‘() (.’E - y) (n(So)(y) ’ U(yv t) ) doy =+ ﬁRo,SmsDo,BsoyTo (U)(x, t)
So
t
—/ & Ry, 50,00 (T, Y5 1) - Un(y) dy —/ / & Ry, So,00 (T, Y5t — 8) - f(y, s) dy ds
ARy, ARy,

for & € Br,"\Ny, with Ty = oo, f = Znolf )|Bs, x (0,00), where &Ry 500, was in-
troduced in Theorem and RRO7SO7SDO7BS(J:TO( v) was defined in . The function N
was introduced following Theorem [3.1,and the parameters Ry, So, R1 were fized at the
beginning of the present section.

Proof We are going to apply Theorem 3.6l So let us check its assumptions using Corollary
Since € € L*(R, L"(Bg, )? ) for r € (3/2, 00) by Corollary |5.1} and because u €
L2(0 00, L®(Q°)3), we get v|Ag,,s, x (0,00) € L2( 0,00, LMM2:90}(Ag ¢ )?). In addition
v(t) € I/V;CI(BS1 )® (t € (0,00)), divyo = 0 and Vv € L2(0, 00, L‘h(Biglc)g), due to
analogous propertles of € and w. Further recall that v(t) = Z?g{g GUY(t) (t > 0). Define
= faB )52 y - o(y,t)doy, for x € Bs, , t € R, with ¢ introduced in
Corollary u and appearing in the definition of & (Theorem , and Sy fixed at the
beginning of the present section. By Lebesgue’s theorem and because Sy < S, we have
Z(t) € C®(Bs,") and V.Z(t)|Bs, = €(t) (t € R). It follows that fﬁc Ozfv(t) - ddr =
P 1
fﬁc Oz u(t) - 9 dx for ¥ € C3°(Bg,), t € (0,00), o € {0, 1}, 1 <1 < 3. Recall that u
1 K

satisfies equation |D with £ = Q, Ty = oo and f = Z;Lil O, Atgis point we may
conclude that || holds with E = Bg,, Ty = co and f = 377%, f9|Bg,“ x (0,00), and
with u replaced by v. We thus see that all assumptions in Theorem [3.6|are satisfied if Ty, E
and u are chosen in this way in this theorem, and if mg, p, qo, 0, GW" (1 <1< my), Uy
are replaced by ng+9, q1, min{qo, 2}, pj, G9|Bs,” x [0,00) (1 < j < ng+9) and Up|Bs, ",
respectively. Thus equation (5.22]) follows from (3.10)). O

Now we are in a position to derive decay estimates of .

Theorem 5.2 Consider the same situation as in Corollary[5.1. Suppose in addition that
u|Ap, s, % (0,00) € L>®(0,00, L2 (AR, s,)*) for some g € (1,00). Recall and the number
to € (—1,0)\N and the zero measure set N C R introduced in Corollary |5.] l and the
functions 11(3) (1 <j<mng) from (5.1). Putq:= mln({qo, q, tU{p; 1 1< < n0+1})
Then there is a zero measure set N C R with N C N, and for any t € (0, oo)\N a zero
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measure set Ny C BROC such that

02 [u— R (3 19 B5" x (0,00)) — 3 (Vo[ B) ] (0, (5.23)
j=1

< e ((lalw@)) "2 4 o200 (Jullgy oo + [ Votllg 200

no
+[Uollg: + lulARry,s0 % (0,00)llgs,00500 + Z ”f(])lBSoc x (0, 00)|[p;,2:0

no
21 3 DB, % (0, 8)lpy2e +12] sup (|4 (s5)[ Ar 5, )
=1 se(—1,t\N
for t € (0,00)\N, z € BiROC\Nt, a € N} with |o| <1, and Z =0 or Z = {k} for some
ke{l, ..,no}. If [ u( n do, = 0 fort € (0, oo) the term |z|~271l in 5.23) may
be dropped

We remark that in the case Z = () (hence |Z| = 0), the term > 7%, 1f9Bsy” % (0,8)]|p; 2
disappears on the rlght hand s1de of - In fact in this case this term is bounded
by Z] 1 j¢z 179 Bs,” x (0, 00)||p;,2;00 and therefore may be taken into account by an
additional factor 2 entering into the constant €.

Proof of Theorem [5.2] u We use equation (5.22)). So, as in Corollary -, we deﬁne the
function v := u — &, and suppose without loss of generahty that v(t) = Z"MQ G (t) for

€ (0,00), where the functions G\ e C°([0,00), Lpﬂ'(Biglc)?’) (1 <75 <mny+9) were
introduced in Corollary [5.1] as were the exponents py, ..., ppo4+9 and g. For brevity, put
B = Ap,,s, x (0,00), M := ||uflgy,2:00 + [|Vatllgr,200 + [IUollg,- Since S1 < So, ¢ < Dj
and GU) ¢ C°( [0, 00), ij(BiglC)?’) (1 < j < np+9), we may conclude that v|B €
C’O( [0,00), LY(AR,.s,)> ) By the choice of ¢, we have ¢ < gp and ¢ < ¢1, so [|u|B|[4,2:00 <

C(R1) ||u|Blg0,2:00 < C(R1)M, and similarly ||Vau[B|lg200 < C(R1)IM. Moreover we

know from Corollary that [|€]|max{2,q),2r < €M and [[Vi €| 2r < €M, so we may
conclude by the definition of v that

[0[Bllg,2:00 < [|u|B

g.200 T [|[€Blg2m < C(Ro) (M + [|€[B|max(q,2}, 2m) < TM,
and similarly ||V,v|B]4,2:00 < €. Together we have

[u|Blg,2500 + [[Vau|Blg,200 + [[v]Blg2i00 + | Vav|B g 2100 < TM. (5.24)
By Lemma and the definition of the norm of L> (0,00, L%2(Ag, s,)?), and because

N C R has measure zero, we may choose a set N C R also of measure zero such that

N C N, RO(f)(¢t) € VVZIO’CI(RE")?’ for t € (0,00)\N, with f defined as in Corollary and
lu(8)| ARy 5 llax < 2[ulBlgao00 for t € (0,00)\N. (5.25)

Let ¢t € (0,00)\N, z € Bg,"\N; and a € N3 with |a| < 1, where N; was introduced in
Corollary We are going to estimate the terms on the right-hand side of ([5.22]). Lemma
with A = Bg,, Ty = oo yields that

102025 P50) (%) v) (, 1) (5.26)
—(7/2+|xl])/2
< € (|[0|Bllg 200 + [ Vov|Bllg2i00) (|2]w(x) )" T2HD2 (1 <1< 3).
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Since Uy € L% (ﬁc)?’, we get with (3.6) and Corollary that

le% —(34+|a]) /2
o2 ( /A © R0 (@ 1) - Uo(y) dy )| < €U0 g, (Jal () )"0 (5.27)
Rlsz

Moreover, with (3.7)) and Corollary
no

t
9z < / / B Ro,Soipo (T, 5,1 —5) - > fO(y,5) dy ds>( (5.28)
0 ARIVSO

j=1

no N —c i atlal o
= ¢ Zj:1 ”f(])’BSO X (Ovt)Hpj,Z;t(‘x’V(;(})) (5/2+ad)/ .

