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conditions.
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Université du Littoral Côte d’Opale, UR 2597, LMPA, Laboratoire de Mathématiques
Pures et Appliquées Joseph Liouville, F-62228 Calais, France.

Abstract

We consider the incompressible time-dependent Navier-Stokes system with Oseen
term and terms arising in stability problems, in a 3D exterior domain, We do not
impose any boundary conditions. We consider L2-strong solutions, that is, the velocity
u is an L∞-function in time and Lκ-integrable in space for some κ ∈ [1, 3) and some
κ ∈ (3,∞), the spatial gradient ∇xu is L2-integrable in space and in time, and the
nonlinearity (u · ∇x)u is L2-integrable in time and L3/2-integrable in space. We show
that if the right-hand side of the equation and the initial data decay pointwise in space
sufficiently fast, then u and ∇xu also decay pointwise in space, with rates which are
higher than those that can be provided by previous theories.

AMS subject classifications. 35Q30, 76D05, 35D35, 35B40.
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1 Introduction

We consider the Navier-Stokes system with Oseen term and perturbation terms,

u′ −∆xu+ τ ∂x1u+ τ (U · ∇x)u+ τ (u · ∇)U + τ (u · ∇x)u+∇xπ = f, (1.1)

divxu = 0 in Ω
c × (0, T0),

where T0 ∈ (0,∞] and Ω
c ⊂ R3 is an exterior domain defined by Ω

c
:= R3\Ω, with Ω

an open, bounded set in R3 with connected Lipschitz boundary. The unknowns of this
problem are the functions u : Ω

c × (0, T0) 7→ R3 (velocity) and π : Ω
c × (0, T0) 7→ R

(pressure). The parameter τ ∈ (0,∞) (Reynolds number) is given, as are T0, the function
f : Ω

c × (0, T0) 7→ R3 (volume force), and the function U : Ω
c 7→ R3. If U = 0, the

preceding system reduces to the Navier-Stokes system with Oseen term, describing the
flow of a viscous incompressible fluid around a rigid body, which is represented by the set
Ω. In this model the fluid is supposed to fill all the space around that body. The Oseen
term τ ∂x1u arises because u(x, t) corresponds to the velocity above ground of the fluid
particle located at the instant t at the point x in a coordinate system in which the rigid
body is at rest. Such a choice of u is convenient on a mathematical level because the value
of u at infinity is zero and the rigid body may be described by a fixed subset of R3. The
case of nonvanishing U arises when stability of a stationary flow around a rigid body is
studied ([45], [43], [17]). In this situation, U is the velocity part of a solution (U,Π) of the
stationary Navier-Stokes system with Oseen term

−∆U + τ ∂1U + τ (U · ∇)U +∇Π = F, divU = 0 in Ω
c
. (1.2)

Our aim is to show the estimate

|∂αu(x, t)| ≤ C
(

(|x| ν(x)
)−5/4−|α|/2

for a. e. t ∈ (0, T0), a. e. x ∈ BR0

c
:= R3\BR0 , (1.3)
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and α ∈ N3
0, |α| ≤ 1, under the assumptions that |f(x, t)| and |U0(x)| decay sufficiently

fast for |x| → ∞ and the zero-flux condition∫
∂Ω
u(t) · n(Ω) dox = 0 for t ∈ (0, T0) (1.4)

holds, where n(Ω) denotes the outward unit normal to Ω. Condition (1.4) means that the
net mass flux through the boundary is zero. If this condition does not hold, we prove the
weaker inequality

|∂αu(x, t)| ≤ C
(

(|x| ν(x)
)−1/2−|α|/2

for t, x, α as in (1.3). (1.5)

The constant C in (1.3) and (1.5) is independent of t (spatial decay uniform with respect
to time). The requirement |α| ≤ 1 means we estimate the velocity u (α = 0) and its
spatial gradient ∇xu (|α| = 1). The function ν appearing on the right-hand side of (1.3)
and (1.5) is defined by ν(x) := 1 + |x| − x1 for x ∈ R3. The parameter R0 is some fixed
positive real with Ω ⊂ BR0 .

Estimates like (1.3) and (1.5) are interesting because they are often associated with phys-
ical phenomena that can be observed macroscopically. For example, the presence of the
function ν on the right-hand side of (1.3) and (1.5) is usually interpreted as a mathematical
manifestion of the wake extending downstream behind the rigid body.

We establish (1.3) and (1.5) for L2-strong solutions of (1.1). This type of solution involves
only the velocity u, whose regularity is described by the relations u ∈ L∞

(
0, T0, L

q(Ω
c
)3
)

for some q ∈ [1, 3) and some q ∈ (3,∞), ∇xu ∈ L2
(

0, T0, L
2(Ω

c
)9
)

and (u · ∇x)u ∈
L2
(

0, T0, L
3/2(Ω

c
)3
)
. Equation (1.1) is satisfied in the sense that∫ T0

0

∫
Ω
c

(
−ϕ′(t)u(x, t) · ϑ(x) + ϕ(t)

[
∇xu(x, t) · ∇ϑ(x) (1.6)

+
(
τ ∂x1u(x, t) +G(U, u)(x, t)− f(x, t)

)
· ϑ(x)

])
dx dt

−ϕ(0)

∫
Ω
c
U0(x) · ϑ(x) dx = 0 for ϕ ∈ C∞0

(
[0, T0)

)
, ϑ ∈ C∞0,σ(Ω

c
),

where

G(U, u)(x, t) := τ
[ (
u(x, t) · ∇x

)
u(x, t) +

(
U(x) · ∇x

)
u(x, t) +

(
u(x, t) · ∇)U(x)

]
(1.7)

for x ∈ Ω
c
, t ∈ (0, T0). We do not impose any boundary conditions on u. In fact, in concrete

physical situations it is not always clear what is the right choice of such conditions, and in
some cases the usual no-slip condition is not appropriate. So it should be an interesting
feature of our theory that inequalities (1.3) and (1.5) hold on the basis of regularity
assumptions on u only, irrespective of any boundary conditions.

As mentioned above, the function U appearing as a coefficient in (1.1) is the velocity part
of a solution to (1.2). However, we will not need this fact. Instead we only assume that

U ∈ L6(Ω
c
)3 ∩W 1,1

loc (Ω
c
)3, ∇U ∈ L2(Ω

c
)9, divU = 0, (1.8)

|∂αU(x)| ≤ C
(

(|x| ν(x)
)−1−|α|/2

for x ∈ BRU
c
, α ∈ N3

0 with |α| ≤ 1,

for some RU ∈ (0,∞) with Ω ⊂ BRU . Existence of a weak solution to (1.2) defined only
in terms of velocity U and satisfying the relations U ∈ L6(Ω

c
)3, ∇U ∈ L2(Ω

c
)9 is known
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to hold under Dirichlet boundary conditions for example, and, of course, under suitable
assumptions on F ([30, Theorem X.4.1]). As for inequality in (1.8), it has been shown
to be valid, irrespective of boundary conditions, for any solution U to (1.2) with the
preceding regularity properties, provided F decays sufficiently fast. We refer to [24] for a
proof in a more general situation (flow around a rigid object performing a translation and
a rotation).

Concerning f and U0, we assume f ∈ L2
(

0, T0, L
q(Ω

c
)3
)

for q = 2 and for some q ∈
(1, 6/5), and U0 ∈ L2

σ(Ω
c
). As for decay conditions imposed on f and U0, they enter

into our theory only via the spatial decay properties of two volume potentials, denoted
by R(τ)(g) and I(τ)(V ), mapping from R3 × (0,∞) into R3 and associated with functions
g ∈ L1

loc

(
[0, T ), Lq(A)3

)
and V ∈ Lq(A)3, where A may be any measurable subset of R3,

q ∈ (1,∞) and T ∈ (0,∞]. These potentials are defined by

R(τ)(g)(x, t) :=

∫ t

0

∫
R3

Λ(x− y, t− s) · g̃(y, s) dy ds
(
t ∈ (0,∞), a. e. x ∈ R3

)
, (1.9)

I(τ)(V )(x, t) :=

∫
R3

Λ(x− y, t) · Ṽ (y) dy
(
t ∈ (0,∞), x ∈ R3

)
. (1.10)

Here g̃ and Ṽ stand for the zero extension of g and V to R3× (0,∞) and R3, respectively.
The function Λ, defined in (3.3), is a fundamental solution of the time-dependent Oseen
system

u′ −∆xu+ τ ∂x1u+∇xπ = f, divxu = 0. (1.11)

We refer to Lemma 3.2 and 3.4 for more details about these definitions. We will require
there are constants Cf,U0 , Rf,U0 ∈ (0,∞) such that

|∂αx
[
R(τ)

(
f |BS0

c × (0, T0)
)

+ I(τ)(U0|BS0

c
)
]
(x, t)| ≤ Cf,U0

(
|x| ν(x)

)−5/4−|α|/2
(1.12)

for a. e. t ∈ (0,∞), a. e. x ∈ BRf,U0

c
and for α ∈ N3

0 with |α| ≤ 1, where S0 ∈ (0,∞) is

some arbitrary but fixed parameter with Ω ⊂ BS0 . Finding conditions on f and U0 such
that (1.12) holds is a problem completely separate from the rest of our theory. We will
not address this problem here. Instead, at the beginning of Section 6, we will state such
conditions as well as references in literature where (1.12) is derived from these criteria.
The function R(τ)

(
f |BS0

c × (0, T0)
)

+ I(τ)(U0|BS0

c
) satisfies the time-dependent Oseen

system (1.11) with the zero extension of f |BS0

c× (0, T0) to R3× (0,∞) as right-hand side,
and with the zero extension of U0|BS0

c
to R3 as initial data.

We will not need any smallness conditions, and we will not use any regularity results for
solutions to the Navier-Stokes system, except in the sense that existence of a solution
u as specified above is admitted. Existence results for such a function u additionally
satisfying Dirichlet boundary conditions may be found in literature. For example, in the
case U = 0, Heywood [34, Theorem 2-4, 6 and 2′], constructed a solution u such that
u ∈ L∞

(
0, T0, H

1(Ω
c
)3
)

and ∇xu ∈ L2
(

0, T0, L
2(Ω

c
)9
)
. This means in particular that u

belongs to L∞
(

0, T0, L
r(Ω

c
)3
)

for r = 6 and r = 2. We further refer to Solonnikov [47,
Theorem 10.1, Remark 10.1 with p = 2], and to Neustupa [42]. These two authors admit
a nonvanishing function U. Mild solutions to (1.1), not covered by our theorey here, were
constructed by Miyakawa [40, Theorem 5.2] and Shibata [45, Theorem 1.4]. Of course, all
these references require smallness conditions if T0 =∞.
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Comparing (1.3) with (1.8), we see that an L2-weak solution to the time-dependent Navier-
Stokes system with Oseen term exhibits a stronger spatial decay than a solution the the
stationary version of this system, at least if the zero-flux condition (1.4) is fulfilled. This
discrepancy is due to the stronger spatial decay of the fundamental solution Λ to the
evolutionary Oseen system (1.11) compared with the asymptotics of the usual fundamental
solution of the stationary Oseen system; see (3.4) in the unsteady case and [28] or [38] in
the steady one.

Concerning literature on results related to ours, the only references we know impose Dirich-
let boundary conditions, and they either require smallness assumptions, or they suppose
the zero-flux condition (1.4) while only obtaining a decay rate as in (1.5). More specifically,
Knightly [36] considers a system more general than (1.1). In particular he admits that the
velocity of the rigid body changes with time. However, several parameter are supposed
to be small, various other restrictions are imposed, and decay properties are expressed in
terms of functions different from negative powers of |x| ν(x). Mizumachi proved (1.5) for
L2-strong solutions to (1.1) satisfying homogeneous Dirichlet boundary conditions, under
the assumptions f = 0, U = 0, T =∞, initial data close to some solution of the stationary
problem (1.2), ∂juk(t) and π(t) bounded with respect to the norm of L1(∂Ω) uniformly in
t ∈ (0,∞) ([41, (2.42)]), and |u(x, t)| tending to zero for |x| → ∞ uniformly in t ∈ [T,∞),
for some T ∈ (0,∞). In [14], we derived (1.5) for the same type of solutions as considered
here, but under Dirichlet boundary conditions with data satisfying (1.4).

Let us indicate how we proceed in our proof of (1.3) and (1.5). There are two main
steps. In the first (Section 5), we consider a weak solution to the time-dependent Oseen
system (1.11). As in the case of the weak solution to (1.1) introduced above, this solution
to (1.11) involves only the velocity u. If we leave aside some technical subtleties, its
regularity may be characterized by the relations u ∈ Lγ

(
0, T0, L

q(Ω
c
)3
)

with γ = 2 and

γ = ∞, and ∇xu ∈ L2
(

0, T0, L
r(Ω

c
)9
)
, for some q, r ∈ (1,∞). The right-hand side

f , in the simplest case, is supposed to belong to L2
(

0, T0, L
p(Ω

c
)3
)

for some p also in

(1,∞). We will consider u|BS0

c× (0, T0) instead of u, with S0 introduced following (1.12).
In this way we avoid smoothness conditions on ∂Ω going beyond the assumption that Ω
is Lipschitz bounded. At first we will suppose T0 = ∞ and U0 = 0, and construct a
function E such that E(t) is the gradient of a harmonic function on an open set slightly
larger that BS0

c
, and such that u − E is a continuous mapping from [0,∞) into certain

Lp-spaces on this larger set (Theorem 5.1). Due to the conditions T0 = ∞ and U0 = 0,
this result may be established by reducing it – via a Fourier transform with respect to
the time variable – to Oseen resolvent estimates. After that, we will show that u − E
is continuous also in the case that T0 = ∞ and U0 does not vanish (Corollary 5.1).
Here the principal auxiliary result is an L2 − Lq-estimate of the spatial gradient of the
solution to the Cauchy problem for the heat equation in R3 × (0,∞) (Theorem 4.1). The
continuity of u − E on [0,∞) will allow us to apply [20, Theorem 5.2], which yields a
decay estimate of the function u−R(τ)

(
f |BS0

c × (0, T0)
)
− I(τ)(U0|BS0

c
) and its spatial

gradient, incidentally without imposing any pointwise decay conditions of f or U0. The
decay bound obtained for this function is the same as the one in (1.3) if u fulfills the zero
flux condition (1.4); otherwise we will get the bound in (1.5) (Theorem 5.2). This result
is then carried over from the case T0 = ∞ to T0 < ∞ (Theorem 5.3). Unfortunately
we could not find a straightforward way to achieve this transition. The difficulty is that
in this context we will have to estimate a solution to the time-dependent Oseen system
(1.11) with homogeneous Dirichlet boundary conditions, with time varying in the whole
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real axis, and with a right-hand side determined by ζ ′(t)u(t) for t ∈ (0, T0) and zero for
t ≥ T0, under the assumptions T0 < ∞, ζ ∈ C∞(R), ζ|(−∞, T1] = 1, ζ|[T2,∞) = 0 and
|ζ ′|∞ ≤ C (T2−T1)−1. The numbers T1, T2 are arbitrarily taken from (0, T0) with T1 < T2,
and are considered as fixed in this estimate. A special feature of the problem is that the
solution in question presents itself as a composition starting with the Fourier transform
with respect to time applied to the right-hand side of the system, followed by the Oseen
resolvent operator and then by the inverse Fourier transform; see (5.37).

In the second part of our proof (Section 6), we will consider (1.1) as an Oseen system
(1.11) with right-hand side f − G(U, u), where G(U, u), defined in (1.7), contains the
nonlinearity. We will evaluate ∂αx

[
u−R(τ)

(
f −G(U, u)|BS0

c × (0, T0)
)
− I(τ)(U0|BS0

c
)
]

by applying the results of Section 5, and ∂αx
[
R(τ)

(
f |BS0

c × (0, T0)
)

+ I(τ)(U0|BS0

c
)
]

by
using (1.12), where α ∈ N3

0, |α| ≤ 1. In this way we get a decay bound for the function
∂αx
[
u + R(τ)

(
G(U, u)|BS0

c × (0, T0)
) ]

(Corollary 6.1). This will leave us to consider the

function ∂αxR
(τ)
(
G(U, u)|BS0

c× (0, T0)
)
, which, by [14, Section 4], is known to admit the

bound C
(
|x| ν(x)

)−1/2−|α|/2
for large values of |x| and any t ∈ (0, T0), as required in the

proof of (1.5), but only if u satisfies Dirichlet boundary conditions. We will discuss how to
obtain this bound without such conditions (Theorem 6.2). After that we will improve this

result, estimating the preceding function by C
(
|x| ν(x)

)−5/4−|α|/2
(Theorem 6.3). Since

∂αx
[
u + R(τ)

(
G(U, u)|BS0

c × (0, T0)
) ]

admits the same bound if u fulfills the zero flux
condition (1.4) (Corollary 6.1), the proof of (1.3) is then complete (Theorem 6.4).

Altogether the work at hand improves [14] in three main respects: Here any bound-
ary conditions are admitted, and the functions ∂αxR

(τ)
(
G(U, u)|BS0

c × (0, T0)
)

as well

as ∂αx
[
u − R(τ)

(
f − G(U, u)|BS0

c × (0, T0)
)
− I(τ)(U0|BS0

c
)
]

admit the decay bound

C
(
|x| ν(x)

)−5/4−|α|/2
instead of C

(
|x| ν(x)

)−1−|α|/2
. In order to arrive at (1.3) instead

of (1.5), we additionally need that the function ∂αx
[
R(τ)(f) + I(τ)(U0)

]
is majorized

as stated in (1.12), that is, by the the right-hand side C
(
|x| ν(x)

)−5/4−|α|/2
, whereas

C
(
|x| ν(x)

)−1−|α|/2
is sufficient in [14]. It is natural this strengthening of (1.12) requires

decay conditions on f and U0 which are stronger than those in [14]. But these stronger
conditions are not needed anywhere else in our proofs.

If the term
(
|x| ν(x)

)−5/4−|α|/2
in (1.12) were replaced by |x|−σ1−|α|/2 ν(x)−σ2−|α|/2 for

some σ1, σ2 ∈ [1, 5/4], our theory would yield (1.3) with the same replacement. For the

proof of (1.5), a factor
(
|x| ν(x)

)−1−|α|/2
in (1.12) is sufficient.

It might be suggested to simplify the proof of (1.3) and (1.5) by replacing the weak
solution u of (1.1) introduced at the beginning of this section by a weak solution ũ of (1.1)
in R3 × (0, T0) with modified right-hand side, where ũ is such that u(t)|Bc

S = ũ|Bc
S for

some S ∈ (0,∞) suitable large. However, we could not find a way to achieve this without
generating distributions with respect to the time variable on the right-hand side of the
system. And once such distributions are present, we could not prove decay estimates of ũ.

Let us mention some references more distantly related to the work at hand. Takahashi [48]
deals with (1.1) in the case U = 0, Ω = ∅. In [2], [3], solutions to (1.1) with U = 0 and to
(1.11) are estimated in weighted Lp-norms, with the weights adapted to the wake in the
flow field downstream to the rigid body. Reference [18] by the present author combines
decay estimates in time and in space, as a continuation of [13] (Oseen system (1.11)) and
[14] (stability problem (1.1)), with the same assumptions, methods and rates of spatial
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decay as in these latter references. Various technical aspects of the theory in [13], [14]
and [18] are dealt with in predecessor papers [6] – [12]. Questions of existence, regularity
and stability related to (1.1) and (1.11) are addressed in [26], [27], [28], [31] [33], [34], [37],
[39], [40], [45], [47].

2 Notation. Some auxiliary results.

The symbol | | denotes the Euclidean norm of Rn for any n ∈ N, the length α1 +α2 +α3 of
a multi-index α ∈ N3

0, as well as the Borel measure of measurable subsets of R3. When we
write |A| for some A ∈ R3×3, we mean the Euclidean norm of A considered as an element
of R9. For R ∈ (0,∞), x ∈ R3, put BR(x) := {y ∈ R3 : |x− y| < R}. In the case x = 0,
we write BR instead of BR(0).

The set Ω ⊂ R3 and the parameter τ ∈ (0,∞) introduced in Section 1 will be kept fixed
throughout. Recall that Ω is open and bounded, with connected Lipschitz boundary, and
that n(Ω) denotes the outward unit normal to Ω. We put ΩR := BR\Ω. Further recall that
in Section 1, we introduced the function ν : R3 7→ [1,∞) by setting ν(x) := 1 + |x| − x1

for x ∈ R3.

For n ∈ N, I ⊂ Rn, let χI stand for the characteristic function of I in Rn. If A ⊂ R3,
we denote by Ac the complement R3\A of A in R3. Put el := (δjl)1≤j≤3 for 1 ≤ l ≤ 3
(unit vector in R3). If A is some nonempty set and γ : A 7→ R a function, we set
|γ|∞ := sup{|γ(x)| : x ∈ A}. If R, S ∈ (0,∞) with S < R, we write AR,S for the annular
domain BR\BS .

Let p ∈ [1,∞), m ∈ N. For A ⊂ R3 open, the notation ‖ ‖p stands for the norm of the
Lebesgue space Lp(A), and ‖ ‖m,p for the usual norm of the Sobolev space Wm,p(A) of
order m and exponent p. If A ⊂ R3 possesses a bounded C2-boundary, the Sobolev space
W r,p(∂A) with r ∈ (0, 2) is to be defined as in [29, Section 6.8.6]. Let B ⊂ R3 be open.
The spaces Lploc(B) and Wm,q

loc (B) are defined as the set of all functions V from B into R
or C such that V |A ∈ Lp(A) and V |A ∈Wm,p(A), respectively, for any open, bounded set
A ⊂ R3 with A ⊂ B. We put ∇V := (∂kVj)1≤j,k≤3 for V ∈W 1,1

loc (B)3.

Let V be a normed space, and let the norm of V be denoted by ‖ ‖. Take n ∈ N.
Then we will use the same notation ‖ ‖ for the norm on Vn defined by ‖(f1, ..., fn)‖ :=(∑n

j=1 ‖fj‖2
)1/2

for (f1, ..., fn) ∈ Vn. The space V3×3, as concerns its norm, is identified

with V9.

For open sets A ⊂ R3, we define C∞0,σ(A) := {V ∈ C∞0 (A)3 : divV = 0}, and we write

Lpσ(A) for the closure of C∞0,σ(A) with respect to the norm of Lp(A)3, where p ∈ (1,∞).
This function space Lpσ(A) (”space of solenoidal Lp-functions”) is equipped with the norm
‖ ‖p.
Let B be a Banach space, p ∈ [1,∞] and J ⊂ R an interval. Then the norm of Lp(J,B)
is denoted by ‖ ‖Lp(J,B). Let a, b ∈ R ∪ {∞} with a < b. We write Lp(a, b, B) instead of

Lp
(

(a, b), B
)
. Moreover, we use the expression Lploc

(
[a, b), B

)
for the space of all functions

v : (a, b) 7→ B such that v|(a, T ) ∈ Lp(a, T, B) for any T ∈ (a, b). The space Lploc(a, b, B)
is defined as usual. Let T ∈ (0,∞], A ⊂ R3 open, p ∈ [1,∞], q ∈ (1,∞) and n ∈
{1, 3}. Then we write ‖ ‖q,p;T and ‖ ‖q,p;R instead of ‖ ‖Lp(0,T, Lq(A)n) and ‖ ‖Lp(R,Lq(A)n),

respectively. For an interval J ⊂ R and a function v : J 7→ W 1,1
loc (A)3, the notation ∇xv
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stands for the gradient of v with respect to x ∈ A, in the sense that

∇xv : J 7→ L1
loc(A)3, ∇xv(t)(x) :=

(
∂xk

(
vj(t)

)
(x)
)

1≤j,k≤3
for t ∈ J, x ∈ A

(spatial gradient of v). Similar conventions are to be valid with respect to the expressions
∆xv, divxv and ∂xjv.

