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Time-dependent incompressible viscous flows around a rigid
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conditions.
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Pures et Appliquées Joseph Liouville, F-62228 Calais, France.

Abstract

We consider the incompressible time-dependent Navier-Stokes system with Oseen
term and terms arising in stability problems, in a 3D exterior domain, We do not
impose any boundary conditions. We consider L2-strong solutions, that is, the velocity
u is an L*-function in time and L"*-integrable in space for some x € [1,3) and some
k € (3,00), the spatial gradient V,u is L?-integrable in space and in time, and the
nonlinearity (u - V,)u is L%-integrable in time and L3/%integrable in space. We show
that if the right-hand side of the equation and the initial data decay pointwise in space
sufficiently fast, then u and V,u also decay pointwise in space, with rates which are
higher than those that can be provided by previous theories.
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1 Introduction

We consider the Navier-Stokes system with Oseen term and perturbation terms,

u = Agu+ 7010+ 7(U - Vo)u+7(uw- VU +7(u-Vy)u+Ver=f, (1.1)
diveu =0 in Q° x (0,Tp),

where Ty € (0,00] and Q° C R? is an exterior domain defined by Q° := R3\Q, with Q
an open, bounded set in R?® with connected Lipschitz boundary. The unknowns of this
problem are the functions u : Q° x (0,Ty) + R3 (velocity) and 7 : Q° x (0,Tp) — R
(pressure). The parameter 7 € (0,00) (Reynolds number) is given, as are Tp, the function
f:9Q° x(0,Ty) — R (volume force), and the function U : Q° — R If U = 0, the
preceding system reduces to the Navier-Stokes system with Oseen term, describing the
flow of a viscous incompressible fluid around a rigid body, which is represented by the set
Q. In this model the fluid is supposed to fill all the space around that body. The Oseen
term 7 dzqu arises because u(x,t) corresponds to the velocity above ground of the fluid
particle located at the instant ¢ at the point x in a coordinate system in which the rigid
body is at rest. Such a choice of u is convenient on a mathematical level because the value
of u at infinity is zero and the rigid body may be described by a fixed subset of R3. The
case of nonvanishing U arises when stability of a stationary flow around a rigid body is
studied ([45], [43], [17]). In this situation, U is the velocity part of a solution (U, II) of the
stationary Navier-Stokes system with Oseen term

AU +7U +7U-V)U+VII=F, divU =0 inQ". (1.2)
Our aim is to show the estimate

0%u(z, 1) < € (2| v(@)) "1V fora. e.t € (0,Th), a. e. 2 € Br,* := R\ Bpy, (1.3)



and « € N}, |a| < 1, under the assumptions that |f(x,t)| and |Uyp(x)| decay sufficiently
fast for |z| — oo and the zero-flux condition

/ u(t) -ndo, =0 for t e (0,Tp) (1.4)
o0

holds, where n(®) denotes the outward unit normal to Q. Condition (1.4) means that the
net mass flux through the boundary is zero. If this condition does not hold, we prove the
weaker inequality

—1/2—|al/2

|0%u(z,t)] < € ((lz]v(z)) for t, z, @ as in (1.3). (1.5)

The constant € in (1.3) and (1.5) is independent of ¢ (spatial decay uniform with respect
to time). The requirement |o| < 1 means we estimate the velocity u (o« = 0) and its
spatial gradient V,u (|a] = 1). The function v appearing on the right-hand side of (1.3)
and (1.5) is defined by v(x) := 1 + |x| — z1 for € R3. The parameter Ry is some fixed
positive real with Q c B Ro-

Estimates like (1.3) and (1.5) are interesting because they are often associated with phys-
ical phenomena that can be observed macroscopically. For example, the presence of the
function v on the right-hand side of (1.3) and (1.5) is usually interpreted as a mathematical
manifestion of the wake extending downstream behind the rigid body.

We establish (1.3) and (1.5) for L2-strong solutions of (1.1). This type of solution involves
only the velocity u, whose regularity is described by the relations v € L*> ( 0,7y, LY (ﬁc)?’ )
for some ¢ € [1,3) and some ¢ € (3,00), Vyu € L2(0,Tp, L2(Q)°) and (u- V,)u €
L?(0,Ty, L3/2(§c)3). Equation (1.1) is satisfied in the sense that

/0 : /Q . (—so’(t> u(z,t) - 9(x) + ¢(t) [ Vaulz,t) - VI(x) (1.6)
+(70zyu(z,t) + GU,u)(w, 1) — f(2,1)) .ﬁ(x)}) dz dt
—(0) /Q Uo(x) - 0(z)dr =0 for o€ CF([0,Th)), 0 € CF (),
where
G, ) (@, t) == 7[ (u(z,t) - Vo ulz, t) + (U(z) - Vo Yulz,t) + (u(z,t) - V)U(z)] (1.7)

forz e Q°, te (0,Tp). We do not impose any boundary conditions on u. In fact, in concrete
physical situations it is not always clear what is the right choice of such conditions, and in
some cases the usual no-slip condition is not appropriate. So it should be an interesting
feature of our theory that inequalities (1.3) and (1.5) hold on the basis of regularity
assumptions on w only, irrespective of any boundary conditions.

As mentioned above, the function U appearing as a coefficient in (1.1) is the velocity part

of a solution to (1.2). However, we will not need this fact. Instead we only assume that
UeLS5QPnwhl (@93, vUer?@Q%° divU=0, (1.8)
0°U ()] < € ((|z]v(x)) 1 for 2 € Br,*, o € N3 with o] <1,

for some Ry € (0,00) with Q C Bpg,,. Existence of a weak solution to (1.2) defined only
in terms of velocity U and satisfying the relations U € L5(Q%)?, VU e L?(Q)? is known



to hold under Dirichlet boundary conditions for example, and, of course, under suitable
assumptions on F' ([30, Theorem X.4.1]). As for inequality in (1.8), it has been shown
to be valid, irrespective of boundary conditions, for any solution U to (1.2) with the
preceding regularity properties, provided F' decays sufficiently fast. We refer to [24] for a
proof in a more general situation (flow around a rigid object performing a translation and
a rotation).

Concerning f and Uy, we assume [ € L2(0,T0, Lq(ﬁc)3) for ¢ = 2 and for some g €
(1,6/5), and Uy € L2(Q°). As for decay conditions imposed on f and Up, they enter
into our theory only via the spatial decay properties of two volume potentials, denoted
by (7 (g) and 37 (V), mapping from R3 x (0, 00) into R? and associated with functions
g€ L. (0,T), LY(A)?) and V € LY(A)3, where A may be any measurable subset of R?,

loc

g € (1,00) and T € (0, 00]. These potentials are defined by

R (g)(z, t) := /0 » Az —y,t—s)-g(y,s)dyds (t€(0,00), a. e.xz €R?), (1.9)

3O V) (1) 1= /Rg Az —y,0)-Viy)dy (te(0,00), z € RY). (1.10)

Here g and V stand for the zero extension of g and V to R3 x (0,00) and R3, respectively.
The function A, defined in (3.3), is a fundamental solution of the time-dependent Oseen
system

U — Agu+ 7O u+ Verr = f, diveu = 0. (1.11)

We refer to Lemma 3.2 and 3.4 for more details about these definitions. We will require
there are constants C'tr,, Ryu, € (0,00) such that

02 [ (f1B5,° x (0,Ty) ) + IO Wa[Bs, ) ] (.0)] < Crap, (Jrl wa) )~/ 102

(1.12)
fora. e. t € (0,00), a. e. z € BR/',UOC and for a € N} with |a| < 1, where Sy € (0,00) is
some arbitrary but fixed parameter with Q C Bg,. Finding conditions on f and Uy such
that (1.12) holds is a problem completely separate from the rest of our theory. We will
not address this problem here. Instead, at the beginning of Section 6, we will state such
conditions as well as references in literature where (1.12) is derived from these criteria.
The function %) (f|Bs,” x (0,Tp)) + 37Uy Bs,*) satisfies the time-dependent Oseen
system (1.11) with the zero extension of f|Bg,  x (0,Ty) to R? x (0, 00) as right-hand side,
and with the zero extension of Up|Bg,” to R? as initial data.

We will not need any smallness conditions, and we will not use any regularity results for
solutions to the Navier-Stokes system, except in the sense that existence of a solution
u as specified above is admitted. Existence results for such a function u additionally
satisfying Dirichlet boundary conditions may be found in literature. For example, in the
case U = 0, Heywood [34, Theorem 2-4, 6 and 2'], constructed a solution w such that
u € L>(0,Tp, Hl(ﬁc)?’) and Vyu € L*(0,Ty, L? (ﬁc)g). This means in particular that u
belongs to LOO(O, Ty, L’"(ﬁc)g’) for r = 6 and r = 2. We further refer to Solonnikov [47,
Theorem 10.1, Remark 10.1 with p = 2], and to Neustupa [42]. These two authors admit
a nonvanishing function U. Mild solutions to (1.1), not covered by our theorey here, were
constructed by Miyakawa [40, Theorem 5.2] and Shibata [45, Theorem 1.4]. Of course, all
these references require smallness conditions if T = oo.



Comparing (1.3) with (1.8), we see that an L?-weak solution to the time-dependent Navier-
Stokes system with Oseen term exhibits a stronger spatial decay than a solution the the
stationary version of this system, at least if the zero-flux condition (1.4) is fulfilled. This
discrepancy is due to the stronger spatial decay of the fundamental solution A to the
evolutionary Oseen system (1.11) compared with the asymptotics of the usual fundamental
solution of the stationary Oseen system; see (3.4) in the unsteady case and [28] or [38] in
the steady one.

Concerning literature on results related to ours, the only references we know impose Dirich-
let boundary conditions, and they either require smallness assumptions, or they suppose
the zero-flux condition (1.4) while only obtaining a decay rate as in (1.5). More specifically,
Knightly [36] considers a system more general than (1.1). In particular he admits that the
velocity of the rigid body changes with time. However, several parameter are supposed
to be small, various other restrictions are imposed, and decay properties are expressed in
terms of functions different from negative powers of |z|v(z). Mizumachi proved (1.5) for
L?-strong solutions to (1.1) satisfying homogeneous Dirichlet boundary conditions, under
the assumptions f =0, U = 0, T' = oo, initial data close to some solution of the stationary
problem (1.2), djux(t) and 7(¢) bounded with respect to the norm of L (9€) uniformly in
t € (0,00) ([41, (2.42)]), and |u(x,t)| tending to zero for |z| — oo uniformly in ¢ € [T, c0),
for some T' € (0, 00). In [14], we derived (1.5) for the same type of solutions as considered
here, but under Dirichlet boundary conditions with data satisfying (1.4).

Let us indicate how we proceed in our proof of (1.3) and (1.5). There are two main
steps. In the first (Section 5), we consider a weak solution to the time-dependent Oseen
system (1.11). As in the case of the weak solution to (1.1) introduced above, this solution
to (1.11) involves only the velocity u. If we leave aside some technical subtleties, its
regularity may be characterized by the relations u € L'Y((), Ty, L9 (56)3) with v = 2 and
v = oo, and V,u € L2(O,T[), L"(ﬁc)g), for some ¢, r € (1,00). The right-hand side
f, in the simplest case, is supposed to belong to LQ(O,TO, LP(QC)S) for some p also in
(1,00). We will consider u|Bg," x (0, Ty) instead of u, with Sy introduced following (1.12).
In this way we avoid smoothness conditions on d€) going beyond the assumption that €2
is Lipschitz bounded. At first we will suppose Ty = oo and Uy = 0, and construct a
function € such that &(¢) is the gradient of a harmonic function on an open set slightly
larger that Bigoc, and such that uw — € is a continuous mapping from [0, c0) into certain
LP-spaces on this larger set (Theorem 5.1). Due to the conditions Ty = oo and Uy = 0,
this result may be established by reducing it — via a Fourier transform with respect to
the time variable — to Oseen resolvent estimates. After that, we will show that u — &
is continuous also in the case that Ty = oo and Uy does not vanish (Corollary 5.1).
Here the principal auxiliary result is an L? — L%-estimate of the spatial gradient of the
solution to the Cauchy problem for the heat equation in R x (0,00) (Theorem 4.1). The
continuity of u — € on [0,00) will allow us to apply [20, Theorem 5.2], which yields a
decay estimate of the function u — R ( fIBs,” x (0, To) ) — 37Uy Bs,*) and its spatial
gradient, incidentally without imposing any pointwise decay conditions of f or Uy. The
decay bound obtained for this function is the same as the one in (1.3) if u fulfills the zero
flux condition (1.4); otherwise we will get the bound in (1.5) (Theorem 5.2). This result
is then carried over from the case Ty = oo to Ty < oo (Theorem 5.3). Unfortunately
we could not find a straightforward way to achieve this transition. The difficulty is that
in this context we will have to estimate a solution to the time-dependent Oseen system
(1.11) with homogeneous Dirichlet boundary conditions, with time varying in the whole



real axis, and with a right-hand side determined by (’(¢) u(t) for t € (0,7p) and zero for
t > Ty, under the assumptions Ty < oo, ¢ € C°(R), (|(—o00,T1] = 1, (|[T2,00) = 0 and
|’|oo < € (Ty —Ty1)~'. The numbers Ty, T are arbitrarily taken from (0, Tp) with Ty < T,
and are considered as fixed in this estimate. A special feature of the problem is that the
solution in question presents itself as a composition starting with the Fourier transform
with respect to time applied to the right-hand side of the system, followed by the Oseen
resolvent operator and then by the inverse Fourier transform; see (5.37).

In the second part of our proof (Section 6), we will consider (1.1) as an Oseen system
(1.11) with right-hand side f — G(U,u), where G(U,u), defined in (1.7), contains the
nonlinearity. We will evaluate 9% u — R (f—G(U, u)|Bs," % (0, To) ) — 3(7)((]0‘37300)]
by applying the results of Section 5, and 0% [DQ(T) ( f|BisoC x (0, To)) + 3(7)(U0|?%c)] by
using (1.12), where o € N3, |a| < 1. In this way we get a decay bound for the function
o[ u+ R (G(U, u)|Bs,” x (0,Tp) )] (Corollary 6.1). This will leave us to consider the
function 92K (™) (G(U,u)|Bs,  x (0,Tp) ), which, by [14, Section 4], is known to admit the
bound € ( |z|v(z) )_1/2_|a‘/2 for large values of |z| and any ¢ € (0,7)), as required in the
proof of (1.5), but only if u satisfies Dirichlet boundary conditions. We will discuss how to
obtain this bound without such conditions (Theorem 6.2). After that we will improve this

result, estimating the preceding function by € ( |z|v(z) )_5/4_‘04/2 (Theorem 6.3). Since
0% [u + R (G(U,u)|Bs,” x (0,Tp))] admits the same bound if u fulfills the zero flux
condition (1.4) (Corollary 6.1), the proof of (1.3) is then complete (Theorem 6.4).

Altogether the work at hand improves [14] in three main respects: Here any bound-
ary conditions are admitted, and the functions 839%(7)(G(U, u)|Bs,” x (0,Tp) ) as well
as 9% [u — %(T)(f — G(U,u)|Bs, x (0,Tp)) — 3(7)(UO|37500)] admit the decay bound
¢ (|z|v(z) )75/47‘04/2 instead of € (|z|v () )717‘04/2. In order to arrive at (1.3) instead
of (1.5), we additionally need that the function 8;‘[9‘{(7)(f) + '3(7)(U0)} is majorized
as stated in (1.12), that is, by the the right-hand side €(|x!1/(aj))_5/4_|al/2, whereas

¢ (|z|v(z) )—1—|a\/2 is sufficient in [14]. It is natural this strengthening of (1.12) requires
decay conditions on f and Uy which are stronger than those in [14]. But these stronger
conditions are not needed anywhere else in our proofs.

If the term (|z| V($))75/47‘a|/2 in (1.12) were replaced by |z|~71=121/2y(g)=o2-1l/2 for
some o1, o2 € [1, 5/4], our theory would yield (1.3) with the same replacement. For the
proof of (1.5), a factor ( |z|v(z) )_1_‘0"/2 in (1.12) is sufficient.

It might be suggested to simplify the proof of (1.3) and (1.5) by replacing the weak
solution w of (1.1) introduced at the beginning of this section by a weak solution u of (1.1)
in R3 x (0,7p) with modified right-hand side, where @ is such that u(t)|BS = u|Bg for
some S € (0,00) suitable large. However, we could not find a way to achieve this without
generating distributions with respect to the time variable on the right-hand side of the
system. And once such distributions are present, we could not prove decay estimates of .

Let us mention some references more distantly related to the work at hand. Takahashi [48]
deals with (1.1) in the case U = 0, = (). In [2], [3], solutions to (1.1) with U = 0 and to
(1.11) are estimated in weighted LP-norms, with the weights adapted to the wake in the
flow field downstream to the rigid body. Reference [18] by the present author combines
decay estimates in time and in space, as a continuation of [13] (Oseen system (1.11)) and
[14] (stability problem (1.1)), with the same assumptions, methods and rates of spatial



decay as in these latter references. Various technical aspects of the theory in [13], [14]
and [18] are dealt with in predecessor papers [6] — [12]. Questions of existence, regularity
and stability related to (1.1) and (1.11) are addressed in [26], [27], [28], [31] [33], [34], [37],
[39], [40], [45], [47].