In addition we may conclude by Corollarywith Q, u replaced by Bg, and v, respectively,
and with Ty = oo that

|8§ﬁRo,So,<ﬂ07BSO,OO(v)($’t)| (5.29)
—(5/24+|al)/2
< € (0Blg2:00 + | Vav|Bllg200 + 100 Ay 50 llg ) (2] w() )~ O/2HD/2,

We turn to the main difficulty of this proof, which consists in estimating the term 2 :=
o0 (€(x,t)— faBS (V) (2 —y) (n5)(y)-v(y,t)) doy ). Our estimate is based on the split-
0
ting A = Ay + Az + 02 €E(x, t), where Ay := 9% ( — faBsO (V) (z —y) [So_l y-u(y,t)] doy),
and Ay = 8§(faBS (VN)(z — ) [Saly - €(y,t) | doy ). We cannot directly evaluate
0

|0S€E(z,t)| because we do not have a bound for ||o(t)||4, where ¢ was introduced in Corol-
lary and appears in the definition of € (Theorem . In order to handle this diffi-

culty, we define Z(z,s) := faBS2 N(z —2)S;'Z - 0(Z,8)doz for z € B, , s € R, as in
the proof of Corollary Recalling what is already stated in that proof, we note that
Z(s) € C*°(Bg,") and V,Z(s)|Bs,” = &(s) (s € R). Since AM = 0, we further have
A, Z = 0. Returning to the point x and the time ¢ fixed above, we take S € [2|z|, co) and
put n(5%)(y) := §~1y for y € IBg, nl550)(y) := — 0_1 y for y € OBg,, so that n(550) is
the outward unit normal to Agg,. Using a standard representation formula for harmonic
functions, we obtain

Z(z,t) = /aA [z — ) n S50 (y) - VyZ(y,t) + (V) (2 — y) - 50 () Z(y,t) | doy,

for z € Ag sy, in particular for z € Ay, g,. But \352(y,t)| < C(Sa, Ro) ||oll1 [y|~*~1#I for
y € By, because Sy < Ry < |z|. Moreover \(@’Bm)(z—yﬂ < Clz—y| 1Bl < C(|z]) |y| 17
for z € Ay 4,50, Y € BZM and for 8 as before. Therefore, by letting S tend to infinity in

the preceding equation for Z(z,t) and recalling the definition of n(%%) we obtain
Z(z,t) =~ /aB (N(z =) Sy VyZ(y,t) + (VM) (2 —y) - S5 ' y Z(y, 1) ) doy
So

for z € Ay 4|, 5,- By taking the gradient of both sides of the preceding equation, choosing
z = x, and using that V,Z|Bg, x R = &, we arrive at the equation

E(x,t) = —/aB (V) (z—y) (S 'y Ey,t)) + Vo (VM) (z —y) - Sy y) Z(y,t)] doy.
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Putting 23 := — [faB ((V)(z —y) - Syt y) Z(y,t) doy | with « fixed above, and
recalling that 2 = Ay + ng + 0% €(z,t), we conclude that 2 = ; + 23. But according to
Lemmawith A replaced by Bg,, the estimate || < € |lu(t)|Ar, s, llg |22 holds.
In addition, if [y, u(s) - n(Y do, = 0 for s € (0, 00), we have faBso u(y, s) - ly| "ty doy, =0
by the Divergence theorem and because u(s)|(2s, € W4(Qg,)? and divyu(s) =0 (s €
(0,00) ). Therefore under the condition [y, u(s) - n® do, = 0 for s € (0,00), Lemma
with A replaced by Bg, implies that the preceding estimate of |2(;] is valid with the
exponent —2 — || replaced by —3 — |a|. Therefore, putting v := 3 if the preceding zero
flux condition is true, and v := 2 else, we get

[21] < € Jlu(t)| ARy, ollgs 217771, (5.30)

In order to handle the term 23, we put 7 := |Ag, s,|~ fAR s t)dy. Since = € B,
we find that fE)BsO IV ((VM)(z —y)- Syt y) doy = sto agv ( (AN)(z —y) ) dy = 0,
so we may conclude that Az = — faBs IV (VM) (z—y) Syt y) (Z(y,t)—7) doy. Again
since € Bp, , hence |z —y| > (1 — So/Rp) |x| for y € 0Bg,, we arrive at the inequality
13| < C(Ro, So) |=|~3~121||Z(t) =7]|0Bs, ||1. By a trace theorem and Poincaré’s inequality,

12(t) = 710Bsyllr < C(B1,5) [|2(t) — 7| AR50 (B1,50) [V Z(t)| ARy 50 [l1- But
Z(s)|Bs, = €(s) =u(s) —v(s) (s € R), so || Z(t) —7|0Bs,||1 is bounded by

C (R, 50) [[€()| ARy 50 llq < C(Ra,S0) ([[0(0)| ARy 50 llg + [[u(t)[ ARy s5]la0)-

As a consequence, || < C(So, Ru, Ro) ([0(t)| Ary sy llg + u(8)| A, 50 ) [ ] #~1°]. This
estimate, the equation 20 = %04 + %3 mentioned above, , and the assumption
t € (0,00)\N imply || < C(||v(t)|ARr,,50 g+ [|2B]lg2,00:00) |2]| 7771, Now we combine the
representation formula with the preceding estimate, the inequalities — ,
and , and the definition of 2. It follows that the left-hand side of is
bounded by

no
< (Sm + Z Hf(J)’BLC% X (07t)Hpj,2;t + ”“|%Hq2700;oo + ||U(t)’AR17SOHQ) (5.31)
=1

[ ( |$‘ I/(IL‘) )—(5/2+|a|)/2 + |x|—w—|a\ ]

for a. e. x € Bp, . It remains to estimate ||v(t)|Ag, s, |4 Since t ¢ N, hence t ¢ N, the
equations ([5.19)) hold. These equations, the relation Sy > S7 and inequality (5.20)) yield

1f Dl 200 + 12] sup 94D ()| Ay g )-

re(—1,t\N

H ( )|AR1 So”q < Q: m+z —1,j¢z
In view of the upper bound of the left-hand side of (5.23)) given in (5.31)), the preceding
inequality completes the proof of (5.23). Note that if v = 3 in (5.30]), we have |z|~7~1ol <
¢ ( |x| v(x) )_5/4_‘04/2, so the term |z|~7~1*l may be dropped in 1) and thus in |i
as well. 0

This leaves us to consider the case Ty < co. The basic idea consists, of course, to extend a
solution u of on (0,7Tp) to a solution of a similar equation on (0, 00). To this end, we
fix a number T € (0, Tp), cut off u smoothly between 7" and Ty, and consider this truncated
version ur of u as a solution of on (0, 00) with a modified right-hand side. Theorem
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[.2may then be applied to 4y at points (z,t) with ¢ < T, yielding decay bounds of ur(z, t)
which are also bounds of u(x,t) because u|(0,T") = ur|(0,7). However, due to our use
of Fourier transforms with respect to the time variable, our estimates of up in (z,t) with
t <T are influenced by the behaviour of %z on the entire half-axis (0, c0). Therefore the
estimates in question involve constants possibly depending on negative powers of Ty — T
and thus tending to infinity when T tends to Ty. So a more detailed analysis is necessary.