Concerning Bochner integrals, if J ⊂ R is open, B a Banach space and w : J 7→ B an
integrable function, it is sometimes convenient to write B−

∫
J w(t) dt instead of

∫
J w(t) dt

for the corresponding B-valued Bochner integral. For the definition of the Bochner integral,
we refer to [50, p. 132-133], or to [35, p. 80 ff.].

Let n ∈ N. For the Fourier transform f̂ of a function f ∈ L1(Rn), we choose the definition
f̂(ξ) := (2π)−n/2

∫
Rn e

−i ξ·zf(z) dz (ξ ∈ Rn), and we define the inverse Fourier transform f̌

of f by f̌(ξ) := (2π)−n/2
∫
Rn e

i ξ·zf(z) dz(ξ ∈ Rn). Analogous definitions and notation are
to hold for the Fourier transform and the inverse Fourier transform of functions belonging
to L2(Rn), Lp(Rn,B) or Lp(Rn,B1 + ...+ Bk), where p ∈ {1, 2}, k ∈ N and B, B1, ..., Bk
are Banach spaces.

We write C for numerical constants and C(γ1, ..., γn) for constants depending exclusively
on paremeters γ1, ..., γn ∈ [0,∞) for some n ∈ N. However, such a precise bookkeeping
will be possible only at some places. Mostly we will use the symbol C for constants whose
dependence on parameters must be traced from context. Sometimes we write C(γ1, ..., γn)
in order to indicate that the constant in question is influenced by the quantities γ1, ..., γn.
But in such cases, this constant depends on other parameters as well.

The following simple version of Young’s inequality for integrals will be used frequently. We
state it here in order to make precise what exactly we refer to when we mention “Young’s
inequality”.

Lemma 2.1 ([1, Corollary 2.25]) Let n ∈ N and q ∈ [1,∞]. Then(∫
Rn

∣∣∣∫
Rn
U(x− y)V (y) dy

∣∣∣q dx)1/q
≤ C ‖U‖1 ‖V ‖q for U ∈ L1(Rn), V ∈ Lq(Rn).

We point out some estimates involving the weight function ν, beginning with an integral
of negative powers of |x| ν(x).

Lemma 2.2 ([19, Corollary 3.2]) Let γ ∈ (2,∞) and R ∈ (0,∞). Then the integral∫
BcR

(
|x| ν(x)

)−γ
dx is bounded by C(γ)R−γ+2.

Lemma 2.3 ([23, Lemma 4.8]) The inequality ν(x − y)−1 ≤ C (1 + |y|) ν(x)−1 holds
for x, y ∈ R3.

Theorem 2.1 ([19, (4.1)]) Let µ ∈ (1,∞), K ∈ (0,∞). Then∫ ∞
0

(|z − τ t e1|2 + t)−µ dt ≤ C(µ,K, τ)
(
|z| ν(z)

)−µ+1/2
for z ∈ Bc

K . (2.1)

We will need the following estimates from [38].

Theorem 2.2 There is n ∈ N such that for x ∈ R3,∫
R3

(
(1 + |x− y|) ν(x− y)

)−3/2 (
(1 + |y|) ν(y)

)−2
dy

≤ C
(

(1 + |x|) ν(x)
)−3/2

(max{1, ln |x|})n,

7



∫
R3

(1 + |x− y|)−2 ν(x− y)−1 (1 + |y|)−2 ν(y)−1 dy ≤ C(1 + |x|)−2 ν(x)−1 (max{1, ln |x|})n.

Proof: See [38, (1.39), Remark 3.1, and the proof of Theorem 3.2 and 3.3]. �

We state a Sobolev inequality in exterior domains.

Theorem 2.3 Let A ⊂ R3 be open, bounded and with Lipschitz boundary. Let q ∈ (1, 3)
and V ∈W 1,1

loc (A
c
) with ∇V ∈ Lq(Ac)3. Suppose there is some κ ∈ (1,∞) with V ∈ Lκ(A

c
).

Then V ∈ L3q/(3−q)(A
c
) and ‖V ‖3q/(3−q) ≤ C ‖V ‖q.

Proof: This theorem may be deduced from [30, Theorem II.6.1]; see [16, Theorem 2.4]
and its proof. �

We introduce the Helmholtz-Fujita decomposition in exterior domains.

Theorem 2.4 Let A ⊂ R3 be open, bounded, with Lipschitz boundary. For q ∈ (1,∞),

there is a linear bounded operator Pq := P(A)
q : Lq(A

c
)3 7→ Lqσ(A

c
) and a linear operator

Gq := G(A)
q : Lq(A

c
)3 7→ W 1,q

loc (A
c
) with ∇Gq(F ) ∈ Lq(A

c
)3, Pq(F ) + ∇Gq(F ) = F for

F ∈ Lq(A
c
)3, Pq(V ) = V for V ∈ Lqσ(A

c
), and Pq(∇Π) = 0 for Π ∈ W 1,q

loc (Ω) with
∇Π ∈ Lq(Ωc

)3. Moreover P ′q = Pq′ for q ∈ (1,∞).

Proof: See [30, Section III.1]. Some additional details may be found in [16, proof of
Theorem 2.11 and Corollary 2.3]. �

We will need certain properties of Bochner integrals. To begin with, we recall a basic tool.

Theorem 2.5 Let B1, B2 be Banach spaces, A : B1 7→ B2 a linear and bounded operator,
n ∈ N, J ⊂ Rn an open set and f : J 7→ B1 a Bochner integrable mapping. Then
A ◦ f : J 7→ B2 is Bochner integrable, too, and A(B1 −

∫
J f dx) = B2 −

∫
J A ◦ f dx.

Proof: See [50, p. 134, Corollary 2], [35, Theorem 3.7.12]. �

As a consequence of Theorem 2.5, a linear bounded operator between two Banach spaces
commutes with the Fourier transform:

Corollary 2.1 Let B1 and B2 be Banach spaces, and let T : B1 7→ B2 be a linear and
bounded operator. Take n ∈ N and v ∈ L2(Rn, B1). Then T ◦ v ∈ L2(Rn, B2) and T ◦ v̂ =
(T ◦ v)∧.

Proof: Put g(R, ξ) := B1 −
∫
BR

(2π)−n/2 e−i ξ·x v(x) dx for R ∈ (0,∞), ξ ∈ Rn, and let
h(R, ξ) denote the B2-valued Bochner integral obtained by replacing v(x) by (T ◦ v)(x)
in the preceding definition. Let ‖ ‖Bj denote the norm of Bj , for j ∈ {1, 2}. Then∫
Rn ‖v̂(ξ) − g(R, ξ)‖2B1

dξ → 0 and
∫
Rn ‖(T ◦ v)∧(ξ) − h(R, ξ)‖2B2

dξ → 0 for R → ∞
by the definition of v̂ and (T ◦ v)∧. But Theorem 2.5 yields that T

(
g(R, ξ)

)
= h(R, ξ)

for ξ ∈ Rn, R > 0, so the second of the preceding convergence relations yields that∫
Rn ‖(T ◦ v)∧(ξ)− T

(
g(R, ξ)

)
‖2B2

dξ → 0 (R→∞). On the other hand, the boundedness

of T allows to conclude from the first that
∫
Rn ‖T

(
v̂(ξ) − g(R, ξ)

)
‖2B2

dξ → 0 (R → ∞).
Thus the corollary follows. �

We state a density result, already used in [20], in Lp(J,B) for Banach spaces B and
p ∈ [1,∞).

Corollary 2.2 ([20, Corollary 2.1]) Let B be a Banach space, A a dense subset of
B, p ∈ [1,∞), n ∈ N and J ⊂ Rn open. Then the set of sums

∑k
j=1 ϕj aj with k ∈
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N, ϕj ∈ C∞0 (J) and aj ∈ A for j ∈ {1, ..., k} is dense in Lp(J,B).

Compatibility result for Bochner integrals with values in Lp-spaces are treated in the
ensuing two lemmas.

Lemma 2.4 ([19, Lemma 2.3]) Let m,n ∈ N, J ⊂ Rn and U ⊂ Rm open sets, q ∈
[1,∞) and f : J 7→ Lq(U)3 integrable as a Bochner integral in Lq(U)3. Then there is a
measurable function g : U × J 7→ R3 such that f(t) = g(t) a. e. in U , for a. e. t ∈ J . We
identify f with g. Then

∫
J |f(z)(x)| dz <∞ and

∫
J f(z)(x) dz =

(
Lq(U)3−

∫
J f(z) dz

)
(x)

for a. e. x ∈ U .

Lemma 2.5 ([20, Lemma 2.2]) Let J ⊂ R be an interval, n ∈ N, B ⊂ Rn and A ⊂
B open sets, q1, q2 ∈ [1,∞) and f : J 7→ Lq1(B)3 a Bochner integrable mapping with
f(t)|A ∈ Lq2(A)3 for t ∈ J and f |A : J 7→ Lq2(A)3 Bochner integrable as well. Then
(Lq1(B)3 −

∫
J f(s) ds)|A = Lq2(A)3 −

∫
J f(s)|Ads.

A much more deep-lying result is the following theorem.

Theorem 2.6 ([25, Theorem 8.20.5]) Let B be a reflexive Banach space, J ⊂ Rn open
and q ∈ (1,∞). Then the dual space of Lq(J,B) is isometrically isomorph to Lq

′
(J,B′).

We state a criterion for the existence of a weak derivative of a function with values in a
Banach space.

Theorem 2.7 Let B be a Banach space, a, b ∈ R with a < b, w, g ∈ L1(a, b, B) and∫ b
a ζ
′(t) η

(
w(t)

)
dt = −

∫ b
a ζ(t) η

(
g(t)

)
dt for ζ ∈ C∞0

(
(a, b)

)
, η ∈ B′. Then there is

w̃ ∈ C0
(

[a, b], B) with w(t) = w̃(t) for a. e. t ∈ (a, b), w̃(b) − w̃(a) =
∫ b
a g(t) dt, w ∈

W 1,1(a, b, B) and w′ = g.

Proof: The theorem follows from [49, Lemma 3.1.1]. �

A variant of Fubini’s theorem for Bochner integrals will be useful:

Theorem 2.8 ([35, Theorem 3.7.13]) For j ∈ {1, 2}, let Jj ⊂ R be measurable. Let
B be a Banach space, and let f : J1 × J2 7→ B be integrable as B-valued Bochner integral.
Then the function f(ξ1, · ) : J2 7→ B is integrable in the same sense for a. e. ξ1 ∈ J1, the
function ξ1 7→

∫
J2
f(ξ1, ξ2) dξ2 (ξ1 ∈ J1) is also integrable as B-valued Bochner integral,

and
∫
J1

∫
J2
f(ξ1, ξ2) dξ2 dξ1 =

∫
J1×J2 f(ξ1, ξ2) d(ξ1, ξ2).

We will need Plancherel’s equation for functions with values in Banach spaces. Since its
proof is not too long, and because we do not know a reference, we indicate this proof.

Theorem 2.9 Let B be a reflexive Banach space, n ∈ N and v ∈ L2(Rn, B). Then v̂ ∈
L2(Rn, B) and ‖v‖L2(Rn,B) = ‖v̂‖L2(Rn,B).

Proof: For any Banach space A, let D(A) denote the set of sums
∑k

j=1 ϕj aj with k ∈
N, ϕj ∈ S(Rn) and aj ∈ A for j ∈ {1, ..., k}, where S(Rn) stands for the usual space
of rapidly decreasing functions on Rn. According to Corollary 2.2, the set D(A) is dense
in L2(Rn, A). Let 〈 , 〉 : B′ × B 7→ C denote the usual dual pairing of B′ and B. For
b′ ∈ B′, define 〈b′, v〉 : Rn 7→ Rn by 〈b′, v〉(x) := 〈b′, v(x)〉 = (b′ ◦ v)(x) for x ∈ Rn. Let
h ∈ D(B′). Then we may choose k ∈ N, ϕj ∈ S(Rn) and b′j ∈ B′ for 1 ≤ j ≤ k with

h(x) =
∑k

j=1 ϕj(x) b′j (x ∈ Rn). By Corollary 2.1, we have (〈b′j , v〉)∧(x) = 〈b′j , v̂(x)〉 (x ∈
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Rn), so by Parseval’s equation for functions from L2(Rn),∫
Rn
〈h(x), v(x)〉 dx =

k∑
j=1

∫
Rn
ϕj(x) 〈b′j , v(x)〉 dx =

k∑
j=1

∫
Rn
ϕ̂j(x) 〈b′j , v̂(x)〉 dx (2.2)

=

∫
Rn
〈ĥ(x), v̂(x)〉 dx.

On the other hand, B is reflexive, so we have L2(Rn, B)′ = L2(Rn, B′) (Theorem 2.6).
Therefore, since D(B′) is dense in L2(Rn, B′), we obtain that

‖v‖L2(Rn,B) = sup{
∫
Rn
〈h(x), v(x)〉 dx : h ∈ D(B′), ‖h‖L2(Rn,B′) = 1},

with an analogous formula being valid for v̂. Moreover, since the Fourier transform maps
the space S(Rn) bijectively onto itself, we have {ĥ : h ∈ D(B′)} = D(B′). The theorem
now follows with (2.2). �

3 A theorem on the Oseen resolvent. Some fundamental
solutions and potential functions.

Our first theorem reproduces an aspect of the theory in [32]. Further indications and
references may be found in the [22, proof of Corollary 4.1].

Theorem 3.1 Let A ⊂ R3 be open, bounded, with C2-boundary. Take q ∈ (1,∞), and
define D(Aq) := W 2,q(A

c
)3∩W 1,q

0 (A
c
)3∩Lqσ(A

c
), Aq(U) := Pq(∆U) for U ∈ D(Aq), with

the operator Pq = P(A)
q introduced in Theorem 2.4.

Then Aq is a linear and densely defined operator from D(Aq) into Lqσ(A
c
). The set

C\(−∞, 0] is contained in the resolvent set %(Aq) of Aq. Let Iq denote the identical map-
ping of Lqσ(A

c
) into itself. Then the operator (λ Iq +Aq)−1 is holomorphic as a function

of λ ∈ %(Aq) with values in the space of linear bounded operators from Lqσ(A
c
) into itself.

For ϑ ∈ [0, π), the inequality ‖(λ Iq+Aq)−1(F )‖q ≤ C |λ|−1 ‖F‖q holds for F ∈ Lqσ(A
c
), λ ∈

C\{0} with | arg λ| ≤ ϑ.

We define the fundamental solution N of the Poisson equation (”Newton kernel”) by
setting N(x) := (4π |x|)−1 for x ∈ R3\{0}. For A ⊂ R3 open and bounded with Lipschitz
boundary, and for any φ ∈ L1(∂A)3, we define the surface potential F(φ)(x) := F(A)(φ) :
R3\∂A 7→ C3 by setting

F(φ)(x) :=

∫
∂A

(∇N)(x− y)n(A)(y) · φ(y) doy for x ∈ R3\∂A, (3.1)

where n(A) : ∂Ω 7→ R3 denotes the outward unit normal to A. The next theorem, which
the title of this section alludes to, and which we take from [22], deals with the Oseen
resolvent problem

−∆V + τ∂1V + λV +∇Π = F, divV = 0.

It shows how i ξ V (ξ ∈ R) may be estimated with respect to certain Lp-norms by the
right-hand side F and the boundary data. These latter data, however, do not appear
explicitly because they are evaluated by the term L, via a trace estimate.
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Theorem 3.2 ([22, Corollary 7.1]) Let A ⊂ R3 be open and bounded with Lipschitz

boundary. Take S ∈ (0,∞) with A ⊂ BS . For q ∈ (1,∞), let Pq = P(BS)
q be defined as in

Theorem 2.4, Iq and Aq as in Theorem 3.1, and F(φ) for φ ∈ L1(∂BS)3 as in (3.1), each
time with A replaced by BS .

Let n0 ∈ N and let p1, ..., pn0 , q
(1)
0 , q

(2)
0 and q1 belong to (1,∞). Put pn0+1 := q1 and

q := min
(
{q(1)

0 , q
(2)
0 , q1} ∪ {pj : 1 ≤ j ≤ n0}

)
.

Let ξ ∈ R with |ξ| ≥ 1, F (j) ∈ Lpj (Ac)3 for 1 ≤ j ≤ n0, V
(µ) ∈ Lq

(µ)
0 (A

c
)3 ∩W 1,1

loc (A
c
)3

and ∇V (µ) ∈ Lq1(A
c
)9 for µ ∈ {1, 2}. Put V := V (1) + V (2) and suppose that∫

A
c

(
∇V · ∇ϑ+ (τ ∂1V + i ξ V −

n0∑
j=1

F (j)) · ϑ
)
dx = 0 for ϑ ∈ C∞0,σ(A

c
), divU = 0. (3.2)

(This means in particular that V is a weak solution of the Oseen resolvent problem.) Put
L := ‖V (1)‖

q
(1)
0

+ ‖V (2)‖
q
(2)
0

+ ‖∇V ‖q1 .

Then there are functions U (j) ∈W 2,pj (BS
c
)3 for 1 ≤ j ≤ n0 + 1, U (n0+2) ∈ C∞(BS

c
)3 as

well as φ ∈ Lq(∂BS)3 with the following properties:

V |BS
c

=

n0+2∑
j=1

U (j), U (j) = (i ξ Ipj +Apj )−1
(
Ppj (F (j)|BS

c
)
)
, ‖ξ U (j)‖pj ≤ C ‖F (j)‖pj

for 1 ≤ j ≤ n0, ‖ξ U (n0+1)‖pn0+1 ≤ CL, ‖φ‖q ≤ CL. If r ∈ (1,∞), R ∈ (S,∞), then

‖ξ
(
U (n0+2) − F(φ)

)
|Bc

R‖r ≤ C(r,R)L, and if r ∈ (3/2, ∞) and again R ∈ (S,∞), then
‖F(φ)|Bc

R‖r ≤ C(r,R)L. The constants in the preceding estimates do not depend on ξ. The
function F(φ) is defined as in (3.1) with A = BS .

Let H denote the usual heat kernel in 3D, that is,

H(z, t) := (4π t)−3/2 e−|z|
2/(4t) for z ∈ R3, t ∈ (0,∞), H(z, 0) := 0 for z ∈ R3\{0}.

Thus, in our context, H is defined on B :=
(
R3 × (0,∞)

)
∪
(

(R3\{0})× {0}
)
.

Theorem 3.3 The relations H ∈ C∞(B),
∫
R3 H(z, t) dt = 1 for t ∈ (0,∞) hold. If

α ∈ N3
0, σ ∈ N0, the inequality |∂αz ∂σt H(z, t)| ≤ C(α, σ) (|z|2 + t)−(3+|α|+2σ)/2 is valid for

z ∈ R3, t ∈ (0,∞).

Proof: See [46] for the preceding estimate. �

The estimate in Theorem 3.3 in the case |α| = 2, σ = 0 allows to define the velocity part
Γ of a fundamental solution to the time-dependent Stokes system,

Γjk(z, t) := H(z, t) δjk +

∫ ∞
t

∂zj∂zkH(z, s) ds for (z, t) ∈ B, j, k ∈ {1, 2, 3},

and the velocity part Λ of a fundamental solution to the time-dependent Oseen system
(1.11),

Λjk(z, t) := Γjk(z − τ t e1, t) for (z, t) ∈ B, j, k ∈ {1, 2, 3}. (3.3)

We will need the following properties of Λ.
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Lemma 3.1 ([19, Lemma 3.3, Corollary 3.3]) For 1 ≤ j ≤ 3, z ∈ R3, t ∈ (0,∞),
the relations Λ ∈ C∞(B)3×3 and

∑3
k=1 ∂zkΛjk(z, t) = 0 are valid. Moreover

|∂αz Λ(z, t)| ≤ C(τ) (|z − τ t e1|2 + t)−(3+|α|)/2 ( z ∈ R3, t ∈ (0,∞), α ∈ N3
0, |α| ≤ 2

)
.(3.4)

Let K > 0. Then

|∂αz Λ(z, t)| ≤ C(τ,K)
[
χ[0,K](|z|) (|z|2 + t)−(3+|α|)/2 (3.5)

+χ(K,∞)(|z|)
(
|z| ν(z) + t

)−(3+|α|)/2 ]
for z, t, α as in (3.4).

Theorem 3.4 ([19, Corollary 4.1]) Let R, R̃ ∈ (0,∞) with R < R̃, p, q ∈ [1,∞].
Then∫ t

0

∫
BR

|∂αx ∂βyΛ(x− y, t− s) · u(y, s)| dy ds ≤ C
(
|x| ν(x)

)−(3+|α|+|β|)/2+1/(2p′) ‖u‖q,p;t

for t ∈ (0,∞), u ∈ Lp
(

0, t, Lq(BR)3
)
, x ∈ Bc

R̃
, α, β ∈ N3

0 with |α| ≤ 1, |β| ≤ 1.

We introduce the first of our potential functions.

Lemma 3.2 ([19, Corollary 3.5]) Let A ⊂ R3 be measurable, q ∈ [1,∞), V ∈ Lq(A)3,
and let Ṽ the zero extension of V to R3. Then

∫
R3 |∂αxΛ(x−y, t) · Ṽ (y)| dy <∞ for α ∈ N3

0

with |α| ≤ 1, x ∈ R3, t ∈ (0,∞). Thus the volume potential I(τ)(V ) introduced in (1.10)
is well defined.

The derivative ∂xlI
(τ)(V )(x, t) exists and equals

∫
R3 ∂xlΛ(x − y, t) · Ṽ (y) dy for x, t as

above, and for l ∈ {1, 2, 3}. The functions I(τ)(V ) and ∂xlI
(τ)(V ) are continuous in

R3 × (0,∞). If q > 1, then ‖I(τ)(V )‖q ≤ C(q, τ) ‖V ‖q.

We will need a variant of I(τ)(V ).

Lemma 3.3 Let q ∈ (1,∞), A ⊂ R3 be measurable, V ∈ Lq(A)3. Write Ṽ for the zero
extension of V to R3. Then

∫
R3 |∂σt ∂αxH(x−y, t) Ṽ (y)| dy <∞ for x ∈ R3, t ∈ (0,∞), α ∈

N3
0, σ ∈ {0, 1} with |α|+2σ ≤ 2. Therefore we may define the function H(0)(V ) by setting

H(0)(V )(x, t) :=
∫
R3 H(x − y, t) Ṽ (y) dy, H(0)(V )(x, 0) := Ṽ (x, 0) for x ∈ R3, t ∈ (0,∞).

Then H(0)(V ) belongs to C0
(

[0,∞), Lq(R3)3
)

and the estimate ‖H(0)(V )(t)‖q ≤ C ‖V ‖q
holds for q ∈ (1,∞). Moreover, the derivative ∂σt ∂

α
xH(0)(V )(x, t) exists and equals the

integral
∫
R3 ∂

σ
t ∂

α
xH(x − y, t) Ṽ (y) dy for x, t, α, σ as above, and is a continuous function

of (x, t) ∈ R3× (0,∞). The equation ∂tH(0)(V )−∆xH(0)(V ) = 0 holds. Let W ∈ Lqσ(R3).
Then divxH(0)(W ) = 0.