2 Notation. Some auxiliary results.

The symbol | | denotes the Euclidean norm of R" for any n € N, the length o +ag + a3 of
a multi-index o € Ng, as well as the Borel measure of measurable subsets of R®. When we
write |A| for some A € R3*3 we mean the Euclidean norm of A considered as an element
of R%. For R € (0,00), z € R3, put Br(z) := {y € R : |z —y| < R}. In the case x = 0,
we write Bg instead of Bg(0).

The set 2 C R3 and the parameter 7 € (0, 00) introduced in Section 1 will be kept fixed
throughout. Recall that 2 is open and bounded, with connected Lipschitz boundary, and
that n(®) denotes the outward unit normal to Q. We put Qp := B r\Q. Further recall that
in Section 1, we introduced the function v : R? s [1,00) by setting v(z) := 1+ |2| — 21
for z € R3.

For n € N, I C R", let s stand for the characteristic function of I in R™. If A C R?,
we denote by A¢ the complement R*\ A of A in R3. Put ¢; := (6;)1<j<3 for 1 <1 < 3
(unit vector in R3). If A is some nonempty set and v : A + R a function, we set
[V]oo :=sup{|y(z)| : z € A}. If R, S € (0,00) with S < R, we write Ap g for the annular
domain Bgr\Bs.

Let p € [1,00), m € N. For A C R? open, the notation || ||, stands for the norm of the
Lebesgue space LP(A), and || ||, for the usual norm of the Sobolev space W™P(A) of
order m and exponent p. If A C R3 possesses a bounded C?-boundary, the Sobolev space
WTP(DA) with r € (0,2) is to be defined as in [29, Section 6.8.6]. Let B C R3 be open.
The spaces L] (B) and W,,"%(B) are defined as the set of all functions V from B into R
or C such that V|A € LP(A) and V|A € W™P(A), respectively, for any open, bounded set
A C R? with 4 € B. We put VV := (9 V;)1<jr<s for Ve W1(B)3.

Let V be a normed space, and let the norm of V be denoted by | ||. Take n € N.
Then we will use the same notation || || for the norm on V" defined by ||(f1, ..., fn)|| :=
(27:1 I £511? )1/2 for (f1,..., fa) € V™. The space V3*3 as concerns its norm, is identified
with V7.

For open sets A C R3, we define Ce,(A) ={V ¢ C§°(A)3 : divV = 0}, and we write
Li(A) for the closure of Cg5 (A) with respect to the norm of LP(A)3, where p € (1, 00).
This function space L5 (A) ("space of solenoidal LP-functions”) is equipped with the norm
Il

Let B be a Banach space, p € [1,00] and J C R an interval. Then the norm of LP(J, B)
is denoted by || ”LP(J,B)' Let a,b € RU{oo} with a < b. We write LP(a,b, B) instead of
Lp( (a,b), B ) Moreover, we use the expression L] c( [a,b), B ) for the space of all functions
v : (a,b) — B such that v|(a,T) € LP(a,T, B) for any T € (a,b). The space L} (a,b, B)
is defined as usual. Let T € (0,00], A C R3 open, p € [1,00], ¢ € (1,00) and n €
{1, 3}. Then we write || [lgpr and || [lgpm instead of || [|Loo,r, o(ay) and || [|Le®,Loaym),

respectively. For an interval J C R and a function v : J +— T/V;)c1 (A)3, the notation Vv



stands for the gradient of v with respect to x € A, in the sense that

Vov: J o> LL (A)3, Vau(t)(z) == (8azk(vj(t) )(x)) for teJ, z€A
1<5,k<3
(spatial gradient of v). Similar conventions are to be valid with respect to the expressions
Agv, divyv and Oxjv.

Concerning Bochner integrals, if J C R is open, B a Banach space and w : J — B an
integrable function, it is sometimes convenient to write B — [, w(t) dt instead of [, w(t)dt
for the corresponding B-valued Bochner integral. For the definition of the Bochner integral,
we refer to [50, p. 132-133], or to [35, p. 80 ff.].

Let n € N. For the Fourier transform f of a function f € L'(R™), we choose the definition
f(&) = (2m) /2 Jgn €787 f(2) dz (€ € R™), and we define the inverse Fourier transform f
of f by f(&) := (2m)~"/? Jgn €57 f(2) dz(€ € R™). Analogous definitions and notation are
to hold for the Fourier transform and the inverse Fourier transform of functions belonging
to L2(R™), LP(R™, B) or LP(R™, By + ... + By,), where p € {1, 2}, k € N and B, By, ..., By
are Banach spaces.

We write C' for numerical constants and C(v1, ..., 7,) for constants depending exclusively
on paremeters 71, ..., v, € [0,00) for some n € N. However, such a precise bookkeeping
will be possible only at some places. Mostly we will use the symbol € for constants whose
dependence on parameters must be traced from context. Sometimes we write €(vy, ..., V)
in order to indicate that the constant in question is influenced by the quantities 1, ..., Vn.
But in such cases, this constant depends on other parameters as well.

The following simple version of Young’s inequality for integrals will be used frequently. We
state it here in order to make precise what exactly we refer to when we mention “Young’s
inequality”.

Lemma 2.1 ([1, Corollary 2.25]) Let n € N and q € [1,00]. Then

(.

We point out some estimates involving the weight function v, beginning with an integral
of negative powers of |z|v(x).
Lemma 2.2 ([19, Corollary 3.2]) Let v € (2,00) and R € (0,00). Then the integral
[5e (|| v(z)) " dz is bounded by C(v) R-72.

R

q 1/q
[ va@-nvwa| @) <oV, for ve @), Ve ni@),

Lemma 2.3 ([23, Lemma 4.8]) The inequality v(z —y)~t < C (1 + |y|)v(z)~! holds
for z, y € R3.

Theorem 2.1 ([19, (4.1)]) Let p € (1,00), K € (0,00). Then
/Ooo(|z —rteP+t) M dt < Clp, K, 7) (|2 v(2)) *? for 2 € B (2.1)
We will need the following estimates from [38].
Theorem 2.2 There is n € N such that for x € R3,
L (@ le=ahvte =)™ (01l vt)) > dy

< C((1+[al)v(@)) ™" (max{1, Infal})",



/Rg(l +lr—y) vz —y) A+ ly) P uly) T dy < C(L+ )P v(z) T (max{L, Infa|})".

Proof: See [38, (1.39), Remark 3.1, and the proof of Theorem 3.2 and 3.3]. O

We state a Sobolev inequality in exterior domains.

Theorem 2.3 Let A C R? be open, bounded and with Lipschitz boundary. Let q € (1,3)
andV € T/Vlicl (A%) with VV € LI(A%)3. Suppose there is some k € (1,00) with V € L*(A°).
Then V € LY C=D(A%) and |V ||34/3-q) < €IV 4.

Proof: This theorem may be deduced from [30, Theorem II1.6.1]; see [16, Theorem 2.4]
and its proof. O

We introduce the Helmholtz-Fujita decomposition in exterior domains.

Theorem 2.4 Let A C R? be open, bounded, with Lipschitz boundary. For q € (1,00),
there is a linear bounded operator Py := PéA) . LY(A°)? — LEL(A®) and a linear operator
Gy = GV ¢ LAY s WEI(AS) with VG,(F) € LI(A"), Py(F) + VG,(F) = F for
F € LQ(Z:)g, P,(V) =V for V€ LL(AY), and P,(VII) = 0 for I € V[/lz’cq(ﬁ) with
VII € L4(Q°)%. Moreover P, = Py for q € (1,00).

Proof: See [30, Section III.1]. Some additional details may be found in [16, proof of
Theorem 2.11 and Corollary 2.3]. O

We will need certain properties of Bochner integrals. To begin with, we recall a basic tool.

Theorem 2.5 Let B1, By be Banach spaces, A : B1 — By a linear and bounded operator,
n €N, J CR" an open set and f : J — Bi a Bochner integrable mapping. Then
Ao f:Jw By is Bochner integrable, too, and A(By — [, fdx) =By — [, Ao fdu.

Proof: See [50, p. 134, Corollary 2], [35, Theorem 3.7.12]. O

As a consequence of Theorem 2.5, a linear bounded operator between two Banach spaces
commutes with the Fourier transform:

Corollary 2.1 Let By and By be Banach spaces, and let T : By — By be a linear and
bounded operator. Take n € N and v € L*>(R™, By). Then T ov € L*(R", By) and T 0¥ =
(T ov)™.

Proof: Put g(R,§) := By — fBR(2 7) "2 e 8% y(z) dx for R € (0,00), £ € R™, and let
h(R,&) denote the Bs-valued Bochner integral obtained by replacing v(x) by (1 o v)(x)
in the preceding definition. Let || ||, denote the norm of B;, for j € {1, 2}. Then
Jen I15(8) = g(R. I, d§ — 0 and [, [[(T 0 0)"(€) — h(R,&)|[f,d§ — 0 for R — oo
by the definition of ¥ and (T o v)". But Theorem 2.5 yields that T'(g(R,&)) = h(R,§)
for £ € R™, R > 0, so the second of the preceding convergence relations yields that
Jan (T o) (&) =T (9(R,E) )|, d€ = 0 (R — 00). On the other hand, the boundedness
of T allows to conclude from the first that [p, |7(7(£) — g(R,€))|I%, d€ = 0 (R — o).
Thus the corollary follows. O

We state a density result, already used in [20], in LP(J, B) for Banach spaces B and
p € [1,00).

Corollary 2.2 ([20, Corollary 2.1]) Let B be a Banach space, A a dense subset of
B, pe[l,0), n € Nand J C R" open. Then the set of sums Z?:l pja; with k €



N, ¢; € C5°(J) and a; € A for j € {1, ..., k} is dense in LP(J,B).

Compatibility result for Bochner integrals with values in LP-spaces are treated in the
ensuing two lemmas.

Lemma 2.4 ([19, Lemma 2.3]) Let m,n € N, J C R" and U C R™ open sets, q €
[1,00) and f : J +— LI(U)? integrable as a Bochner integral in LY(U)3. Then there is a
measurable function g: U x J +— R3 such that f(t) = g(t) a. e. inU, fora. e. t €.J. We
identify f with g. Then [;|f(2)(z)|dz < 0o and [, f(z)(x)dz = (LY U)*— [, f(z) dz)(x)
fora. e. zeU.

Lemma 2.5 ([20, Lemma 2.2]) Let J C R be an interval, n € N, B C R" and A C
B open sets, q1, g2 € [1,00) and f : J + L9 (B)3 a Bochner integrable mapping with
f(@))A E L2(A ) fort € J and f]A J + L%(A)® Bochner integrable as well. Then
(L™(B)* — [, f(s)ds)|A = L®2(A)° — [, f(s)|Ads.

A much more deep-lying result is the following theorem.

Theorem 2.6 ([25, Theorem 8.20.5]) Let B be a reflexive Banach space, J C R™ open
and q € (1,00). Then the dual space of LY(J, B) is isometrically isomorph to Lq/(J, B).

We state a criterion for the existence of a weak derivative of a function with values in a
Banach space.

Theorem 2.7 Let B be a Banach space, a, b € R with a < b, w, g € L'(a,b, B) and

f:(’(t)n( (t))dt = —f Ct)n(g(t))dt forC e Cy° ((a,b)), 17 € B’ Then there is
w € C%[a,b], B) with w(t) = w(t) for a. e. t € (a,b), w(b) — f g(t)dt, w e
Whl(a,b, B) and w' = g.

Proof: The theorem follows from [49, Lemma 3.1.1]. O

A variant of Fubini’s theorem for Bochner integrals will be useful:

Theorem 2.8 ([35, Theorem 3.7.13]) For j € {1, 2}, let J; C R be measurable. Let
B be a Banach space, and let f: Jy X Jo — B be integrable as B-valued Bochner integral.
Then the function f(&1, -) : Jo — B is integrable in the same sense for a. e. & € Jp, the
function & — sz f(&1,&)dEs (&1 € J1) is also integrable as B-valued Bochner integral,

and [, [, f(&,&)dsads = [; ,, [(&, &) d(61, &)

We will need Plancherel’s equation for functions with values in Banach spaces. Since its
proof is not too long, and because we do not know a reference, we indicate this proof.

Theorem 2.9 Let B be a reflexive Banach space, n € N and v € L?>(R",B). Then v €
L*(R™, B) and ||v| 2&n,5) = |10l L2(rn,B)-

Proof: For any Banach space A, let D(A) denote the set of sums Z;?:l pja; with k €
N, ¢; € S(R") and a; € A for j € {1, ..., k}, where S(R") stands for the usual space
of rapidly decreasing functions on R"™. According to Corollary 2.2, the set D(A) is dense
in L?(R", A). Let (,) : B’ x B + C denote the usual dual pairing of B’ and B. For
b € B, define (V/,v) : R" — R™ by (V',v)(z) := (V/,v(x)) = (b ov)(z) for x € R™. Let
h € D(B’). Then we may choose k € N, ¢; € S(R") and b}; € B’ for 1 < j < k with
h(z) = Z?Zl @;(x) b (x € R™). By Corollary 2.1, we have ((b},v))"(z) = (b},0(z)) (2 €



R™), so by Parseval’s equation for functions from L?(R"),
k

Lt v@nde =3 [ i@ . o) de =3 [ G . 5@ de (22)

j=1 i=1
= /n@(x), B(2)) da.

On the other hand, B is reflexive, so we have L?(R", B) = L*(R", B') (Theorem 2.6).
Therefore, since D(B') is dense in L?(R", B’), we obtain that

[0l L2mn,B) = sup{/R (h(z), v(z))dz : h € D(B), |[h]lL2@n,pry = 1},

with an analogous formula being valid for . Moreover, since the Fourier transform maps
the space S(R™) bijectively onto itself, we have {h : h € D(B')} = D(B’). The theorem
now follows with (2.2). O

3 A theorem on the Oseen resolvent. Some fundamental
solutions and potential functions.

Our first theorem reproduces an aspect of the theory in [32]. Further indications and
references may be found in the [22, proof of Corollary 4.1].

Theorem 3.1 Let A C R? be open, bounded, with C%-boundary. Take q € (1,00), and
define D(Ay) == W21(A)3 Wy U(AY)3 N LL(AY), Ay(U) := P,(AU) for U € D(A,), with
the operator Py = PéA) introduced in Theorem 2.4.

Then A, is a linear and densely defined operator from D(A,) into LL(A®). The set
C\(—00, 0] is contained in the resolvent set p(Ay) of Ay. Let I, denote the identical map-
ping of LL(A®) into itself. Then the operator (NI, + A,)~" is holomorphic as a function
of X € o(A,) with values in the space of linear bounded operators from L& (A°) into itself.
Ford € [0, 7), the inequality | \Z,+Ay) " (F)|lq < €|A|71 ||F ||y holds for F € LL(A%), \ €
C\{0} with |arg A| < 9.

We define the fundamental solution 9 of the Poisson equation (”Newton kernel”) by
setting N(z) := (4 |z|)~! for x € R*\{0}. For A C R? open and bounded with Lipschitz
boundary, and for any ¢ € L*(9A)3, we define the surface potential F(¢)(z) := FY (o) :
R3\OA  C3 by setting

§(6)(x) = /a (VM=) 0 (0) - 6(5) o, for @ € R\DA, (3.1)

where n(4) : 9Q — R3 denotes the outward unit normal to A. The next theorem, which
the title of this section alludes to, and which we take from [22], deals with the Oseen
resolvent problem

—AV 4+ 70,V + AV +VII=F, divV =0.

It shows how iV (£ € R) may be estimated with respect to certain LP-norms by the
right-hand side F' and the boundary data. These latter data, however, do not appear
explicitly because they are evaluated by the term £, via a trace estimate.
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Theorem 3.2 ([22, Corollary 7.1]) Let A C R3 be open and bounded with Lipschitz
boundary. Take S € (0,00) with A C Bg. For q € (1,00), let P, = PéBS) be defined as in
Theorem 2.4, T, and A, as in Theorem 3.1, and F(¢) for ¢ € L*(0Bs)? as in (3.1), each
time with A replaced by Bg.