The main tool in this respect is the function Yo+ considered below, which is provided by

Theoremvvlth ng replaced by ng+1 and is associated with the function f o) (x,t) :=
@i (t) u(z,t), where pp € C®(R) with ¢r|(—00,T) = 1 and ¢r|(T/4 + 31p/4, 0o0) = 0.
The problem then reduces to estimating ||+ (s)|AR, s,]l, for a. e. s € (0,T) by a
bound independent of Ty — T, for some g € (1,00). The function g((no+1) actually solves the
time-dependent Oseen system in Biszc x R, with homogeneous Dirichlet boundary
conditions and with right-hand side f (no+1) |Bs,” x R. This solution presents itself as a
composition starting with the Fourier transform with respect to time applied to the right-
hand side of the system, followed by the Oseen resolvent operator, and then by the inverse
Fourier transform. Evaluating this solution requires some effort and therefore constitutes
the largest part of the proof of the ensuing theorem.

Theorem 5.3 Suppose that Ty € (0,00). Let ng € N, p1, ..., pny, € (1,00), ) €
L?(0,Tp, LPi (2 )3 ) for 1 < j < ng. Let i € (1,00) be such that condition (5.18) is
valid. Let Uy € LT (R3), qo, q2 € (1,00), u € LQ(O,TO, qu(ﬁc)?’) ﬁLOO(O,TO, L%(Q) )3)
with u(t) € W/llo’j(ﬁc)3, divgu(t) = 0 for t € (0,Tp), and Vyu € L*(0, Ty, L‘h(ﬁc)g).
Suppose that equation holds with A =, f = Z?il fU). Then there is a zero mesure
set N C R such that

08 [u—RO (3" fO[Bs x (0.T0)) = 37 (Uo[Bs,) ) (@.0)]  (5:32)
< € ((folvi@)) 272 4 o 20 (o 20 + IVatillor 23

no PR —
+HU0HII1 + ||u”q2700§T0 + Zj:l Hf(])‘BSoC x (O7TO)HPj,2;OO)

!k’1
NES

for t € (0,Ty)\N, a. e. z € Bgr,", a€N3 with o < 1. If [ou( ()dox—O
fort € (0,Ty), the factor |z|~2~1l in may be dropped. The constant in
independent of Ty.

Proof: Fix some function ¢y € C*°(R) with tg|(—o0, 1/4] = 0, 0|[3/4, c0) =1, ¢(, > 0
and 0 < 1pp < 1. Let T € (0,Tp), and put ¢r(s) := wo( (To—s)/(TO—T)) fors e R, Ty :=
3T/4+ To/4, Ty :=T/4+ 3Tp/4. Then T < Ty < Ty < Ty, or € C®(R), 0 < pr <
1, or|(—00,T5] = 1, @r|[T1,00) = 0, ¢} < 0 and supp(¢l) C [To,Th]. All the con-
stants € appearing in the following are independent of T" and Ty. Further define f (t)
+1 _

er(t) fO(t) for t € (0,Tp), 1 < j < ng f( "ty = G ult), alt) = er(t) ut)
for t € (0,7p). The functions ?(1 o f n0+ , u are supposed to vanish on [Tp, ) We
additionally put pp,+1 := ¢2. Since supp(goT) [T5,T1] and u € L°°(0 To, L2(Q2 ),
we have in particular that f(nDH) € LZ(O,OO, LpnoH(Q )3 ) It is obvious that w €
L%(0,00, L®(Q°)?) N L>®(0,00, L2(Q°)?), @(t) € WEI(Q)?, div,a(t) = 0 for t €
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(0,00)), Vau € L?( 0,00, L% (ﬁc)g) and

=) .
1F71BS, % (0,00)|lp, 2100 < IFDBE, x (0,T0) Iy, 20m (1 < < mo), (5.33)

HHH(IO’QQOO < Hquo,Q;Tm ”quz,OO;oo < ||U”q2,<>0;To> vaﬂ”qlﬂ;oo < ”Vrfc“th?;TO-

By the definition of T(nO—H) and because @p|[T1,00) = 0, we further get that equation

is fulfilled with A =Q, Ty = o0, f = ZnOH 7V , and with @ in the place of u. Thus
we see that all assumptions of Corollary |5. and Theorem are satisfied with ng + 1, w
in the role of ng and u, respectively, and f’ (1 < j < ng+1) in that of f) (1 < j < ng).
Therefore we may apply Theorem with these replacements. This means in particular
there are zero measure sets N, N C R with N C N, and a sequence (R,) in (1,00)
with the following two properties. Firstly, the limit {((0+%) (t) := limy, 00 Ay () exists in
LPro+1(Bg,)3 for t € R\N, where

An(t) (5.34)
—@n [ € Tpr + Apugs) " (Praga (" 1MOIB") ) de
(=Rn,Rn)\(=1,1)

for n € N, ¢t € R. This integral is to be understood as a Bochner integral with values in

LpProt1(Bg, C) The operator Pp, ., is to be chosen as in Theorem |2 H, and the operators
Tpnysr and Ap, . as in Corollary l, each time with Bg," in the place of A. The second

property associated with the sequence (R,,) and the sets N and N is that inequality (5
holds with Z = {ng + 1}, with ¢ as defined in Theorem and with ng, u as Well as
fU) (1 < j < nyp) replaced as indicated above. In other words,

Noas < €B(x, ) (M) + sup UV ()| AR, sl (5.35)
re(—1t\N
for t € (0,T)\N, a. e. € Bg," and o € N3, |a| < 1, where we used the abbreviations
Nosaes =108 [T = RO (521 7V B, x (0.00) ) = 30 (U] Bs,")] (2.