Proof: All the claims of the lemma except the relation H(0)(V ) ∈ C0
(

[0,∞), Lq(R3)3
)

and the equation divxH(0)(W ) = 0 follow by the same arguments as used in [19, proof of
Corollary 3.5] with respect to I(τ)(V ). The continuity at t = 0 of H(τ)(V ) as a mapping
from [0,∞) to Lq(R3)3 holds by a simplified version of the proof of [19, Theorem 3.3].
Continuity at t > 0 may be shown by the same reasoning as in [19, proof of Corollary 3.6].
Let φ ∈ C∞0,σ(R3). By a partial integration in the integral

∫
R3

∑3
j=1 ∂yjH(x− y, t)φ(y) dy,

we obtain divxH(0)(φ)(x, t) = 0 for x ∈ R3, t ∈ (0,∞). There is a sequence (φn) in
C∞0,σ(R3) with ‖W − φn‖q → 0. As a consequence of Theorem 3.3 and Hölder’s inequality,

we get ‖∇xH(0)(W−φn)(t)‖q ≤ C(q) t(−1+3/q)/2 ‖W−φn‖q (n ∈ N). Thus we may conclude
that divxH(0)(W ) = 0. �

We turn to the definition of another potential function.
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Lemma 3.4 Let T0 ∈ (0,∞], A ⊂ R3 measurable, q ∈ [1,∞) and f a function from
L1
loc

(
[0, T0), Lq(A)3

)
. Let f̃ denote the zero extension of f to R3 × (0,∞). Then the

integral
∫
R3 |∂αxΛ(x − y, t − σ) · f̃(y, σ)| dy is finite for any x ∈ R3, t ∈ (0,∞), σ ∈

(0, t), α ∈ N3
0 with |α| ≤ 1. Moreover, for a. e. t ∈ (0,∞) and for α as before, the integral∫ t

0

∫
R3 |∂αxΛ(x − y, t − σ) · f̃(y, σ)| dy dσ is finite for a. e. x ∈ R3. Thus we may define

R(τ)(f)(x, t) as in (1.9) for such t and x. The relation R(τ)(f)(t) ∈ W 1,1
loc (R3)3 holds for

a. e. t ∈ (0,∞), and ∂xlR
(τ)(f)(t)(x) =

∫ t
0

∫
R3 ∂xlΛ(x − y, t − σ) · f̃(y, σ) dy dσ for such

t, a. e. x ∈ R3, and for l ∈ {1, 2, 3}.
Moreover the integral

∫ t
0 |
∫
R3 Λ(x− y, t− s) · f̃(y, s) dy| ds is finite for any t ∈ (0,∞) and

for a. e. x ∈ R3. Thus the function R(τ)(f) is well defined even for any t ∈ (0,∞)
(instead of only for a. e. t ∈ (0,∞)) and for a. e. x ∈ R3.

Proof: [19, Lemma 3.8, Corollary 3.7]. �

The next lemma deals with still another potential function, this one defined on the surface
of an open bounded set.

Lemma 3.5 Let q ∈ [1,∞], T0 ∈ (0,∞], A ⊂ R3 open and bounded, with Lipschitz
boundary, φ ∈ L1

loc

(
[0, T0), Lq(∂A)3

)
, φ̃ the zero extension of φ to ∂A × (0,∞). For

t ∈ (0,∞), x ∈ R3\∂A, α ∈ N3
0, the term |∂αxΛ(x − y, t − s) · φ̃(y, s)| is integrable as a

function of (y, s) ∈ ∂A× (0, t). Define V(τ)(φ) := V(τ, A)(φ) : (R3\∂A)× (0,∞) 7→ R3 by

V(τ)(φ)(x, t) :=

∫ t

0

∫
∂A

Λ(x− y, t− s) · φ̃(y, s) doy ds for x ∈ R3\∂A, t ∈ (0,∞).

Then, for any t ∈ (0,∞), the integral
∫ t

0

∫
∂A Λ(x−y, t−s)·φ̃(y, s) doy ds as a function of x ∈

R3\A belongs to C∞(R3\A)3, and ∂αxV
(τ)(φ)(x, t) =

∫ t
0

∫
∂A ∂

α
xΛ(x−y, t−s) · φ̃(y, s) doy ds

for α ∈ N3
0, x ∈ R3\A.

Proof: The function Λ is C∞ on R3 × (0,∞) (Lemma 3.1), so the lemma follows from
Lebesgue’s theorem. �

We introduce another kernel function, which is a truncated version of Λ, and whose def-
inition involves fixed numbers S0, R0 ∈ (0,∞) with S0 < R0, the mean value R1 :=
(R0 + S0)/2 of these numbers, and a function ϕ0 ∈ C∞0 (BR1) with ϕ|BS0+(R0−S0)/4 =
1, 0 ≤ ϕ0 ≤ 1. However, since this definition would need some preparation, but we will
not work with it, we do not restate it here, referring instead to [19, (3.13)]. In the ensuing
theorem, we collect those properties of this kernel which will be relevant in what follows.

Theorem 3.5 There is a function G := GR0,S0,ϕ0 : Bc
R0
×BR1 × [0,∞) 7→ R3×3 with the

following properties.

Let x ∈ Bc
R0
, r ∈ [0,∞). Then G(x, · , r) ∈ C∞(BR1)3×3,

∑3
k=1 ∂ykGjk(x, y, r) = 0 for

1 ≤ j ≤ 3, y ∈ BR1 , and G(x, y, r) = Λ(x− y, r) for y ∈ BS0+(R0−S0)/4.

Let x ∈ Bc
R0
, q ∈ (1,∞). Then the mapping r 7→ G(x, · , r)

(
r ∈ [0,∞)

)
belongs

to C1
(

[0,∞), W 1,q(BR1)3×3
)
. Thus a function G′ ∈ C0

(
[0,∞), W 1,q(BR1)3×3

)
may be

defined by the condition ‖
(
G(x, · , r + h) − G(x, · , r)

)
/h − G′(r)‖1,q → 0 (h → 0) for

r ∈ [0,∞). We write ∂rG(x, y, r) instead of G′(r)(y) (r ∈ [0,∞), y ∈ BR1).

Let r ∈ [0,∞), q ∈ (1,∞).

Let σ ∈ {0, 1}, and define L(x) : BR1 7→ R3×3 by L(x)(y) := ∂σrG(x, y, r) for x ∈
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Bc
R0
, y ∈ BR1. Then L(x) ∈ C∞0 (BR1)3×3 ∩W 1,q(BR1)3×3 for x ∈ Bc

R0
, and L considered

as a mapping from Bc
R0

into W 1,q(BR1)3×3 is partially differentiable on BR0

c
. Thus we

may define DmL : BR0

c 7→ W 1,q(BR1)3×3 by the condition ‖
(
L(x + h em) − L(x)

)
/h −

DmL(x)‖1,q → 0 (h → 0), for m ∈ {1, 2, 3}, x ∈ BR0

c
. Instead of DmL(x)(y), we write

∂xm∂
σ
rG(x, y, r).

Let l ∈ {1, 2, 3} and define L̃(x) : BR1 7→ R3×3 by L̃(x)(y) := ∂ylG(x, y, r) for x ∈
Bc
R0
, y ∈ BR1 . Then L̃(x) ∈ C∞0 (BR1)3×3 ∩Lq(BR1)3×3 for x ∈ Bc

R0
, and L̃ considered as

an operator from Bc
R0

into Lq(BR1)3×3 is partially differentiable on BR0

c
. Thus we may

define DmL̃ : BR0

c 7→ Lq(BR1)3×3 by the condition ‖
(
L̃(x+h em)−L̃(x)

)
/h−DmL̃(x)‖q →

0 (h→ 0) (m ∈ {1, 2, 3}, x ∈ BR0

c
). Instead of DmL̃(x)(y), we write ∂xm∂ylG(x, y, r).

Let q ∈ (1,∞), p ∈ [1,∞]. Then∫
BR1

|∂αx ∂σt ∂βyG(x, y, t) · V (y)| dy ≤ C
(
|x| ν(x)

)−(3+|α|+σ)/2 ‖V ‖q (3.6)

for V ∈ Lq(BR1)3, t ∈ (0,∞), x ∈ BR0

c
, α, β ∈ N3

0, σ ∈ {0, 1} with |α| ≤ 1, |β|+ σ ≤ 1,∫ t

0

∫
BR1

|∂αx ∂σt ∂βyG(x, y, t− s) · v(y, s)| dy ds ≤ C
(
|x| ν(x)

)−(3+|α|+σ)/2+1/(2 p′) ‖v‖q,p;t (3.7)

for t, x, α, β, σ as in (3.6), and for v ∈ Lp
(

0, t, Lq(BR1)3
)
.

Proof: [19, Lemma 3.11, 3.12, 3.13]. �

We note a consequence of the preceding theorem.

Corollary 3.1 ([19, Corollary 4.2]) Let β ∈ N3
0, σ ∈ {0, 1} with |β| + σ ≤ 1. Let

q ∈ (1,∞), and let the function v belong to L1
loc

(
[0,∞), Lq(BR1)3

)
and the function V to

Lq(BR1)3. Define

F (x, t) :=

∫ t

0

∫
BR1

∂σs ∂
β
yG(x, y, t− s) · v(y, s) dy ds, H(x, t) :=

∫
BR1

G(x, y, t) · V (y) dy

for x ∈ BR0

c
, t ∈ (0,∞). Take a number l ∈ {1, 2, 3}. Then the derivatives ∂xlF (x, t)

and ∂xlH(x, t) exist pointwise, and they equal
∫ t

0

∫
BR1

∂xl∂
σ
s ∂

β
yG(x, y, t− s) · v(y, s) dy ds

and
∫
BR1

∂xlG(x, y, t) · V (y) dy, respectively, for x ∈ BR0

c
, t ∈ (0,∞)

It will be convenient to subsume a number of terms in a single operator, which we define
here, and whose definition makes sense due to the preceding Corollary 3.1

Let A ⊂ BS0 be open and bounded with Lipschitz boundary. Put AR1 := BR1\A, ZR1,T :=
AR1 × (0, T ) for T ∈ (0,∞]. Let A ⊂ R3 × R, T0 ∈ (0,∞] such that ZR1,T0 ⊂ A. Let
q ∈ (1,∞) and let v : A 7→ R3 be such that v|ZR1,T0 ∈ C0

(
[0, T0), Lq(AR1)3

)
, v(s)|AR1 ∈

W 1,1
loc (AR1)3 for s ∈ (0, T0), and∇xv|ZR1,T0 ∈ L1

loc

(
[0, T0), Lq(AR1)9

)
. Then, for t ∈ (0, T0)

and x ∈ BR0

c
, we define

KR0,S0,ϕ0,A,T0(v)(x, t) :=

∫ t

0

∫
AR1

( 3∑
l=1

∂ylG(x, y, t− s) · ∂ylv(y, s) (3.8)

−∂y1G(x, y, t− s) · v(y, s)− ∂sG(x, y, t− s) · v(y, s)
)
dy ds+

∫
AR1

G(x, y, 0) · v(y, t) dy.
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Next we reproduce some decay estimates proved in [19], beginning with a decay estimate
of KR0,S0,ϕ0,A,T0(v). We use the same notation as in (3.8).

Corollary 3.2 ([19, Corollary 4.3]) Let A, A, T0, q be given as in (3.8) and p1, p2 ∈
[1,∞]. Then, if v : A 7→ R3 with v|ZR1,T0 ∈ C0

(
[0, T0), Lq(AR1)3

)
as well as v(s)|AR1 ∈

W 1,1
loc (AR1)3 for s ∈ (0, T0) and ∇xv|ZR1,T0 ∈ Lp2

(
0, T0, L

q(AR1)9
)
, and if x ∈ BR0

c
, t ∈

(0, T0), α ∈ N3
0 with |α| ≤ 1, the term |∂αxKR0,S0,ϕ0,A,T0(v)(x, t)| is bounded by

C (‖v|ZR1,t‖q,p1;t + ‖∇xv|ZR1,t‖q,p2;t + ‖v(t)|ΩR1‖q) max
j∈{1, 2}

(
|x| ν(x)

)−(3+|α|)/2+1/(2 p′j).

Lemma 3.6 ([19, Lemma 4.3]) Let A, A, T0, q be given as in (3.8), let n(A) denote the
outward unit normal to A, and take p1, p2 ∈ [1,∞]. Then, for v : A 7→ R3 with v|ZR1,T0 ∈
Lp1
(

0, T0, L
q(AR1)3

)
, v(s)|AR1 ∈ W

1,1
loc (AR1)3 for s ∈ (0, T0), and ∇xv|ZR1,T0 belonging

to Lp2
(

0, T0, L
q(AR1)9

)
, x ∈ Bc

R0
, t ∈ (0, T0), α ∈ N3

0 with |α| ≤ 2, l ∈ {1, 2, 3}, the

term |∂αxV(τ,A)(n
(A)
l v)(x, t)| is bounded by

C (‖v|ZR1,t‖q,p1;t + ‖∇xv|ZR1,t‖q,p2;t)
2∑
j=1

(
|x| ν(x)

)−(3+|α|)/2+1/(2 p′j),

where (n
(A)
l v)(y, s) := n

(A)
l (y) v(y) for y ∈ ∂A, s ∈ (0, T0).

Lemma 3.7 ([19, Lemma 4.4]) Recall that the Newton kernel N was introduced fol-
lowing Theorem 3.1. Let A ⊂ BS0 be open and bounded, with Lipschitz boundary, and
with outward unit normal denoted by n(A). Put AR1 := BR1\A and let q ∈ (1,∞).
Then the estimate |

∫
∂A(∂α∇)N(x − y) (n(A) · V )(y) doy| ≤ C |x|−2−|α| ‖V ‖q holds for

V ∈ Lq(AR1)3 ∩ W 1,1(AR1)3 with divV = 0, t ∈ (0,∞), x ∈ Bc
R0

and α ∈ N3
0 with

|α| ≤ 1. If the zero flux condition
∫
∂Ω n

(A) · V doy = 0 is valid, the factor |x|−2−|α| may be

replaced by |x|−3−|α|.

The potential functions defined above, with the exception of H(0), appear in the the
representation formula stated in the ensuing theorem, which constitutes the starting point
of the theory presented in the work at hand.

Theorem 3.6 Take E ⊂ BS0 open, bounded, with Lipschitz boundary and set ES0 :=
BS0\E. Let T0 ∈ (0,∞], n0, m0 ∈ N, p̃, q0, q1, p1, ..., pn0 , %1, ..., %m0 ∈ (1,∞), and
consider functions u : (0, T0) 7→ W 1,1

loc (E
c
)3, f (j) ∈ L1

loc

(
[0, T0), Lpj (E

c
)3
)

for 1 ≤ j ≤
n0, G

(l) ∈ C0
(

[0, T0), L%l(BS0

c
)3
)

for 1 ≤ l ≤ m0, U0 ∈ Lp̃(E
c
)3 with the following

properties:

u|ES0 × (0, T0) ∈ L1
loc

(
[0, T0), Lq0(ES0)3

)
, divxu(t) = 0 and u(t)|BS0

c
=
∑m0

l=1G
(l)(t) for

t ∈ (0, T0), ∇xu ∈ L1
loc

(
[0, T0), Lq1(E

c
)3
)
,∫ T0

0

∫
E
c

(
−ϕ′(t)u(t) · ϑ+ ϕ(t)

[
∇xu(t) · ∇ϑ+ τ ∂x1u(t) · ϑ− f(t) · ϑ

])
dx dt (3.9)

−ϕ(0)

∫
E
c
U0 · ϑ dx = 0 for ϕ ∈ C∞0

(
[0, T0)

)
, ϑ ∈ C∞0,σ(E

c
),

with f =
∑n0

j=1 f
(j). Define n(S0)(y) := S−1

0 y for y ∈ ∂BS0 . Let t ∈ (0,∞). Then there is
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a measurable set Nt ⊂ BR0

c
of measure zero such that the equation

u(x, t) = R(τ)
( n0∑
j=1

f (j)|BS0

c × (0, T0)
)
(x, t) + I(τ)

(
U0|BS0

c
)(x, t) (3.10)

−
3∑
l=1

∂xlV
(τ,BS0 )(n

(S0)
l u)(x, t)−

∫
∂BS0

(∇N)(x− y)
(
n(S0)(y) · u(y, t)

)
doy + K(u)(x, t)

−
∫
AR1,S0

G(x, y, t) · U0(y) dy −
∫ t

0

∫
AR1,S0

G(x, y, t− s) ·
n0∑
j=1

f (j)(y, s) dy ds

holds for x ∈ BR0

c\Nt, where G = GR0,S0,ϕ0 was introduced in Theorem 3.5, K(u) =
KR0,S0,ϕ0,BS0 ,T0

(u) in (3.8), and the annular domain AR1,S0 at the beginning of Section 2.

Proof: [20, Corollary 5.1, 5.2], with assumptions on u stated at the beginning of [20,
Section 5]. �

4 A result on the Cauchy problem for the heat equation.

We do not know a reference for the ensuing estimate of the spatial gradient of the solution
to the Cauchy problem for the heat equation with initial data in Lq(R3). However, a proof
is required since this result is not easy to establish. We present an argument – applying
a multiplier theorem by Benedek, Calderon, Panzone [4] – which only works if q ≤ 2. The
case q > 2 remains open.

Theorem 4.1 Let q ∈ (1, 2]. Then ‖∇xH(0)(U)‖q,2;∞ ≤ C(q) ‖U‖q for U ∈ Lq(R3)3.

Proof: We establish a framework allowing us to apply [4, Theorem 2]. Let ε ∈ (0,∞).

We write B for the Banach space of linear bounded operators from R3 into L2
(

(ε,∞)
)3
.

This space B is to be equipped with the usual norm, which we denote by ‖ ‖B. We

write ‖ ‖L2(L2) for the norm of the space L2
[
R3, L2

(
(ε,∞)

)3 ]
. The space of functions in

L∞(R3)3 with compact support is denoted by L∞0 (R3)3.

Let j ∈ {1, 2, 3}, and define Kε(x)(a)(t) := ∂xjH(x, t) a for x, a ∈ R3, t ∈ (ε,∞). Then
by Theorem 3.3,

∫∞
ε |Kε(x)(a)(t)|2 dt ≤ C |a|2

∫∞
ε (|x|2 + t)−4 dt ≤ C |a|2 (|x|2 + ε)−3 for

x, a ∈ R3. ThusKε(x) ∈ B, ‖Kε(x)‖B ≤ C (|x|2+ε)−3/2 for x ∈ R3, and
∫
R3 ‖Kε(x)‖2B dx ≤

C ε−3. In particular Kε ∈ L2(R3, B) and Kε : R3 7→ B is integrable on compact subsets
of R3. Let U ∈ L∞0 (R3)3. For x ∈ R3, the function y 7→ Kε(x − y)

(
U(y)

)
(y ∈ R3) is

Bochner integrable in L2
(

(ε,∞)
)3
, so we may define (AU)(x) :=

∫
R3 Kε(x−y)

(
U(y)

)
dy.

The function U ∈ L∞0 (R3)3 belongs in particular to L1(R3)3, and ‖(AU)(x)‖
L2
(

(ε,∞)
)3 ≤∫

R3 ‖Kε(x− y)‖B |U(y)| dy. Therefore Young’s inequality and the relation Kε ∈ L2(R3, B)

derived above yield that AU ∈ L2
[
R3, L2

(
(ε,∞)

)3 ]
. Let [AU ]∧ : R3 7→ L2

(
(ε,∞)

)3
denote the Fourier transform of AU.

Let us justify the equation [AU ]∧(ξ)(t) = (2π)−3/2 e−|ξ|
2 t (−i ξj) Û(ξ) for ξ ∈ R3, t ∈

(ε,∞). To this end, take ψ ∈ C∞0
(

(ε,∞)
)3

and put T (ζ) :=
∫∞
ε ζ·ψ dt for ζ ∈ L2

(
(ε,∞)

)3
.

Then T is a linear and bounded operator from L2
(

(ε,∞)
)3

into R, so T ◦[AU ]∧ = [T ◦AU ]∧

by Corollary 2.1. But for x ∈ R3, by Theorem 2.5 and the definition of AU and Kε we
have (T ◦ AU)(x) =

∫
R3

∫∞
ε L(x, y, t) dt dy, with L(x, y, t) := ψ(t) ∂xjH(x − y, t)U(y) for
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x, y ∈ R3, t ∈ (ε,∞). Since U ∈ L1(R3)3, as mentioned above, ψ ∈ L1
(

(ε,∞)
)3

and
|∂xjH(x− y, t)| ≤ C (|x− y|2 + ε)−2 for x, y ∈ R3, t ∈ (ε,∞) by Theorem 3.3, as already
used above, it is obvious that the integral

∫
R3

∫
R3

∫∞
ε |(2π)−3/2 e−i ξ·x L(x, y, t)| dt dy dx

is finite for ξ ∈ R3. Therefore we may apply Fubini’s theorem in the triple integral∫
R3

∫
R3

∫∞
ε (2π)−3/2 e−i ξ·x L(x, y, t) dt dy dx. But [H( · , t)]∧(ξ) = (2π)−3/2 e−|ξ|

2 t for ξ ∈
R3, t ∈ (0,∞), so we get by the equations for T ◦ [AU ]∧ and (T ◦AU)(x) from above that∫∞
ε ψ(t) · [AU ]∧(ξ)(t) dt =

∫∞
ε ψ(t) · (2π)−3/2 e−|ξ|

2 t (−i ξj) Û(ξ) dt. Since ψ was arbitrarily

taken from C∞0
(

(ε,∞)
)3
, we arrive at the equation for [AU ]∧(ξ) claimed above. Therefore

with Theorem 2.9,

‖AU‖L2(L2) = ‖[AU ]∧‖L2(L2) = C

∫
R3

∫ ∞
ε
|ξj e−|ξ|

2 t|2 dt |Û(ξ)|2 dξ ≤ C ‖Û‖2 = C ‖U‖2.

Next take y ∈ R3 with |y| > 0, x ∈ R3 with |x| > 4 |y|, and t ∈ (ε,∞). Then the
equation |∂xjH(x − y, t) − ∂xjH(x, t)| = |

∫ 1
0

∑3
k=1 ∂xk∂xjH(x − ϑ y, t) yk dϑ| holds, so

with Theorem 3.3, |∂xjH(x − y, t) − ∂xjH(x, t)| ≤ (|x|2 + t)−5/2 |y|, where we used the
estimate |x − ϑ y| ≥ |x| − |y| ≥ 3 |x|/4 for ϑ ∈ [0, 1], which is valid since |x| > 4|y|. As

a consequence, ‖Kε(x − y) − Kε(x)‖B ≤ C
( ∫∞

ε (|x|2 + t)−5 dt
)1/2 |y| ≤ C |x|−4 |y|, hence∫

Bc
4 |y|
‖Kε(x − y) − Kε(x)‖B dx ≤ C. Now we see that we may apply [4, Theorem 2] with

B1 = R3, B2 = L2
(

(ε,∞)
)3
, obtaining that ‖AU‖

Lq
[
R3, L2

(
(ε,∞)

)3 ] ≤ C(q) ‖U‖q for U ∈

L∞0 (R3)3. But by Lemma 2.4 and 3.3, (AU)(x, t) = ∂xjH(0)(U)(x, t) for x ∈ R, t ∈ (ε,∞)
and U as before. Thus[∫

R3

(∫ ∞
ε
|∂xjH(0)(U)(x, t)|2 dt

)q/2
dx
]1/q
≤ C(q) ‖U‖q for U ∈ L∞0 (R3)3.