Let ng € N (md let D1y ey Prgs q(()l), q((]) and q1 belong to (1,00). Put ppy+1 == q1 and

q _mln({QO aQU an}U{pj . 1§]§n0})

Let € € R with |¢] > 1, FU) € IPi(A%) for 1 < j < ng, VW e La” (A°)3 n WL (A%)3
and VV W e Lo (A% for pe {1,2}. Put V := VW + V@ and suppose that

no
/ (vv VI (rOV +igV = FU) -19) dz = 0 ford € CC (AY), divU = 0. (3.2)
A° , ’
J=1

(This means in particular that V is a weak solution of the Oseen resolvent problem.) Put

2= VOl + VOl + 19V ],

Then there are functions UY) € W?Pi(Bg“)? for 1 < j <ng+ 1, UM*2) ¢ C=°(Bg")? as
well as ¢ € LI(0Bg)? with the following properties:

no—+2
VIBs" = Y UV, UV = (i€, + Ap) (P, (FVIBs)), lEUV Iy, < €||FD,

1€ (UMD — F(¢))|BS||- < €(r, R) £, and if v € (3/2, 00) and again R € (S,00), then
|15(¢)|Bgl» < €(r, R) £. The constants in the preceding estimates do not depend on §. The
function §(¢) is defined as in (3.1) with A = Bg.

Let $ denote the usual heat kernel in 3D, that is,

for 1 < j < mg, |EUMTD, < €8, [l¢]l, < €L Ifr € (1,00), R € (S,00), then

9(z,t) = (4mwt)™3? e 11U for 2 e R, te (0,00), H(2,0):=0 for z € R*{0}.

Thus, in our context, §) is defined on B := (R3 x (0,00) ) U ((R3\{0}) x {0}).

Theorem 3.3 The relations $ € C®(B), [z H(z,t)dt = 1 for t € (0,00) hold. If
a € N, o € Ny, the inequality |0207 (=, )\ < C(a,a) (|22 + 1)~ BFlel+29)/2 s yalid for
z € R3, t € (0,00).

Proof: See [46] for the preceding estimate. O

The estimate in Theorem 3.3 in the case |a| = 2, o0 = 0 allows to define the velocity part
I" of a fundamental solution to the time-dependent Stokes system,

Lik(z,t) := 9(2,t) o +/ 0z;021.9(2,s)ds for (z,t) € B, j ke {1, 2, 3},
t

and the velocity part A of a fundamental solution to the time-dependent Oseen system
(1.11),

Aji(z,t) =Tz —1ter, t) for (z,t) € B, j,ke {1, 2, 3}. (3.3)

We will need the following properties of A.
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Lemma 3.1 ([19, Lemma 3.3, Corollary 3.3]) For 1 < j < 3, z € R3, t € (0,00),
the relations A € C®(B)>*® and 33_, 0z \ji(2,t) = 0 are valid. Moreover

02N (2, )| < C(7) (|2 — Tte| + 1) CFHD/2 (2 e R3, t € (0,00), a €N}, |a] <2).(3.4)
Let K > 0. Then
02 (2, 6)] < C(r, K) [ X0,k (|2]) (|2 + )~ HeD/2 (3.5)
X (koo (12) (121 w(2) 4+ £)"FTD2) for 2t o as in (3.4).

Theorem 3.4 ([19, Corollary 4.1]) Let R, R € (0,00) with R < R, p,q € [1,)].
Then

t /
/o /B 0200 A(w —y,t — 5) - uly, s)| dyds < € (|a] v(z) )~ CHHINZRE
R

fort e (0,00), u € LP(O,t, Lq(BR)3), T € B%, a, B € N3 with |a| <1, |B] < 1.

We introduce the first of our potential functions.

Lemma 3.2 ([19, Corollary 3.5]) Let A C R? be measurable, g € [1,00), V € LI(A)?,
and let V' the zero extension of V to R3. Then [ps [0SA(z—y,t)-V(y)|dy < oo for a € N}
with |a| <1, z € R3, t € (0,00). Thus the volume potential 37 (V) introduced in (1.10)
s well defined.

The derivative dz;37 (V) (x,t) exists and equals Jgs OmA(z — y,t) - V(y)dy for z,t as
above, and for | € {1,2,3}. The functions 37 (V) and 82,37 (V) are continuous in
R? x (0,00). If ¢ > 1, then |37 (V)||, < C(g,7) |V ,-

We will need a variant of 37 (V).

Lemma 3.3 Let g € (1,00), A C R® be measurable, V € LI(A)®. Write V for the zero
extension of V to R3. Then Jgs 107029 (x—y, t) XN/(y)\ dy < oo forz € R3, t € (0,00), o €
N3, o € {0, 1} with |a|+2 0 < 2. Therefore we may define the function HO (V) by setting
HOWV)(2,1) = [pa Oz —y, ) V(y) dy, HO(V)(2,0) := V(2,0) for z € R?, t € (0,00).
Then HO (V) belongs to C°([0,00), L1(R®)?) and the estimate IHOWVY ), < C V]I,
holds for ¢ € (1,00). Moreover, the derivative 9709H O (V) (x,t) exists and equals the
integral [os 07039 (x — y, t) V(y)dy for z, t, a, o as above, and is a continuous function
of (z,t) € R3 x (0,00). The equation d;HO (V) — A,HO (V) =0 holds. Let W € LL(R?).
Then div,HO (W) = 0.

Proof: All the claims of the lemma except the relation %) (V) e C°([0,00), LY(R?)?)
and the equation div,#(? (W) = 0 follow by the same arguments as used in [19, proof of
Corollary 3.5] with respect to 3 (V). The continuity at t = 0 of #(™) (V) as a mapping
from [0,00) to L(R3)3 holds by a simplified version of the proof of [19, Theorem 3.3].
Continuity at t > 0 may be shown by the same reasoning as in [19, proof of Corollary 3.6].
Let ¢ € C5, (R?). By a partial integration in the integral Jxs 22:1 0y;iH(z -y, t) p(y) dy,
we obtain div,H ) (¢)(z,t) = 0 for x € R3, t € (0,00). There is a sequence (¢,) in
C5%, (R3) with [[W — ¢y lg — 0. As a consequence of Theorem 3.3 and Hélder’s inequality,
we get | Vo HO (W —6,)(1)]l, < Clq) t:TH3/D/12 | W —6,|, (n € N). Thus we may conclude
that div,H© (W) = 0. O

We turn to the definition of another potential function.
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Lemma 3.4 Let Ty € (0,00}, A C R3 measurable, ¢ € [1,00) and f a function from
L},.([0,Tp), LI(A)*). Let f den?vte the zero extension of f to R® x (0,00). Then the
integral [gs |09A(x — y,t — o) - f(y,0)|dy is finite for any x € R, t € (0,00), o €
(0,t), a € N3 with |a| < 1. Moreover, for a. e. t € (0,00) and for « as before, the integral
fg Jgs 109A(x — y,t — o) - f(y,a)|dy do is finite for a. e. © € R3. Thus we may define
RO (f)(x,t) as in (1.9) for such t and x. The relation R (f)(t) € VV;;;(R:i)?’ holds for
a. e. t e (0,00), and dz; 87 (f)(t)(z) = fot o3 0z Az — y,t — 0) - f(y,0) dydo for such
t, a. e. x € R, and forl € {1, 2, 3}.

Moreover the integral fg | Jgs Az —y, t—s) - f(y, s)dy|ds is finite for any t € (0,00) and
for a. e. x € R3. Thus the function %(T)(f) is well defined even for any t € (0,00)
(instead of only for a. e. t € (0,00)) and for a. e. x € R3.

Proof: [19, Lemma 3.8, Corollary 3.7]. O

The next lemma deals with still another potential function, this one defined on the surface
of an open bounded set.

Lemma 3.5 Let q € [1,00], Ty € (0,00, A C R* open and bounded, with Lipschitz
boundary, ¢ € L}OC([O,TO), Lq(GA)?’), ¢ the zero extension of ¢ to A x (0,00). For

t € (0,00), z € R3\OA, a € N}, the term [02A(x — y,t — s) - ¢(y, s)| is integrable as a
function of (y,s) € DA x (0,t). Define BT (¢) := BT (4) : (RP\IA) x (0,00) — R3 by

U (¢)(x,t) := /Ot » Az —y,t—s)- oy, s) doyds for x € R*\0A, t € (0,00).

Then, for anyt € (0,00), the integral fot Jou Mz—y, t—s)-cZ(y, s) doy ds as a function of x €
R3\ A belongs to C°°(R3\ A)?, and 920 (¢)(x,t) = fot Joa 09N (x—y,t—s)- by, s) doy ds
fora € N3, z € R3\A.

Proof: The function A is C* on R3 x (0,00) (Lemma 3.1), so the lemma follows from
Lebesgue’s theorem. O

We introduce another kernel function, which is a truncated version of A, and whose def-
inition involves fixed numbers Sy, Ry € (0,00) with Sy < Rp, the mean value R; :=
(Ro + So)/2 of these numbers, and a function o € C§°(Bg,) with ¢[Bg i (ry—s,)/4 =
1, 0 < g < 1. However, since this definition would need some preparation, but we will
not work with it, we do not restate it here, referring instead to [19, (3.13)]. In the ensuing
theorem, we collect those properties of this kernel which will be relevant in what follows.

Theorem 3.5 There is a function & := Br, s, oo : B, X Br, % [0,00) = R>*? with the
following properties.

Let x € B, r € [0,00). Then &(z, - ,7) € C>(Bpg, )>*3, 22:1 oyr®i(x,y,m) = 0 for
1<j<3,y€Bg,, and &(z,y,7) = Az — y,7) for y € Bg,4(ro—S,)/4-

Let x € By, q € (1,00). Then the mapping v — &(x, - ,r) (7“ € [0,00)) belongs
to C'([0,00), WH4(Bg,)3*®). Thus a function G' € C°([0,00), Wh1(Bg,)3*3) may be
defined by the condition ||(&(z, - ,r +h) — &(z, - ,7))/h— G'(r)|1,4 = 0 (h — 0) for
r € [0,00). We write 0,8 (x,y,r) instead of G'(r)(y) (r € [0,00), y € Bg,).

Let r € [0,00), q € (1,00).

Let 0 € {0, 1}, and define L(z) : Bgr, + R¥3 by L(x)(y) = 07&(x,y,r) for x €
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B%,s Y € Br,. Then L(x) € C§° (Bgr,)>*3 N Wh4(Bg,)3*3 for x € B o, and L considered
as a mapping from Bf =~ into W4(Bg,)3*3 is partially differentiable on BiROC. Thus we
may define Dy, L : Br,” — WY4(Bg,)?*3 by the condition |(L(z 4+ hem) — L(x) ) /h —
D L(2)|l1.4 — 0 (b — 0), form € {1, 2,3}, € Bg, . Instead of D,y L(2)(y), we write
0r, 076 (x,y,1).

Let | € {1, 2, 3} and define L(z) : Br, — R¥3 by L(z)(y) = oy®(z,y,r) for x €
B, y € Br,. Then L(x) € C§°(Bg,)**® N LY(Bg,)**® for x € B, and L considered as
an opemtor from Bp, into L(Bg,)**3 is partially dz’jj‘erentz’able on BiROC. Thus we may
define Dy, L : Br," — Lq(BR )3%3 by the condition H( L(z+hem)—L(z) )/h—Dmi(:c)Hq —

0 (h—0) (me{l,2, 3}, z€Br,). Instead of Dy, L(x)(y), we write 82,0y & (x,y, 7).

Let g € (1,00), p € [1,00]. Then

[ 10sar0ie ) - Vil dy < € (Jalvia)) 2 vy, (3.6)

Ry

for V€ LY(Bpg,)?, t € (0,00), € Br,", o, B € N3, o € {0, 1} with |a| <1, |8] + 0o <1,

tf/\mwﬁﬁx%ww><%w@@semﬂwm)“Wﬂw“wwwwmﬁan
Br

fort, x, o, B, o as in (5.6), and for v € LP(O,t, Lq(BRl)?’).
Proof: [19, Lemma 3.11, 3.12, 3.13]. O

We note a consequence of the preceding theorem.

Corollary 3.1 ([19, Corollary 4.2]) Let 8 € N3, o € {0, 1} with |8] + o < 1. Let
€ (1,00), and let the function v belong to Lj,.( [0,00), LY(Bg,)*) and the function V to
L(Bg,)3. Define

t
H%WZAEg%%W%M—@w@ﬁw%,M%Wzé ®(2,y,1) - V(y) dy
Ry Ry

for x € Bg,*, t € (0,00). Take a number | € {1, 2, 3}. Then the derivatives dx;F(z,t)
and Ox H (x,t) exist pointwise, and they equal fg fBR 83};8;’85(’5(;3, y,t —s)-v(y,s)dyds
1

and fBRl 0x18(x,y,t) - V(y) dy, respectively, for x € BiROC, t € (0,00)

It will be convenient to subsume a number of terms in a single operator, which we define
here, and whose definition makes sense due to the preceding Corollary 3.1

Let A C Bg, be open and bounded with Lipschitz boundary. Put Ag, := Bg,\A, Zg, 1 :=
Ag, x (0,T) for T € (0,00]. Let A C R® x R, Ty € (0,00] such that Zg, 1, C 2. Let
q € (1,00) and let v : A — R3 be such that v|Zg, 1, € C°([0,To), LY(AR,)*), v(s)|Ar, €
Wl (Ag,)? for s € (0,Tp), and Vav|Zr 1 € Lo, ([0, o), L4(Ar,)? ). Then, fort € (0, T)
and = € Bg,", we define

RRo,S0,00,4,10 (V) / /A Zayz® T, y,t = s) - Oyv(y, s) (3.8)
Ry

—@wm@rwwmwwﬁ&m%rﬂ»mMﬁ@w+/ &(x,9,0) - o(y, 1) dy.

ARy
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Next we reproduce some decay estimates proved in [19], beginning with a decay estimate
of RRy,S0,00,4,1, (V). We use the same notation as in (3.8).

Corollary 3.2 ([19, Corollary 4.3]) Let A, A, Ty, q be given as in (3.8) and p1, p2 €
[1,00]. Then, if v: A R3 with v|Zp, 1, € C°([0,To), LY(Ar,)?) as well as v(s)|Ag, €
W,ol(AR,)? for s € (0,Ty) and V,0|Zp, 1, € LP*(0, Ty, LY(Ag,)°), and if x € Br,’, t €
(0,Ty), a € N3 with |a| < 1, the term 0S8R, 50,00, (V) (2, )] is bounded by

€ ([[v[Zr, —~(3+lal)/2+1/(29))

‘qmut + va”’ZRhthm;t + [Jv(t) |2, ”q) jg{liﬁé}( || V(x))

Lemma 3.6 ([19, Lemma 4.3]) Let A, 2, Ty, q be given as in (3.8), let n(Y) denote the
outward unit normal to A, and take p1, p2 € [1,00]. Then, for v : A — R3 with v|Zg, 1, €
LP1(0,Tp, LY(Ag,)?), v(s)|Ag, € WENAR)? for s € (0,Ty), and V| Zg, 1 belonging

loc
to LPQ(O,TO, Lq(ARl)g), z € By, t € (0,Tp), a € N with || < 2, 1 € {1, 2, 3}, the
term |92 (™A) (nl(A) v)(x,t)] is bounded by
: —(3+lal)/2+1/(2p))
(3+| +
C (|01 Zr, tllgpit + V20| ZR, tllg,post) Z 2| v( ki,
7j=1

where (nl(A) v)(y,s) == nl(A) (y)v(y) fory € 0A, s € (0,Tp).

Lemma 3.7 ([19, Lemma 4.4]) Recall that the Newton kernel N was introduced fol-
lowing Theorem 3.1. Let A C Bg, be open and bounded, with Lipschitz boundary, and
with outward unit normal denoted by n'Y. Put Ap, := Bg,\A and let ¢ € (1,00).
Then the estimate | [ ,(0“V)N(z — y) (n - V)(y)do,| < €lz|7271l| V||, holds for
V € Li(Ag, > N WHL(AR,)? with divV = 0, t € (0,00), = € B, and a € N3 with
la| < 1. If the zero flux condition [, nA) .V do, = 0 is valid, the factor |z|~2712l may be
replaced by |z| 3711,

The potential functions defined above, with the exception of H?), appear in the the

representation formula stated in the ensuing theorem, which constitutes the starting point
of the theory presented in the work at hand.

Theorem 3.6 Take E C Bg, open, bounded, with Lipschitz boundary and set Eg, =
Bs,\E. Let Ty € (0,00], no, mg € N, D, qo, G1, P1; -+, Pgs 015 - 5 Omo € (1,00), and
consider functions u : (0,Ty) Wli’cl(Ec)?’, fO) e Lloc([()?TO) Lri(E°)3 ) for1 < j <
no, GU € C’O([O,Tg), LQl(Bigoc)?’) for 1 <1 < mgy, Uy € Lp(E) with the following
properties:

u|Eg, x (0,Tp) € Lloc( [0,Tp), LqO(E50)3), divyu(t) = 0 and u(t)|BigoC =35 lell ( ) for
t € (0,Ty), Voue LL _([0,Tp), L9 (E)3),

/TO/ )9+ ot) [ Vau(t) - VI + 7 dzyult) - 0 — (1) - 19]) dzdt (3.9)
(0)/E Up-ddz =0 for ¢ € C3°([0,Tp)), 19608?0(E0),

with f =712, f9). Define nt50)(y) := Sgty for y € dBs,. Let t € (0,00). Then there is
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a measurable set Ny C BROC of measure zero such that the equation

u(x,t) Z F9Bs,” x (0,Tv) ) (x,t) + 37 (Uo| B, ) (, t) (3.10)
j=1
3
=" 0m B E50) (0™ ) (2, 1) — / (V) (2 — ) (0 (y) - u(y, 1) ) doy, + R(u)(x, t)
=1 9Bs,

t 0
_/ Qj(l‘ay?t)UO(y)dy_/ / Qj(ﬂfyyvt_S)Zf(])(?/,S)dde
ARy, 0 JARg,,s,

J=1

holds for x € Bpr,"\Nt, where & = ®pr, 5,5, was introduced in Theorem 3.5, R(u) =
RRo,S0,00.Bs,To (W) in (3.8), and the annular domain Ag, s, at the beginning of Section 2.