M(t) = [[llgo 2500 + IVall 1,210 + [1Uollgs + [ ARy 56 > (0,00)]g5,0000
oty 20 pe moF ) e
+Zj:1 1/ |Bs, (Ovt)”pj,2;t + Zj:l 1 1Bs, x (0, OO)HP;',?;OO?

and Y(z,a) = (|z| V(x))_5/4_|a‘/2 + |z|7271el. The term |z|~271*l may be dropped if
the integral [, u(s) - n( do, vanishes for s € (0,Tp), a condition which means that
Jo0 (s)-nY do, = 0 for s € (0,00). We are going to exploit (5.35)) in the case t € (0, T)\N.
Since fO))(0,T) = FP(0,T) for 1 < j < no, we get R (f(ﬂ Bs,’ % (0, To))(:z:,t) -
m(T)(i(j)\BiSOC x (0, oo))(a:,t) for 1 <j<mg, t€(0,T), x € R3. Also f (ro+1) |(0,T) =0,

SO SR(T)( (mo+1) |B x (0,00) )(z,t) = 0 for t, z as before. Recalling that u[(0,T) =
u|(0,T), we thus get
no
Noas =105 [u =R (D~ 9B, x (0,To) ) = 37 (Uo| B, ) ] (1), (5.36)
j=1
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for t € (0,T), x € Bg,, a € N} with |a| < 1. Again since f(no+1)|(O,T) = 0, and because
of (5.33)), we find

M) < lullgo 21 + ||V w210 + [[Uollgr + [lullga 0000 (5.37)
Z Hf |BSO (0’T0)||pj72;T0

for t € (0,T). We still have to estimate the term sup,c_ig\n U0 (1)) AR, s, |14 for

t € (0,7)\N. Our starting point is the relation U0 F D) (5) — A (s $)pngs1 — 0 (n — 00)
for s € R\N, with A, (s) defined in . We recall that p,,1+1 = ¢2 by the definition of
Pno+1 further above. Therefore we may erte g2 instead of pp,+1 in the following. We put

g(r) == Py, (u(r)|Bs,") for r € [Tp, T1). Theorem yields
lg(r)llaz < €llu(r)|Bs, [lg, for r € [Tz, T1]. (5.38)

By the definition of f no+1) , by Corollary and because supp(¢l) C [T, T1], we have

Pos ( [f(n0+1 1M€)|Bs,”) = (2m)~1/2 f;:gl Olp(r) e 787 g(r) dr, with the Bochner integral be-

ing L (Bg,")*-valued. Due to Fubini’s theorem for Bochner integrals (Theorem 2.8), the
estimate at the end of Theorem the assumption v € L™ ( 0,7y, L (QC)?’ ) and 1

we get for s € R that

An(s) = (2 w)—l/

T

9

T .
p(r) / €6 (16T, + Ag) " (9(r) ) de dr, (5.39)
(—Rn,Rn)\(-1,1)

where both Bochner integrals are L% (Bi&c)‘g—valued. Let B denote the space of linear
bounded operators of the space L% (Big;:)?’ into itself. We equip B with its usual norm,
which we denote by || ||5. In the rest of this proof, all Bochner integrals with respect to
the variable A are to be understood as B-valued.

Take s € (—oo,T)\N. The constants € appearing in what follows are independent of s
and, of course, of T and Tp. For r € [Ty, T1], define T(\,7,s) := "IN AT, + Ay) "
for A € C\(—o0,0]. Referring to Theorem we see that T(-,r,s) : C\(—o00,0] — B is
holomorphic for any r € [Ty, T1]. Morever, by the same reference, for any ¥ € [0, 7), the
inequality

1T\, 7, S)HB <€) eCTIRNN T (r € [Ty, T1], A € C\{0} with |arg(\)| <) (5.40)

is valid. Set A ={ia : a € [-R,,—1]}, Aén) = {ia : a € [1,R,]} (n € N). Then,
using Theorem [2.5f -, we may rewrite (5.39)) in the form

T 2
An(s) = 2mi)~! /T2 o (r) (; /Ag,”) T(A\, 7y 8) dA)g(r) dr (neN). (5.41)

Here and in the following, all line integrals are to be oriented as is indicated implicitly by
the way we define the respective curve. Fix some angle ¥ € [0, 7/2). For n € N, define

A = (R, e i ™/2=0) 1 e [0, 7/2 - 0]}, AV = {—ae iV : a € [-Rp, 1]}, A5 =
A = femive s oo e [0, 1/2]), Ag = ALY = {e1/279) ¢ e [0, m/2 — ]}, A =
{ael” : a €1, R,]}, Aén) = {R,e'% : p € [9, m/2]}. Since T(-,r,s): C\(—00,0] — B is

holomorphic, we find

>

T\, 7, 8)dN = Z i, T\, 7, 8)dN for n €N, r € [Ty, Ty]. (5.42)
Jj=

(n) (n)
Aj A
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Define Ag = {e7% : p € [-7/2, 7/2]}, A = A(n) = {e'? : p € [-0,9]}, L(s) =
(2mi)~t T2 o (r (ng T(A\, 1, 8) d)\)g( ) dr. Then we find that >, c 5 4y fAj T\, 7rys)dN =

Eje{9710} fAj (A, 7, 8)d\ for r € [T, T1]. From 1) |D and the preceding equation,
forn € N,

T
Ap(s) = (zm')—l/ ECIEEDS / TOr.s)dN)g(r)dr + L(s).  (5.43)
T j€{3,4,10,7,8}
Ifr e [Ty, Th],wehave s < T < Ty <r,s0r—s>To—T > 0. For r € [T, T1], n € N with
R, > Ty —T, define Ag"” =AY AN = {—ae i : a € [-R,, (r—s 1y, Al =
AYQ) = {(r—s)"tel? : ¢ € [-9,9]}, AnT) ={ae’ :ac[(r—-s) R}, AS"T) =
Aé"). Again because T(-,r,s) : C\(—o00,0] — B is holomorphic, equation 1) remains
valid for n € N with R, > (T — T)~! if the sum with respect to j is extended over
Jj € {3, 11, 12, 13, 8} instead of j € {3, 4, 10, 7, 8}. In the next step, we let n tend to

infinity. To this end, we define A(4) ={—ae " : a € (~o0, —(r—s)71]}, Agg) = {ac'?
a € [(r—s)71, 00)} for r € [Ty, T1]. Inequality ((5.40)) implies that

3 / T\ 7, 5) d)\H < for re [l T, (5.44)
j€{14,12, 15}

with a constant € independent of s and r. Usually the role of the negative real s — r
appearing in the definition of ¥ is taken by a positive real, and ¢ is supposed to belong
to (m/2, m) (so that cos? < 0) instead of to (0,7/2) (so that cos? > 0), as required
here. But these two differences compensate, so standard computations as in [48, p. 30-
31] carry through in our situation as well. On the basis of , let us show that
Rn(s) = 0 (n = ), where &,(s) denotes the term

HAn(s)—(27ri)_1/le A Y / (07 ) AN )g(r) dr — £(s)

je{14,12,15}

(5.45)

q2

(n € N). In fact, for n € N and r € [Ty, T1], with the abbreviation A\(n, ¢) := R,, e ¢ (7/2=¢),
we find that

w/2—p
o Ty 8) AN = / T i X, 0) (A 0) Ty + Ay ) dip,
A" 0

SO HfAén) T\, 1, 8) dAHB <c foﬂ/%@ e(s=7) Bin cos(/2=¢) 5 due to (5.40) with 9 replaced
by /2, for example. Hence

w/2

w/2
H/ T()\,T, S) d>‘H <e¢ / e(s—r) Ry, cos(C) ¢ < ¢ / e(s—r) Ry, cos(Q) sin(C) d¢
A B 0 9

<C((r—s)Ry) ' <€((Ta—=T)R,)" (neN, re[h,T]).