At this point we exploit the assumption q ≤ 2, which implies 2/q ≥ 1. As a consequence,
Minkowski’s inequality for integrals ([1, Theorem 2.9]) allows to deduce from the preceding
estimate of ∂xjH(0)(U) that ‖∂xjH(0)(U)|R3 × (ε,∞)‖

L2
(
ε,∞, Lq(R3)3

) ≤ C(q) ‖U‖q for

U ∈ L∞0 (R3)3. Since this is true for any ε ∈ (0,∞), and because the constant C(p) in
this inequality does not depend on ε, we thus get ‖∂xjH(0)(U)‖q,2;∞ ≤ C(q) ‖U‖q for U as
before. Now let U ∈ Lq(R3)3, and choose a sequence (Un) in C∞0 (R3)3 with ‖U−Un‖q → 0.
Then ‖∂xjH(0)(Un)‖q,2;∞ ≤ C(q) ‖Un‖q for n ∈ N by what has been shown already. On
the other hand, by Young’s inequality and Theorem 3.3,∫ t2

t1

‖∂xjH(0)(Un − U)(t)‖2q dt ≤
∫ t2

t1

(∫
R3

|∂zjH(z, t)| dz
)2
dt ‖Un − U‖q

≤ C
∫ t2

t1

(∫
R3

(|z|+ t1/2)−4 dz
)2
dt ‖Un − U‖q ≤ C ln(t2/t1) ‖Un − U‖q

for n ∈ N, t1, t2 ∈ (0,∞) with t1 < t2. From this inequality and the preceding estimate of
‖∂xjH(0)(Un)‖q,2;∞ for n ∈ N we may conclude that ‖∂xjH(0)(U)‖q,2;∞ ≤ C(q) ‖U‖q. �
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5 Weak solutions to the Oseen system: a representation
formula and spatial decay estimates without assumptions
on continuity of the velocity with respect to time.

When in [20] we derived the representation formula (3.10) for the velocity part of a solution
to the time-dependent Oseen system (1.11), we had to require some continuity of the
velocity with respect to the time variable. In the present section, we obtain an integral
representation without such a requirement if the solution and the right-hand side are L2-
integrable in time. This type of integrability is valid in the case of L2-strong solutions to
the nonlinear problem (1.1), as considered in the next section.

As in the passage preceding Theorem 3.5, we fix numbers R0, S0 ∈ (0,∞) with S0 < R0

and Ω ⊂ BS0 , define R1 := (S0 + R0)/2, and choose a function ϕ0 ∈ C∞0 (BR1) with
ϕ|BS0+(R0−S0)/4 = 1, 0 ≤ ϕ0 ≤ 1. In addition it will be convenient to use a pair of

numbers S1, S2 ∈ (0, S0) with S1 > S2 and Ω ⊂ BS2 .

All the Fourier transforms appearing in this section are Fourier transforms with respect
to the time variable t ∈ R.

Lemma 5.1 Let A ⊂ R3 be open, q0, q1 ∈ (1,∞), u ∈ L2
(
R, Lq0(A)3

)
with u(t) ∈

W 1,1
loc (A)3 for t ∈ R and ∇xu ∈ L2

(
R, Lq1(A)9

)
. Then (∂xlu)∧ = ∂xlû for l ∈ {1, 2, 3}.

Moreover, let q ∈ (1,∞), v ∈ L2
(
R, Lq(A)3

)
and ϑ ∈ C∞0 (A)3. Put %(t) :=

∫
A v(t) · ϑ dx

for t ∈ R. Then % ∈ L2(R) and %̂(ξ) =
∫
A v̂(ξ) · ϑ dx for ξ ∈ R.

Proof: Let ψ ∈ C∞0 (A)3, 1 ≤ l ≤ 3, σ ∈ {0, 1}. The operator V 7→
∫
A V · ∂

(σ)
l ψ dx

(
V ∈

Lp(A)3
)

is linear and bounded if p = q0 and if p = q1. Therefore by Corollary 2.1, the
functions µ(t) :=

∫
A v(t) · ∂lψ dx (t ∈ R) and ω(t) :=

∫
A ∂xlv(t) · ψ dx (t ∈ R) belong to

L2(R), and µ̂(ξ) =
∫
A v̂(ξ) ·∂lψ dx, ω̂(ξ) =

∫
A[∂xlv]∧(ξ) ·ψ dx (ξ ∈ R). On the other hand,

µ(t) = −ω(t) for t ∈ R, so we get µ̂ = −ω̂. Since this is true for any l ∈ {1, 2, 3} and
ψ ∈ C∞0 (A)3, we may conclude that v̂(ξ) ∈ W 1,1

loc (A)3 and ∂xlv̂(ξ) = [∂xlv]∧(ξ) for ξ ∈ R.
The operator V 7→

∫
A V · ϑ dx

(
V ∈ Lq(A)3

)
is linear and bounded, too. So the second

claim of the lemma also follows from Corollary 2.1, with a similar argument. �

Theorem 5.1 Let n0 ∈ N, p1, ..., pn0 ∈ (1,∞) and f (j) ∈ L2
(

0,∞, Lpj (Ωc
)3
)

for 1 ≤
j ≤ n0. Put f (j)(t) := 0 for t ∈ (−∞, 0), 1 ≤ j ≤ n0. Then there is a sequence (Rn) in
(1,∞) such that the limit

U(j)(t) := lim
n→∞

∫
(−Rn,Rn)\(−1,1)

(2π)−1/2 ei t ξ (i ξ Ipj +Apj )−1
(
Ppj
[
f̂ (j)(ξ)|BS2

c ] )
dξ (5.1)

exists in Lpj (BS2

c
)3 for j ∈ {1, ..., n0} and a. e. t ∈ R, where Ppj is to be chosen as in

Theorem 2.4, and Ipj and Apj for j ∈ {1, ..., n0} as in Theorem 3.1, in each case with

A = BS2

c
. The integral in (5.1) is to be understood as a Bochner integral with values in

Lpj (BS2

c
)3. For j ∈ {1, ..., n0}, the function U(j) belongs to L2

(
R, Lpj (BS2

c
)3
)
.

Let q
(1)
0 , q

(2)
0 , q1 ∈ (1,∞), u(j) ∈ L2

(
0,∞, Lq

(j)
0 (Ω

c
)3
)

with u(j)(t) ∈ W 1,1
loc (Ω

c
)3 and

divxu
(j)(t) = 0 for t ∈ (0,∞), and ∇xu(j) ∈ L2

(
0,∞, Lq1(Ω

c
)9
)

for j ∈ {1, 2}.

Put u := u(1)+u(2). Suppose that u satisfies (3.9) with E = Ω, f =
∑n0

j=1 f
(j), T0 =∞ and

U0 = 0. Let q ∈ (1,∞) with q ≤ min
(
{q(1)

0 , q
(2)
1 , q1}∪{pj : 1 ≤ j ≤ n0}

)
. Define pn0+1 :=

q1, pn0+2 := q, pn0+3 := q
(1)
0 , pn0+4 := q

(2)
0 , pn0+5 := q

(1)
0 , pn0+6 := q

(2)
0 , pn0+7 :=
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max{2, q}. Let J ⊂ R an interval with nonempty interior. Then there is a set N ⊂ R of
measure zero and a number t0 ∈ J\N as well as functions % ∈ L2

(
R, Lq(∂BS2)3

)
, G(j) ∈

C0
(
R, Lpj (BS1

c
)3
)

for 1 ≤ l ≤ n0 + 7 with the following properties.

Put E(x, t) := E(%)(x, t) :=
∫
∂BS2

(∇N)(x−y)
(
S−1 y ·%(y, t)

)
doy for t ∈ R, x ∈ Bc

S1
, with

N introduced following Theorem 3.1.Then, for any t ∈ R\N, j ∈ {1, ..., n0}, the limit in
(5.1) exists, and

(u− E)(t)|BS1

c
=

n0+7∑
j=1, j /∈Z

G(j)(t) +
∑
j∈Z

(
U(j)(t)− U(j)(t0)

)
(5.2)

for t ∈ (0,∞)\, Z ⊂ {1, ..., n0}, in particular (u − E)(t)|BS1

c
=
∑n0+7

j=1 G(j)(t) for such

t. Moreover E(t) ∈ C∞(Bc
S1

)3, divxE(t) = 0 for t ∈ R. The terms ‖E‖r,2;R for r ∈
(3/2, ∞) and ‖∇xE‖r,2;R for r ∈ (1,∞) are bounded by C(r) (‖u(1)‖

q
(1)
0 ,2;∞+‖u(2)‖

q
(2)
0 ,2;∞+

‖∇xu‖q1,2;∞). In addition, if R ∈ (S1,∞), Z ⊂ {1, ..., n0}, then for any t ∈ R,

‖
n0+7∑

j=1, j /∈Z

G(j)(t)|AR,S1‖q ≤ C
( 2∑
j=1

‖u(j)‖
q
(j)
0 ,2;∞ + ‖∇xu‖q1,2;∞ (5.3)

+

n0∑
j=1, j /∈Z

‖f (j)‖pj ,2;∞ +
∑
j∈Z
‖
(
U(j) − U(j)(t0)

)
|AR,S1 × (t− 1, t)‖

L1
(
t−1, t, Lq(AR,S1 )3

)).
We remark that if we treated only the case T0 =∞, it would not be necessary to introduce
the parameter t0 and the functions U(j). Our theory would then carry through with the
equation u−E =

∑n0+7
j=1 G(j) instead (5.2), and with (5.3) only in the case Z = ∅, so that

‖
n0+7∑
j=1

G(j)(t)|AR,S1‖q ≤ C
( 2∑
j=1

‖u(j)‖
q
(j)
0 ,2;∞ + ‖∇xu‖q1,2;∞ +

n0∑
j=1

‖f (j)‖pj ,2;∞

)
for R, t as in (5.3). However, since we also want to cover the case T0 <∞ (Theorem 5.3),
we will have to use (5.3) with |Z| = 1.

Proof of Theorem 5.1: We proceed as follows. First we construct a function FS1 on
Bc
S1
× R with FS1(ξ) ∈ C∞(Bc

S1
)3, divxFS1(ξ) = 0 (ξ ∈ R), and such that the mapping

ξ 7→ ξ (û − FS1)(ξ) (ξ ∈ R) may be written as the sum of L2-integrable functions with
values in various Banach spaces. (Here the zero extension of u to R is also denoted by
u.) It will turn out the inverse Fourier transform of this mapping ξ 7→ ξ (û − FS1)(ξ)

is the weak derivative of the function t 7→ u(t) − Ẽ(t) (t ∈ R), where Ẽ is the inverse
Fourier transform of FS1 with respect to ξ ∈ R. From this we may conclude that u− Ẽ is
continuous as specified for u − E in the theorem. In a last step we introduce a function
% ∈ L2

(
R, Lq(∂BS2)3

)
such that Ẽ = E(%), with E(%) defined in the theorem. Actually

the argument becomes more complicated because we additionally introduce the functions
U(j) by writing the inverse Fourier transform of certain functions in an explicit way.

Denoting the zero extension of u(1), u(2), u, ∂xlu and f (j) to R in the same way as
the original functions, we may apply the Fourier transform with respect to the time
variable to these functions (1 ≤ l ≤ 3, 1 ≤ j ≤ n0). Theorem 2.9 then yields that

û(µ) ∈ L2
(
R, Lq

(µ)
0 (Ω

c
)3
)
, ∂̂xlu(µ) ∈ L2

(
R, Lq1(Ω

c
)3
)

and f̂ (j) ∈ L2
(
R, Lpj (Ωc

)3
)

for
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µ ∈ {1, 2}, l, j as before. Lemma 5.1 implies that û(µ)(ξ) ∈ W 1,1
loc (Ω

c
)3 and ∂̂xlu(µ)(ξ) =

∂xlû(µ)(ξ) for 1 ≤ l ≤ 3, ξ ∈ R, µ ∈ {1, 2}. As a consequence û(ξ) ∈ W 1,1
loc (Ω

c
)3 and

∂xlû ∈ L2
(
R, Lq1(Ω

c
)3
)

for l, ξ as before.

Let ϑ ∈ C∞0,σ(Ω
c
). For w : R 7→ L1

loc(Ω
c
)3, we define the function

∫
Ω
c w · ϑ dx : R 7→ R

by
( ∫

Ω
c w · ϑ dx

)
(t) :=

∫
Ω
c w(t) · ϑ dx (t ∈ R). An analogous definition is to be valid for∫

Ω
c ∇xw · ∇ϑ dx if w : R 7→W 1,1

loc (Ω
c
)3. Then by Lemma 5.1, the functions

∫
Ω
c w · ϑ dx for

w ∈ {u(µ) : 1 ≤ µ ≤ 2} ∪ {f (j) : 1 ≤ j ≤ n0} ∪ {∂xlu : 1 ≤ l ≤ 3} and
∫

Ω
c ∇xu · ∇ϑ dx

belong to L2(R), and the Fourier transform commutes with integration. Recall that we
supposed u to satisfy (3.9) with E = Ω, U0 = 0, f =

∑n0
j=1 f

(j) and T0 = ∞. Since u

and f (j) for 1 ≤ j ≤ n0 were extended by zero to R, equation (3.9) is then valid even
for ϕ ∈ C∞0 (R), with the integral over (0,∞) replaced by one over R. Thus the preceding
results and Parseval’s equation for functions from L2(R) allow to deduce from (3.9) that∫

R
ϕ̂(ξ)

∫
Ω
c

(
i ξ û(ξ) · ϑ+∇xû(ξ) · ∇ϑ+ τ ∂x1û(ξ) · ϑ−

n0∑
j=1

f̂ (j)(ξ) · ϑ
)
dx dξ = 0

for ϑ ∈ C∞0,σ(Ω
c
), ϕ ∈ C∞0 (R), and divxû = 0.

Here it is important that U0 = 0. The set {ϕ̂ : ϕ ∈ C∞0 (R)} is dense in L2(R), so we
may conclude that for ξ ∈ R\{0}, the equations in (3.2) (Oseen resolvent system in a
weak form) are satisfied with A, U, F replaced by Ω, û(ξ) and

∑n0
j=1 f̂

(j)(ξ), respectively.
At this point, recall the definition of q, pn0+1 and pn0+2 in the theorem, as well as the
numbers S2, S1 ∈ (0, S0) with S2 < S1 fixed at the beginning of this section. Put L(ξ) :=
‖û(1)(ξ)‖

q
(1)
0

+ ‖û(2)(ξ)‖
q
(2)
0

+ ‖∇xû(ξ)‖q1 for ξ ∈ R. Then, using Theorem 3.2 with A, S

replaced by Ω, S2, we get that for ξ ∈ R with |ξ| ≥ 1, there are functions U (j)(ξ) ∈
Lpj (BS2

c
)3 for 1 ≤ j ≤ n0 + 1, U (n0+2)(ξ) ∈ C∞(BS2

c
)3, φ(ξ) ∈ Lq(∂BS2)3 such that

û(ξ)|BS2

c
=
∑n0+2

k=1
U (k)(ξ), U (j)(ξ) = (i ξ Ipj +Apj )−1

(
Ppj
[
f̂ (j)(ξ)|BS2

c ] )
, (5.4)

‖ξ U (j)(ξ)‖pj ≤ C ‖f̂ (j)(ξ)‖pj for 1 ≤ j ≤ n0, ‖ξ U (n0+1)(ξ)‖pn0+1 ≤ CL(ξ),

‖φ(ξ)‖q ≤ CL(ξ), ‖ξ
[
U (n0+2)(ξ)− F

(
φ(ξ)

) ]
|Bc

S1
‖r ≤ CL(ξ) if r ∈ (1,∞),

‖F
(
φ(ξ)

)
|Bc

S1
‖r ≤ CL(ξ) if r ∈ (3/2, ∞),

with all constants being independent of ξ. The function F
(
φ(ξ)

)
is taken from Theorem

3.2 with A, S, φ replaced by Ω, S2, φ(ξ) and thus is defined as in (3.1) with A = BS2 .
References for the definition of Ipj , Apj and Ppj are given in Theorem 5.1. We put

φ(ξ) := 0, U (j)(ξ) := 0 for ξ ∈ (−1, 1), j ∈ {1, ..., n0 + 2}. Then F
(
φ(ξ)

)
= 0 for ξ ∈

(−1, 1), and the estimates in (5.4) are valid for all ξ ∈ R. We further set U (n0+2+µ)(ξ) :=
χ(−1,1)(ξ)

(
u(µ)

)∧
(ξ)|BS2

c
for ξ ∈ R, µ ∈ {1, 2}. Recalling the definition of L(ξ) further

above and the definition of pn0+3 and pn0+4 in the theorem, and referring to the first
equation in (5.4), we get for ξ ∈ R that

‖ξ U (n0+2+µ)(ξ)‖pn0+2+µ ≤ CL(ξ) (µ ∈ {1, 2}), û(ξ)|BS2

c
=
∑n0+4

k=1
U (k)(ξ) . (5.5)

For ξ ∈ R, we further set

Z(j)(ξ) := ξ U (j)(ξ)|BS1

c
(j ∈ {1, ..., n0 + 1} ∪ {n0 + 3, n0 + 4}), (5.6)

Z(n0+2)(ξ) := ξ
[
U (n0+2)(ξ)− F

(
φ(ξ)

) ]
|BS1

c
, FS1(ξ) := F

(
φ(ξ)

)
|Bc

S1
.
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Due to (5.5), this means in particular that

ξ
[
û(ξ)− F

(
φ(ξ)

) ]
|BS1

c
=
∑n0+4

k=1
Z(k)(ξ) for ξ ∈ R. (5.7)

Recalling that ∂xlû = ∂̂xlu for 1 ≤ l ≤ 3, we get by Theorem 2.9 and our assumptions on

f (j) and u that f̂ (j) ∈ L2
(
R, Lpj (Ωc

)3
)

and

‖f̂ (j)‖pj ,2;R = ‖f (j)‖pj ,2;∞ (1 ≤ j ≤ n0), ‖L‖2 ≤ CM, (5.8)

with M := ‖u‖
q
(1)
0 ,2;∞+ ‖u(2)‖

q
(2)
0 ,2;∞+ ‖∇xu‖q1,2;∞. Therefore we may deduce from (5.6),

(5.8), (5.4) and (5.5) that

‖Z(j)‖pj ,2;R ≤ C ‖f (j)‖pj ,2;∞ (1 ≤ j ≤ n0), (5.9)

‖Z(j)‖pj ,2;R ≤ CM (n0 + 1 ≤ j ≤ n0 + 4), ‖φ‖q,2;R ≤ CM, ‖FS1‖r,2;R ≤ C(r)M

if r ∈ (3/2, ∞), in particular Z(j) ∈ L2
(
R, Lpj (BS1

c
)3
)

for 1 ≤ j ≤ n0 + 4, φ ∈
L2
(
R, Lq(∂BS2)3

)
, FS1 ∈ L2

(
R, Lr(Bc

S1
)3
)

if r ∈ (3/2, ∞). We further set

P (j) := [Z(j)]∨ (1 ≤ j ≤ n0 + 4), Ẽ := [FS1 ]∨, (5.10)

where the term [FS1 ]∨ may refer to the space L2
(
R, Lr(Bc

S1
)3
)

for any r ∈ (3/2, ∞)
(Lemma 2.5). Then Theorem 2.9 and (5.9) yield that

‖P (j)‖pj ,2;R ≤ C ‖f (j)‖pj ,2;∞ (1 ≤ j ≤ n0), (5.11)

‖P (j)‖pj ,2;R ≤ CM (n0 + 1 ≤ j ≤ n0 + 4), ‖Ẽ‖r,2;R ≤ C(r)M if r ∈ (3/2, ∞),

in particular P (j) ∈ L2
(
R, Lpj (BS1

c
)3
)

for 1 ≤ j ≤ n0 + 4, Ẽ ∈ L2
(
R, Lr(Bc

S1
)3
)

if r ∈
(3/2, ∞). Due to the first inequality in (5.4), the equation in (5.8), the assumption f (j) ∈
L2
(

0,∞, Lpj (Ωc
)3
)
, and the definition U (j)(ξ) = 0 for ξ ∈ (−1, 1), we see that U (j) ∈

L2
(
R, Lpj (BS2

c
)3
)

(1 ≤ j ≤ n0). Put U (j) := [U (j)]∨ for j ∈ {1, ..., n0}. Then U (j) ∈
L2
(
R, Lpj (BS2

c
)3
)

(1 ≤ j ≤ n0) by Theorem 2.9. We further get due to the properties of

the Fourier transform that [U (j)]∧ = U (j) for j as before, and there is a sequence (Rn) in
(1,∞) and a zero measure set N0 ⊂ R such that Rn →∞ and the limit in Lpj (BS2

c
)3 of

Lpj (BS2

c
)3 −

∫
(−Rn,Rn)\(−1,1)(2π)−1/2 ei t ξ U (j)(ξ) dξ exists for n→∞ and equals U (j)(t),

where t ∈ R\N0, j ∈ {1, ..., n0}. Due to the second equation in (5.4), the term U (j)(ξ)

in the preceding integral may be replaced by (i ξ Ipj + Apj )−1
(
Ppj
[
f̂ (j)(ξ)|BS2

c ] )
, for

ξ ∈ R\(−1, 1), 1 ≤ j ≤ n0. Therefore the limit in (5.1) exists for t ∈ R\N0, 1 ≤ j ≤ n0,
and the function U(j) defined by this limit coincides with U (j) on R\N0. Hence U(j) =
[U (j)]∨, [U(j)]∧ = U (j), U(j) ∈ L2

(
R, Lpj (BS2

c
)3
)

(1 ≤ j ≤ n0). Let ϑ ∈ C∞0 (BS1

c
)3. For

G ∈ {u, Ẽ}∪ {U(j) : 1 ≤ j ≤ n0}∪ {Z(j) : 1 ≤ j ≤ n0 + 4}, we put
( ∫

BS1
c G ·ϑ dx

)
(s) :=∫

BS1
c G(s) · ϑ ds for s ∈ R. Since each of these functions G except G = u belongs to

L2(R, B) for some Banach space B (see (5.11), (5.9) and the preceding remarks about

U(j)), and because u = u(1) + u(2) and u(j) ∈ L2
(
R, Lq

(j)
0 (Ω

c
)3
)

(j ∈ {1, 2}), we may
conclude by Lemma 5.1 that( ∫

BS1
c
G · ϑ dx

)∨
(t) =

∫
BS1

c
Ǧ(t) · ϑ dx (t ∈ R, G ∈ {Z(j) : 1 ≤ j ≤ n0 + 4}), (5.12)
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and( ∫
BS1

c
G · ϑ dx

)∧
(ξ) =

∫
BS1

c
Ĝ(ξ) · ϑ dx (ξ ∈ R, G ∈ {u, Ẽ} ∪ {U(1), ..., U(n0)}). (5.13)

Let Z ⊂ {1, ..., n0}. By the definition of Ẽ (see (5.10)), FS1 and Z(j) (see (5.6)), the
equation [U(j)]∧ = U (j) (1 ≤ j ≤ n0) and equation (5.7)

ξ (u−Ẽ−
∑
j∈Z

U(j))∧(ξ)|BS1

c
= ξ

[
û(ξ)−F

(
φ(ξ)

) ]
−
∑
j∈Z
Z(j)(ξ) =

n0+4∑
j=1, j /∈Z

Z(j)(ξ) (ξ ∈ R).