Proof: [20, Corollary 5.1, 5.2], with assumptions on u stated at the beginning of [20,
Section 5. 0

4 A result on the Cauchy problem for the heat equation.

We do not know a reference for the ensuing estimate of the spatial gradient of the solution
to the Cauchy problem for the heat equation with initial data in L(R?). However, a proof
is required since this result is not easy to establish. We present an argument — applying
a multiplier theorem by Benedek, Calderon, Panzone [4] — which only works if ¢ < 2. The
case ¢ > 2 remains open.

Theorem 4.1 Let g € (1,2]. Then ||V HO(U)]g2.00 < Cq) |U|ly for U € LI(R?)3.

Proof: We establish a framework allowing us to apply [4, Theorem 2]. Let € € (0, 00).

We write B for the Banach space of linear bounded operators from R? into L2( (€,00) )3.
This space B is to be equipped with the usual norm, which we denote by || ||p. We
write || || 12(z2) for the norm of the space L? [R3, L?( (€, 00) )3 |. The space of functions in
L>®(R?)3 with compact support is denoted by L°(R?)3.

Let j € {1, 2, 3}, and define K(z)(a)(t) := 0z;9(z,t)a for z, a € R3, t € (¢,00). Then
by Theorem 3.3, [*°|Kc(z)(a)(®)|?dt < Clal? [(|z|* +t)~ 4dt < C|a|2 (|z|> 4 €)3 for
z, a € R3. Thus Kc(z) € B, ||[Ke(2)||p < C (|z|*+¢e) ™32 forz € R?, and [ |Ke(2)|% dz <
C 3. In particular . € L?(R?, B) and K. : R? — B is integrable on compact subsets
of R3. Let U € L°(R3)3. For z € R3, the function y /C (JI - y)(U(y)) (y € R3) is

Bochner integrable in L2( (€,00) )3 so we may define (AU)( fRa (U(CU) ) dy.
The function U € L (R3)? belongs in particular to Ll(]RS) and H(AU)( )HLQ(( ))3 <

Jgs |Ke(z = )| 5 |U(y)| dy. Therefore Young’s inequality and the relation K. € L*(R3, B)
derived above yield that AU € L*|R3, L2((e,oo))3]. Let [AU" : R® — L?( (e, oo))3
denote the Fourier transform of AU.

Let us justify the equation [AU]N(€)(t) = (2m)~%/2 e~ let (=4 &) UE) for ¢ € R3, t €
(€, 00). To this end, take 1) € C§°( (e, 0) )3 and put T(¢) := [ ¢-¢pdt for ¢ € L*( (e, ) )3.
Then 7' is a linear and bounded operator from L?( (e, 0o) )3 into R, so To[AU|" = [ToAU"

by Corollary 2. 1 But for z € R3, by Theorem 2.5 and the definition of AU and K, we
have (T o AU)(x) = [gs [ L(x,y,t) dt dy, with L(z,y,t) := ¢(t) 0z;9(x — y,t) U(y) for
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z,y € R3 t € (¢,00). Since U € L'(R?)3, as mentioned above, ¢ € Ll((e,oo))3 and
|0x;9(x —y,t)| < C(Jx —y|*> + €)% for z, y € R3, t € (¢, 00) by Theorem 3.3, as already
used above, it is obvious that the integral [ps [ps [*|(27)73/2 716 Lz, y, t)| dt dy dz
is finite for & € R3. Therefore we may apply Fubini’s theorem in the triple integral
Jos Jrs [0 (27) 73276 L(x,y, t) dt dy dz. But [H(-,1)](&) = (2m)~3/2 e lét for ¢ €
R, t € (0,00), so we get by the equations for T'o [AU]" and (T o AU)(x) from above that
[29(t) - [AUTNE) (t) dt = [ p(t)-(27) 732 e &Pt (—ig;) U(€) dt. Since ¢ was arbitrarily
taken from C§°( (e, o0) )3, we arrive at the equation for [AU]"(€) claimed above. Therefore
with Theorem 2.9,

14Ul 2(z2) = AUV oz = € [ | [ leye 1 atiD(©) P de < €1 = C U

Next take y € R3 with |y| > 0, x € R3 with |x| > 4]y|, and t € (¢,00). Then the
equation [0z;9H(z — y,t) — 0z;H(x,t)| = |f01 S 0k 0x;9(x — Dy, t) yp dO| holds, so
with Theorem 3.3, [0z (x — y,t) — dz;H(z,t)| < (|z|> +¢)7>/2 |y|, where we used the
estimate |x — dy| > |z| — |y| > 3|z|/4 for ¥ € [0, 1], which is valid since |z| > 4|y|. As
a consequence, ||[Ke(z —y) — Ke(z)|p < C( [Z(Jz]* +¢)7° dt)l/2 ly| < C|z|~*|y|, hence
IBZM IKe(x —y) — Ke(z)|| g dx < C. Now we see that we may apply [4, Theorem 2] with

™3 72 3 ..
By =R3, By = L*((e,00) )", obtaining that HAUHLQ[R:’,’LQ((EW))?,] < C(q)||U|\q for U €

Lg°(R3)3. But by Lemma 2.4 and 3.3, (AU)(z,t) = dz;H O (U)(2,t) for 2 € R, t € (e, 0)
and U as before. Thus

([ omowiera)™ ar ] < cwiol, for ve Ly

€

At this point we exploit the assumption ¢ < 2, which implies 2/q > 1. As a consequence,
Minkowski’s inequality for integrals ([1, Theorem 2.9]) allows to deduce from the preceding
estimate of 9z;HO(U) that ||0z;H O (U)R? x (e, OO)||L2(e,oo,L‘I(R3)3) < C(q)||U]lq for

U € LP(R3)3. Since this is true for any € € (0,00), and because the constant C(p) in
this inequality does not depend on ¢, we thus get [|9z;H O (U)|l42.00 < C(q) |U||4 for U as
before. Now let U € L(R3)3, and choose a sequence (Uy,) in C§°(R?)3 with ||U—Uy,||; — 0.
Then [|0x;HO(U,)|lg.2.00 < C(q) [|Unllq for n € N by what has been shown already. On

the other hand, by Young’s inequality and Theorem 3.3,

to to 2
| e uOw, ~vyolza< [ [ ozsiold) v, - vl,
t1 t1 R3
to 2
<c [7([ (el )t az) U~ Ul < C nteaftr) U ULl
R3

t1

for n € N, t1, ty € (0,00) with t; < t3. From this inequality and the preceding estimate of
102 HO(U,) || 4.2:00 for n € N we may conclude that ||02;H @ (U)]|g.2.00 < C(q) |Ully- O
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5 Weak solutions to the Oseen system: a representation
formula and spatial decay estimates without assumptions
on continuity of the velocity with respect to time.

When in [20] we derived the representation formula (3.10) for the velocity part of a solution
to the time-dependent Oseen system (1.11), we had to require some continuity of the
velocity with respect to the time variable. In the present section, we obtain an integral
representation without such a requirement if the solution and the right-hand side are L2-
integrable in time. This type of integrability is valid in the case of L?-strong solutions to
the nonlinear problem (1.1), as considered in the next section.

As in the passage preceding Theorem 3.5, we fix numbers Ry, Sy € (0,00) with Sy < Ry
and Q C Bg,, define Ry := (Sp + Ry)/2, and choose a function ¢y € C§°(Bg,) with
@[ Bsyt(Ro—50)/4 = 1, 0 < o < 1. In addition it will be convenient to use a pair of
numbers Sy, Sy € (0,Sy) with S; > Sy and Q C Bg,.

All the Fourier transforms appearing in this section are Fourier transforms with respect
to the time variable ¢ € R.

Lemma 5.1 Let A C R? be open, qo, ¢1 € (1,00), u € L*(R, L®(A)*) with u(t) €
VVllocl( )3 for t € R and Vyu € L*(R, L1 (A)?). Then (dzju)" = dzju fOT led{l,2, 3}.

Moreover, let q € (1,0), v € LQ(R Li(A ) and ¥ € C§°(A)3. Put ot = [you(t)-Vdax
fort € R. Then o € L*(R) and p(¢ fA €)-vdx for £ €R.

Proof: Let ¢ € C§°(A)?, 1 <1<3, o € {0, 1}. The operator V > [, V - 8l(0)¢ dz (V €
L? (A)3) is linear and bounded if p = g9 and if p = ¢1. Therefore by Corollary 2.1, the
functions pu(t fA 8;@& dz (¢ E ]R) and w(t) := [, dz(t) - pdx (t € R) belong to
L?*(R), and 2 u fA )- O dx, (€ fA 83:10 (5) Y dx (§ € R). On the other hand,
wu(t) = —w(t) for t € R, so we get ﬁ = —. Since this is true for any | € {1, 2, 3} and
Y € C5°(A)3, we may conclude that 9(¢) € WEL(A)? and 92,0(€) = [00] " (€) for € € R.

loc

The operator V + [, V -ddx (V € LY(A)?) is linear and bounded, too. So the second
claim of the lemma also follows from Corollary 2.1, with a similar argument. U
Theorem 5.1 Let ng € N, py, ..., pny € (1,00) and f9) € L2(0 0o, LPi(Q°)3 ) for 1 <
j < mng. Put fO(t) := 0 fort € (—00,0), 1 < j < ng. Then there is a sequence (Ry) in
(1,00) such that the limit

UD(t) = lim @m) Y2t (i T, + Ay) N (P, [ FO(O)|Bs, ] ) de (5.1)
7790 J(=Rn,Rn)\(—1,1)

exists in LPi (352 )3 for j € {1, ..., no} and a. e. t € R, where Pp, is to be chosen as in
Theorem 2.4, and I, and Ay, for j € {1, ..., no} as in Theorem 3.1, in each case with
A = Bs,". The integral in (5.1) is to be understood as a Bochner integral with values in

LPi(Bg,")®. For j € {1, ..., ng}, the function 49) belongs to L2(R, LPi(Bg,")?).

Let q(()l)7 q(()Q), @1 € (1,00), ul) € L2(0,c0, L‘I(j)(ﬁc)?’) with w9 (t) € I/Vlij(ﬁc):3 and
div,ul) (t) = 0 for t € (0,00), and V,ul9) € L*(0,00, L1(Q )9 ) for j € {1, 2}.

Put v = v +u®?. Suppose that u satisfies (3.9) with E = Q, f = >l f @), Ty = oo and
Up=0. Let g € (1,00) with q < min({q(()l), q§2), atU{p; 1< < no}). Define ppy+1 :=

— — (1) (2 — 1) — (2
q1, Pno+2 ‘= {4, Pno+3 ‘= 4y s Pno+4 ‘= 4y s Pno+5 ‘= 4y s Pno+6 ‘= 4y s Pno+7 ‘=
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max{2, q}. Let J C R an interval with nonempty interior. Then there is a set N C R of
measure zero and a number to € J\N as well as functions g € LQ(]R, Li(0Bs,)? ), GU) e

C’O(R, LPi (Biglc)?’) for 1 <1 < ng+ 7 with the following properties.

Put €(z,t) := €(p)(x,t) := f8352 (V) (z—y) (S y-o(y,t) ) doy fort €R, z € BS,, with
N introduced following Theorem 3.1.Then, for any t € R\N, j € {1, ..., no}, the limit in
(5.1) exists, and

no+7
(w=&)N)Bs," = Y G+ (49(t) -4V (tg)) (5.2)
j=1,5¢Z Jj€Z

fort € (0,00)\, Z C {1, ..., no}, in particular (u — €)(t)|Bs,* = Z;lf{7 GUY(t) for such
t. Moreover &(t) € C®(Bg,)?, div,E(t) =

(3/2, 00) and || Va€ly2z forr € (1,00) are bounded by €(r) ([uV]| o) o +u| @,  +
0 0 %

|Vaullgr,2:00). In addition, if R € (S1,00), Z C {1, ..., no}, then for any t € R,

no+7 ) 2 )
1Y GO0IARs < € (Xl 5 + Vet 200 (5.3

j—1j¢Z 7=l

§(() — g((9) —
+ Z 1F Dy 200 + (U9 = 4D (k) )| Apys, x (-1, t)HLl(t_Lt,Lq(AR’Sm)).
i=1,j¢Z jez

We remark that if we treated only the case Ty = oo, it would not be necessary to introduce
the parameter ¢y and the functions $(¢). Our theory would then carry through with the
equation u — € = Z;‘flﬂ GU) instead (5.2), and with (5.3) only in the case Z = {), so that

no+7

2 1o
I3 60 0lnsl < ¢ (31605 + 1Vt 0 + D 17D g, 200
7j=1

J=1

for R, t as in (5.3). However, since we also want to cover the case Ty < oo (Theorem 5.3),
we will have to use (5.3) with |Z| = 1.

Proof of Theorem 5.1: We proceed as follows. First we construct a function §g, on
Bg, x R with §g,(§) € C’OO(Bgl)?’, div,§s, (€) = 0 (£ € R), and such that the mapping
€= (U —Fs,)(€) (€ € R) may be written as the sum of L%-integrable functions with
values in various Banach spaces. (Here the zero extension of u to R is also denoted by
u.) It will turn out the inverse Fourier transform of this mapping £ — & (u — §g,)(€)
is the weak derivative of the function ¢ — u(t) — &(t) (¢ € R), where € is the inverse
Fourier transform of §g, with respect to & € R. From this we may conclude that v — € is
continuous as specified for u — € in the theorem. In a last step we introduce a function
0 € L?(R, LY(0Bs,)*) such that € = €(p), with &(p) defined in the theorem. Actually
the argument becomes more complicated because we additionally introduce the functions
12 by writing the inverse Fourier transform of certain functions in an explicit way.

Denoting the zero extension of v, u®, w, dzju and fU) to R in the same way as
the original functions, we may apply the Fourier transform with respect to the time
variable to these functions (1 <1 <3, 1< j < ng). Theorem 2.9 then yields that

u) € L2(R, L4 (@%)3), dzu® € L(R, L(QF)?) and f0) € L2(R, L7 (°)?) for
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we {1, 2}, 1, j as before. Lemma 5.1 implies that 1@(5) € VVliCl(ﬁc)?’ and dzjul (&) =
Ozum(€) for 1 <1 <3, £ € R, p € {1,2}. As a consequence u(£) € I/Vlicl(fl )3 and
dxju € L*(R, L® (ﬁc)?’) for [, £ as before.

Let ¥ € C35,(Q°). For w : R L}Oc(ﬁc)?’, we define the function [gew -9dz : R — R
by (fgew-ddx)(t) = [qew(t)-Idz (t € R). An analogous definition is to be valid for
Jae Vew - VO da if w: R — W%)cl(Q )3. Then by Lemma 5.1, the functions [ w -9 dx for
we{u 1< p<2bU{f9 1 1<j<n}uU{0mu :1<1<3}and [qe Vou- Vid
belong to L?(R), and the Fourier transform commutes with integration. Recall that we
supposed u to satisfy (3.9) with £ = Q, Uy =0, f =377, fU) and Ty = oo. Since u
and fU) for 1 < j < ng were extended by zero to R, equation (3.9) is then valid even
for p € C3°(R), with the integral over (0, 00) replaced by one over R. Thus the preceding
results and Parseval’s equation for functions from L?(R) allow to deduce from (3.9) that

/@(ﬁ)/c(igﬂ(ﬁ)-ﬁ—i-vxﬁ(f)-V??—i—T@xw 9 — Zf@ 9) dzdé =0
R

Q
for ¥ € C5%(Q°), ¢ € C°(R), and div,u = 0.

Here it is important that Uy = 0. The set {$ : » € C°(R)} is dense in L*(R), so we
may conclude that for £ € R\{0}, the equations in (3.2) (Oseen resolvent system in a
weak form) are satisfied with A, U, I replaced by Q, u(§) and »>02, f J)( €), respectively.
At this point, recall the definition of ¢, pp,+1 and pp,42 in the theorem as well as the
numbers Sz, S1 € (0,.50) with S < S; fixed at the beginning of this section. Put L(§) :=
1M )|l el + [[a@ (¢ )|| @ + [|Vzu(§)|lq, for & € R. Then, using Theorem 3.2 with A, S

replaced by Q, Sy, we get that for ¢ € R with |¢| > 1, there are functions UU)(¢) €
LPi(Bg, )3 for 1 < j <mg+ 1, UM+ (€) € C*(Bg,")?, ¢(§) € L9(0Bs,)? such that

WOBs, =3 UPE), U = (€T, + Ay,) " (P, [[D(©B5,]). (5.4
IEUD©)lp, < €IFD(E)ly, for 1 < j <o,  [ETTTE)|py 1 < CLE).