Analogously we get HfA(m T(A\7ys d)\HB <c ( (T, = T)R, )71 for n, r as before. More-
over, for 7 € [Ty, T1], n € N with R,, > (To — T)~!, with A(a) := ae*? for a € [R,, c0),

H/Am fo)Tomaal, —H/ N (M) Ty + Ay ) |

< ¢ 6(5 r)a cosV *1da§(’:Rn e(s r)a cosV daﬁ(‘l(Rn(Tg—T) COSQ9)_1,
R, Ry
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where the first inequality follows from ([5.40)), and the third is a consequence of the relation

s <T < Ty <rforr e [Ty, T1]. We may proceed in the same way when the curves Agz) and

AY{’T) are replaced by A(5) and A§3 ") , respectively. The preceding estimates beginning with

that of HfA(n) T\, 8) d,)\HB combined with ([5.43)) with a sum over j € {3, 11, 12, 13, 8}
3

instead of j € {3, 4, 10, 7, 8} — replacement justified above — yield that

1 T
Bn(s) < € (Ru (To—T)) /T (1) 90 | dr (5.46)

for n € N with R,, > (Ty — T)~!, where £,(s) is an abbreviation of the term in (5.45)), as
we may recall. Here we used that ¢/, < 0. On the other hand, because of (5.38)) and the
relation u € L> (0, Tp, L2 (Q%)3 ), and since @7 (Th) =1, o7p(T1) =0,

T1 Tl
| = gl dr < €l [ o) dr = il (547)
T2 T2
Since R, — oo, it follows that the right-hand side of ( vanishes when n tends to
infinity. As a consequence £,(s) = 0 (n — c0). But s gé N so [|UMH ) (5) — Ay (s)lg —
0 (n — o0), as mentioned in the passage preceding (5 . Therefore we may conclude
that
T
yro+h) () = (27rz')1/ ol (r ) Z / T(A, 1y 8) d)\) (r)dr+ L(s). (5.48)

T2 j€{14,12,15}

(The term L(s) is defined in the passage following (5.42)).) But

Ty T
I/ OIS / SO ) glr)dr |, <€ | () o), (549

je{14,12,15}

as follows from ([5.44)) and because ¢/, < 0. Obviously, due to and since ¢/, < 0
and s —r < 0 for r € [Tg,Tﬂ we get 1L(3)|lge < Qf )Hg( )qu dr. At this point

we may deduce from (5.47] that ||11 0+ ()| 4p < €|’thI2,OO;T0' But ¢ < g2 by the
definition of ¢ taken frorn Theorem - (see ) so we finally arrive at the inequality
|4+ (5)| AR, 5,14 < ||| g2,00:17, - Recall that sisan arbltrary number from (—oo0, T)\ N.
The preceding estimate, inequality - 5.37) and equation ((5.36|) imply that inequality
- holds for ¢t € (0,T)\N, a. e. = € BRO and o € N}, |a| < 1, with a constant €
independent of T'and Tp, and without the term || 2712l if 4 satisfies the zero flux condition
stated in the theorem. Since T" was taken arbitrarily in (0,7}), the theorem is proved. O

6 Spatial decay of strong solutions to the nonlinear problem

(L.1)).

We start by specifying our assumptions on the data and the solution. We fix Sy € (0, 00)
with Q C Bg,, Tp € (0,00], and assume that Uy € L2(R3) and the function f belongs to
L*(0,Tp, LQ(QC)S) N L*(0,Ty, LY (56)3) for some ¢ € (1, 6/5). In addition we require
that one of the following three conditions is valid.

(C1) Inequality ((1.12) holds with the exponent —5/4 — |a|/2 replaced by —1 — |«|/2.
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(C2) [3eRT (f[Bs,” x (0,T) ) (&, t)| < €| /471012 () =5/4711/% (max {1, In fz]}) '
for some n € N, and |023) (Uy|Bs, ") ()| < € (|z|v(z) )_5/4_|a|/2 forz, t, v asin 1’
(C3) Inequality (1.12) holds as stated.

Note that (C3) implies (C2), and (C1) follows from (C2) — and thus also from (C3).
Assumptions on U sufficient in view of proving (C2) and (C3) may be found in [22]
Theorem 4.4]. They require that Up|Bs, € VVllocl (Bs,")? and there are numbers kg €
(0,1/2), ¢ € (0,00) such that |0*Uy(y)| < co |y|=3/27101/2=k0 () =5/4=el/2=ko for ¢
Bs,', a € N3 with |a] < 1. With respect to (C1), the weaker estimate |0*Up(y)| <
co (lylv(y) )717‘01'/27'{0 for y, a as before is enough; see [14] Theorem 1.1].

Assumptions on f with respect to (C1) are provided by [15, Theorem 3.1]. They im-
pose there are numbers py, A € (2,00), B € [0, 3/2] and a function v € L?((0,00)) N
LPo((0,00) ) such that A+min{1, B} >3, A+ B >7/2and |f(y,s)| < v(s) |y v(y)~ P
for y € Bs,', s € (0,Tp). The result in [I5, Theorem 3.1] is improved by [22, Theorem
4.3], which yields the stronger estimate of |929R(T) ( f|Bs, x (0,Tp) )(z,t)| stated in (C2)
still under the preceding conditions of f. In view of (C3), we may require that f €
L'(Bpg x (0,00) )3 for some R > 0. Then we even have |8§‘9%(T)(f|37506 x (0,00) ) (z,t)] <
¢ (|z|v(z) )73/27‘(1'/2 for z, t, o as in (|1.12); see 21, Lemma 4.2].

Concerning the function U in (|L.1]), the relations in (|1.8]) are assumed to be valid.

We fix a real number Ry > max{R;y,, Ry}, with Ry introduced in (1.8) and Ry, in
[T12).

Moreover we consider a weak solution u of (1.1]) with properties as stated at the beginning
of Section 1, with the parameters sg, rg introduced there. Without loss of generality, we
may suppose that sg > 2.

We now present the modifications we bring to the linear theory in [16]. This modified
theory will then be used (Theorem in order to improve the decay estimates in [16] of
the solution u to (1.1)) introduced above. To this end we define functions H : Q°x (0, Tp) —
R3*3 and g3, : 90 x (0,Ty) — R? by setting

Hy(t) :== 7 (w(t) we(t) + w(t) Up + Uyug(t)) (te(0,Tp), 1 <k,1<3),(6.50)
3
gb,k(y7 S) = Zl:l S()_1 Yt Hkl(yas) (S € (07T0)7 Y€ aBSoy 1 S k < 3)7

and we abbreviate g := G(U, u), where G(U, u) is defined in ([1.7]).