Thus we get by (5.10) (definition of P (1), ..., P (n0+4)), (5.12), (5.13) and Plancherel’s
equation for L2(R) that for any ϕ ∈ C∞0 (R), ϑ ∈ C∞0 (BS1

c
)3∫

R
ϕ′(t)

∫
BS1

c
(u− Ẽ−

∑
j∈Z

U(j))(t) · ϑ dx dt (5.14)

=

∫
R
ϕ̂(ξ)

∫
BS1

c
i ξ (u− Ẽ−

∑
j∈Z

U(j))∧(ξ) · ϑ dx dξ

= i

∫
R
ϕ̂(ξ)

∫
BS1

c

n0+4∑
j=1, j /∈Z

Z(j)(ξ) · ϑ dx dξ = i

∫
R
ϕ(t)

∫
BS1

c

n0+4∑
j=1, j /∈Z

P (j)(t) · ϑ dx dt.

Let n ∈ N with n > S1, and abbreviate A := An,S1 . The preceding equation (5.14) is true

in particular for any ϑ ∈ C∞0 (A)3. Moreover, if G ∈ {u− Ẽ−
∑

j∈Z U(j),
∑n0+4

j=1, j /∈Z P
(j)},

the function t 7→ G(t)|A (t ∈ R) belongs to L1
loc

(
R, Lq(A)3

)
, as follows from (5.11), the

assumptions on u(1) and u(2), the relation U(j) ∈ L2
(
R, Lpj (BS2

c
)3
)

for 1 ≤ j ≤ n0, as
already proved, and because q ≤ pj (1 ≤ j ≤ n0 + 4). Thus, since C∞0 (A)3 is dense in

Lq
′
(A)3, and in view of Theorem 2.7, there is a measurable set ÑZ,n ⊂ R of measure zero

and a continuous function KZ,n : R 7→ Lq(A)3 such that KZ,n(t) = (u−Ẽ−
∑

j∈Z U(j))(t)|A
for t ∈ R\ÑZ,n and such that the equation

KZ,n(t)−KZ,n(t0) = Lq(A)3 −
∫ t

t0

i

n0+4∑
j=1, j /∈Z

P (j)(s)|Ads (t, t0 ∈ R) (5.15)

holds. Putting NZ,n := ÑZ,n ∪ N0, with the zero measure set N0 introduced above in
the study of the properties of the functions U (j), we see that NZ,n is still a zero measure
set, the equation for KZ,n(t) preceding (5.15) holds for t ∈ R\NZ,n and the limit in (5.1)
exists for all such t and for 1 ≤ j ≤ n0. This is true for any n ∈ N, n > S1 and any
Z ⊂ {1, ..., n0}. Put N := ∪

{
NZ,n : n ∈ N, n > S1, Z ⊂ {1, ..., n0}

}
. Then we may

conclude that N has measure zero and the ensuing equation

(u− Ẽ−
∑
j∈Z

U(j))(t)− (u− Ẽ−
∑
j∈Z

U(j))(t0)|An,S1 =

∫ t

t0

n0+4∑
j=1, j /∈Z

i P (j)(s)|An,S1 ds (5.16)

is valid for t, t0 ∈ R\N, n ∈ N with n > S1, Z ⊂ {1, ..., n0}, and the limit in (5.1) exists
for t ∈ R\N, 1 ≤ j ≤ n0. Recalling the interval J introduced in the theorem, we have
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J ∩ (R\N) 6= ∅, so we may fix some t0 ∈ J ∩ (R\N). In view of (5.11), we may define

G(j)(t) := Lpj (BS1

c
)3 −

∫ t

t0

i P (j)(s) ds (1 ≤ j ≤ n0 + 4), (5.17)

G(n0+4+µ)(t) := u(µ)(t0)|BS1

c
(µ ∈ {1, 2}), G(n0+7)(t) := Ẽ(t0)|BS1

c
, for t ∈ R.

Recall the definitions of pn0+4+µ for µ ∈ {1, 2} and pn0+7 in the theorem. Then it is
obvious with (5.11) that G(j) ∈ C0

(
R, Lpj (BS1

c
)3
)

(1 ≤ j ≤ n0 + 7), and from (5.16) and

Lemma 2.5 we get (u− Ẽ−
∑

j∈Z U(j))(t)|An,S1 =
∑n0+7

j=1, j /∈Z G
(j)(t)−

∑
j∈Z U(j)(t0)|An,S1

for t ∈ R\N, Z ⊂ {1, ..., n0} and n ∈ N with n > S1, so we finally arrive at (5.2).

Let Z ⊂ {1, ..., n0}, R ∈ (S1,∞), and put G :=
∑n0+7

j=1, j /∈Z G
(j), P :=

∑n0+4
j=1, j /∈Z P

(j) and

Ã := AR,S1 . For t ∈ R, let us estimate the term ‖G|Ã‖q. In view of (5.11) and because

G(j) ∈ C0
(
R, Lpj (BS1

c
)3
)

and q ≤ pj (1 ≤ j ≤ n0 + 7), the function t 7→ G(t)|Ã (t ∈ R)

belongs to C0
(
R, Lq(Ã)3

)
, and the function t 7→ P (t)|Ã (t ∈ R) to L1

loc

(
R, Lq(Ã)3

)
.

Let ϑ ∈ C∞0 (Ã)3, and put Hϑ(t) :=
∫
Ã
G(t) · ϑ dx, hϑ(t) := −i

∫
Ã
P (t) · ϑ dx for t ∈ R.

Then Hϑ ∈ C0(R), hϑ ∈ L1
loc(R), and from (5.2) and (5.14) we get

∫
R ϕ
′(t)Hϑ(t) dt =

−
∫
R ϕ(t)hϑ(t) dt

(
ϕ ∈ C∞0 (R)

)
. Thus Hϑ ∈ W 1,1

loc (R) with H ′ϑ = hϑ. Fix some function
ζ0 ∈ C∞([0, 1]) with ζ0(0) = 0, ζ0(1) = 1. Let t ∈ R, and put ζt(s) := ζ0(s − t + 1)
for s ∈ [t − 1, t]. Then ζtHϑ belongs to C0([t − 1, t]) ∩W 1,1

(
(t − 1, t)

)
, and (ζtHϑ)′ =

ζt hϑ + ζ ′tHϑ ∈ L1
(

(t − 1, t)
)
, so Hϑ(t) =

∫ t
t−1(ζt hϑ + ζ ′tHϑ)(s) ds. This is true for

any ϑ ∈ C∞0 (Ã)3. Therefore with Theorem 2.5 and the definition of Hϑ and hϑ we get

G(t)|Ã = Lq(Ã)3−
∫ t
t−1(−i ζt P + ζ ′tG)(s)|Ã ds. Replacing P and G by their definitions on

the right-hand side of the preceding equation and using (5.2), we now find that G(t)|Ã =∫ t
t−1

[
−i ζt

∑n0+4
j=1, j /∈Z P

(j) + ζ ′t
(
u − Ẽ −

∑
j∈Z U(j) +

∑
j∈Z U(j))(t0)

) ]
(s)|Ã ds. It follows

with the definition of G that

∥∥ n0+7∑
j=1, j /∈Z

G(j)(t)|Ã
∥∥
q
≤ C

∫ t

t−1

( n0+4∑
j=1, j /∈Z

‖P (j)(s)|Ã‖q + ‖u(s)|Ã‖q + ‖Ẽ(s)|Ã‖q (5.18)

+
∑
j∈Z
‖U(j)(s)− U(j)(t0)|Ã‖q

)
ds.

But q ≤ pj for 1 ≤ j ≤ n0 + 4, so ‖P (j)(s)|Ã‖q ≤ C(R) ‖P (j)(s)|Ã‖pj ≤ C(R) ‖P (j)(s)‖pj
for such j and for s ∈ (t− 1, t). Thus with (5.11),∫ t

t−1

n0+4∑
j=1, j /∈Z

‖P (j)(s)|Ã‖q ds ≤ C

n0+4∑
j=1, j /∈Z

‖P (j)‖pj ,2;R ≤ C
( n0∑
j=1, j /∈Z

‖f (j)‖pj ,2;∞ + M
)
.

Similary the inequality
∫ t
t−1 ‖u(s)|Ã‖q ds ≤ C(R)

∑2
j=1 ‖u(j)‖

q
(j)
0 ,2;∞ ≤ C(R)M holds be-

cause q ≤ q(j)
0 (j ∈ {1, 2}). Again with (5.11),

∫ t
t−1 ‖Ẽ(s)|Ã‖q ds ≤ C(R) ‖Ẽ‖max{2, q},2;∞ ≤

CM. Now inequality (5.3) follows from (5.18).

Let us determine an explicit form of Ẽ. To this end, recall that φ ∈ L2
(
R, Lq(∂BS2)3

)
according to (5.9) so that we may define % := φ̌. Theorem 2.9 and (5.9) then yield

‖%‖q,2;R ≤ CM, in particular % ∈ L2
(
R, Lq(∂BS2)3

)
. (5.19)
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Let ϑ ∈ C∞0 (BS1

c
)3. Since |x − y| ≥ S1 − S2 > 0 for x ∈ Bc

S1
, y ∈ ∂BS2 , and because

the function N introduced following Theorem 3.1 belongs to C∞(R3\{0}), the function
y 7→

∫
BcS1

(∇N)(x − y) · ϑ(x) dx (y ∈ ∂BS2), is bounded. Hence the operator defined on

Lq(∂BS2)3 by V 7→
∫
∂BS2

S−1 y ·V (y)
∫
BcS1

(∇N)(x−y) ·ϑ(x) dx doy is linear and bounded.

Put B(ξ) :=
∫
∂BS2

S−1 y · φ(ξ)(y)
∫
BcS1

(∇N)(x− y) · ϑ(x) dx doy (ξ ∈ R). By Corollary 2.1

we get B ∈ L2(R) and B̌(t) =
∫
∂BS2

S−1 y ·%(t)(y)
∫
BcS1

(∇N)(x−y) ·ϑ(x) dx doy for t ∈ R.
Again because |x − y| ≥ S1 − S2 > 0 for x ∈ Bc

S1
, y ∈ ∂BS2 we may apply Fubini’s

theorem, obtaining that B(ξ) =
∫
BcS1

FS1(ξ) · ϑ dx (ξ ∈ R), with FS1 from (5.6), and

B̌(t) =
∫
BcS1

∫
∂BS2

(∇N)(x − y)
(
S−1 y · %(t)(y)

)
doy · ϑ(x) dx (t ∈ R). The second from

last equation, that is, B(ξ) =
∫
BcS1

FS1(ξ) · ϑ dx (ξ ∈ R), Corollary 2.1 and the definition

of Ẽ (see (5.10)) imply that B̌(t) =
∫
BcS1

Ẽ(t) · ϑ dx (t ∈ R). Thus we have found two

equations for B̌, whose right-hand sides must therefore coincide. Since this is true for any
ϑ ∈ C∞0 (Bc

S1
)3, it follows that Ẽ(t)(x) =

∫
∂BS2

(∇N)(x − y)
(
S−1 y · %(t)(y)

)
doy for a. e.

x ∈ BS1

c
and for t ∈ R.

With this equation on hand, we may prove some additional properties of Ẽ. Since % ∈
L2
(
R, Lq(∂BS2)3

)
(see (5.19)) and |x − y| ≥ (1 − S2/S1) |x| for x ∈ Bc

S1
, y ∈ ∂BS2 ,

we may conclude by applying Lebesgue’s theorem that Ẽ ∈ C∞(Bc
S1

)3 and ∂xlẼ(t)(x) =∫
∂BS2

(∂l∇N)(x − y)
(
S−1 y · %(t)(y)

)
doy (t ∈ R, x ∈ BS1

c
, 1 ≤ l ≤ 3), so divxẼ(t) = 0

because ∆N = 0, and |∂αx Ẽ(t)(x)| ≤ C |x|−2−|α| ‖%(t)‖1 ≤ C |x|−2−|α| ‖%(t)‖q (t, x as before,

α ∈ N3
0 with |α| ≤ 1). Thus with (5.19), ‖∂αx Ẽ‖r,2;R ≤ C(r) ‖%‖q,2;R ≤ C(r)M for α as

before, r ∈ (3/2, ∞) in the case α = 0, and r ∈ (1,∞) else.

Altogether we see that if the functions U(j) (1 ≤ j ≤ n0), G(j) (1 ≤ j ≤ n0 + 7) and % are
defined as above (see (5.1), (5.17) and the passage preceding (5.19)), then the function Ẽ
coincides with the function E introduced in Theorem 5.1. Therefore, in view of what has
been shown for G(j), Ẽ and %, Theorem 5.1 is proved. �

In the following corollary, we drop the assumption U0 = 0 in (3.9) imposed in the preceding
theorem.

Corollary 5.1 Let n0 ∈ N, p1, ..., pn0 ∈ (1,∞), f (j) ∈ L2
(

0,∞, Lpj (Ωc
)3
)

for 1 ≤ j ≤
n0, and let U(j) for 1 ≤ j ≤ n0 be defined as in (5.1). Let q1 ∈ (1,∞) be such that

‖∇xH(0)(U)|R3 × (0, 2)‖q1,2;2 ≤ C(q1) ‖U‖q1 for U ∈ Lq1(R3)3, (5.20)

with H(0) defined in Lemma 3.3. (This condition is satisfied if q1 ∈ (1, 2]; see The-
orem 4.1.) Let U0 ∈ Lq1σ (R3), q0 ∈ (1,∞), u ∈ L2

(
0,∞, Lq0(Ω

c
)3
)

with u(t) ∈
W 1,1
loc (Ω

c
)3, divxu(t) = 0 for t ∈ (0,∞), and ∇xu ∈ L2

(
0,∞, Lq1(Ω

c
)9
)
. Suppose

that u verifies (3.9) with E = Ω, T0 = ∞ and f =
∑n0

j=1 f
(j). Let q ∈ (1,∞) with

q ≤ min({q0, q1} ∪ {pj : 1 ≤ j ≤ n0}), and put pn0+j := q1 for j ∈ {1, 2, 5, 7, 9},
pn0+j := q0 for j ∈ {4, 6}, and pn0+3 := q, pn0+8 := max{2, q}. Let J ⊂ R be an interval
with nonempty interior. Then there is a zero measure set N ⊂ R, a number t0 ∈ J\N and
functions % ∈ L2

(
R, Lq(∂BS2)3

)
, G(j) ∈ C0

(
[0,∞), Lpj (BS1

c
)3
)

(1 ≤ j ≤ n0 + 9) with
the properties to follow.

The limit in (5.1) defining the functions U(j) (1 ≤ j ≤ n0) exists for any t ∈ R\N. Define

24



the function E as in Theorem 5.1. Then

(u− E)(t)|BS1

c
=

n0+9∑
j=1, j /∈Z

G(j)(t) +
∑
j∈Z

(
U(j)(t)− U(j)(t0)

)
(5.21)

for Z ⊂ {1, ..., n0}, t ∈ (0,∞)\N, in particular (u − E)(t)|BS1

c
=
∑n0+9

j=1 G(j)(t) for t ∈
(0,∞)\N. Moreover E(t) ∈ C∞(Bc

S1
)3, divxE(t) = 0 for t ∈ R, the quantities ‖E‖r,2;R for

r ∈ (3/2, ∞) and ‖∇xE‖r,2;R for r ∈ (1,∞) are bounded by C(r) (‖u‖q0,2;∞+‖∇xu‖q1,2;∞+
‖U0‖q1). In addition, if R ∈ (S1,∞), Z ⊂ {1, ..., n0}, then

‖
n0+9∑

j=1, j /∈Z

G(j)(t)|AR,S1‖q ≤ C(R)
(
‖u‖q0,2;∞ + ‖∇xu‖q1,2;∞ + ‖U0‖q1 (5.22)

+

n0∑
j=1, j /∈Z

‖f (j)‖pj ,2;∞ +
∑
j∈Z
‖
(
U(j) − U(j)(t0)

)
|AR,S1 × (t− 1, t)‖

L1
(
t−1, t, Lq(AR,S1 )3

))
for any t ∈ [0,∞), in particular

‖
n0+9∑
j=1

G(j)(t)|AR,S1‖q ≤ C
(
‖u(j)‖q0,2;∞ + ‖∇xu‖q1,2;∞ +

n0∑
j=1

‖f (j)‖pj ,2;∞ + ‖U0‖q1
)
.

Proof: Abbreviate H := H(0)(U0). By Lemma 3.3, we have ‖H(t)‖q1 ≤ C(q1) ‖U0‖q1 and

H(t) ∈ C2(R3)3 for t ∈ (0,∞), H ∈ C1
(
R3 × (0,∞)

)3
and divxH = 0, ∂tH−∆xH = 0.

The same reference yields thatH is a continuous mapping from [0,∞) into Lq1(R3)3, where
H(0) = U0 by the definition ofH = H(0)(U0). Fix a function γ0 ∈ C∞(R) with γ|(−∞, 1] =
1, γ0|[2,∞) = 0, 0 ≤ γ0 ≤ 1. Then define H̃(x, t) := γ0(t)H(x, t) for x ∈ R3, t ∈
(0,∞). The properties of H listed above immediately imply that ‖H̃(t)‖q1 ≤ C(q1) ‖U0‖q1
and H̃(t) ∈ C2(R3)3 for t ∈ (0,∞), H̃ ∈ C1

(
R3 × (0,∞)

)3
, divxH̃ = 0 and H̃ ∈

C0
(

[0,∞), Lq1(R3)3
)

with H̃(0) = U0. By our assumptions on q1 we get ‖∇xH̃‖q1,2;∞ ≤
‖∇xH|R3×(0, 2)‖q1,2;2 ≤ C(q1) ‖U0‖q1 , in particular ∇xH̃ ∈ L2

(
0,∞, Lq1(R3)3

)
. Since H̃

vanishes on (2,∞), it follows from the estimate ‖H̃(t)‖q1 ≤ C(q1) ‖U0‖q1 (t ∈ (0,∞)) that

also H̃ ∈ L2
(

0,∞, Lq1(R3)3
)

and ‖H̃‖q1,2;∞ ≤ C(q1) ‖U0‖q1 . Define the function f (n0+1)

by setting f (n0+1)(t) := −γ′0(t)H(t) − τ γ0(t) ∂x1H(t)|Ωc (
t ∈ (0,∞)

)
. Recalling that

pn0+1 = q1 by the definition of pn0+1 in the corollary, and using the preceding estimate
of ‖∇xH̃‖q1,2;∞ and ‖H̃‖q1,2;∞, we obtain ‖f (n0+1)‖pn0+1,2;∞ ≤ C(q1, |γ′0|∞) ‖U0‖q1 . Since

∂tH−∆xH = 0, we further get ∂tH̃ −∆xH̃+ τ ∂x1H̃(t) = −f (n0+1), and therefore∫ ∞
a

∫
Ω
c

(
−ϕ′(t) H̃(t) · ϑ+ ϕ(t)

[
∇xH̃(t) · ∇ϑ+ τ ∂x1H̃(t) · ϑ+ f (n0+1)(t) · ϑ

])
dx dt

−ϕ(a)

∫
Ω
c
H̃(a) · ϑ dx = 0 for a ∈ (0,∞), ϕ ∈ C∞0

(
[0,∞)

)
, ϑ ∈ C∞0,σ(Ω

c
).

Since H̃ ∈ C0
(

[0,∞), Lq1(R3)3
)
, the preceding equation remains valid for a = 0. Recalling

that H̃(0) = U0, we thus see that equation (3.9) holds with H̃ in the role of u and with
E = Ω, T0 =∞ and f = −f (n0+1).

Now put w := u − H̃. Then w(t) ∈ W 1,1
loc (Ω

c
)3
(
t ∈ (0,∞)

)
, ∇xw ∈ L2

(
0,∞, Lq1(Ω

c
)3
)

and divxw = 0. We recall that H̃ ∈ L2
(

0,∞, Lq1(R3)3
)

and u ∈ L2
(

0,∞, Lq0(Ω
c
)3
)
,
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and we observe that equation (3.9) is valid with u and f replaced by w and
∑n0+1

j=1 f (j),
respectively, and with E = Ω, T0 = ∞, U0 = 0. Thus all assumptions of Theorem 5.1

are satisfied if the numbers n0, q
(1)
0 , q

(2)
0 and the functions u, u(1), u(2) are replaced by

n0 + 1, q0, q1, w, u and −H̃|Ωc × (0,∞), respectively, and pn0+1 and f (n0+1) are chosen
as above. This theorem then yields existence of a zero measure set N ⊂ R, an element
t0 ∈ J\N and functions % ∈ L2

(
R, Lq(∂BS2)3

)
, G(j) ∈ C0

(
[0,∞), Lpj (BS1

c
)3
)

(1 ≤
j ≤ n0 + 8) such that the statements of this theorem hold with n0, q

(1)
0 , q

(2)
0 , u, u(1), u(2)

replaced as specified above.

Let us indicate how Corollary 5.1 follows from these statements. With the function E
defined in Theorem 5.1, we have E(t) ∈ C∞(Bc

S1
)3 (t ∈ R), divxE = 0, and ‖E‖r,2;R ≤ CM

for r ∈ (3/2, ∞), ‖∇xE‖r,2;R ≤ CM for r ∈ (1, ∞), where M is an abbreviation for

‖u‖q0,2;∞+‖H̃|Ωc×(0,∞)‖q1,2;∞+‖∇x(u−H̃)‖q1,2;∞. But the estimates of H̃ given above
yield M ≤ C (‖u‖q0,2;∞+‖∇xu‖q1,2;∞+‖U0‖q1), so we obtain the upper bounds of ‖E‖r,2;R
and ‖∇E‖r,2;R stated in the corollary. Equation (5.2) is valid with w in the role of u and
with the upper bound n0 + 8 instead of n0 + 7 in the first sum on the right-hand side.
Inequality (5.3), for R ∈ (S1,∞), Z ⊂ {1, ..., n0 + 1}, t ∈ R, takes the form

‖
n0+8∑

j=1, j /∈Z

G(j)(t)|AR,S1‖q ≤ C
(
M +

n0+1∑
j=1, j /∈Z

‖f (j)‖pj ,2;∞ (5.23)

+
∑
j∈Z
‖
(
U(j) − U(j)(t0)

)
|AR,S1 × (t− 1, t)‖

L1
(
t−1, t, Lq(AR,S1 )3

)).
Put G(j) := G(j)|BS1

c × [0,∞) (1 ≤ j ≤ n0 + 8), G(n0+9) := H̃|BS1

c × [0,∞). Again
by the properties of H̃ derived above, and by the definition of pn0+9 in the corollary,
we see that G(n0+9) ∈ C0

(
[0,∞), Lpn0+9(BS1

c
)3
)

and ‖G(n0+9)(t)‖pn0+9 ≤ C ‖U0‖q1
(
t ∈

[0,∞)
)
. Equation (5.21) follows from the modified version of (5.2) described above and the

definition of w and G(n0+9). We further recall that ‖f (n0+1)‖pn0+1,2;∞ and ‖G(n0+9)(t)‖pn0+9

for t ∈ (0,∞) are bounded by C ‖U0‖q1 , and we note that because q ≤ q1, the inequality
‖G(n0+9)(t)|AR,S1‖q ≤ C(R, q, q1) ‖G(n0+9)(t)|AR,S1‖q1 holds for R ∈ (S1,∞), t ∈ (0,∞).
Due to these relations and the estimate of M given above, inequality (5.22) becomes an
immediate consequence of (5.23). �

The ensuing corollary introduces a representation formula for a velocity u given as in the
preceding corollary.