6(E)llq < €LE), I [UMF2(€) = F((€)) 1B, I < €LE) if r € (1,00),
I5(0(€))IBS, Il < €L(E) ifr € (3/2, o),
with all constants being independent of . The function F( ¢(£)) is taken from Theorem

3.2 with A, S, ¢ replaced by €, Sa, ¢(§) and thus is defined as in (3.1) with A = Bg,.
References for the definition of 7, A, and P, are given in Theorem 5.1. We put

P(€) =0, UW(E) := 0 for £ € (=1,1), j € {1, ..., ng + 2}. Then F(¢p(£)) = 0 for £ €
(—1,1), and the estimates in (5.4) are valid for all £ € R. We further set U(m0+2+#)(¢) .=
X(=1,1)(€) (ul®) )A(f)\Bigzc for £ € R, p € {1, 2}. Recalling the definition of £(§) further
above and the definition of p,,4+3 and py,+4 in the theorem, and referring to the first
equation in (5.4), we get for £ € R that

JeUCH ()], e, < CLE) (e {1 2D, QB =3 UWE.  (55)
For £ € R, we further set

20)(€) = eUY(&)|Bg,” (j€{l, ..., no+ 1} U{ng+ 3, no + 4}), (5.6)
200t (¢) = ¢ [UMTD(€) —F(6(€)) ]IBs,, Fs,(&) =T (0(8))|BE,.
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Due to (5.5), this means in particular that

e[a(©) - §(6(©)]Bs =3 2W(e) for ek (5.7)

k=1

Recalling that 82@ = EL’FL for 1 <1 < 3, we get by Theorem 2.9 and our assumptions on
f9 and u that fU) € L?(R, LP(Q°)?) and

Hf(j)Hpj,Q;R = Hf(j)Hpj,Q;oo (1 S] < n0)7 ||£H2 < Q:mta (58)

with 91 := Hqum 200 T Hu(2)\
0 4
(5.8), (5.4) and (5.5) that

‘qéQ),Q;oo + || Vzul gy 2:00- Therefore we may deduce from (5.6),

12905, 22 < €Dy 200 (1< 5 < ), (5:9)
IZD ] 2m S EM (ng+1 <5 <ng+4), [fllgar < EM, [|Fs llr2r < €(r) M

if 7 € (3/2, 00), in particular Z0) ¢ L*(R, ij(Bislc)?’) for 1 < j < ng+4, ¢ €
L?(R, LY(8Bs,)?), §s, € L*(R, L"(Bg,)?) if r € (3/2, 00). We further set

PO = [ZU]Y (1<j<ng+4), €:=[Fs]", (5.10)

where the term [Fg,]Y may refer to the space L*(R, L"(Bg,)*) for any r € (3/2, oo)
(Lemma 2.5). Then Theorem 2.9 and (5.9) yield that

1Py, 28 < €Dy, 200 (1< 5 < m0), (5.11)
IPD [y, 00 < €M (no+ 1< j < no+4), [|€]ram < €)M if r € (3/2, 00),

in particular PU) € L2(R, LPi(Bg,“)?) for 1 < j < ng +4, € € L*(R, L"(Bg,)?) if r €
(3/2, o0). Due to the first inequality in (5.4), the equation in (5.8), the assumption fU) ¢
L2(0,00, LPi(Q)?), and the definition UY)(¢) = 0 for ¢ € (—1,1), we see that UV) €
L*(R, LPi(Bg,)?) (1 < j < mp). Put UV == [UV)]Y for j € {1, ..., no}. Then UV €
L2(R, LPi(Bg,")?) (1 < j < ng) by Theorem 2.9. We further get due to the properties of
the Fourier transform that [U()]" = UU) for j as before, and there is a sequence (R,,) in
(1,00) and a zero measure set Ny C R such that R, — oo and the limit in LPi(Bg,")? of
L (Bgs, ) — f(—Rn,Rn)\(—l,l)(2 m) 2 et Ul (€) de exists for n — co and equals U (1),
where t € R\Np, j € {1, ..., ng}. Due to the second equation in (5.4), the term UU)(¢)

in the preceding integral may be replaced by (i§Z,, + Apj)_l(ij [ﬁﬁ\)(fﬂBis,;] ), for
£ € R\(~1,1), 1 <j < ng. Therefore the limit in (5.1) exists for t € R\Np, 1 < j < ny,
and the function o) defined by this limit coincides with U9 on R\Ny. Hence 40 =
DY, [N =), u) e L2(R, LPi(Bg,“)®) (1 < j < np). Let ¥ € C°(Bs,)®. For
G e {u, EFU{UYD) 1 1<j<ngtU{ZW : 1< j<ng+4}, we put (fﬁcG-ﬁdx)(s) =
1
st «G(s) - v¥ds for s € R. Since each of these functions G except G = u belongs to
1

L*(R, B) for some Banach space B (see (5.11), (5.9) and the preceding remarks about
40)), and because u = vV + u®? and v € L*(R, Lqéj)(ﬁc)?’) (j € {1, 2}), we may
conclude by Lemma 5.1 that

(

G-9dx)"(t) = Gt)-vde teR, Ge{ZY :1<j<ng+4}), (512)

c C
Bs, Bgs,
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and

(

G-0dz) ()= [ G(&) Ydx ((€R, Ge{u, €Fu{ul), .y} (5.13)
le le

Let Z C {1, ..., ng}. By the definition of & (see (5.10)), Fs, and ZU) (see (5.6)), the
equation [UU )] = U (1 < j < ng) and equation (5.7)

no+4
(u=E= Y UNNOBs," = £ [a(6)-F(9(6) ] -2 29©) = Y 29 (eR).
jez jez j=1,j¢Z
Thus we get by (5.10) (definition of P, ..., P(0+4)) (5.12), (5.13) and Plancherel’s
equation for L?(R) that for any ¢ € C§°(R ) 19 € C°(Bg,")?
/cp’(t)/ (u—€—=> uD)(t) -9 dx dt (5.14)
R Bs,* iz
— 8@ [ gt €= 40y @) vds e
R Bs, e
no+4 ' n0+4
:i/ 2(8) / Z(J)(£)~z9dxd§:z/ PY(t) -9 dx dt.
R Bsy" j=1,j¢z Bs,” j= 13¢Z

Let n € N with n > Sy, and abbreviate A := A,, g,. The preceding equation (5.14) is true
in particular for any ¢ € C5°(A)3. Moreover, if G € {u — € — djez (128 Z;'lg{jljgz PO},
the function ¢ — G(t)|A (¢ € R) belongs to L}, (R, LY(A)%), as follows from (5.11), the
assumptions on u(M) and u®, the relation {9 € LQ(R, LPi (37520)3) for 1 < 5 < ng, as
already proved, and because ¢ < p; (1 < j < ng + 4). Thus, since C§°(A)? is dense in
L7 (A)?, and in view of Theorem 2.7, there is a measurable set N 7zn C R of measure zero
and a continuous function Kz, : R — L(A)3 such that Kz, (t) = (u—é—zjezu(j))(t)m
fort € ]R\N zn and such that the equation

n0+4
Kzn(t) = Kzulto) = / PY(s)|Ads (t, to € R) (5.15)
o j=1,j¢z

holds. Putting Nz, := N zn U No, with the zero measure set Ny introduced above in
the study of the properties of the functions U (4), we see that N 7. 1s still a zero measure
set, the equation for Kz, (t) preceding (5.15) holds for t € R\Nz, and the limit in (5.1)
exists for all such ¢ and for 1 < j < ng. This is true for any n € N, n > 57 and any
Z C {1, .., no}. Put N := U{Nzyn :neN, n>8, ZcC{l,..n} } Then we may
conclude that N has measure zero and the ensuing equation

no+4
(w— €= " °40)(t) — (u— €= UD)(t)|Aps, = / > iPY(s)|Aps, ds (5.16)
JjeZ jeZ j=1,5¢Z

is valid for ¢, tp € R\N, n € N with n > S;, Z C {1, ..., no}, and the limit in (5.1) exists
for t € R\N, 1 < j < ng. Recalling the interval J introduced in the theorem, we have
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N (R\N) # 0, so we may fix some tg € J N (R\N). In view of (5.11), we may define

t
GU(t) = 17 (B, ) — / i PO (s)ds (1< j < no+4), (5.17)

to

G (no+4+p) (t) := u(“)(t0)|Biglc (e {1, 2}), G(no+7) (t) == @(t0)|37510, fort € R.

Recall the definitions of ppy4a4, for p € {1, 2} and p,,47 in the theorem. Then it is
obvious with (5.11) that GU) ¢ CO(R LPi(Bg,“)*) (1 < j < mg+7), and from (5 16) and
Lemma 2.5 we get (u— ¢— Z]ez )( ) An.s, = 2?04{7 ¢z GU)(t) — Z ZiJ. (t0)|An S
for t e R\N, Z C {1, ..., no} and n € N with n > 57, so we ﬁnally arrive at (5.2).

Let Z C {1, ..., no}, R € (S1,00), and put G := Z"OJ{7 iz GV, P = Z”OJ{A‘ ¢z PU) and
A= Ag s, For t € R, let us estimate the term ||G|AHq In view of (5.11) and because
GU) ¢ CO(R, L (Bg,)? ) and ¢ < p; (1 < j < ng+ 7), the function ¢ — G(t )A (t € R)
belongs to CO(R Lq(g):‘}), and the function t— P( )’/T (t € R) to L}OC(R Lq(Zl)?’)
Letz?EC(‘)’O(A) , and put Hy(t) := [7G(t) - ¥ dx, = —i [7 P( 19dx fortER
Then Hy € C°(R), hy € L},.(R), and from (5.2) and (5 14) we get ngo Hy(t)dt =
— [pe(t) hy(t)dt (¢ € C(R)). Thus Hy € I/Vllo’cl(R) with Hjy = hy. Fix some function
Co € C*=([0,1]) with (o(0) = 0, (o(1) = 1. Let t € R, and put ((s) := (o(s —t+ 1)
for s € [t — 1, t]. Then {; Hy belongs to C’O([t L) nWh((t—1,¢)), and (¢ Hy) =

Ghy + ((Hy € L'((t —1,t)), so Hy(t) = jt (G hy + ¢ Hy)(s)ds. This is true for
any v € C§° (ﬁ) Therefore with Theorern 2.5 and the definition of Hy and hy we get
G(t)|A =LA ft ((=1¢ P+ ¢ G)(s)|Ads. Replacing P and G by their definitions on

the right-hand 51de of the preceding equation and using (5.2), we now find that G(t)|A =

S [ =G 000t s PO 4 ¢ (0 — € = 3250, 49 4+ 37, 810 (29) ) ] ()| A ds. Tt follows
with the definition of G that

no+7 _ t no+4 ' _ _ _ _
> G(])(t)!AHQSQi/ ( > IPD(s)|Allg + lluls)|Allg + €(s)|All,  (5.18)
j=1,i¢2 =101, ¢z
+ 3149 (s) — 49 (ko) A, ) ds

jez

But ¢ < p; for 1 < j < ng +4, so |[P9(s)|All, < C(R)[|IPY) ()| A, < C(R) |PO(s)]]p,
for such j and for s € (t — 1, ¢). Thus with (5.11),

no+4 no+4 no

[ p0eAlds e 3 1P se( S 15 a0+ ).

j=1,j¢Z i=1,j¢Z Jj=1,j¢Z

Similary the inequality [, [[u(s)|Allqds < C(R) Y7, ||u<j>uqéj)72m < C(R) 9 holds be-

canse g < g (j € {1, 2}). Again with (5.11), [* | [€()| Ay ds < C(R) |z 20 <
CM. Now inequality (5.3) follows from (5.18).

Let us determine an explicit form of €. To this end, recall that ¢ € L*(R, LY(0Bs,)?)
according to (5.9) so that we may define o := ¢. Theorem 2.9 and (5.9) then yield

2R < €M, in particular g € LQ(R, L(0Bs,)? ). (5.19)

llo
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Let ¥ € C3°(Bg, )%, Since |z —y| > S — Sy > 0 for x € B¢, y € 0Bs,, and because
the function M introduced following Theorem 3.1 belongs to C*°(R3\{0}), the function
y = ch (VN)(z —y) - I(x)dz (y € 0Bg,), is bounded. Hence the operator defined on

LQ(GBSZ) by V — faB S~ 1y V(y fBC (VN)(z—y)-9(z) dx doy is linear and bounded.
Put B(§) : faBS *1y (& fBC V’T( (x— y) - ¥(x) dz doy (£ € R). By Corollary 2.1
we get B € L?(R) and B(t) faBS S Ly-o(t ch (V) (x —y)-I(x) dx do, for t € R.
Again because |z —y| > S; — Sy > 0 for z € BS , Yy € 0Bg, we may apply Fubini’s
theorem, obtaining that B(£) = fBgl Ts, (&) - vdzx (€ € R), with Fg, from (5.6), and
B(t) = fBgl f8352 (V‘)’I)(x —y)(S 'y 0(t)(y)) doy - ¥(z)dx (t € R). The second from
last equation, that is, B(£) = | Bg, 351 ) - ¥dx (E € R), Corollary 2.1 and the definition
of & (see (5.10)) imply that B(t ch -ddz (t € R). Thus we have found two
equations for B, whose right- hand Sldes must therefore coincide. Since this is true for any
¥ € C§°(Bg,)?, it follows that &(t faB —y)(S7ty - o(t)(y)) doy for a. e.
z € Bg,  and for t € R.

With this equation on hand, we may prove some additional properties of ¢. Since 0 €
L*(R, LY(0Bs,)*) (see (5.19)) and |z —y| > (1 — S2/S)) |z| for z € Bg, y € 9Bs,,
we may conclude by applying Lebesgue’s theorem that € € C>(Bg,)* and O E(t) () =
Jope @V (@ —y)(S y - o(t)(y)) doy (t € R, x € Bg,", 1 <1< 3), 50 divy€(t) =0
2 ~

because A = 0, and |02 € (t)(x)] < € |z|271el||o(t)[|1 < € x| 2712 ||o(t) ||, (¢, 2 as before,
o € N3 with |a| < 1). Thus with (5.19), [|0%€ (r) lollger < €(r) M for « as
before, r € (3/2, c0) in the case @ =0, and r € (1, 00) else.

Altogether we see that if the functions 4) (1 < j < ng), GV (1 <j<ng+7) and are
defined as above (see (5.1), (5.17) and the passage preceding (5.19)), then the function &

coincides with the function € introduced in Theorem 5.1. Therefore, in view of what has
been shown for G, € and p, Theorem 5.1 is proved. O

In the following corollary, we drop the assumption Uy = 0 in (3.9) imposed in the preceding
theorem.

Corollary 5.1 Let ng €N, py, ..., pn, € (1,00), fU) € L*( 0,00, LPi (Q )3 ) for1 <j<
no, and let U0) for 1 < j < ng be defined as in (5.1). Let q € (1,00) be such that

IVHOU)R? x (0,2)[lg 22 < Clan) [Ulgy for U € LU(R?)?, (5.20)

with H) defined in Lemma 3.3. (This condition is satisfied if q1 € (1,2]; see The-
orem 4.1.) Let Uy € L¥(R?), go € (1,00), u € L?(0,00, L®(Q°)%) with u(t) €
W/llo’cl(ﬁc)?’, divyu(t) = 0 for t € (0,00), and Vyu € L?*(0,o00, L‘“(ﬁc)g). Suppose
that u verifies (3.9) with E = Q, Ty = oo and f = Z?il fU. Let q € (1,00) with
g < min({go, 1} U{p; : 1 < j < ng}), and put ppy+; == q1 for j € {1,2,5,7,9},
Pno+j = qo for j € {4,6}, and ppy+3 = q, Pno+s := max{2, ¢}. Let J C R be an interval
with nonempty interior. Then there is a zero measure set N C R, a number to € J\N and
functions o € L2(R, L1(9Bs,)*), G¥ € C°([0,00), LPs (Biglc)?’) (1<j<no+9) with
the properties to follow.

The limit in (5.1) defining the functions 4o (1 <j < mnyg) exists for any t € R\N. Define
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the function € as in Theorem 5.1. Then

no+9
(u—&)B)Bs," = > VB +> (4D() - uD (1)) (5.21)
j=1,5¢Z JjEZ

for Z c {1, ..., ng}, t € (0,00)\N, in particular (u — €)(t)|Bg,* = Z?f{g GU(t) fort €
(0,00)\N. Moreover &(t) € COO(Bgl)?’, divg€(t) = 0 for t € R, the quantities || €|, 2 for
r € (3/2, 00) and ||V4 €|l 2r forr € (1,00) are bounded by €(r) (||ullgo,2:00 + | Vatel g 2:00 +
|Uollqy)- In addition, if R € (S1,00), Z C {1, ..., no}, then

no+9
Y 99IARs g < €B) (lulanzioo + [ Vatllgy 200 + [Tolle (5.22)
j=1 J¢Z
+ Z [ ”p],ZOO +Z I1(u () (to) )|Ar,s, x (t—1, t)”Ll(t,l t,L9(An g )3))
j=1,j¢Z JjEZ Y .

for any t € [0,00), in particular

no+9
|| Z 690 An5: o < € (10D e + Vst 20 + 3 17D gy 0 + [0l ).