Lemma 6.1 Put H\)(t) := 7 ug(t) w(t), H () := 7 (w(t) U + Uy ug(t)) for t € (0,Tp)
and1 < k,1 <3, so that H = HO+H®_ Then the following relations hold true: u belongs
to L2(0,Ty, L83 )NL>(0, Ty, L3(Q°)®), HY to L2(0,Tp, L2(Q°)), and dz,mHY, fi
and gy, are in the space LQ(O,TO, L3/2(§C)). In addition H,g) S L2((),Tg, L3(Q%)) and
ame,S) € Ll(O,To, LS/Q(QC)) for 1 < k,I,m < 3. The function g, defined in @
belongs to L*(0, Ty, L'(0Bs,)?).

Proof: For t € (0,Tp), we have u(t) € L*(Q°)3 and V,u(t) € L*(Q°)?, so |lu(t)|ls <
C||Vzu(t)||2 by Theorem As a consequence u € L?( 0, Tp, LO(Q%)3 ). The assumptions
on u yield immediately that v € LOO(O, Ty, L*(Q°)?). The two preceding relations, the
assumptions U € LS(Q%)3, VU € L*(Q°)? (see ), Veu € L?(0, T, L2(§C)9) and
(u-Vy)u € LQ(O,TO, L32(Q°)3 ), and the conditions on f imply the other claims of the
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lemma. O

Lemma 6.2 Abbreviate H; := (Hyy)1<m<s for 1 <1< 3. Let ¢ € C*®°(R?) be a bounded

function with bounded first-order derivatives. Let t € (0,Tp).

Then fB—SOc 10y (Ajm(z — y,t — 8)C(y)) - Hou(y, s)|dy < oo for z € R3, s € (0,t) and

1 < j,l,m < 3. Let x € Bg, with fot ‘ fB—SOc S A(x -yt — S)C(y)g(y,s)dy|ds <

o0o. (By Lemma this assumption is true for a. e. x € R3.) Then the integral
t . .

fo ‘ fB—SOc Z?:l 8yl(A(:U —y,t—3) C(y)) - H(y,s)dy ‘ ds is finite. Put

t 3
Q¢(x,t) = —/0 / > oy (Aa —y,t—5)((y)) - Hyly, s) dy ds.
S0 =1
Then ER(T)(<9|Bisoc x (0,Tp) ) (z,t) = —0"Bs0) (¢ gy) () + Q¢ (1), with gy introduced
)
Proof: The first claim of the lemma follows from Lemma [B.4] and [6.1l1 As for the

main part of the lemma, in particular the equation at its end, its proof is based on
transforming the integral fAR ; Az —y,t —s) - C(y) g(y,s)dy by a partial integration,
»So

for z € Bg, , s € (0,t), R € (Sp,00). In fact, take such = and s. Then the term
A(z — y,t — s) as a function of y € R? belongs to C®(R3)3*3 (Lemma [3.1). More-
over gm,m = Zf’zl Oy Hy for 1 < m < 3 because divU = 0 and divyu = 0. Since
gm € L2(0,Ty, L¥2(Q%)), HY) € 12(0,Ty, LX) and HZ) € L2(0,Ty, L*}(Q°)) for
1 <i,m < 3 (Lemma , and because of Lebesgue’s theorem and the first claim in
Lemma we obtain fRS\BR Ef’:l 10y1 (N (z —y,t— ) C(y) ) Hou(y, s)| dy — 0 and also
fRS\BR |Ajm(z—y,t—5)C(Y) gm(y, s)|dy — 0 for 1 < j,m < 3 if R — oo. The same prop-
erties of H(s) and H®(s) imply there is a sequence (R,,) in [Sp, c0) with R,, — co and
faBRnﬂH(l)(y7 )2 + |H® (y, s)]3) do, < R;! for n € N. On the other hand, by we
have |[A(z —y,t—s)| < C(1) |z —y| %2 < C(r, ||) [y| /% for y € B3, It follows from the
two preceding relations that fBBRn |Ajm (z—y,t—35) ((y) Byt yi Hyu(y, 8)| doy — 0 (n — 00)
for 1 < k,1,m < 3; see the proof of [16, Lemma 3.8] for more details. Altogether we may
conclude from a partial integration on Ag, g, for n € N and from letting n tend to infinity

that fB—SOc Ajm(z —y,t — 5) C(y) gm (v, s) dy equals

3
czayz(Ajm(x—yJ—S)C(y))Hmz(yﬁ)dy—/ Ajm (2 =y, t—5) C(y) gb,m (Y. 5) doy
Bsy 1=1 9Bs,,

for 1 < j,m < 3. The equation at the end of Lemma [6.2] follows by an integration with
respect to s. O

Lemma 6.3 The inequality |0%0T55) (g,)(x,t)] < € (|| v(z) )_5/4_|a‘/2 is valid for t €
(0,Tv), = € By, a € N} with |a] < 1.

Proof: Put géj)(y,s) = (Z?:l So_lyl ngj)(y,s))lgkgs for j € {1,2}, y € 0Bg,, s €
0,7Ty), with H® H® from Lemma Take x, t,  as in the lemma. Then by Lemma
and E the term |8§‘%(T’BSO)(g,§1))($, t)| is bounded by

—5/4—|a|/2 —3/2—|al/2
[ (Jav(@)) TV UED 900, + (2| v(@)) ™22 1V HO 300, ]
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The same references yield
o - —5/4—|a|/2
10220 P50) (g8 (2, 1) < € (Ja|w(@) )T (HO |3 00, + Ve HO |l3)0m,). O

Theorem [5.2] . 5.3 assumptlon 1-) and Lemma allow to reduce a decay estimate of
u to one of R g|BSO (0,Tp) ) or alternatlvely of the function Q¢ from Lemma
with ¢ = 1. The details are given in the next two corollaries. The first replaces [16), (3.8),
(3.9)].

Corollary 6.1 Put J(x,t) := u(x,t) + R (g]BSO (0,Tp) ) (x,t) for x € Bg,", t €
(0,Tv). Then J(t) € Wy (Bsy )* (€ (0,Tv) ).

Suppose that (C3) holds. Then there is a zero measure set N C (0,Ty) such that the
inequality |05 (z,t)] < € [ (|z]v(z) )_5/4_|O‘|/2 + |g;|—2—\a|] holds for t € (0,Tp)\N, a. e.
x € Bg,’, and for a € N} with |a| < 1.

If only (C2) is assumed, the term |x|=5/*=101/2y(z)=5/4=1l/4 (max{1, In|z|})!*I", with
—5/4—|al|/2

some n € N, replaces (’1" v(x ))

The term |z| =271l may be dropped both in the case (C3) and (C2) if Jo0 u( )-n do, =0
fort € (0,Tp).

If only (C1) is satisfied, there is a zero measure set N C (0,1p) such that |03T (x,t)| <
—l1—|al/2
¢ (|z|v(z)) fort, z, a as above.