Corollary 5.2 Consider the situation in Corollary 5.1, with E, G(j), pj (1 ≤ j ≤ n0 + 9)
introduced as in that reference. Put v(t) := u(t)− E(t)|BS1

c (
t ∈ (0,∞)

)
. By (5.21) with

Z = ∅, we may suppose without loss of generality that v(t) =
∑n0+9

j=1 G(j)(t) for t ∈ (0,∞).

As in Theorem 3.6, put n(S0)(y) := S−1
0 y for y ∈ ∂BS0. Then for t ∈ (0,∞), there is a
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zero measure set Nt ⊂ BR0

c
such that

u(x, t) = E(x, t) (5.24)

+R(τ)(f)(x, t) + I(τ)
(
U0|BS0

c
)(x, t)−

3∑
l=1

∂xlV
(τ,BS0 )(n

(S0)
l v)(x, t)

−
∫
∂BS0

(∇N)(x− y)
(
n(S0)(y) · v(y, t)

)
doy + KR0,S0,ϕ0,BS0 ,T0

(v)(x, t)

−
∫
AR1,S0

GR0,S0,ϕ0(x, y, t) · U0(y) dy −
∫ t

0

∫
AR1,S0

GR0,S0,ϕ0(x, y, t− s) · f(y, s) dy ds

for x ∈ BR0

c\Nt, with T0 = ∞, f =
∑n0

j=1 f
(j)|BS0

c × (0,∞), where GR0,S0,ϕ0 was in-
troduced in Theorem 3.5, and KR0,S0,ϕ0,BS0 ,T0

(v) was defined in (3.8). The function N
was introduced following Theorem 3.1,and the parameters R0, S0, R1 were fixed at the
beginning of the present section.

Proof: We are going to apply Theorem 3.6. So let us check its assumptions using Corollary
5.1. Since E ∈ L2

(
R, Lr(Bc

S1
)3
)

for r ∈ (3/2, ∞) by Corollary 5.1, and because u ∈
L2
(

0,∞, Lq0(Ω
c
)3
)
, we get v|AS0,S1×(0,∞) ∈ L2

(
0,∞, Lmin{2, q0}(AS0,S1)3

)
. In addition

v(t) ∈ W 1,1
loc (BS1

c
)3
(
t ∈ (0,∞)

)
, divxv = 0 and ∇xv ∈ L2

(
0,∞, Lq1(BS1

c
)9
)
, due to

analogous properties of E and u. Further recall that v(t) =
∑n0+9

j=1 G(j)(t) (t > 0). Define

Z(x, t) :=
∫
∂BS2

N(x − y)S−1
2 y · %(y, t) doy for x ∈ BS2

c
, t ∈ R, with % introduced in

Corollary 5.1 and appearing in the definition of E (Theorem 5.1), and S2 fixed at the
beginning of the present section. By Lebesgue’s theorem and because S2 < S1, we have
Z(t) ∈ C∞(BS2

c
) and ∇xZ(t)|Bc

S1
= E(t) (t ∈ R). It follows that

∫
BS1

c ∂xσl v(t) · ϑ dx =∫
BS1

c ∂xσl u(t) · ϑ dx for ϑ ∈ C∞0,σ(BS1

c
), t ∈ (0,∞), σ ∈ {0, 1}, 1 ≤ l ≤ 3. Recall that u

satisfies equation (3.9) with E = Ω, T0 = ∞ and f =
∑n0

j=1 f
(j). At this point we may

conclude that (3.9) holds with E = BS1 , T0 = ∞ and f =
∑n0

j=1 f
(j)|BS1

c × (0,∞), and
with u replaced by v. We thus see that all assumptions in Theorem 3.6 are satisfied if T0, E
and u are chosen in this way in this theorem, and if m0, p̃, q0, %l, G

(l) (1 ≤ l ≤ m0), U0

are replaced by n0 + 9, q1, min{q0, 2}, pj , G(j)|BS0

c× [0,∞) (1 ≤ j ≤ n0 + 9) and U0|BS1

c
,

respectively. Thus equation (5.24) follows from (3.10). �

Now we are in a position to derive decay estimates of u.

Theorem 5.2 Consider the same situation as in Corollary 5.1, with the choice J =
(−1, 0). Suppose in addition that u|AR1,S0 × (0,∞) ∈ L∞

(
0,∞, Lq2(AR1,S0)3

)
for some

q2 ∈ (1,∞). Recall the zero measure set N ⊂ R and the number t0 ∈ (−1, 0)\N introduced
in Corollary 5.1, and the functions U(j) (1 ≤ j ≤ n0) from (5.1). Then there is a zero
measure set Ñ ⊂ R with N ⊂ Ñ such that

|∂αx
[
u−R(τ)

(∑n0

j=1
f (j)|BS0

c × (0,∞)
)
− I(τ)(U0|BS0

c
)
]
(x, t)| (5.25)

≤ C
((
|x| ν(x)

)−5/4−|α|/2
+ |x|−2+|α|

)(
‖u‖q0,2;∞ + ‖∇xu‖q1,2;∞

+‖U0‖q1 + ‖u|AR1,S0 × (0,∞)‖q2,∞;∞ +
∑n0

j=1
‖f (j)|BS0

c × (0, t)‖pj ,2;t

+
∑n0

j=1, j /∈Z
‖f (j)|BS0

c × (0,∞)‖pj ,2;∞ +
∑
j∈Z

sup
s∈(−1,t]\N

‖U(j)(s)|AR1,S1‖q
)
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for t ∈ (0,∞)\Ñ , x ∈ BR0

c\Nt, α ∈ N3
0 with |α| ≤ 1, and Z ⊂ {1, ..., n0}, with Nt ⊂ BR0

c

chosen as in Corollary 5.2. In particular (Z = ∅),

|∂αx
[
u−R(τ)

(∑n0

j=1
f (j)|BS0

c × (0,∞)
)
− I(τ)(U0|BS0

c
)
]
(x, t)| (5.26)

≤ C
((
|x| ν(x)

)−5/2−|α|/2
+ |x|−2+|α|

) (
‖u‖q0,2;∞ + ‖∇xu‖q1,2;∞

+‖U0‖q1 + ‖u|AR1,S0 × (0,∞)‖q2,∞;∞ +
∑n0

j=1
‖f (j)|BS0

c × (0,∞)‖pj ,2;∞
)

for t, x and α as in (5.25). If
∫
∂Ω u(t) · n(Ω) dox = 0 for t ∈ (0,∞), the term |x|−2−|α| in

these upper bounds may be dropped.

Proof: We use equation (5.24). So, as in Corollary 5.2, we define the function v :=
u− E|BS1

c × (0,∞) and suppose without loss of generality that v(t) =
∑n0+9

j=1 G(j)(t) for

t ∈ (0,∞), where the functions G(j) ∈ C0
(

[0,∞), Lpj (BS1

c
)3
)

(1 ≤ j ≤ n0 + 9) were
introduced in Corollary 5.1, as were the exponents p1, ..., pn0+9 and q. For brevity, put
B := AR1,S0 × (0,∞), M := ‖u‖q0,2;∞ + ‖∇xu‖q1,2;∞ + ‖U0‖q1 . Since S1 < S0, q ≤ pj
and G(j) ∈ C0

(
[0,∞), Lpj (BS1

c
)3
)

(1 ≤ j ≤ n0 + 9), we may conclude that v|B ∈
C0
(

[0,∞), Lq(AR1,S0)3
)
. By the choice of q, we have q ≤ q0 and q ≤ q1, so ‖u|B‖q,2;∞ ≤

C(R0) ‖u|B‖q0,2;∞ ≤ C(R0)M, and similarly ‖∇xu|B‖q,2;∞ ≤ C(R0)M. Moreover we
know from Corollary 5.1 that ‖E‖max{2,q}, 2;R ≤ CM and ‖∇xE‖q,2;R ≤ CM, so we may
conclude by the definition of v that

‖v|B‖q,2;∞ ≤ ‖u|B‖q,2;∞ + ‖E|B‖q,2;R ≤ C(R0) (M + ‖E|B‖max{q,2}, 2;R) ≤ CM,

and similarly ‖∇xv|B‖q,2;∞ ≤ CM. Together we have

‖u|B‖q,2;∞ + ‖∇xu|B‖q,2;∞ + ‖v|B‖q,2;∞ + ‖∇xv|B‖q,2;∞ ≤ CM. (5.27)

By Lemma 3.4 and the definition of the norm of L∞
(

0,∞, Lq2(AR1,S0)3
)
, and because

N ⊂ R has measure zero, we may choose a set Ñ ⊂ R also of measure zero such that
N ⊂ Ñ ,

R(τ)(t) ∈W 1,1
loc (R3)3 and ‖u(t)|AR1,S0‖q2 ≤ 2 ‖u|B‖q2,∞;∞ for t ∈ (0,∞)\Ñ . (5.28)

Let t ∈ (0,∞)\Ñ , x ∈ BR0

c\Nt and α ∈ N3
0 with |α| ≤ 1. We are going to estimate the

relevant terms on the right-hand side of (5.24). Lemma 3.6 with A = BS0 yields that

|∂αx ∂xlV(τ,BS0 )(n(S0) · v)(x, t)| (5.29)

≤ C (‖v|B‖q,2;∞ + ‖∇xv|B‖q,2;∞)
(
|x| ν(x)

)−(5/2+|α|)/2
(1 ≤ l ≤ 3).

Since U0 ∈ Lq1(Ω
c
)3, we get with (3.6) and Corollary 3.1 that∣∣∣∂αx(∫

AR1,S0

GR0,S0,ϕ0(x, y, t) · U0(y) dy
)∣∣∣ ≤ C ‖U0‖q1

(
|x| ν(x)

)−(3+|α|)/2
. (5.30)

Moreover, with (3.7) and Corollary 3.1,∣∣∣∂αx(∫ t

0

∫
AR1,S0

GR0,S0,ϕ0(x, y, t− s) ·
n0∑
j=1

f (j)(y, s) dy ds
)∣∣∣ (5.31)

≤ C
∑n0

j=1
‖f (j)|BS0

c × (0, t)‖pj ,2;t

(
|x| ν(x)

)−(5/2+|α|)/2
.
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In addition we may conclude by Corollary 3.2 with Ω, u replaced byBS0 and v, respectively,
and with T0 =∞ that

|∂αxKR0,S0,ϕ0,BS0 ,∞(v)(x, t)| (5.32)

≤ C
(
‖v|B‖q,2;∞ + ‖∇xv|B‖q,2;∞ + ‖v(t)|AR1,S0‖q

) (
|x| ν(x)

)−(5/2+|α|)/2
.

We turn to the main difficulty of this proof, which consists in estimating the term A :=
∂αx
(
E(x, t)−

∫
∂BS0

(∇N)(x−y)
[
n(S0)(y) ·v(y, t)

]
doy

)
. Our estimate is based on the split-

ting A = A1+A2+∂αxE(x, t), where A1 := ∂αx
(
−
∫
∂BS0

(∇N)(x−y)
[
n(S0)(y)·u(y, t)

]
doy

)
,

and A2 := ∂αx
( ∫

∂BS0
(∇N)(x − y)

[
n(S0)(y) · E(y, t)

]
doy

)
. We cannot directly evaluate

|∂αxE(x, t)| because we do not have a bound for ‖%(t)‖q, where % was introduced in Corol-
lary 5.1 and appears in the definition of E (Theorem 5.1). In order to handle this diffi-
culty, we define Z(z, s) :=

∫
∂BS2

N(z − y)S−1
2 y · %(y, s) doy for z ∈ BS2

c
, s ∈ R, as in

the proof of Corollary 5.2. Recalling what is already stated in that proof, we note that
Z(s) ∈ C∞(BS2

c
) and ∇xZ(s)|Bc

S1
= E(s) (s ∈ R). Since ∆N = 0, we further have

∆xZ = 0. Returning to the point x and the time t fixed above, we take S ∈ [2 |x|, ∞) and
put n(S,S0)(y) := S−1 y for y ∈ ∂BS , n(S,S0)(y) := −S−1

0 y for y ∈ ∂BS0 , so that n(S,S0) is
the outward unit normal to AS,S0 . Using a standard representation formula for harmonic
functions, we obtain

Z(z, t) =

∫
∂AS,S0

[
N(z − y)n(S,S0)(y) · ∇yZ(y, t) +

(
(∇N)(z − y) · n(S,S0)(y)

)
Z(y, t)

]
doy

for z ∈ AS,S0 , in particular for z ∈ A2 |x|, S0
. But |∂yσl Z(y, t)| ≤ C(S2, R0) ‖%‖1 |y|−1−|σ| for

y ∈ Bc
|x| because S2 < R0 < |x|. Moreover |(∂σl N)(z−y)| ≤ C |z−y|−1−|σ| ≤ C(|x|) |y|−1−σ

for z ∈ A2 |x|, S0
, y ∈ Bc

4 |x|. Therefore, by letting S tend to infinity in the preceding

equation for Z(z, t) and recalling the definition of n(S,S0), we obtain

Z(z, t) = −
∫
∂BS0

[
N(z − y)S−1

0 y · ∇yZ(y, t) +
(

(∇N)(z − y) · S−1
0 y

)
Z(y, t)

]
doy

for z ∈ A2 |x|, S0
. By taking the gradient of both sides of the preceding equation, choosing

z = x, and using that ∇xZ|Bc
S1
× R = E, we arrive at the equation

E(x, t) = −
∫
∂BS0

[
(∇N)(x− y)

(
S−1

0 y · E(y, t)
)

+∇x
(

(∇N)(x− y) · S−1
0 y

)
Z(y, t)

]
doy.

Putting A3 := −∂αx
[ ∫

∂BS0
∇x
(

(∇N)(x − y) · S−1
0 y

)
Z(y, t) doy

]
, and recalling that A =

A1 + A2 + ∂αxE(x, t), we conclude that A = A1 + A3. But according to Lemma 3.7 with
A replaced by BS0 , the estimate |A1| ≤ C ‖u(t)|AR1,S0‖q2 |x|−2−|α| holds. In addition,
if
∫
∂Ω u(s) · n(Ω) doy = 0 for s ∈ (0,∞), we have

∫
∂BS0

u(y, s) · |y|−1 y doy = 0 by the

Divergence theorem and because u(s)|ΩS0 ∈ W 1,q(ΩS0)3 and divxu(s) = 0
(
s ∈ (0,∞)

)
.

Therefore under the condition
∫
∂Ω u(s) · n(Ω) doy = 0 for s ∈ (0,∞), Lemma 3.7 with

A replaced by BS0 implies that the preceding estimate of |A1| is valid with the exponent
−2−|α| replaced by −3−|α|. Therefore, putting γ := 3 if the preceding zero flux condition
is true, and γ := 2 else, we get

|A1| ≤ C ‖u(t)|AR1,S0‖q2 |x|−γ−|α|. (5.33)
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In order to handle the term A3, we put γ := |AR1,S0 |−1
∫
AR1,S0

Z(y, t) dy. Since x ∈ BR0

c
,

we find that
∫
∂BS0

∂αx∇x
(

(∇N)(x− y) · S−1
0 y

)
doy = −

∫
BS0

∂αx∇x
(

(∆N)(x− y)
)
dy = 0,

so we may conclude that A3 = −
∫
∂BS0

∂αx∇x
(

(∇N)(x−y)·S−1
0 y

) (
Z(y, t)−γ

)
doy. Again

since x ∈ BR0

c
, hence |x − y| ≥ (1 − S0/R0) |x| for y ∈ ∂BS0 , we arrive at the inequality

|A3| ≤ C |x|−3−|α| ‖Z(t)−γ|∂BS0‖1. Moreover, by a standard trace theorem and Poincaré’s
inequality, ‖Z(t) − γ|∂BS0‖1 ≤ C ‖Z(t) − γ|AR1,S0‖1,1 ≤ C ‖∇xZ(t)|AR1,S0‖1. Recalling
that ∇xZ(s)|Bc

S1
= E(s) (s ∈ R), we thus get

‖Z(t)− γ|∂BS0‖1 ≤ C ‖E(t)|AR1,S0‖min{q,q2} ≤ C (‖v(t)|AR1,S0‖q + ‖u(t)|AR1,S0‖q2).

As a consequence, |A3| ≤ C (‖v(t)|AR1,S0‖q + ‖u(t)|AR1,S0‖q2) |x|−3−|α|. Combining this
estimate with the equation A = A1 +A3 mentioned above, and with (5.33), (5.28) and the
assumption t ∈ (0,∞)\Ñ , we obtain |A| ≤ C (‖v(t)|AR1,S0‖q+‖u|B‖q2,∞;∞) |x|−γ−|α|. Now
we combine the representation formula (5.24) with the preceding estimate, the inequalities
(5.29) – (5.32), (5.27) and (5.28), and the definition of A. It follows that the left-hand
side of (5.25) is bounded by

C
(
M +

n0∑
j=1

‖f (j)|Bc
S0
× (0, t)‖pj ,2;t + ‖u|B‖q2,∞;∞ + ‖v(t)|AR1,S0‖q

)
(5.34)

[ (
|x| ν(x)

)−(5/2+|α|)/2
+ |x|−γ−|α|

]
for a. e. x ∈ BR0

c
. It remains to estimate ‖v(t)|AR1,S0‖q. Let Z ⊂ {1, ..., n0}. Since

t /∈ Ñ , hence t /∈ N, equation (5.21) holds. This equation, the relation S0 > S1, the choice
of t0 in Theorem 5.2 and inequality (5.22) yield

‖v(t)|AR1,S0‖q ≤ C
(
M +

∑n0

j=1, j /∈Z
‖f (j)‖pj ,2;∞ +

∑
j∈Z

sup
r∈(−1,t]\N

‖U(j)(r)|AR1,S1‖q
)
.

In view of the upper bound of the left-hand side of (5.25) given in (5.34), the preceding
inequality completes the proof of (5.25). Note that if γ = 3 in (5.33), we have |x|−γ−|α| ≤
C
(
|x| ν(x)

)−5/4−|α|/2
, so the term |x|−γ−|α| may be dropped in (5.34), and thus in (5.25)

and (5.26) as well. �

This leaves us to consider the case T0 <∞. The basic idea consists, of course, to extend a
solution u of (3.9) on (0, T0) to a solution ũ of a similar equation on (0,∞). To this end,
we fix an arbitrary number T ∈ (0, T0), cut off u smoothly between T and T0, and define
ũ as the zero extension of this truncated version of u. Then we apply Theorem 5.2 to ũ, in
the hope of extracting an upper bound of ũ|(0, T ) = u|(0, T ) only depending on suitable
norms of u, but not on negative powers of T0−T. However, this approach turned out to be
difficult since the function % introduced in Corollary 5.1 and entering into the definition
of E is defined via Fourier transforms involving ũ. Thus the contribution of ũ|(T, T0) to
an upper bound of ũ|(0, T ) is difficult to evaluate. This is the reason why we introduced
the functions U(j) in Theorem 5.1 and carried them all the way to Theorem 5.2. Only
one of them will be relevant (a fact we did not use up to this point because it would not
have really simplified the notation): the function U(n0+1) below is an explicit form of the
critical Fourier transforms that will have to be estimated.

Theorem 5.3 Suppose that T0 ∈ (0,∞). Let n0 ∈ N, p1, ..., pn0 ∈ (1,∞), f (j) ∈
L2
(

0, T0, L
pj (Ω

c
)3
)

for 1 ≤ j ≤ n0. Let q1 ∈ (1,∞) be such that condition (5.20) is
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valid. Let U0 ∈ Lq1σ (R3), q0, q2 ∈ (1,∞), u ∈ L2
(

0, T0, L
q0(Ω

c
)3
)
∩ L∞

(
0, T0, L

q2(Ω
c
)3
)

with u(t) ∈ W 1,1
loc (Ω

c
)3, divxu(t) = 0 for t ∈ (0, T0), and ∇xu ∈ L2

(
0, T0, L

q1(Ω
c
)9
)
.

Suppose that equation (3.9) holds with A = Ω, f =
∑n0

j=1 f
(j). Then there is a zero mesure

set Ñ ⊂ R such that

|∂αx
[
u−R(τ)

(∑n0

j=1
f (j)|BS0

c × (0, T0)
)
− I(τ)(U0|BS0

c
)
]
(x, t)| (5.35)

≤ C
((
|x| ν(x)

)−5/2−|α|/2
+ |x|−2+|α|

) (
‖u‖q0,2;T0 + ‖∇xu‖q1,2;T0

+‖U0‖q1 + ‖u‖q2,∞;T0 +
∑n0

j=1
‖f (j)|BS0

c × (0, T0)‖pj ,2;∞
)

for t ∈ (0, T0)\Ñ , a. e. x ∈ BR0

c
, α ∈ N3

0 with |α| ≤ 1. If
∫
∂Ω u(t) · n(Ω) dox = 0

for t ∈ (0, T0), the factor |x|−2−|α| in (5.35) may be dropped. The constant in (5.35) is
independent of T0.

Proof: Fix some function ψ0 ∈ C∞(R) with ψ0|(−∞, 1/4] = 0, ψ0|[3/4, ∞) = 1, ψ′0 ≥ 0
and 0 ≤ ψ0 ≤ 1. Let T ∈ (0, T0), and put ϕT (s) := ψ0

(
(T0−s)/(T0−T )

)
for s ∈ R, T2 :=

3T/4 + T0/4, T1 := T/4 + 3T0/4. Then T < T2 < T1 < T0, ϕT ∈ C∞(R), 0 ≤ ϕT ≤
1, ϕT |(−∞, T2] = 1, ϕT |[T1,∞) = 0, ϕ′T ≤ 0 and supp(ϕ′T ) ⊂ [T2, T1]. All the con-

stants C appearing in the following are independent of T and T0. Further define f
(j)

(t) :=

ϕT (t) f (j)(t) for t ∈ (0, T0), 1 ≤ j ≤ n0, f
(n0+1)

(t) := ϕ′T (t)u(t), u(t) := ϕT (t)u(t)

for t ∈ (0, T0). The functions f
(1)
, ..., f

(n0+1)
, u are supposed to vanish on [T0,∞). We

additionally put pn0+1 := q2. Since supp(ϕ′T ) ⊂ [T2, T1] and u ∈ L∞
(

0, T0, L
q2(Ω

c
)3
)
,

we have in particular that f
(n0+1) ∈ L2

(
0,∞, Lpn0+1(Ω

c
)3
)
. It is obvious that u ∈

L2
(

0,∞, Lq0(Ω
c
)3
)
∩ L∞

(
0,∞, Lq2(Ω

c
)3
)
, u(t) ∈ W 1,1

loc (Ω)3, divxu(t) = 0 for t ∈
(0,∞)

)
, ∇xu ∈ L2

(
0,∞, Lq1(Ω

c
)9
)

and

‖f (j)|Bc
S0
× (0,∞)‖pj ,2;∞ ≤ ‖f (j)|Bc

S0
× (0, T0)‖pj ,2;T0 (1 ≤ j ≤ n0), (5.36)

‖u‖q0,2;∞ ≤ ‖u‖q0,2;T0 , ‖u‖q2,∞;∞ ≤ ‖u‖q2,∞;T0 , ‖∇xu‖q1,2;∞ ≤ ‖∇xu‖q1,2;T0 .