7j=1

Proof: Abbreviate H := H(?) (). By Lemma 3.3, we have |H(t)|ls, < C(q1) ||Uollq and
H(t) € C2(R3)? for t € (0,00), H € C'(R3 x (0,00))3 and div,H = 0, OH — A,H = 0.
The same reference yields that # is a continuous mapping from [0, co) into L9 (R3)3, where
H(0) = Uy by the definition of H = H) (Up). Fix a function vy € C(R) with v|(—oc, 1] =
1, [[2,00) = 0, 0 < 4 < 1. Then define H(z,t) := 7o(t )H(z,t) for z € R, t €
(0,00). The properties of H listed above immediately imply that ||H (¢ )qu < C(q1) HU()qu
and H(t) € C2(R3)? for t € (0,00), H € C(R3 x (0,00))°, div,H = 0 and H €
C°(]0,00), L9 (R?)?) with H(0) = Up. By our assumptions on ¢; we get ||VoH||q 2:00 <
IV H|R3 % (0,2)]|41.22 < C(q1) |Uo|lq» in particular V,H e L?( 0,00, L7(R?)?). Since H
vanishes on (2, 00), it follows from the estimate Hﬁ(t)qu < C(q1) |Uo|q (t € (0,00)) that
also H € L?(0,00, L1 (R3)?) and H’}:Zqu,g;oo < C(q1) |Uollg, - Define the function f(mo+h)
by setting fotD () := —(t) H(t) — 7y0(t) Dz H(1)[|Q° (t € (0,00)). Recalling that
Pno+1 = q1 by the definition of py,+1 in the corollary, and using the preceding estimate
of Vs gy 200 A [y 200, we obtain [ 7D, o < Clar, o) [Uiolly - Since

OH — AyH =0, we further get OH — AyH + Taxl”;‘?[(t) = —f(o+1) and therefore
/ / )+ (t) [VoH() - VO + 7oz H(E) -9+ FrorD(t) 19]) dz dt
—p(a) /QCH(G,) Jddz =0 for a€ (0,00), p€C5°([0,00)), V€ ngj,(ﬁc).
Since H € C’O( [0,00), L% (R3)3 ), the preceding equation remains valid for a = 0. Recalling

that H(0) = Uy, we thus see that equation (3.9) holds with 7 in the role of u and with
E=Q, Ty=oc and f = —f(rot1),

Now put w := u — H. Then w(t) € I/Vllocl(ﬁc)?’ (t € (0,00)), Viw € L2( 0,00, L1(Q°)3)
and div,w = 0. We recall that H € L?(0,00, L1 (R?*)?) and u € L*(0, o0, qu(ﬁc)3),
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and we observe that equation (3.9) is valid with u and f replaced by w and ZnOH @),

respectively, and with £ = ), Ty = oo, Uy = 0. Thus all assumptions of Theorem 5. 1
are satisfied if the numbers ny, qél), q(()z) and the functions u, uM), u? are replaced by
no + 1, qo, 1, w, u and —ﬁ|§c x (0, 00), respectively, and pp,4+1 and o+ are chosen
as above. This theorem then yields existence of a zero measure set N C R, an element
to € J\N and functions o € L2(R, LY(9Bg,)?), GY € C°([0,00), LPi(Bg,")?) (1 <
Jj < ng+ 8) such that the statements of this theorem hold with ny, q[() ), q(()Q), u, v, u@
replaced as specified above.

Let us indicate how Corollary 5.1 follows from these statements. With the function &
defined in Theorem 5.1, we have €(t) € C*(Bg,)* (t € R), div,€ = 0, and ||€[|,2r < €M
for r € (3/2, 00), [|[V2€[[;2r < €M for r € (1, 00), where 9 is an abbreviation for
1wl go,2:00 + |H[Q x (0, 00) llg1,2:00 + |V (u —H) l|g1,2:00- But the estimates of H given above
yield MM < € (||ullgo,2:00 + || Vatell g 2:00 + 11 U0l g1 ), SO we obtain the upper bounds of || €|l 2.r
and ||VE&||,2.r stated in the corollary. Equation (5.2) is valid with w in the role of u and
with the upper bound ng + 8 instead of ng + 7 in the first sum on the right-hand side.
Inequality (5.3), for R € (S1,00), Z C {1, ..., no + 1}, t € R, takes the form

no+8 o j
Z GY(t)|Aps,lq < € <9ﬁ+ Z ”f(J)Hpj’z;oo 529
j=1,j¢Z Jmhagz
_|_Z H u(i ]) to))’AR,& x (t—1, t)HLl(t—l,t, L‘I(AR,Sl)S)).
JjeZ

Put G0 := GW|Bg,“ x [0,00) (1 < j < ng +8), G0t .= H|Bg,“ x [0,00). Again
by the properties of H derived above, and by the definition of p,,49 in the corollary,
we see that Gmot9) ¢ C°( [0, 00), Lp"0+9(37516)3) and Hg("0+9)(t)upno+9 < €| Uollg, (t €
[0,00) ). Equation (5.21) follows from the modified version of (5.2) described above and the
definition of w and G("0*9), We further recall that || f("0+1) g 41,2100 and [|G(no+9) (E)llpng 1o
for t € (0,00) are bounded by € ||U0||q17 and we note that because ¢ < ¢, the inequality
1G9 (D] Ars, g < C(R0,a1) 197 (8)| Aps, |, holds for R € (S1,00), t € (0,00).
Due to these relations and the estimate of 9t given above, inequality (5.22) becomes an
immediate consequence of (5.23). O

The ensuing corollary introduces a representation formula for a velocity u given as in the
preceding corollary.

Corollary 5.2 Consider the situation in Corollary 5.1, with €, G\, pi (1<j<nog+9)
introduced as in that reference. Put v(t) := u(t) — €(t)|Bs, (t € (0,00)). By (5.21) with
Z =0, we may suppose without loss of generality that v(t) = Z?f“g GU(t) fort € (0, 00).
As in Theorem 3.6, put nt50)(y) = O_ly fory € 0Bg,. Then fort € (0,00), there is a
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zero measure set Ny C BROC such that
u(z,t) = E(x,t) (5.24)

RO (f) (2, 1) + 37 (Uo[Bs, ) (=, 1) ZameBsw(nl‘S@ v)(,1)
=1

- /63 (V‘J‘() (.’E - y) (n(So)(y) ’ U(yv t) ) doy =+ ﬁRo,Smsﬁo,BsoyTo (U)(x, t)
So
t
—/ & Ro.S0.00 (T, Y5 1) - Un(y) dy —/ / & Ry, So,00 (T, Y5t — 8) - f(y, s) dy ds
ARy, ARy,

for & € Br,"\Ny, with Ty = oo, f = Znolf )|Bs, x (0,00), where &Ry 500, was in-
troduced in Theorem 3.5, and RRO7SO7SDO7BS(J:TO( v) was defined in (3.8). The function N
was introduced following Theorem 3.1,and the parameters Ry, Sy, R1 were fized at the
beginning of the present section.

Proof: We are going to apply Theorem 3.6. So let us check its assumptions using Corollary
5.1. Since ¢ € L?(R, L’"(Bgl)?’) for r € (3/2, o) by Corollary 5.1, and because u €
L?( 0,00, L0 Q93 ), we get v|Ag,.s, X (0,00) € L*( 0,00, Lmin{Q’qO}(Asoygl)g). In addition
u(t) € I/Vli,cl(BS1 )* (¢t € (0,00) ), divgv = 0 and Vv € L*(0, 00, LQ1(B7316)9), due to
analogous properties of € and u. Further recall that v(t) = Z;ﬁw GY(t) (t > 0). Define

= faBS2 Nz —y) S;ly - o(y,t)doy for z € 37526, t € R, with o introduced in
Corollary 5.1 and appearing in the definition of & (Theorem 5.1), and Sy fixed at the
beginning of the present section. By Lebesgue’s theorem and because S < 51, we have
Z(t) € C®(Bg,") and V. 2(t)|Bg, = €(t) (t € R). It follows that Jgme Oxfu(t) - 0 da =
fB—Slc Ozfu(t) - ¥ dx for ¥ € Cng(BTlC), t € (0,00), 0 € {0, 1}, 1 <1 < 3. Recall that u
satisfies equation (3.9) with £ = Q, Ty = co and f = Z?il U, At this point we may
conclude that (3.9) holds with £/ = Bg,, Ty = oo and f = >72, f9|Bg,“ x (0,00), and
with u replaced by v. We thus see that all assumptions in Theorem 3.6 are satisfied if Ty, E
and w are chosen in this way in this theorem, and if mo, P, qo, 0;, G¥ (1 <1< my), Uy
are replaced by no+9, ¢1, min{qo, 2}, pj, g(j)|B730c x [0,00) (1 < j <np+9) and U0|Bislc,
respectively. Thus equation (5.24) follows from (3.10). O

Now we are in a position to derive decay estimates of u.

Theorem 5.2 Consider the same situation as in Corollary 5.1, with the choice J =
(=1,0). Suppose in addition that u|Ag, s, x (0,00) € L>®(0,00, L%(Ag, s,)*) for some
q2 € (1,00). Recall the zero measure set N C R and the number ty € (—1,0)\N introduced
in Corollary 5.1, and the functions U0 (1 < j < no) from (5.1). Then there is a zero
measure set N C R with N C N such that

02 [u= RO (Y OB x (0,50)) = 30 (Ul B, )] (@) (5.25)
—5/4—|a|/2 . WR P
s¢(<\xru<x>> P 2410) (ullgg 20 + Vs 2
nQ N ——c
+HU0H(11 + HU‘ARLSO X (OvOO)th,OO%OO + Zj:l Hf(J)‘BSO X (O7t)Hpj,2;t

mo DB x (0 N () (s)1A
#20 e VOBST X 09l £ 30 s IO6) w51l
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fort e (O,m)\ﬁ, T € BROC\Nt, a € N} with |a| <1, and Z C {1, ..., no}, with Ny C BROC
chosen as in Corollary 5.2. In particular (Z =0),

9 [u = RO (37 OB, x (0.00) ) =37 (U0 Bs, ) ] (2, )] (5.26)
< € ((lalw@)) 212 b o200 (g 20 + 1Vl 200

nQ P —
+[Uollgy + lulARry 50 % (0,00)]|g,00500 + ijl 1F 9 Bs,” x (0,00)]1p; 200 )

fort, x and a as in (5.25). If [, u(t) - n do, =0 fort € (0,00), the term |z|=271° in
these upper bounds may be dropped.

Proof: We use equation (5.24). So, as in Corollary 5.2, we define the function v :=
u — €|Bs,” x (0,00) and suppose without loss of generality that v(t) = E?flrg GU)(t) for
t € (0,00), where the functions G € C°([0,00), LPi(Bg,)?) (1 < j < no + 9) were
introduced in Corollary 5.1, as were the exponents pi, ..., pny4+9 and g. For brevity, put
B = Ag, 5 X (0,00), M := JJullgo,2i00 + [[Varellg 200 + [[Uollg, - Since S1 < So, ¢ < pj
and G € C°([0,00), ij(lec)?’) (1 < j < np+9), we may conclude that v|B €
C?([0,00), LY(Ag,,5,)* ). By the choice of ¢, we have ¢ < go and ¢ < g1, 50 [|u|B|g2:00 <

C(Ro) ||uB|g,2:00 < C(Ro) M, and similarly ||V uB|g2.00 < C(Rp) M. Moreover we

know from Corollary 5.1 that [|€[[nax{2,q),2r < €M and [|[Vi€[lg2r < €M, so we may
conclude by the definition of v that

[0[Blg,2:00 < [[u|B

42500 T H@’%HqQ;R < C(RO) (Sm + Hel%umax{q,z},Q;R) <Zm,
and similarly ||V,v|B]|4,2:00 < €. Together we have

HU|%||q,2;oo + ||V:qu|£B||q,2;oo + ||U|£B||q,2;oo + ||va|SB||q,2;oo < . (5.27)

By Lemma 3.4 and the definition of the norm of LOO(O, oo, L*2 (ARl,SO)?’), and because

N C R has measure zero, we may choose a set N C R also of measure zero such that
N CN,
RO () € Wy (R®)? and [[u(t)| AR, 86llgx < 2[[ulBlgzy0000  for € (0,00)\N. (5.28)

loc

Let t € (0,00)\N, 2 € Br, \N; and a € N3 with |a| < 1. We are going to estimate the
relevant terms on the right-hand side of (5.24). Lemma 3.6 with A = Bg, yields that

|82 020" B50) (n(50) . ) (, 1) (5.29)
—(5/24+|al)/2
< € ([[0]Blg200 + [Va0|Blg00) (| v(2)) "2 (1 <1 <3).

Since Uy € L% (Q°)?, we get with (3.6) and Corollary 3.1 that

feY —(3+]|al)/2
a° (/A Q5RO,SO,@O(x,y,t)-Uo(y)dyﬂ < & || Uollgy (J2] () )" ETD2 (5.30)
Ry,5¢

Moreover, with (3.7) and Corollary 3.1,

¢ no
92 </ / S Ry, 50,00 (T, Y5t — ) - Z f(J)(y, s)dy d8> ‘ (5.31)
0 ARIVSO

j=1
no N —c s iatlal o
= ¢ Zj:l ”f(])’BSO X (Ovt)Hpj,Q;t ( ‘x’ V(.ZL‘)) (5/2+ad)/ .
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In addition we may conclude by Corollary 3.2 with €2, u replaced by Bg, and v, respectively,
and with Ty = oo that

‘a§ﬁ307507¢07330700(0)(x,t)‘ (5.32)
—(5/24+|al)/2
< € ([[V1Blg200 + [Vav|Blg200 + [0(0) [ ARy sollg ) (|| () )~ /21D,

We turn to the main difficulty of this proof, which consists in estimating the term 2 :=
X (E(x,t)— faBs (V) (z—vy) [n(SO)(y) -v(y, t) | doy ). Our estimate is based on the split-
0
ting 2 = Ay + Ao+ 05 E(x, t), where Ay := 9% (— faBs (V) (z—vy) [n(SO)(y) u(y,t)] doy ),
0

and Ay = 8§(faBS (VM) (z — y) [n(SO)(y) - &(y,t)] doy ). We cannot directly evaluate
0

|0S€E(z,t)| because we do not have a bound for ||o(t)||4, where ¢ was introduced in Corol-

lary 5.1 and appears in the definition of & (Theorem 5.1). In order to handle this diffi-

culty, we define Z(z,s) := faBS N(z —y) Sy 'y - oly,s)do, for z € Bs,’, s € R, as in

2

the proof of Corollary 5.2. Recalling what is already stated in that proof, we note that

Z(s) € C*(Bg,") and V.Z(s)|Bs, = €(s) (s € R). Since A9 = 0, we further have

A, Z = 0. Returning to the point z and the time ¢ fixed above, we take S € [2 x|, c0) and

put n(5%)(y) := §~1y for y € IBg, n'550)(y) = —Sal y for y € OBg,, so that n(550) is

the outward unit normal to Agg,. Using a standard representation formula for harmonic

functions, we obtain

Z(z,t) = /M [0z —y) n9)(y) -V Z(y,1) + (V) (2 — y) - 050 (y) ) Z(y,t) ] do,

for z € Agg,, in particular for z € Ay |4, 5,- But [9y] Z(y, )| < C(Sa, Ro) ||ellx ly| ==l for
y € By, because Sy < Ry < [z[. Moreover (97 N)(z—y)| < C |z—y|7 ol < O(Ja]) [y~
for z € Ayjy, s Y € Bim. Therefore, by letting S tend to infinity in the preceding
equation for Z(z,t) and recalling the definition of n(550) we obtain

Z(t) = — /8 M) S5y V2 + (V) 1) 577 0) 2000 doy

for z € Ay 4|, 5,- By taking the gradient of both sides of the preceding equation, choosing
z =z, and using that V. Z|B§ x R = €, we arrive at the equation

E(z,t) = —/63 [(V)(z—y) (Sy y- €Ey,1)) + Vo (VM) (2 —y) - So'y) Z(y,t) ] doy.