Proof: The relation J(t) € VVlloc1 @0)3 follows with Lemma By Lemma ﬂ, we
know that f — g € L*(0,Tp, L3*(Q°)3) and u € L?(0,Ty, L°(Q")%). Thus, in view of
our conditions on Uy and u, we see that the assumptions of Theorem (Th = o) or
Theorem [5.3] (Tp < co) are satisfied with no =1,p1=3/2, g=6 = 2 g2 = sp and
fO = f—g, and with 1.' in the role of . These references, in particular @b with
Z = and then yield that there is a zero measure set N C R such that

in the preceding estimate.

[0 — ¢RI (f - g|Bs,” x (0,Th) ) — 0597 (Uo[Bs, ) | (,t)]  (6.51)
< € ((Jafw(a)) T2 4 faf 21

for t € (0,Tp)\N, a. e. = € Bp,” and a € N3, |a| < 1, where the term |z|~271¢l
may be omitted if the zero flux condition stated in the corollary holds true. Since Ry >
max{Ry,, Ru} > Ryy, and because |z|~" < C(Ro)v(z)~! for x € Bf, , we see that the
estimates in Corollary follow from and from (C1), (C2) or (C3). O

The second corollary announced above will play the role of [16] (3.16), (3.17)].

Corollary 6.2 Put I (z,t) := T (x, t)— 0(Bs0) (g)(xx,t) for z € Bg,*, t € (0,Tp), with j
from Corollary . Then u(x,t) = J(m t)+Q(x,t) fort € (0,Tp) and for a. e. x € Bg,
where Q = Q¢ is to be defined as in Lemma[6.4 with ¢ = 1.

All the conclusions of Comllary remain valid if J is replaced by J.

Proof: The equation for u(x,) follows from the definition of J in Corollary 6. and from
Lemman Moreover Lemma and again Corollary imply that J ( ) e W, '(Bs, ).
The estimates of |92 (z,t)| stated in Corollary [6.1] carry over to |92 (x,t)| due Lemma
and the inequality |z|™' < C(Ro) v(z)™! for z € B, . O

We verify that [16, Theorem 3.7] remains valid in the present situation.
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Theorem 6.1 There is 01 € (1,2) such that u € LOO(O,TO, Lp(ﬁc)?’) for p € [o1,2].
Moreover |u| |U| € L=(0,Ty, L}(Q°)).

Proof: Let us show that :(" ( |Bs,” x (0,Tp)) € L>®(0,00, L"(R?)?) for a range of
exponents k£ < 2. Since by our assumptions we have u € L‘X’(O,T 0, L*® (ﬁc)?’) for some
s € [2,3), and because V,u is L?-integrable on Q° x (0,7p), we obtain with Holder’s
inequality that 1 < 2/(1 + 2/s) < 6/5 and |u| |V,u| € L2(0,Tp, L2+ (Q°)3); see
[16, (3.6)]. Moreover, by Lemma and our assumptions on U (see (1.8)) and u, we get
(u-V)U+(U-Vy)u e L*(0,Ty, L' 0(50)3) see [16, (3.2), (3.4)]. Moreover the function
T ((u- VU + (U -Vou) = (X2, 02:HZ)) 1<mes belongs to L2(0,To, L¥2(Q2°)3) by
Lemma and (u-V,)u is in the same space by assumption. Thus we may conclude that
g € L2(0, Ty, LP(Q°)3) for p € [09, 3/2], with o := max{11/10, 2/(1 + 2/s)} € (1, 6/5).
With this property of g at hand, we may reason as in [16, p. 1406, second paragraph]
to obtain that (1/0¢ —1/3)7! < 2 and R 7)( |Bs,” x (0,Tp)) € L>( 0,00, L*(R?)?) for
& (/o0 —1/3)71, 2]’

On the other hand, Corollary [6.1] u and Lemma [2.2] yield that J|B% x (0,7p) belongs to
L>(0,Ty, LY(Bg,")? ) for ¢ € (8/5, 00). Since in addltlon u e L>(0,Tp, Lo(Q%)3 ) for
some 79 > 3 by our assumptions, Corollary [6.1] allows to conclude at this point that the
first claim of the theorem is valid with oy := max{8/5, (1/0¢ —1/3)~'}. Morever by ( .
and Lemma [2.2 . we have U € L9(Q°)? for p € (2,6]. This observation and the first claim
of the theorem imply the second.

Due to the preceding results, the decay estimate from [16] (inequality (1.5))) carries over
to the present situation. This is made precise by the ensuing theorem and its proof.

Theorem 6.2 Suppose that (C1) is valid. Let R € (Ry,00). Then for x € B, t € (0,Tp)
and o € N3 with || < 1, the estimate [0%u(x,t)] < €( |z|v(z) )_1_|a|/2 holds.

Proof: The theorem holds according to [16, Theorem 4.6, 4.8]. We may use these theorems
because the reasoning in [16l, Section 4] carries through without change, except that some
references have to be modified. The role of [16, Corollary 3.5, in particular (3.8), (3.9)] is
played here by Corollary whereas [16, Corollary 3.10, in particular (3.16), (3.17)] is
replaced by Corollary A proof of [16, Theorem 3.7] adapted to the present situation is
given above (Theorem . Concerning all the other auxiliary results used in [16], Section
4], their proof remains valid without change in the situation considered in the work at
hand. This is true in particular for the technical tools stated in [I6, Theorem 2.8, 2.18,
Corollary 2.19, Lemma 2.20], as well as for some results which are used here as well,
like [16, Lemma 2.10], reappearing here as Lemma Whenever [16, Corollary 3.3] is
applied in [16, Chapter 4], only the relation g € L2(0, To, LS/5(Q°)3) is used, which may
be replaced in that context by g € LQ(O, To, Lg/z(ﬁc)3) (Lemma d

With Theorem [6.2] available, we may now use Corollary [6.2)in order to improve the decay
estimate in Theorem and thus the estimate derived in [I6]. The key result in this
respect, and the main contribution of this section, is

Theorem 6.3 Suppose that (C1) holds. Let R € (Ry,00). Then there is a set N C (0, 00)
of measure zero such that for t € (0,Ty)\N, a. e. x € B, a € N3 with |a| <1,

| 02RO (g[Bs, x (0,To) ) (w,8) | < € (|| w(w)) >+ 12,

39



Proof: Abbreviate r := R — Ry, §:= g|Bs, x (0,T0), H.y := (Hp)1<m<3|Bs, * (0,Tp)

for 1 <1 < 3. Let v € C§°(B,2) with ¢[B,.,; = 1. By Lemma and there is a

set N C (0,00) of measure zero such that f(f fﬁc |0SA(x — y,t — s) - g(y,s)|dyds < o0
0

for t € (0,T))\N, a. e. € R* and a € N} with |a] < 1, and such that R (§)(t) €
Wl’l(R3)3, 8?9%(7) (9)(z,t) = fg fﬁc OSAN(x —y,t —s)-g(y,s)dyds for t, z, a as before.
0

loc

Take t € (0,7p)\N, « € NJ with |a] < 1 and x € B% such that the two preceding
relations on integrals of 0%A(z — y,t — s) - g(y, s) (y € Bigoc, s € (O,t)) are valid. Then
PR () (2, 1) = Ay + Ap, with Ay = fg fB—SOc ON(z — y,t — s)Y(x —y) - g(y,s)dy ds
and with A defined in the same way as 201, except that the term ¢ (z — y) is replaced by
1—19(z—y). We may apply Lemmato s with ((y) := G(y) == 1—9Y(z—y) (y € R3).
On the other hand, for y € dBg,, we have |xt—y| > |z|—|y| > R—So > R— Ry = r. Hence,
because ¢ € C§°(B,/2), we get 1 —(x —y) =1 for y € 0Bs,. From these considerations
we see that Lemma [6.2] yields

n 3
Ay :/0 /BSOC_Zayz[(??A(x—yvt—S) (1=t(e—y)) ] Huly,s)dyds

=1
—070P0) (gy) (x, 1).