By the definition of f
(n0+1)

and because ϕT |[T1,∞) = 0, we further get that equation

(3.9) is fulfilled with A = Ω, T0 =∞, f =
∑n0+1

j=1 f
(j)
, and with u in the place of u. Thus

we see that all assumptions of Corollary 5.1 and Theorem 5.2 are satisfied with n0 + 1, u

in the role of n0 and u, respectively, and f
(j)

(1 ≤ j ≤ n0 + 1) in that of f (j) (1 ≤ j ≤ n0).
Therefore we may apply Theorem 5.2 with these replacements. This means in particular
there are zero measure sets N, Ñ ⊂ R with N ⊂ Ñ , and a sequence (Rn) in (1,∞)
with the following two properties. Firstly, the limit U(n0+1)(t) := limn→∞An(t) exists in
Lpn0+1(BS2

c
)3 for t ∈ R\N, where

An(t) (5.37)

:= (2π)−1/2

∫
(−Rn,Rn)\(−1,1)

ei t ξ (i ξ Ipn0+1 +Apn0+1)−1
(
Ppn0+1

(
[f

(n0+1)
]∧(ξ)|BS2

c ))
dξ

for n ∈ N, t ∈ R. This integral is to be understood as a Bochner integral with values in
Lpn0+1(BS2

c
)3. The operator Ppn0+1 is to be chosen as in Theorem 2.4, and the operators

Ipn0+1 and Apn0+1 as in Corollary 3.1, each time with BS2

c
in the place of A. The second

property associated with the sequence (Rn) and the sets N and Ñ is that for t ∈ (0,∞)\Ñ ,
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a. e. x ∈ BR0

c
, α ∈ N3

0 with |α| ≤ 1 and Z ⊂ {1, ..., n0 + 1}, inequality (5.25) holds

with n0 + 1, u, f
(j)

(1 ≤ j ≤ n0 + 1) in the role of n0, u and f (j) (1 ≤ j ≤ n0),
respectively. We choose Z = {n0 + 1}, and use the possibility to fix the parameter
q ∈ (1,∞), under the restriction that it is below the threshold imposed in Corollary 5.1,
setting q := min({q0, q1, q2} ∪ {pj : 1 ≤ j ≤ n0 + 1}). Then we get for t ∈ (0, T )\Ñ , a. e.
x ∈ BR0

c
and α ∈ N3

0, |α| ≤ 1 that

Nα,x,t ≤ CV(x, α) (M(t) + sup
r∈(−1,t]\N

‖U(n0+1)(r)|AR1,S1‖q), (5.38)

with Nα,x,t := |∂αx
[
u−R(τ)

(∑n0+1
j=1 f

(j)|BS0

c × (0,∞)
)
− I(τ)(U0|BS0

c
)
]
(x, t)|,

M(t) := ‖u‖q0,2;∞ + ‖∇xu‖q1,2;∞ + ‖U0‖q1 + ‖u|AR1,S0 × (0,∞)‖q2,∞;∞

+
∑n0+1

j=1
‖f (j)|BS0

c × (0, t)‖pj ,2;t +
∑n0

j=1
‖f (j)|BS0

c × (0,∞)‖pj ,2;∞,

and V(x, α) :=
(
|x| ν(x)

)−5/4−|α|/2
+ |x|−2−|α|, where the term |x|−2−|α| may be dropped

if the integral
∫
∂Ω u(s) · n(Ω) doy vanishes for s ∈ (0, T0), a condition which means that∫

∂Ω u(s)·n(Ω) doy = 0 for s ∈ (0,∞).We are going to exploit (5.38) in the case t ∈ (0, T )\Ñ .
Since f (j)|(0, T ) = f

(j)|(0, T ) for 1 ≤ j ≤ n0, we get R(τ)
(
f (j)|BS0

c × (0, T0)
)
(x, t) =

R(τ)
(
f

(j)|BS0

c × (0,∞)
)
(x, t) for 1 ≤ j ≤ n0, t ∈ (0, T ), x ∈ R3. Also f

(n0+1)|(0, T ) = 0,

so R(τ)
(
f

(n0+1)|BS0

c × (0,∞)
)
(x, t) = 0 for t, x as before. Recalling that u|(0, T ) =

u|(0, T ), we thus get

Nα,x,t = |∂αx
[
u−R(τ)

( n0∑
j=1

f (j)|BS0

c × (0, T0)
)
− I(τ)(U0|BS0

c
)
]
(x, t)|, (5.39)

for t ∈ (0, T ), x ∈ BR0

c
, α ∈ N3

0 with |α| ≤ 1. Again since f
(n0+1)|(0, T ) = 0, and because

of (5.36), we find

M(t) ≤ ‖u‖q0,2;T0 + ‖∇xu‖q1,2;T0 + ‖U0‖q1 + ‖u‖q2,∞;T0 (5.40)

+
∑n0

j=1
‖f (j)|BS0

c × (0, T0)‖pj ,2;T0

for t ∈ (0, T ). We still have to estimate the term supr∈(−1,t]\N ‖U(n0+1)(r)|AR1,S1‖q for

t ∈ (0, T )\N. Our starting point is the relation ‖U(n0+1)(s) − An(s)‖pn0+1 → 0 (n → ∞)
for s ∈ R\N, with An(s) defined in (5.37). We recall that pn0+1 = q2 by the definition of
pn0+1 further above. Therefore we may write q2 instead of pn0+1 in the following. We put
g(r) := Pq2

(
u(r)|BS2

c )
for r ∈ [T2, T1]. Theorem 2.4 yields

‖g(r)‖q2 ≤ C ‖u(r)|BS2

c‖q2 for r ∈ [T2, T1]. (5.41)

By the definition of f
(n0+1)

, by Corollary 2.1 and because supp(ϕ′T ) ⊂ [T2, T1], we have

Pq2
(

[f
(n0+1)

]∧(ξ)|BS2

c )
= (2π)−1/2

∫ T1
T2
ϕ′T (r) e−i ξ r g(r) dr, with the Bochner integral be-

ing Lq2(BS2

c
)3-valued. Due to Fubini’s theorem for Bochner integrals (Theorem 2.8), the

estimate at the end of Theorem 3.1, the assumption u ∈ L∞
(

0, T0, L
q2(Ω

c
)3
)

and (5.41),
we get for s ∈ R that

An(s) = (2π)−1

∫ T1

T2

ϕ′T (r)

∫
(−Rn,Rn)\(−1,1)

ei ξ (s−r) (i ξ Iq2 +Aq2)−1
(
g(r)

)
dξ dr, (5.42)
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where both Bochner integrals are Lq2(BS2

c
)3-valued. Let B denote the space of linear

bounded operators of the space Lq2(BS2

c
)3 into itself. We equip B with its usual norm,

which we denote by ‖ ‖B. In the rest of this proof, all Bochner integrals with respect to
the variable λ are to be understood as B-valued.

Take s ∈ (−∞, T )\N. The constants C appearing in what follows are independent of s
and, of course, of T and T0. For r ∈ [T2, T1], define T(λ, r, s) := e(s−r)λ (λ Iq2 + Aq2)−1

for λ ∈ C\(−∞, 0]. Referring to Theorem 3.1, we see that T( · , r, s) : C\(−∞, 0] 7→ B is
holomorphic for any r ∈ [T2, T1]. Morever, by the same reference, for any ϑ ∈ [0, π), the
inequality

‖T(λ, r, s)‖B ≤ C(ϑ) e(s−r)<λ |λ|−1 (r ∈ [T2, T1], λ ∈ C\{0} with | arg(λ)| ≤ ϑ) (5.43)

is valid. Set Λ
(n)
1 := {i a : a ∈ [−Rn,−1]}, Λ

(n)
2 := {i a : a ∈ [1, Rn]} (n ∈ N). Then,

using Theorem 2.5, we may rewrite (5.42) in the form

An(s) = (2π i)−1

∫ T1

T2

ϕ′T (r)
( 2∑
j=1

∫
Λ
(n)
j

T(λ, r, s) dλ
)
g(r) dr (n ∈ N). (5.44)

Here and in the following, all line integrals are to be oriented as is indicated implicitly by
the way we define the respective curve. Fix some angle ϑ ∈ [0, π/2). For n ∈ N, define

Λ
(n)
3 := {Rn e−i (π/2−ϕ) : ϕ ∈ [0, π/2 − ϑ]}, Λ

(n)
4 := {−a e−i ϑ : a ∈ [−Rn,−1]}, Λ5 :=

Λ
(n)
5 := {e−i ϕ : ϕ ∈ [ϑ, π/2]}, Λ6 := Λ

(n)
6 := {ei (π/2−ϕ) : ϕ ∈ [0, π/2 − ϑ]}, Λ

(n)
7 :=

{a ei ϑ : a ∈ [1, Rn]}, Λ
(n)
8 := {Rn ei ϕ : ϕ ∈ [ϑ, π/2]}. Since T( · , r, s) : C\(−∞, 0] 7→ B is

holomorphic, we find∑2

j=1

∫
Λ
(n)
j

T(λ, r, s) dλ =
∑8

j=3

∫
Λ
(n)
j

T(λ, r, s) dλ for n ∈ N, r ∈ [T2, T1]. (5.45)

Define Λ9 := {e−i ϕ : ϕ ∈ [−π/2, π/2]}, Λ10 := Λ
(n)
10 := {ei ϕ : ϕ ∈ [−ϑ, ϑ]}, L(s) :=

(2π i)−1
∫ T1
T2
ϕ′T (r)

(∫
Λ9

T(λ, r, s) dλ
)
g(r) dr. Then we find that

∑
j∈{5, 6}

∫
Λj

T(λ, r, s) dλ =∑
j∈{9, 10}

∫
Λj

T(λ, r, s) dλ for r ∈ [T2, T1]. From (5.44), (5.45) and the preceding equation,

for n ∈ N,

An(s) = (2π i)−1

∫ T1

T2

ϕ′T (r)
( ∑
j∈{3, 4, 10, 7, 8}

∫
Λ
(n)
j

T(λ, r, s) dλ
)
g(r) dr + L(s). (5.46)

If r ∈ [T2, T1], we have s < T < T2 ≤ r, so r− s > T2−T > 0. For r ∈ [T2, T1], n ∈ N with

Rn > T2−T, define Λ
(n,r)
3 := Λ

(n)
3 , Λ

(n,r)
11 := {−a e−i ϑ : a ∈ [−Rn, −(r− s)−1]}, Λ

(n,r)
12 :=

Λ
(r)
12 := {(r − s)−1 ei ϕ : ϕ ∈ [−ϑ, ϑ]}, Λ

(n,r)
13 := {a ei ϑ : a ∈ [(r − s)−1, Rn]}, Λ

(n,r)
8 :=

Λ
(n)
8 . Again because T( · , r, s) : C\(−∞, 0] 7→ B is holomorphic, equation (5.46) remains

valid for n ∈ N with Rn > (T2 − T )−1 if the sum with respect to j is extended over
j ∈ {3, 11, 12, 13, 8} instead of j ∈ {3, 4, 10, 7, 8}. In the next step, we let n tend to

infinity. To this end, we define Λ
(r)
14 := {−a e−i ϑ : a ∈ (−∞, −(r−s)−1]}, Λ

(r)
15 := {a ei ϑ :

a ∈ [(r − s)−1, ∞)} for r ∈ [T2, T1]. Inequality (5.43) implies that∥∥∥ ∑
j∈{14, 12, 15}

∫
Λ
(r)
j

T(λ, r, s) dλ
∥∥∥
B
≤ C for r ∈ [T2, T1], (5.47)
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with a constant C independent of s and r. Usually the role of the negative real s − r
appearing in the definition of T is taken by a positive real, and ϑ is supposed to belong
to (π/2, π) (so that cosϑ < 0) instead of to (0, π/2) (so that cosϑ > 0), as required
here. But these two differences compensate, so standard computations as in [44, p. 30-
31] carry through in our situation as well. On the basis of (5.47), let us show that
Kn(s)→ 0 (n→∞), where Kn(s) denotes the term∥∥∥An(s)− (2π i)−1

∫ T1

T2

ϕ′T (r)
( ∑
j∈{14, 12, 15}

∫
Λ
(r)
j

T(λ, r, s) dλ
)
g(r) dr − L(s)

∥∥∥
q2

(5.48)

(n ∈ N). In fact, for n ∈ N and r ∈ [T2, T1], with the abbreviation λ(n, ϕ) := Rn e
−i (π/2−ϕ),

we find that∫
Λ
(n)
3

T(λ, r, s) dλ =

∫ π/2−ϕ

0
e(s−r)λ(n,ϕ) i λ(n, ϕ)

(
λ(n, ϕ) Iq2 +Aq2

)−1
dϕ,

so
∥∥∫

Λ
(n)
3

T(λ, r, s) dλ
∥∥
B
≤ C

∫ π/2−ϕ
0 e(s−r)Rn cos(π/2−ϕ) dϕ due to (5.43) with ϑ replaced

by π/2, for example. Hence∥∥∥∫
Λ
(n)
3

T(λ, r, s) dλ
∥∥∥
B
≤ C

∫ π/2

ϑ
e(s−r)Rn cos(ζ) dζ ≤ C

∫ π/2

ϑ
e(s−r)Rn cos(ζ) sin(ζ) dζ

≤ C
(

(r − s)Rn
)−1 ≤ C

(
(T2 − T )Rn

)−1 (
n ∈ N, r ∈ [T2, T1]

)
.

Analogously we get
∥∥∫

Λ
(n)
8

T(λ, r, s) dλ
∥∥
B
≤ C

(
(T2 − T )Rn

)−1
for n, r as before. More-

over, for r ∈ [T2, T1], n ∈ N with Rn > (T2 − T )−1, with λ(a) := a e−i ϑ for a ∈ [Rn,∞),(∥∥∥∫
Λ
(r)
14

−
∫

Λ
(n,r)
11

)
T(λ, r, s) dλ

∥∥∥
B

=
∥∥∥∫ ∞

Rn

e(s−r)λ(a) e−i ϑ
(
λ(a) Iq2 +Aq2

)−1
da
∥∥∥
B

≤ C

∫ ∞
Rn

e(s−r) a cosϑ a−1 da ≤ CR−1
n

∫ ∞
Rn

e(s−r) a cosϑ da ≤ C
(
Rn (T2 − T ) cosϑ

)−1
,

where the first inequality follows from (5.43), and the third is a consequence of the relation

s < T < T2 ≤ r for r ∈ [T2, T1]. We may proceed in the same way when the curves Λ
(r)
14 and

Λ
(n,r)
11 are replaced by Λ

(r)
15 and Λ

(n,r)
13 , respectively. The preceding estimates beginning with

that of
∥∥∫

Λ
(n)
3

T(λ, r, s) dλ
∥∥
B

combined with (5.46) with a sum over j ∈ {3, 11, 12, 13, 8}
instead of j ∈ {3, 4, 10, 7, 8} – replacement justified above – yield that

Kn(s) ≤ C
(
Rn (T2 − T )

)−1
∫ T1

T2

−ϕ′T (r) ‖g(r)‖q2 dr (5.49)

for n ∈ N with Rn > (T2 − T )−1, where Kn(s) is an abbreviation of the term in (5.48), as
we may recall. Here we used that ϕ′T ≤ 0. On the other hand, because of (5.41) and the
relation u ∈ L∞

(
0, T0, L

q2(Ω
c
)3
)
, and since ϕT (T2) = 1, ϕT (T1) = 0,∫ T1

T2

−ϕ′T (r) ‖g(r)‖q2 dr ≤ C ‖u‖q2,∞;T0

∫ T1

T2

−ϕ′T (r) dr = C ‖u‖q2,∞;T0 . (5.50)

Since Rn → ∞, it follows that the right-hand side of (5.49) vanishes when n tends to
infinity. As a consequence Kn(s) → 0 (n → ∞). But s /∈ N, so ‖U(n0+1)(s) − An(s)‖q2 →
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0 (n → ∞), as mentioned in the passage preceding (5.37). Therefore we may conclude
that

U(n0+1)(s) = (2π i)−1

∫ T1

T2

ϕ′T (r)
( ∑
j∈{14, 12, 15}

∫
Λ
(r)
j

T(λ, r, s) dλ
)
g(r) dr + L(s). (5.51)

(The term L(s) is defined in the passage following (5.45).) But∥∥∫ T1

T2

ϕ′T (r)
( ∑
j∈{14, 12, 15}

∫
Λ
(r)
j

T(λ, r, s) dλ
)
g(r) dr

∥∥
q2
≤ C

∫ T1

T2

−ϕ′T (r) ‖g(r)‖q2 dr, (5.52)

as follows from (5.47) and because ϕ′T ≤ 0. Obviously, due to (5.43) and since ϕ′T ≤ 0

and s − r < 0 for r ∈ [T2, T1], we get ‖L(s)‖q2 ≤ C
∫ T1
T2
−ϕ′T (r) ‖g(r)‖q2 dr. At this point

we may deduce from (5.50) – (5.52) that ‖U(n0+1)(s)‖q2 ≤ C‖u‖q2,∞;T0 . But q ≤ q2, so

we finally arrive at the inequality ‖U(n0+1)(s)|AR1,S1‖q ≤ C‖u‖q2,∞;T0 . Recall that s is
an arbitrary number from (−∞, T )\N. The preceding estimate, inequality (5.38), (5.40)
and equation (5.39) imply that inequality (5.35) holds for t ∈ (0, T )\N, a. e. x ∈ BR0

c

and α ∈ N3
0, |α| ≤ 1, with a constant C independent of T and T0, and without the term

|x|−2−|α| if u satisfies the zero flux condition stated in the theorem. Since T was taken
arbitrarily in (0, T0), the theorem is proved. �

6 Spatial decay of L2-strong solutions to the nonlinear prob-
lem (1.1).

We start by specifying our assumptions on the data and the solution. We fix S0 ∈ (0,∞)
with Ω ⊂ BS0 , T0 ∈ (0,∞], and assume there is qf ∈ (1, 6/5) and U0 ∈ L2

σ(R3)3, f ∈
L2
(

0, T0, L
2(Ω

c
)3
)
∩L2

(
0, T0, L

qf (Ω
c
)3
)

such that inequality (1.12) holds for the function

∂αx
[
R(τ)(f) + I(τ)(U0)

]
with α ∈ N3

0, |α| ≤ 1.

This inequality is fulfilled if for example U0|BS0

c ∈ W 1,1
loc (BS0)3 and there are parameters

κ0 ∈ (0, 1/2), R, c0 ∈ (0,∞) such that |∂αU0(y)| ≤ c0 |y|−3/2−|α|/2−κ0 ν(y)−5/4−|α|/2−κ0

for y ∈ Bc
R, α ∈ N3

0 with |α| ≤ 1 ([20, Theorem 4.2]), and if f ∈ L1
(
BR × (0,∞)

)3
for

some R ∈ (0,∞) ([19, Lemma 4.2]). In the case there are numbers q ∈ (1,∞), A, p0 ∈
(2,∞), B ∈ [0, 3/2] and a function γ ∈ L2

(
(0,∞)

)
∩ Lp0

(
(0,∞)

)
such that A +

min{1, B} > 3, A + B ≥ 7/2, f |ΩS0 × (0,∞) ∈ L2
(

0,∞, Lq(ΩS0)3
)

and |f(y, s)| ≤
γ(s) |y|−A ν(y)−B for y ∈ Bc

S0
, s ∈ (0,∞), we obtain inequality (1.12) with its right-hand

side replaced by C |x|−5/4−|α|/2 ν(x)−5/4−|α|/4 (max{1, ln |x|})|α|n, where n is some integer.
As a consequence we would obtain (1.3) with the same replacement.

For the proof of (1.5) it would be sufficient that (1.12) is valid with right-hand side

C
(
|x| ν(x)

)−1−|α|/2
. For assumptions on U0 and f leading to this variant of (1.12) we

refer to [12, Theorem 1.1] and [13, Theorem 3.1].

Concerning the function U in (1.1), the relations in (1.8) are assumed to be valid.

We fix a real number R0 ≥ max{Rf,U0 , RU}, with RU introduced in (1.8) and Rf,U in
(1.12).

Moreover we consider a weak solution u of (1.1) with properties as stated at the beginning
of Section 1, with the parameters s0, r0 introduced there. Without loss of generality, we
may suppose that s0 ≥ 2.
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We now present the modifications we bring to the linear theory in [14]. This modified
theory will then be used (Theorem 6.3) in order to improve the decay estimates in [14] of
the solution u to (1.1) introduced above. To this end we define functions h : Ω

c×(0, T0) 7→
R3×3 and gb : ∂Ω× (0, T0) 7→ R3 by setting

Hkl(t) := τ
(
ul(t)uk(t) + ul(t)Uk + Ul uk(t)

) (
t ∈ (0, T0), 1 ≤ k, l ≤ 3

)
, (6.1)

gb,k(y, s) :=
∑3

l=1
S−1

0 ylHkl(y, s)
(
s ∈ (0, T0), y ∈ ∂BS0 , 1 ≤ k ≤ 3

)
,

and we set g := G(U, u), where G(U, u) is defined in (1.7).

Lemma 6.1 Put H
(1)
kl (t) := τ uk(t)ul(t), H

(2)
kl (t) := τ (ul(t)Uk + Ul uk(t)) for t ∈ (0, T0)

and 1 ≤ k, l ≤ 3, so that H = H(1)+H(2). Then the following relations hold true: u belongs

to L2
(

0, T0, L
6(Ω

c
)3
)
∩L∞

(
0, T0, L

3(Ω
c
)3
)
, H

(1)
kl to L2

(
0, T0, L

2(Ω
c
)
)
, and ∂xmH

(2)
kl , fk

and gk are in the space L2
(

0, T0, L
3/2(Ω

c
)
)
. In addition H

(2)
kl ∈ L2

(
0, T0, L

3(Ω
c
)
)

and

∂xmH
(1)
kl ∈ L1

(
0, T0, L

3/2(Ω
c
)
)

for 1 ≤ k, l,m ≤ 3. The function gb defined in (6.1)
belongs to L2

(
0, T0, L

1(∂BS0)3
)
.

Proof: For t ∈ (0, T0), we have u(t) ∈ Ls0(Ω
c
)3 and ∇xu(t) ∈ L2(Ω

c
)9, so ‖u(t)‖6 ≤

C‖∇xu(t)‖2 by Theorem 2.3. As a consequence u ∈ L2
(

0, T0, L
6(Ω

c
)3
)
. The assumptions

on u yield immediately that u ∈ L∞
(

0, T0, L
3(Ω

c
)3
)
. The two preceding relations, the

assumptions U ∈ L6(Ω
c
)3, ∇U ∈ L2(Ω

c
)9 (see (1.8)), ∇xu ∈ L2

(
0, T0, L

2(Ω
c
)9
)

and

(u · ∇x)u ∈ L2
(

0, T0, L
3/2(Ω

c
)3
)
, and the conditions on f imply the other claims of the

lemma. �

Lemma 6.2 Abbreviate H·l := (Hml)1≤m≤3 for 1 ≤ l ≤ 3. Let ζ ∈ C∞(R3) be a bounded
function with bounded first-order derivatives. Let t ∈ (0, T0).

Then
∫
BS0

c |∂yl
(

Λjm(x − y, t − s) ζ(y)
)
· Hml(y, s)| dy < ∞ for x ∈ R3, s ∈ (0, t) and

1 ≤ j, l,m ≤ 3. Let x ∈ BS0

c
with

∫ t
0

∣∣ ∫
BS0

c
∑3

l=1 Λ(x − y, t − s) ζ(y) g(y, s) dy
∣∣ ds <

∞. (By Lemma 3.4, this assumption is true for a. e. x ∈ R3.) Then the integral∫ t
0

∣∣ ∫
BS0

c
∑3

l=1 ∂yl
(

Λ(x− y, t− s) ζ(y)
)
·H·l(y, s) dy

∣∣ ds is finite. Put

Qζ(x, t) := −
∫ t

0

∫
BS0

c

3∑
l=1

∂yl
(

Λ(x− y, t− s) ζ(y)
)
·H·l(y, s) dy ds.