Putting A3 := —8§[faBSO Vo (V) (z —y) - Syt y) Z(y.t) doy |, and recalling that A =
A + Ao + 09€E(x,t), we conclude that A = A; + A3. But according to Lemma 3.7 with
A replaced by Bg,, the estimate |A1| < €|lu(t)|AR,.sllg [2/7271% holds. In addition,
if [,qu(s) - n®do, = 0 for s € (0,00), we have fc’?BsO u(y,s) - ly|"tydo, = 0 by the
Divergence theorem and because u(s)|Qg, € W4(Qg,)? and divyu(s) =0 (s € (0,00)).
Therefore under the condition [y, u(s) - n do, = 0 for s € (0,00), Lemma 3.7 with
A replaced by Bg, implies that the preceding estimate of |20 is valid with the exponent
—2—|o replaced by —3 —|«|. Therefore, putting v := 3 if the preceding zero flux condition
is true, and vy := 2 else, we get

[201] < € lu(t)| ARy olgs 2], (5.33)
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In order to handle the term 23, we put 7 := |Ag, s,|~ fAR s t) dy. Since x € BRO ,
we find that [;p_ VL ((VM)(z—y)- Sy ' y) doy = — JBs agv ((A‘ﬁ)(:ﬂ —y))dy =0,
0 0
so we may conclude that Az = — faBs IV (V) (z—y)-Sy y) (Z(y,t)—7 ) doy. Again
0

since z € Bp,", hence |z —y| > (1 — So/Ryo) || for y € dBs,, we arrive at the inequality
|| < & |x|~3lel||Z(t) —=7|0Bs, ||1. Moreover, by a standard trace theorem and Poincaré’s
inequality, [|2(t) -~ 710Bs, | < ClIZ(t) — T Ar solliy < €[VaZ()| Ar, 5 ll1- Recalling
that V. Z(s)|Bs, = €(s) (s € R), we thus get

12(t) =710Bs, |1 < €[|€(t)[ ARy, S0llminfg,a:r < €UV ARy,s0llq + 1u(t)ARy,S0llg2)-

As a consequence, 23| < € (||[v(t)|AR,.s0llq + |u(t)| AR, 50 llg) |2] 737121, Combining this
estimate with the equation 2 = 2(; + 23 mentioned above, and with (5.33), (5.28) and the
assumption ¢ € (0,00)\ N, we obtain || < € (||v(t)|Ar, 50 llq+111|B | ge.00i00) 2] 7771 Now
we combine the representation formula (5.24) with the preceding estimate, the inequalities
(5.29) — (5.32), (5.27) and (5.28), and the definition of 2. It follows that the left-hand
side of (5.25) is bounded by

ng
C(M+ D DB, x (0,0) ;2 + [[41Blgs 00500 + [10()[ ARy 50]l4) (5.34)
j=1

[ ( |$‘ I/(l‘) )—(5/2+|a|)/2 + |x|7'yf|a\ ]

for a. e. x € Bpr, . It remains to estimate |[v(t)|Ag,.sllq- Let Z C {1, ..., ng}. Since
t ¢ N, hence t ¢ N, equation (5.21) holds. This equation, the relation Sy > Si, the choice
of ¢ty in Theorem 5.2 and inequality (5.22) yield

loOlAnsolle < € (3T WPl + 32 swp 0l AR s )

jez re(—1t\N

In view of the upper bound of the left-hand side of (5.25) given in (5.34), the preceding
inequality completes the proof of (5.25). Note that if v = 3 in (5.33), we have |z|~7~lol <
¢ (|z|v(z) )_5/4_‘(1'/2, so the term |z|~7~1%l may be dropped in (5.34), and thus in (5.25)
and (5.26) as well. O

This leaves us to consider the case Ty < co. The basic idea consists, of course, to extend a
solution u of (3.9) on (0,7p) to a solution w of a similar equation on (0, 00). To this end,
we fix an arbitrary number T' € (0,7Ty), cut off u smoothly between T" and Tj, and define
u as the zero extension of this truncated version of u. Then we apply Theorem 5.2 to w, in
the hope of extracting an upper bound of |(0,7") = u|(0,T") only depending on suitable
norms of u, but not on negative powers of Ty — 1. However, this approach turned out to be
difficult since the function p introduced in Corollary 5.1 and entering into the definition
of € is defined via Fourier transforms involving w. Thus the contribution of w|(7,Ty) to
an upper bound of u|(0,7") is difficult to evaluate. This is the reason why we introduced
the functions 4¥) in Theorem 5.1 and carried them all the way to Theorem 5.2. Only
one of them will be relevant (a fact we did not use up to this point because it would not
have really simplified the notation): the function Y0t helow is an explicit form of the
critical Fourier transforms that will have to be estimated.

Theorem 5.3 Suppose that Ty € (0,00). Let ng € N, p1, ..., ppy, € (1,00), ) e
L?(0,Tp, LPi (2 )3 ) for 1 < j < ng. Let 1 € (1,00) be such that condition (5.20) is
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valid. Let Uy € LE(R3), qo, g2 € (1,00), u € L2(0,Ty, L®(Q9)3) N L>®(0,Tp, L=(Q°)?)
with u(t) € VVl%)’cl(ﬁc):i, divgu(t) = 0 for t € (0,Tp), and Vyu € L*(0, Ty, L (Q9)?).
Suppose that equation (3.9) holds with A =Q, f = Z?il fU). Then there is a zero mesure
set N C R such that

05 [u— RO (37" F9Bs," x (0.T0)) = 30 (Wo|Bs,) (0] (5.35)
—5/2—|a|/2 ot la
< € ((fol @) ™72 4 o 20 (o 2 + IVatillor 23

no N o
HUolloy + el ito + 3 1B % (0, T5) 3 200

for t € (0,To)\N, a. e. = € Bg,", o € N§ with |a] < 1. If [oqul(t) - n® do, = 0
fort € (0,Ty), the factor |z|~>71%l in (5.35) may be dropped. The constant in (5.35) is
independent of Tj.

Proof: Fix some function g € C*°(R) with tg|(—o0, 1/4] = 0, 0|[3/4, c0) =1, ¢ > 0
and 0 < 99 < 1. Let T € (0,Tp), and put pp(s) := wo(( o—s)/(TO—T)) fors e R, Ty :=
3T/4 + Tp/4, Ty := T/4+3Tp/4 Then T < Ty < Ty < Ty, pr € CZ(R), 0 < o5 <
1, prl(—o00,To] = 1, ¢r|[T1,00) = 0, ¢ < 0 and supp(p}) C [T, T1]. All the con-
stants € appearing in the following are independent of T" and Tj. Further define f (t)

pr(t) fO(t) for ¢ € (0,Tp), 1< j < no, f("°+1)(t) = gp(t)ult), alt) = pr(t)ult)
for t € (0,7p). The functions ?(1 o f (mo+1) , u are supposed to vanish on [T, ) We
additionally put pp,+1 := go. Since supp(cpT) [To,T1] and u € LOO(O To, L2(Q2 )
we have in particular that f(n0+1) € LQ(O,OO, Lp"0+1(Q )3 ) It is obvious that uw €
L2(0,00, L®(Q9)3) N L>®(0,00, L2(Q93), u(t) € Wlicl(ﬂ)?’, divyu(t) = 0 for t €
(0,00) ), Vzu € L?(0,00, L%(Q)?) and

i( ) .
1F71Bg, % (0,00)lp;,200 < [F9|BE, % (0,T0)l|p; 21 (1< < mo), (5.36)

HEHQOQ;OO < HUHQOQTO’ ”qup»OO;OO < ||u||Q2,OO;T07 Hvxﬂth:?;OO < ||vqutI1,2;T0'

By the definition of f no+1) and because ¢p|[T}, 00 ) = 0, we further get that equation

(3.9) is fulfilled with A =Q, Ty = o0, f = Z”OH , and with @ in the place of u. Thus
we see that all assumptions of Corollary 5.1 and Theorem 5.2 are satisfied with ng + 1, w
in the role of ng and u, respectively, and ?(j) (1 <j<mp+1)in that of fU) (1 < j < ng).
Therefore we may apply Theorem 5.2 with these replacements. This means in particular
there are zero measure sets N, N C R with N C N, and a sequence (R,) in (1,00)

with the following two properties. Firstly, the limit Ll("0+1)( t) = limy,_y00 A (t) exists in
LPno+1(Bg,)? for t € R\N, where

Anl0 (5.37)
=(2m~/* e, L+ A, )P Fn0 1A e B
( 7T) /( B R\ (—1.1) (25 Pn0+1 pn()-H) ( Pro+1 ( [f ] ( )| S5 )) I3

for n € N, t € R. This integral is to be understood as a Bochner integral with values in
LPro+1(Bg,”)%. The operator Pppy11 18 to be chosen as in Theorem 2.4, and the operators

7 and A

Png+1 Png+1 ~ »
property associated with the sequence (R,,) and the sets N and N is that for ¢t € (0,00)\N,

as in Corollary 3.1, each time with 37526 in the place of A. The second
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a. e. © € B, , @ € N3 with |a| <1 and Z C {1, ..., ng + 1}, inequality (5.25) holds
with ng + 1, 7, f G) (1 <7 <np+1)in the roleofno, uwand fU) (1 < j < ng),
respectively. We choose Z = {ny + 1}, and use the possibility to fix the parameter
q € (1,00), under the restriction that it is below the threshold imposed in Corollary 5.1,
setting ¢ := min({qo, ¢1, @2} U{p; : 1 <j < ng+1}). Then we get for ¢t € (O,T)\]v, a. e.
x € Br," and a € N3, |a| <1 that

Noat < €U(z,a) (M(t) + s U D (1) AR, s, llq), (5.38)
re(—1,t\N

with Nt 1= 1027 — RO (001 79 B, x (0,00) ) — 37 (Uo|Bs,) ] ()],
M(t) := [Tg0.200 + [Vl 2100 + [Uollgy + HmARl,so (0,00)lga 00100

no+1 =) 55—
3 ITVBs < 1)y e+ 377 I By x (0. 00)lp, 2

and V(z, a) := (|| V(;r) )75/440"/2 + |z| =212, where the term |z|~271%l may be dropped

if the integral Joq n(®) do, vanishes for s € (0,7p), a condition which means that
Jaq Ul 2 do, = 0 for s € (0,00). We are going to exploit (5.38) in the case t € (0,T)\N.
Since f \( ) = F9)0,7) for 1 < j < no, we get R (fU)[Bg,” x (0,Tp) ) (z,t) =
%(7)(”370 ( 50) ) (w,t) for 1 < j < mo, t € (0,T), x € R%. Also F°V}(0,T) =0,

(
S0 9{(7)( (ro+1) |Bs," x (0,00) )(z,t) = 0 for t, z as before. Recalling that u|(0,T) =
u|(0,T), we thus get

no
Naas =105[u—RD (D f9Bg,” x (0,Th) ) = 37 (Uo|Bs,) ] (2, 1), (5.39)

j=1

fort € (0,T), © € Bg,', o € N3 with || < 1. Again since f( not+l) |(0,7) = 0, and because
of (5.36), we find

Mm(t) < ”qu0,2 To + Hvrqu1,2 To + HUOth + Hu”q2700§TO (5.40)
Z Hf ‘BSO (O’TO)Hp]'12;TO

for t € (0,7). We still have to estimate the term sup,c(_1 4\~ U0 (1)) AR, 5, |14 for
t € (0,T)\N. Our starting point is the relation |40+ (s) — An(8)|lppgr — 0 (n — o0)
for s € R\N, with A, (s) defined in (5.37). We recall that p,,+1 = g2 by the definition of
Pno+1 further above. Therefore we may write g2 instead of p, 41 in the following. We put
g(r) == Py, (u(r)|Bs," ) for r € [Tp, T1]. Theorem 2.4 yields

lg(r)llgs < €llu(r)|Bs, llge  for r € [T, T1). (5.41)

By the definition of f (mo-+1) , by Corollary 2.1 and because supp(¢f) C [T, Ti], we have

P ([F™ V1ME)Bs") = @m) Y2 [ hp(r) €777 g(r) dr, with the Bochner integral be-
ing L92(Bg,")3-valued. Due to Fubini’s theorem for Bochner integrals (Theorem 2.8), the

estimate at the end of Theorem 3.1, the assumption u € LOO(O, Ty, L2 (56)3) and (5.41),
we get for s € R that

Ao =20t [

Ts

T

() / ) (T, + Ag) Y (glr)) dedr, (5.42)
(—=Rn,Rn)\(-1,1)
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where both Bochner integrals are L% (Bigf)‘q’—valued. Let B denote the space of linear
bounded operators of the space L92 (37326)3 into itself. We equip B with its usual norm,
which we denote by || ||5. In the rest of this proof, all Bochner integrals with respect to
the variable A are to be understood as B-valued.

Take s € (—o0,T)\N. The constants € appearing in what follows are independent of s
and, of course, of T and Ty. For r € [Ty, T1], define T(\, 7, 8) := ™ML, + Ay) 7!
for A € C\(—00,0]. Referring to Theorem 3.1, we see that T(-,r,s) : C\(—o0,0] — B is
holomorphic for any r € [Ty, T;]. Morever, by the same reference, for any 9 € [0, 7), the
inequality

1T\, 7, 8)||lB <€) e INNTL (r € [Ty, Th], A € C\{0} with |arg(\)| < 9) (5.43)

is valid. Set A ={ia : a € [-R,,—1]}, A;n) = {ia : a € [1,R,]} (n € N). Then,
using Theorem 2 5 we may rewrlte (5.42) in the form

An(s) = (27ri)_1/T Al Z/ Trs)dN)g(r)dr (nelN).  (5.44)

Here and in the following, all line integrals are to be oriented as is indicated implicitly by
the way we define the respective curve. Fix some angle ¥ € [0, 7/2). For n € N, define

A = (R emi™/2=0) : o e [0, 7/2 - 0]}, AV = {—ae iV : a € [-R,, —1]}, A5 =
A = femiv s poe 9, 1/2]), Ag = ALY = {e1/2=9) ¢ e [0, m/2 — 9]}, A =
{ae'? . a €1, R,]}, Aén) = {R,e'% : p € [9, m/2]}. Since T(-,r,s): C\(—00,0] — B is
holomorphic, we find

2 8
E , / T\, rys)dN = E , / T\, r,s)d\ for neN, r € [Ty, T1]. (5.45)

Define Ag = {e7% : p € [-7/2, 7/2]}, A = A%) = {e'? : p € [-0,9]}, L(s) =
@mi)L [ o (r (fA T(\, 7, 5) d)\)g( ) dr. Then we find that 35 ) [y, T\, 7,5) dA =
> jef9,10} fAj (A, 7, 8)d for r € [Ty, Ty]. From (5.44), (5.45) and the preceding equation,
for n € N,

T
A (s) = (2m')—1/ an( % / TOr.s)dN)g(r) dr + L(s).  (5.46)
T j€{3,4,10,7,8}
Ifr e [Ty, Th]),wehave s < T < Ty <r,s0r—5>To—T > 0. For r € [T, T1], n € N with
Ry > Ty — T, define Ag”” =AU AT = e g€ =Ry, —(r—s)"Y}, AT =
Agg) = {(r —s)7tel? : p € [-9,9]}, AnT) ={ae : ac[(r—s)" R}, Asnr) =
Aén). Again because T(-,r,s) : C\(—o00,0] — B is holomorphic, equation (5.46) remains

valid for n € N with R, > (T — T)~! if the sum with respect to j is extended over
Jj € {3, 11, 12, 13, 8} instead of j € {3, 4, 10, 7, 8}. In the next step, we let n tend to

infinity. To this end, we define Agz) = {—ae " : a € (~oc0, —(r—s)71]}, Agg) = {ae?
ac|[(r—s)7t, 00)} for r € [Ty, T1]. Inequality (5.43) implies that

Z / T(A, 7, 8) d)\H < ¢ for re [Ty, T1], (5.47)
je{14,12,15}
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with a constant € independent of s and r. Usually the role of the negative real s — r
appearing in the definition of ¥ is taken by a positive real, and 1 is supposed to belong
to (w/2, m) (so that cos®? < 0) instead of to (0,7/2) (so that cos®? > 0), as required
here. But these two differences compensate, so standard computations as in [44, p. 30-
31] carry through in our situation as well. On the basis of (5.47), let us show that
£,(s) = 0 (n — o0), where R, (s) denotes the term

HAn(s)—(Zm)—l/TQTl o (r ) 3 / T(\ 7 5) d)\> () dr — L(s)

je{14,12,15}

(5.48)

q2

(n € N). In fact, for n € N and r € [Ty, T1], with the abbreviation A\(n, ¢) := R,, e ¢ (7/2=¢),
we find that

w/2—p
/( ) TN\, 7, 8)dN = / s ALY § A (n, ) (A, 9) Ig, + Agy )_1 dp,
A" 0

S0) Hngm T(A,7y8) d)\HB <c foﬂ/2_<p e(s7) Bin cos(7/2=¢) dp due to (5.43) with ¥ replaced
by /2, for example. Hence

w/2 w/2

e(5=1) Rncos(Q) g < ¢ / e(87m) Bn cos(©) win(¢) d¢

T\, 7, 5) d)\HB <c / i

H Ag") 9

S@((r—s)Rn)_l

1

<C€((I,—T)R,)  (neN, re[lhT]).