We split the preceding integral over BSOC x (0,t) into a sum B1 + By, with

t 3
B, ::/ / = oy [5A(x —y,t—s) (1= ¢(x—y)) ] - Hily,s) dyds,
0 JA(R+Rg)/2, 50

=1

and with B9 defined in the same way, but with the domain of integration Aryry)/2, s,
replaced by B(CR +Ro)/2" Altogether we have arrived at the splitting

09RM (G)(x,1) = Ay + By + By — 95BTF0) (g,)(w, 1), (6.52)

Let us estimate %1, B; and B, beginning with 2l;. For y € B, 5(z), we have |y| >
|z|/2 + |z|/2 — |x —y| > |z|/2 + R/2 —r/2 = |z|/2 + Ry/2, so that |y| > |z|/2 and
ly| > (R+ Ro)/2. In addition, also for y € B, jo(x), we find with Lemgﬁ that v(y)~! <
C(l+|r—y)v(x)™t < C(1+r/2)v(z)!. Therefore, in view of ([1.8), the assumption
Ry > Ry and Theorem [6.2] with (R + Ry)/2 in the role of R, we may conclude that
lg(y, s)| < C(\x|u(a:))_5/2 for y € B,5(x), s € (0,7p). But ¢(z —y) = 0 for y €
B, j5(x)¢, so we obtain 2| < € (|z] v(z) )_5/2 fg fBr/z(x) |0%A(z —y,t — s)| dy ds. Making
use of inequality with K = r/2, we see that the preceding integral is bounded by
(r) fg fBr/Q(z)(L’U —y|? 4t —5)73/2710l/2 g ds. Integrating first with respect to s and then
with respect to y, we obtain a bound for this latter integral which is independent of z, t
and Tp. Thus we may conclude that 2| < € (|z|v(z) )_5/2.

In order to evaluate B;, we recall that H = H + H®), HT(;Z) € LQ(O,TO, LQ(ﬁc))
and HSI) € LQ(O,TO, LS(QC)) (Lemma . Moreover, for y € B, 3(z), we have |y| >
(R+ Ro)/2, as observed above, 50 A (g4 Ry /2,5, N Brja(x) = 0, hence 1 —(x —y) = 1 for
Y € A(R+Ry)/2,5,- At this point, we may apply Theorem M with p =2, |8 = 1 to obtain

that |B:| < € (|2 v(z)) /712,
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In view of Lemma@7 this leaves us to consider Bs. Let y € B(CRJFRO)/2 with 1 —¢(x—y) #

0. The latter condition means that |z — y| > r/4, so by (3.4)),

/0rayla;*w—y,t—s)(1—¢<x—y>)|ds

t
< (’:/ (le—y—7(t—29) 61|2 +t— 8)727|a‘/2d5 < &(r) (|l‘ —ylv(z _y))—3/2—\a|/2
0

<¢r) (A+|z—y)vix—y))

Moreover r/4 < |z —y| < r/2, for y € R? with Vy( 1—(x— y)) # 0, hence with (3.5),

—3/2—|al/2 (1§l§3)

/t |0SA(z —y,t — s) Oy (1 —¢(z —y) )| ds < €(r) /t(r2 4t s)73/2-lal/2 g
0 0
<e(r) <er) (L+|r—yhw@—y) 2 1 <i<s).

On the other hand, from (1.8]) and Theorem with R replaced by (R + Ry)/2, we get

-2
Hoa(y.9)] < €(Jylv() " < €((1+ |y v() > for y € Bip,poyjor 5 € (0,1), 1 <
[,m < 3. In this way we arrive at the inequality

By <€ /B (L +fe—yh)vl@—y) D2 (@) 2dy. (653

c
(R+Rq)/2

In order to estimate the product v(z —y) 1 v(y) 7!, let y € R? and consider the case that

lyl =1 < (Jz| —x1)/4 and |z — y| — (z — y)1 < (|| — 21)/4. Then we may conclude
that [z] — 21 = [z] — (@ =y —wv1 < o —y[+ [yl = (@ —yh —yn < (2] —21)/2,
hence |z| — ;3 = 0. Thus in the case |z| — x; > 0, we have |y| —y1 > (|z] — z1)/4 or
|l —y| — (x —y)1 > (|x| — z1)/4, so v(y) > v(x)/4 or v(z —y) > v(x)/4. Since v(z) > 1
for any 2z € R?, we may conclude that v(zx —y) "t v(y) ™! < 4v(z)~L If [¢| — 21 = 0, the
preceding relation is obvious. We use this observation in the case |a] = 1. If a = 0, we
deduce from (6.53) that [Ba| < € fos ((1+ |z — ) vz —y)) > ((1 + |y v(y)) > dy,
whereas if |a| = 1, we refer to and to the preceding remark on v(z —y) ' v(y)~! to
obtain [Ba| < €v(z) ™! [pa(1+ ]z —y|) 2v(z—y) "1+ |y|) 2 v(y) ' dy. Therefore from
Theorem B < € (|z]v(x) )7(3+|a|)/2 (max{1, In |z|})" for some n € N. The theorem

follows from the preceding estimates of 21y, B1 and B9, Lemma and equation (6.52]).
O

Our main result now follows immediately:

Theorem 6.4 Suppose that (C3) is valid. Let R € (Rp,00). Then there is a zero mea-
sure set N C (0,Tp) such that |0%u(x,t)] < €[(\x|y(a:))_5/4_‘a|/2 + 2|72l ] for
t € (0,Tp)\N, a. e. x € B, a € Ny with |o| < 1.

If only (C2) is assumed, the term |x|=5/*=101/2y(z)=5/4=1l/* (max{1, In|z|})!*I", with

some n € N, replaces (|$| v(z) )—5/4—|a\/2

The term |z|~2~1%1 may be dropped both in the case (C3) and (C2) if Joq u(t) 0 do, =0
fort € (0,Tp). In particular inequality holds in the case (C3).

Proof: Use Corollary Theorem O

in the preceding estimate.
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