Then R(τ)
(
ζ g|BS0

c × (0, T0)
)
(x, t) = −V(τ,BS0 )(ζ gb)(x, t) + Qζ(x, t), with gb introduced

in (6.1).

Proof: The first claim of the lemma follows from Lemma 3.4 and 6.1. As for the
main part of the lemma, in particular the equation at its end, its proof is based on
transforming the integral

∫
AR,S0

Λ(x − y, t − s) · ζ(y) g(y, s) dy by a partial integration,

for x ∈ BS0

c
, s ∈ (0, t), R ∈ (S0,∞). In fact, take such x and s. Then the term

Λ(x − y, t − s) as a function of y ∈ R3 belongs to C∞(R3)3×3 (Lemma 3.1). More-
over gm =

∑3
l=1 ∂ylHml for 1 ≤ m ≤ 3 because divU = 0 and divxu = 0. Since

gm ∈ L2
(

0, T0, L
3/2(Ω

c
)
)
, H

(1)
ml ∈ L2

(
0, T0, L

2(Ω
c
)
)

and H
(2)
ml ∈ L2

(
0, T0, L

3(Ω
c
)
)

for
1 ≤ l,m ≤ 3 (Lemma 6.1), and because of Lebesgue’s theorem and the first claim in
Lemma 3.4, we obtain

∫
R3\BR

∑3
l=1 |∂yl

(
Λjm(x−y, t−s) ζ(y)

)
Hml(y, s)| dy → 0 and also∫

R3\BR |Λjm(x− y, t− s) ζ(y) gm(y, s)| dy → 0 for 1 ≤ j,m ≤ 3 if R→∞. The same prop-

erties of H(1)(s) and H(2)(s) imply there is a sequence (Rn) in [S0,∞) with Rn →∞ and
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∫
∂BRn

(|H(1)(y, s)|2 + |H(2)(y, s)|3) doy ≤ R−1
n for n ∈ N. On the other hand, by (3.5) we

have |Λ(x−y, t−s)| ≤ C(τ) |x−y|−3/2 ≤ C(τ, |x|) |y|−3/2 for y ∈ Bc
2 |x|. It follows from the

two preceding relations that
∫
∂BRn

|Λjm(x−y, t−s) ζ(y)R−1
n ylHml(y, s)| doy → 0 (n→∞)

for 1 ≤ k, l,m ≤ 3; see the proof of [14, Lemma 3.8] for more details. Altogether we may
conclude from a partial integration on ARn,S0 for n ∈ N and from letting n tend to infinity
that

∫
BS0

c Λjm(x− y, t− s) ζ(y) gm(y, s) dy equals

∫
BS0

c

3∑
l=1

∂yl
(

Λjm(x−y, t−s) ζ(y)
)
Hml(y, s) dy−

∫
∂BS0

Λjm(x−y, t−s) ζ(y) gb,m(y, s) doy

for 1 ≤ j,m ≤ 3. The equation at the end of Lemma 6.2 follows by an integration with
respect to s. �

Lemma 6.3 The inequality |∂αxV(τ,BS0 )(gb)(x, t)| ≤ C
(
|x| ν(x)

)−5/4−|α|/2
is valid for t ∈

(0, T0), x ∈ Bc
R0
, α ∈ N3

0 with |α| ≤ 1.

Proof: Put g
(j)
b (y, s) :=

(∑3
l=1 S

−1
0 ylH

(j)
kl (y, s)

)
1≤k≤3

for j ∈ {1, 2}, y ∈ ∂BS0 , s ∈
(0, T0), with H(1), H(2) from Lemma 6.1. Take x, t, α as in the lemma. Then by Lemma

6.1 and 3.6, the term |∂αxV(τ,BS0 )(g
(1)
b )(x, t)| is bounded by

C
[ (
|x| ν(x)

)−5/4−|α|/2 ‖H(1)‖2,2;T0 +
(
|x| ν(x)

)−3/2−|α|/2 ‖∇xH(1)‖3/2,1;T0

]
.

The same references yield

|∂αxV(τ,BS0 )(g
(2)
b )(x, t)| ≤ C

(
|x| ν(x)

)−5/4−|α|/2
(‖H(2)‖3,2;T0 + ‖∇xH(2)‖3/2,2;T0). �

Theorem 5.2, 5.3, assumption (1.12) and Lemma 6.3 allow to reduce a decay estimate of
u to one of R(τ)

(
g|BS0

c × (0, T0)
)

or alternatively of the function Qζ from Lemma 6.2
with ζ = 1. The details are given in the next two corollaries. The first replaces [14, (3.8),
(3.9)].

Corollary 6.1 Put J (x, t) := u(x, t) + R(τ)
(
g|BS0

c × (0, T0)
)
(x, t) for x ∈ BS0

c
, t ∈

(0, T0). Then J (t) ∈ W 1,1
loc (BS0

c
)3
(
t ∈ (0, T0)

)
, and there is a zero measure set N ⊂

(0, T0) such that |∂αxJ (x, t)| ≤ C
[ (
|x| ν(x)

)−5/4−|α|/2
+ |x|−2−|α| ] for t ∈ (0, T0)\N, a.

e. x ∈ BR0

c
, and for α ∈ N3

0 with |α| ≤ 1, where the term |x|−2−|α| may be dropped if∫
∂Ω u(t) · n(Ω) dox = 0 for t ∈ (0, T0).

Proof: The relation J (t) ∈ W 1,1
loc (BS0

c
)3 follows with Lemma 3.4. By Lemma 6.1, we

know that f − g ∈ L2
(

0, T0, L
3/2(Ω

c
)3
)

and u ∈ L2
(

0, T0, L
6(Ω

c
)3
)
. Thus, in view of

our conditions on U0 and u, we see that the assumptions of Theorem 5.2 (T0 = ∞) or
Theorem 5.3 (T0 < ∞) are satisfied with n0 = 1, p1 = 3/2, q0 = 6, q1 = 2, q2 = s0 and
f (1) = f − g, and with (1.6) in the role of (3.9). These references, in particular (5.26) and
(5.35), then yield that there is a zero measure set N ⊂ R such that

|
[
∂αxu− ∂αxR(τ)

(
f − g|BS0

c × (0, T0)
)
− ∂αxI(τ)(U0|BS0

c
)
]
(x, t)| (6.2)

≤ C
((
|x| ν(x)

)−5/4−|α|/2
+ |x|−2−|α|

)
for t ∈ (0, T0)\N, a. e. x ∈ BR0

c
and α ∈ N3

0, |α| ≤ 1, where the term |x|−2−|α| may
be omitted if the zero flux condition stated in the corollary holds true. Taking account
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of what we supposed on R(τ)
(
f |BS0

c × (0, T0)
)

and I(τ)(U0|BS0

c
) in (1.12), and because

R0 ≥ max{Rf,U0 , RU} ≥ Rf,U0 , we see that the estimate in Corollary 6.1 follows from
(6.2). �

The second corollary announced above will play the role of [14, (3.16), (3.17)].

Corollary 6.2 Put J̃ (x, t) := J (x, t)−V(τ,BS0 )(gb)(x, t) for x ∈ BS0

c
, t ∈ (0, T0), with J

from Corollary 6.1. Then u(x, t) = J̃ (x, t)+Q(x, t) for t ∈ (0, T0) and for a. e. x ∈ BS0

c
,

where Q = Qζ is to be defined as in Lemma 6.2 with ζ = 1.

There is a zero measure set N ⊂ (0, T0) such that for t ∈ (0, T0)\N, a. e. x ∈ BR0

c
and

α ∈ N3
0, |α| ≤ 1, the inequality |∂αx J̃ (x, t)| ≤ C

[ (
|x| ν(x)

)−5/4−|α|/2
+ |x|−2−|α| ] holds. If∫

∂Ω u(t) ·n(Ω) dox = 0 for t ∈ (0, T0)
)
, the term |x|−2−|α| may be omitted on the right-hand

side of the preceding estimate.

Proof: The equation for u(x, t) follows from the definition of J in Corollary 6.1 and
from Lemma 6.2. The estimate stated in the corollary is a consequence of Lemma 6.3 and
Corollary 6.1. �

We verify that [14, Theorem 3.7] remains valid in the present situation.

Theorem 6.1 There is σ1 ∈ (1, 2) such that u ∈ L∞
(

0, T0, L
p(Ω

c
)3
)

for p ∈ [σ1, 2].

Moreover |u| |U | ∈ L∞
(

0, T0, L
1(Ω

c
)
)
.

Proof: Let us show that R(τ)
(
g|BS0

c × (0, T0)
)
∈ L∞

(
0,∞, Lκ(R3)3

)
for a range of

exponents κ ≤ 2. Since by our assumptions we have u ∈ L∞
(

0, T0, L
s(Ω

c
)3
)

for some

s ∈ [2, 3), and because ∇xu is L2-integrable on Ω
c × (0, T0), we obtain with Hölder’s

inequality that 1 ≤ 2/(1 + 2/s) < 6/5 and |u| |∇xu| ∈ L2
(

0, T0, L
2/(1+2/s)(Ω

c
)3
)
; see

[14, (3.6)]. Moreover, by Lemma 2.2 and our assumptions on U (see (1.8)) and u, we get
(u ·∇)U +(U ·∇x)u ∈ L2

(
0, T0, L

11/10(Ω
c
)3
)
; see [14, (3.2), (3.4)]. Moreover the function

τ
(

(u · ∇)U + (U · ∇x)u
)

= (
∑3

l=1 ∂xlH
(2)
ml )1≤m≤3 belongs to L2

(
0, T0, L

3/2(Ω
c
)3
)

by
Lemma 6.1, and (u ·∇x)u is in the same space by assumption. Thus we may conclude that
g ∈ L2

(
0, T0, L

p(Ω
c
)3
)

for p ∈ [σ0, 3/2], with σ0 := max{11/10, 2/(1 + 2/s)} ∈ (1, 6/5).
With this property of g at hand, we may reason as in [14, p. 1406, second paragraph]
to obtain that (1/σ0 − 1/3)−1 < 2 and R(τ)

(
g|BS0

c × (0, T0)
)
∈ L∞

(
0,∞, Lκ(R3)3

)
for

κ ∈
(

(1/σ0 − 1/3)−1, 2
]
.

On the other hand, Corollary 6.1 and Lemma 2.2 yield that J |Bc
R0
× (0, T0) belongs to

L∞
(

0, T0, L
q(BR0

c
)3
)

for q ∈ (8/5, ∞). Since in addition, u ∈ L∞
(

0, T0, L
r0(Ω

c
)3
)

for
some r0 > 3 by our assumptions, Corollary 6.1 allows to conclude at this point that the
first claim of the theorem is valid with σ1 := max{8/5, (1/σ0− 1/3)−1}. Morever by (1.8)
and Lemma 2.2 we have U ∈ Lq(Ωc

)3 for p ∈ (2, 6]. This observation and the first claim
of the theorem imply the second.

Due to the preceding results, the decay estimate from [14] (inequality (1.5)) carries over
to the present situation. This is made precise by the ensuing theorem and its proof.

Theorem 6.2 Let R ∈ (R0,∞). Then |∂αxu(x, t)| ≤ C
(
|x| ν(x)

)−1−|α|/2
for x ∈ Bc

R, t ∈
(0, T0) and α ∈ N3

0 with |α| ≤ 1.

Proof: The theorem holds according to [14, Theorem 4.6, 4.8]. We may use these theorems
because the reasoning in [14, Section 4] carries through without change, except that some
references have to be modified. The role of [14, Corollary 3.5, in particular (3.8), (3.9)] is
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played here by Corollary 6.1, whereas [14, Corollary 3.10, in particular (3.16), (3.17)] is
replaced by Corollary 6.2. A proof of [14, Theorem 3.7] adapted to the present situation is
given above (Theorem 6.1). Concerning all the other auxiliary results used in [14, Section
4], their proof remains valid without change in the situation considered in the work at
hand. This is true in particular for the technical tools stated in [14, Theorem 2.8, 2.18,
Corollary 2.19, Lemma 2.20], as well as for some results which are used here as well,
like [14, Lemma 2.10], reappearing here as Lemma 3.4. Whenever [14, Corollary 3.3] is
applied in [14, Chapter 4], only the relation g ∈ L2

(
0, T0, L

6/5(Ω
c
)3
)

is used, which may

be replaced in that context by g ∈ L2
(

0, T0, L
3/2(Ω

c
)3
)

(Lemma 6.1). �

With Theorem 6.2 available, we may now use Corollary 6.2 in order to improve the decay
estimate in Theorem 6.2, and thus the estimate derived in [14]. The key result in this
respect, and the main contribution of this section, is

Theorem 6.3 Let R ∈ (R0,∞). Then there is a set N ⊂ (0,∞) of measure zero such
that for t ∈ (0, T0)\N, a. e. x ∈ Bc

R, α ∈ N3
0 with |α| ≤ 1,∣∣ ∂αxR(τ)

(
g|BS0

c × (0,∞)
)
(x, t)

∣∣ ≤ C
(
|x| ν(x)

)−5/4−|α|/2
.

Proof: Abbreviate r := R−R0, g̃ := g|BS0

c × (0, T0), H·l := (Hml)1≤m≤3|BS0

c × (0, T0)
for 1 ≤ l ≤ 3. Let ψ ∈ C∞0 (Br/2) with ψ|Br/4 = 1. By Lemma 3.4 and 6.1, there is a

set N ⊂ (0,∞) of measure zero such that
∫ t

0

∫
BS0

c |∂αxΛ(x − y, t − s) · g(y, s)| dy ds < ∞
for t ∈ (0,∞)\N, a. e. x ∈ R3 and α ∈ N3

0 with |α| ≤ 1, and such that R(τ)(g̃)(t) ∈
W 1,1
loc (R3)3, ∂αxR

(τ)(g̃)(x, t) =
∫ t

0

∫
BS0

c ∂αxΛ(x− y, t− s) · g(y, s) dy ds for t, x, α as before.

Take t ∈ (0, T0)\N, α ∈ N3
0 with |α| ≤ 1 and x ∈ Bc

R such that the two preceding
relations on integrals of ∂αxΛ(x − y, t − s) · g(y, s)

(
y ∈ BS0

c
, s ∈ (0, t)

)
are valid. Then

∂αxR
(τ)(g̃)(x, t) = A1 + A2, with A1 :=

∫ t
0

∫
BS0

c ∂αxΛ(x − y, t − s)ψ(x − y) · g(y, s) dy ds

and with A2 defined in the same way as A1, except that the term ψ(x− y) is replaced by
1−ψ(x−y). We may apply Lemma 6.2 to A2 with ζ(y) := ζx(y) := 1−ψ(x−y) (y ∈ R3).
On the other hand, for y ∈ ∂BS0 , we have |x−y| ≥ |x|−|y| ≥ R−S0 > R−R0 = r. Hence,
because ψ ∈ C∞0 (Br/2), we get 1− ψ(x− y) = 1 for y ∈ ∂BS0 . From these considerations
we see that Lemma 6.2 yields

A2 =

∫ t

0

∫
BS0

c
−

3∑
l=1

∂yl
[
∂αxΛ(x− y, t− s)

(
1− ψ(x− y)

) ]
·H·l(y, s) dy ds

−∂αxV(τ,BS0 )(gb)(x, t).

We split the preceding integral over BS0

c × (0, t) into a sum B1 + B2, with

B1 :=

∫ t

0

∫
A(R+R0)/2, S0

−
3∑
l=1

∂yl
[
∂αxΛ(x− y, t− s)

(
1− ψ(x− y)

) ]
·H·l(y, s) dy ds,

and with B2 defined in the same way, but with the domain of integration A(R+R0)/2, S0

replaced by Bc
(R+R0)/2. Altogether we have arrived at the splitting

∂αxR
(τ)(g̃)(x, t) = A1 + B1 + B2 − ∂αxV(τ,BS0 )(gb)(x, t). (6.3)

Let us estimate A1, B1 and B2, beginning with A1. For y ∈ Br/2(x), we have |y| ≥
|x|/2 + |x|/2 − |x − y| ≥ |x|/2 + R/2 − r/2 = |x|/2 + R0/2, so that |y| ≥ |x|/2 and
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|y| ≥ (R+R0)/2. In addition, also for y ∈ Br/2(x), we find with Lemma 2.3 that ν(y)−1 ≤
C (1 + |x − y|) ν(x)−1 ≤ C (1 + r/2) ν(x)−1. Therefore, in view of (1.8), the assumption
R0 ≥ RU and Theorem 6.2 with (R + R0)/2 in the role of R, we may conclude that

|g(y, s)| ≤ C
(
|x| ν(x)

)−5/2
for y ∈ Br/2(x), s ∈ (0, T0). But ψ(x − y) = 0 for y ∈

Br/2(x)c, so we obtain |A1| ≤ C
(
|x| ν(x)

)−5/2 ∫ t
0

∫
Br/2(x) |∂

α
xΛ(x− y, t− s)| dy ds. Making

use of inequality (3.5) with K = r/2, we see that the preceding integral is bounded by
C(r)

∫ t
0

∫
Br/2(x)(|x−y|

2 + t−s)−3/2−|α|/2 dx ds. Integrating first with respect to s and then

with respect to y, we obtain a bound for this latter integral which is independent of x, t

and T0. Thus we may conclude that |A1| ≤ C
(
|x| ν(x)

)−5/2
.

In order to evaluate B1, we recall that H = H(1) + H(2), H
(1)
ml ∈ L2

(
0, T0, L

2(Ω
c
)
)

and H
(2)
ml ∈ L2

(
0, T0, L

3(Ω
c
)
)

(Lemma 6.1). Moreover, for y ∈ Br/2(x), we have |y| ≥
(R+R0)/2, as observed above, so A(R+R0)/2, S0

∩Br/2(x) = ∅, hence 1− ψ(x− y) = 1 for
y ∈ A(R+R0)/2, S0

. At this point, we may apply Theorem 3.4 with p = 2, |β| = 1 to obtain

that |B1| ≤ C
(
|x| ν(x)

)−7/4−|α|/2
.

This leaves us to consider B2. Let y ∈ Bc
(R+R0)/2 with 1 − ψ(x − y) 6= 0. The latter

condition means that |x− y| ≥ r/4, so by (3.4) and (2.1),∫ t

0
|∂yl∂αxΛ(x− y, t− s)

(
1− ψ(x− y)

)
| ds

≤ C

∫ t

0
(|x− y − τ (t− s) e1|2 + t− s)−2−|α|/2 ds ≤ C(r)

(
|x− y| ν(x− y)

)−3/2−|α|/2

≤ C(r)
(

(1 + |x− y|) ν(x− y)
)−3/2−|α|/2 (

1 ≤ l ≤ 3
)
.

Moreover r/4 ≤ |x− y| ≤ r/2, for y ∈ R3 with ∇y
(

1− ψ(x− y)
)
6= 0, hence with (3.5),∫ t

0
|∂αxΛ(x− y, t− s) ∂yl

(
1− ψ(x− y)

)
| ds ≤ C(r)

∫ t

0
(r2 + t− s)−3/2−|α|/2 ds

≤ C(r) ≤ C(r)
(

(1 + |x− y|) ν(x− y)
)−3/2−|α|/2

(1 ≤ l ≤ 3).

On the other hand, from (1.8) and Theorem 6.2 with R replaced by (R + R0)/2, we get

|Hml(y, s)| ≤ C
(
|y| ν(y)

)−2 ≤ C
(

(1 + |y|) ν(y)
)−2

for y ∈ Bc
(R+R0)/2, s ∈ (0, t), 1 ≤

l,m ≤ 3. In this way we arrive at the inequality

B2 ≤ C

∫
Bc

(R+R0)/2

(
(1 + |x− y|) ν(x− y)

)−(3+|α|)/2 (
(1 + |y|) ν(y)

)−2
dy. (6.4)

In order to estimate the product ν(x− y)−1 ν(y)−1, let y ∈ R3 and consider the case that
|y| − y1 ≤ (|x| − x1)/4 and |x − y| − (x − y)1 ≤ (|x| − x1)/4. Then we may conclude
that |x| − x1 = |x| − (x − y)1 − y1 ≤ |x − y| + |y| − (x − y)1 − y1 ≤ (|x| − x1)/2, hence
|x| − x1 = 0. Thus |y| − y1 ≥ (|x| − x1)/4 or |x − y| − (x − y)1 ≥ (|x| − x1)/4, so
ν(y) ≥ ν(x)/4 or ν(x − y) ≥ ν(x)/4. Since ν(z) ≥ 1 for any z ∈ R3, we may conclude
that ν(x − y)−1 ν(y)−1 ≤ 4 ν(x)−1. We use this observation in the case |α| = 1. If α = 0,

we deduce from (6.4) that |B2| ≤ C
∫
R3

(
(1 + |x− y|) ν(x− y)

)−3/2 (
(1 + |y|) ν(y)

)−2
dy,

whereas if |α| = 1, we refer to (6.4) and to the preceding remark on ν(x− y)−1 ν(y)−1 to
obtain |B2| ≤ C ν(x)−1

∫
R3(1 + |x− y|)−2 ν(x− y)−1(1 + |y|)−2 ν(y)−1 dy. Therefore from

Theorem 2.2, |B2| ≤ C
(
|x| ν(x)

)−(3+|α|)/2
(max{1, ln |x|})n for some n ∈ N. The theorem
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follows from the preceding estimates of A1, B1 and B2, Lemma 6.3 and equation (6.3).
�

Our main result now follows immediately:

Theorem 6.4 Let T0, f, U0, U, R0 and u be given as specified at the beginning of this
section. Let R ∈ (R0,∞). Then there is a zero measure set N ⊂ (0, T0) such that

|∂αxu(x, t)| ≤ C
[ (
|x| ν(x)

)−5/4−|α|/2
+ |x|−2−|α| ] for t ∈ (0, T0)\N, a. e. x ∈ Bc

R, α ∈ N3
0

with |α| ≤ 1. If
∫
∂Ω u(t) · n(Ω) dox = 0

(
t ∈ (0, T0)

)
, the term |x|−2−|α| may be dropped.

Proof: Corollary 6.1, Theorem 6.3. �
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[29] Fučik, S., John, O., Kufner, A.: Function spaces. Noordhoff, Leyden 1977.

[30] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State
Problems, 2nd edition. Springer, New York e.a., 2011.

[31] Galdi, G. P., Heywood, J. G., Shibata, Y.: On the global existence and convergence to steady state of Navier-
Stokes flow past an obstacle that is started from rest. Arch. Rational Mech. Anal. 138 (1997), 307-318.

[32] Giga, Y.: Analyticity of the semigroup generated by the Stokes operator in Lr spaces. Math. Z. 178 (1981),
297–329.

[33] Heywood, J. G.: The exterior nonstationary problem for the Navier-Stokes equations. Acta Math. 129 (1972),
11-34.

[34] Heywood, J. G.: The Navier-Stokes equations. On the existence, regularity and decay of solutions. Indiana
Univ. Math. J. 29 (1980), 639-681.

[35] Hille, E., Phillips, R. S.: Functional analysis and semi-groups. American Math. Soc. Colloquim Publicatons
Vo.31, American Mathematical Society, Providence R. I., 1957.

[36] Knightly, G. H.: Some decay properties of solutions of the Navier-Stokes equations. In: Rautmann, R. (ed.):
Approximation methods for Navier-Stokes problems. Lecture Notes in Math. 771, Springer, 1979, 287-298.

[37] Kobayashi, T., Shibata, Y.: On the Oseen equation in three-dimensional exterior domains. Math. Ann. 310
(1998), 1-45.
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