Analogously we get HfA ) T(A, s d)\HB <c ( (T, = T) Rn)_l for n, r as before. More-
over, for r € [T, T1], n € N with R,, > (T — T)~!, with \(a) := ae?? for a € [R,, ),

H/m /(m) T\ 7,8 dAH _H/ (s—1) Aa) *Z”(A(a)IanLAqQ)‘ldaHB
A A

S@/ 6(5 r)a cos? _ldCLSCRn / 6(s r)a cosd daﬁ@:(Rn(Tg—T) COSI9)_1,

n n

where the first inequality follows from (5.43), and the third is a consequence of the relation

s <T < Ty <rforre [Ty, T1]. We may proceed in the same way when the curves A(11:1) and

qu ") are replaced by A( " and Agg’r) , respectively. The preceding estimates beginning with

that of HfAW T(A,7ys d)\HB combined with (5.46) with a sum over j € {3, 11, 12, 13, 8}
3

instead of j € {3, 4, 10, 7, 8} — replacement justified above — yield that

T

() <€ (Ro(To—T)) " / — (1) 190 gy dr (5.49)

Ts

for n € N with R,, > (Ty — T)~!, where £,(s) is an abbreviation of the term in (5.48), as
we may recall. Here we used that ¢/, < 0. On the other hand, because of (5.41) and the
relation v € L>(0,Tp, L% (56)3), and since o7 (Ty) =1, or(T1) =0,

Ty Ty
/T —r(r) lg(r)llg, dr < € Jullgy 00, /T —p(r) dr = € lul|gy,00m;- (5.50)
2 2

Since R,, — oo, it follows that the right-hand side of (5.49) vanishes when n tends to
infinity. As a consequence £,(s) — 0 (n — 00). But s ¢ N, so |40+ (s) — A, (5)|l4 —
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0 (n — o0), as mentioned in the passage preceding (5.37). Therefore we may conclude
that

Ty
$(mo+1) (g) = (QM)_l/T o (r ) Z / T\, 1,8 d)\) (r)ydr + L(s). (5.51)

j€{14,12,15}
(The term L(s) is defined in the passage following (5.45).) But

Ty
H/ (S / SO ) gl dr [, <€ [ (r) lo(r) oy, (552

je{14,12,15}

as follows from (5.47) and because ¢/, < 0. Obviously, due to (5.43) and since ¢, < 0
and s —r < 0 for r € [T5, T1], we get [|L(8)]g < Qf n(r) lg(r)|go dr. At this point

we may deduce from (5.50) — (5.52) that [|(0+1) (s )qu S Cllul|gg,00:1,- But ¢ < go, so
we finally arrive at the inequality |40+ (s)|AR, g, < C||w||gz,00:7,- Recall that s is
an arbitrary number from (—oo,T’)\N. The preceding estimate, inequality (5.38), (5. 40)
and equation (5.39) imply that inequality (5.35) holds for t € (0,T)\N, a. e. x € BRO

and o € N o0, la] <1, with a constant € independent of 7" and T, and without the term
|z|~27lel if u satisfies the zero flux condition stated in the theorem. Since T was taken
arbitrarily in (0,7}), the theorem is proved. O

6 Spatial decay of L?-strong solutions to the nonlinear prob-
lem (1.1).

We start by specifying our assumptions on the data and the solution. We fix Sy € (0, 00)
with Q@ C Bg,, To € (0,00, and assume there is g¢ € (1, 6/5) and Uy € L2(R3)3, f €
L?(0,Ty, L* Q)3 JNL2(0,Ty, L Q)3 ) such that inequality (1.12) holds for the function
8¢ [ R (f) + 37 (Up) ] with o € N, |a| < 1.

This inequality is fulfilled if for example U0|BS0 ewh 1(BSO) and there are parameters

loc

ko € (0,1/2), R, ¢cg € (0,00) such that [0°Uy(y)| < co |y|=3/2101/2=R0 1 (3y)=5/4=lel/2=ko
for y € BS, a € N§ with |a] < 1 ([20, Theorem 4.2]), and if f € L*(Bg x (0,00))3 for
some R € (0 00) ([19, Lemma 4.2]). In the case there are numbers ¢ € (1,00), A, pg €
(2,00), B € [0,3/2] and a function v € L?*((0,00)) N LP°((0,00)) such that A +
min{l, B} > 3, A+ B > 7/2, f|Qg, x (0,00) € L*(0,00, L9(Qg,)*) and |f(y,s)| <
v(8) |y~ A v(y) =B for y € Bg,, s € (0,00), we obtain inequality (1.12) with its right-hand
side replaced by € |z|~5/4=101/2 (2:)=5/4=1el/4 (max{1, In|z|})*I", where n is some integer.
As a consequence we would obtain (1.3) with the same replacement.

For the proof of (1.5) it would be sufficient that (1.12) is valid with right-hand side
¢ (|| 1/(1‘))717|a‘/2. For assumptions on Uy and f leading to this variant of (1.12) we
refer to [12, Theorem 1.1] and [13, Theorem 3.1].

Concerning the function U in (1.1), the relations in (1.8) are assumed to be valid.

We fix a real number Ry > max{Ryy,, Ry}, with Ry introduced in (1.8) and Ry in
(1.12).

Moreover we consider a weak solution u of (1.1) with properties as stated at the beginning
of Section 1, with the parameters sg, rg introduced there. Without loss of generality, we
may suppose that sy > 2.
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We now present the modifications we bring to the linear theory in [14]. This modified
theory will then be used (Theorem 6.3) in order to improve the decay estimates in [14] of
the solution « to (1.1) introduced above. To this end we define functions & : Q° x (0, Ty) —
R3*3 and gy : 9 x (0,Ty) — R? by setting

Hy(t) =7 (w(t) ue(t) + w(t) U + Uyug(t)) (t€(0,Tp), 1 <k,1<3), (6.1)
3
gb,k(ya 3) = Zl:l S(]_1 Ui Hk’l(yvs) (S € (OaTO)a Yy e aBSm 1<k < 3)>
and we set g := G(U, u), where G(U,u) is defined in (1.7).

Lemma 6.1 Put H,S)(t) = T uk(t) w(t), H}glz) (t) == 7 (w(t) U + Upug(t)) fort € (0,Tp)
and1 < k,1 <3, so that H = HY + H®_ Then the following relations hold true: u belongs
to L2(0, Ty, LS(Q9)3)NL>=(0,Ty, L3(QF)?), HY to L2(0,Ty, L2(Q°)), and 8z H, fi
and g are in the space L2(O,To, L3/2(§c)). In addition H,S) S LQ(O,TO, L3(§C)) and
O:UmH,S) € L'(0,Tp, L3/2(§C)) for 1 < k,I,m < 3. The function g, defined in (6.1)
belongs to L*(0, Ty, L'(0Bs,)?).

Proof: For t € (0,Ty), we have u(t) € L*0(Q°)% and V,u(t) € L*(Q°)?, so |lu(t)|ls <
¢||[Vu(t)||2 by Theorem 2.3. As a consequence u € L?( 0, Ty, LO(Q%)3 ). The assumptions
on u yield immediately that u € LOO(O, Ty, L3 (56)3). The two preceding relations, the
assumptions U € LS(Q°)3, VU € L*(Q°)? (see (1.8)), Vou € L?(0, T, LQ(ﬁc)g) and
(u-Vgz)u e L*(0,T, L3/2(Q%)3 ), and the conditions on f imply the other claims of the
lemma. 0

Lemma 6.2 Abbreviate H := (H)1<m<s for 1 <1< 3. Let ¢ € C®°(R3) be a bounded
function with bounded first-order derivatives. Let t € (0,Tp).

Then fﬁc 0y (Ajm(z — y,t — $)C(y)) - Hou(y, s)|dy < oo for z € R3, s € (0,t) and

0
. ¢ . t

1 < j,l,m < 3. Let x € Bg, with [, UB—SOc Zlg:lA(w —y,t —5)¢(y) gy, s)dy | ds <
co. (By Lemma 8.4, this assumption is true for a. e. x € R3.) Then the integral
fg ‘ fB—SOc Z?:l ayl(A(az —y,t— ) C(y)) -Hy(y,s)dy ‘ ds is finite. Put

3

Dl t) = — /0 /B lzlayz(m — .t —5)C(y)) - Haly, s) dy ds.

Then %(T)(Cg|Bisoc x (0,Tp) ) (z,t) = —B"Bso) (¢ gy) (2, ) + Q¢ (1), with gy introduced
in (6.1).
Proof: The first claim of the lemma follows from Lemma 3.4 and 6.1. As for the

main part of the lemma, in particular the equation at its end, its proof is based on
transforming the integral fAR ; Az —y,t —s) - C(y)g(y,s)dy by a partial integration,
2,50

for z € Bg,", s € (0,t), R € (Sp,00). In fact, take such = and s. Then the term
Alx — y,t — s) as a function of y € R? belongs to C*°(R3)3*3 (Lemma 3.1). More-
over g, = Z?:l Oy Hpy for 1 < m < 3 because divU = 0 and divp,u = 0. Since
gm € L2(0,Ty, L¥2(Q%)), HY) € 12(0,Th, LX(Q°)) and HZ) € L2(0,Tp, L*}(Q°)) for
1 <Il,m < 3 (Lemma 6.1), and because of Lebesgue’s theorem and the first claim in
Lemma 3.4, we obtain fR3\BR E?zl 10y1 (N (z —y,t— ) ((y) ) Hou(y, s)| dy — 0 and also
fRS\BR |Ajm(z—y,t—5)C(Yy) gm(y, s)|dy — 0 for 1 < j,m < 3 if R — oo. The same prop-
erties of HW(s) and H® (s) imply there is a sequence (R,,) in [Sp, c0) with R,, — co and
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faBR (|HW (y,s)|?> + |H® (y, 5)|3) do, < Ry for n € N. On the other hand, by (3.5) we
have |A(z—y,t—s)| < C(7) |z —y| 32 < C(1, |z|) ly| >/ for y € B3, It follows from the
two preceding relations that faBR |Njm (z—y,t—35) C(y) Byt yi Hyu(y, 8)| doy — 0 (n — 00)

for 1 < k,1,m < 3; see the proof of [14, Lemma 3.8] for more details. Altogether we may
conclude from a partial integration on Ag, g, for n € N and from letting n tend to infinity

that fgee Ajm(z =y, = 5) ((y) gm(y; 5) dy equals

J

for 1 < j,m < 3. The equation at the end of Lemma 6.2 follows by an integration with
respect to s. O
—5/4—|al/2

Zayz Ajm(z—y, t— S)C(y))Hmz(y,S)dy—/ Ajm(z—y,t=5) C(y) go,m(y, s) doy

50 =1 9Bs;,

Lemma 6.3 The inequality 920550 (g,)(z,t)| < € (|z|v(z))
(0,To), © € B, a € Nj with |af < 1.

Proof: Put 9(5 )(y,s) = (Z?:l Syt H,g)(y,s))lgkSs for j € {1,2}, y € 0Bg,, s €
(0,Tp), with H® H® from Lemma 6.1. Take z, t, o as in the lemma. Then by Lemma
6.1 and 3.6, the term |0§Q](T’BSO)(9£1))(w,t)| is bounded by

is valid fort €

—5/4—|al|/2 —3/2—|a|/2
[ (@) TV UED 900 + (2| v(@)) 22 1V HO 301, ]

The same references yield
aar(T —5/4—|a|/2
020550 () ()] < € (Jal () )TV (HD g2, + IV HP gj00m). O

Theorem 5.2, 5 3 assumption (1.12) and Lemma 6.3 allow to reduce a decay estimate of
u to one of R (g|Bg0 (0,7p) ) or alternatively of the function Q. from Lemma 6.2
with ¢ = 1. The details are given in the next two corollaries. The first replaces [14, (3.8),

(3.9)].
Corollary 6.1 Put J(x,t) := u(x,t) + R (g[Bs,” x (0,Tp) )(x,t) for v € Bg,*, t €
(0,Tp). Then J(t) € W (Bs,)? (t € (0,T)), and there is a zero measure set N C

loc
(0,To) such that |02 (x,t)] < €[ (|z]v(x)) 71 L 1z[~2-101] for t € (0,TH)\N, a.
e. © € Br, , and for a € N} with |a| < 1, where the term |z|~27121 may be dropped if

Joqu(®) - nD do, =0 fort € (0,Tp).
Proof: The relation J(t) € W' (Bg,“)? follows with Lemma 3.4. By Lemma 6.1, we

know that f — g € L2(0,T0, L?E%(Q )3 ) and u € L2(0,TO, Lﬁ(ﬁc)3). Thus, in view of
our conditions on Uy and u, we see that the assumptions of Theorem 5.2 (Tp = o0) or
Theorem 5.3 (Tp < oo) are satisfied with ng =1, p1 = 3/2, g0 =6, ¢1 =2, g2 = sp and
fM = f — g, and with (1.6) in the role of (3.9). These references, in particular (5.26) and

(5.35), then yield that there is a zero measure set N C R such that

[ 09w — 9¢RT) (f — g|Bg,” x (0,Tp) ) — 0237 (Us|Bs, ") | (w, 1) (6.2)
< e ((Jalwla)) 2 4 faf2o1)

for t € (0,Tp)\N, a. e. = € Bp,” and o € N, |a| < 1, where the term |z|~2~/% may
be omitted if the zero flux condition stated in the corollary holds true. Taking account
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of what we supposed on R(" ( |Bs,” x (0,7Tp) ) and 37Uy Bs, ) in (1.12), and because
Ry > max{Ryy,, Ru} > Ryy,, we see that the estimate in Corollary 6.1 follows from
(6.2). O

The second corollary announced above will play the role of [14, (3.16), (3.17)].
Corollary 6.2 Put J(z,t) := J(z,1)~0"P50) (g,)(z,1) forz € Bg,", t € (0, Tp), with J
from Corollary 6.1. Then u(z,t) = J(x,t)+Q(x,t) fort € (0,Ty) and for a. e. x € Bg,",
where Q = Q¢ is to be defined as in Lemma 6.2 with ¢ = 1.

There is a zero measure set N C (0,Tp) such that for t € (0,To)\N, a. e. € Bg,  and
a€ NO, \a\ < 1, the inequality |07 (z,t)| < € [ (|=|v(z) )_5/4_‘a|/2 + ]:c|_2_|0“] holds. If
Joe u( Y do, =0 fort € (0,Ty) ), the term |z|~271%l may be omitted on the right-hand
side of the precedmg estimate.

Proof: The equation for u(z,t) follows from the definition of J in Corollary 6.1 and
from Lemma 6.2. The estimate stated in the corollary is a consequence of Lemma 6.3 and
Corollary 6.1. a

We verify that [14, Theorem 3.7] remains valid in the present situation.

Theorem 6.1 There is 01 € (1,2) such that u € LOO(O,TO, Lp(ﬁc)?’) for p € [o1,2].
Moreover |u| |U| € L=(0,Ty, L}(Q°)).

Proof: Let us show that :(" ( |Bs,” x (0,Tp)) € L>®(0,00, L"(R?)?) for a range of
exponents k£ < 2. Since by our assumptions we have u € L‘X’(O,T 0, L* (66)3) for some
s € [2,3), and because V,u is L?-integrable on Q° x (0,7p), we obtain with Holder’s
inequality that 1 < 2/(1 + 2/s) < 6/5 and |u| |[V,u| € L2(0,Tp, L2+ (Q°)3); see
[14, (3.6)]. Moreover, by Lemma 2.2 and our assumptions on U (see (1.8)) and u, we get
(u-VYU+(U-Vy)u e L*(0,Ty L11/10(§C) ); see [14, (3.2), (3.4)]. Moreover the function
T ((u- VU + (U -Vou) = (X2, 02H ) 1<mes belongs to L2(0,Tp, L¥2(Q2%)3) by
Lemma 6.1, and (u-V;)u is in the same space by assumption. Thus we may conclude that
g € L2(0,Ty, LP(Q°)3) for p € [09, 3/2], with o := max{11/10, 2/(1 + 2/s)} € (1, 6/5).
With this property of g at hand, we may reason as in [14, p. 1406, second paragraph]
to obtain that (1/09 — 1/3)7! < 2 and R 7)( |Bs,” x (0,Tp)) € L>=( 0,00, L"(R?)?) for
k€ ((1/og—1/3)71, 2].

On the other hand, Corollary 6.1 and Lemma 2.2 yield that J|B% x (0,Tp) belongs to
L>*(0,Tp, LU(Bg,")*) for q € (8/5, 00). Since in addition, u € L>®(0,Tp, L™ (Q°)%) for
some rg > 3 by our assumptions, Corollary 6.1 allows to conclude at this point that the
first claim of the theorem is valid with oy := max{8/5, (1/0¢ — 1/3)~1}. Morever by (1.8)
and Lemma 2.2 we have U € LI(Q°)3 for p € (2,6]. This observation and the first claim
of the theorem imply the second.

Due to the preceding results, the decay estimate from [14] (inequality (1.5)) carries over
to the present situation. This is made precise by the ensuing theorem and its proof.

Theorem 6.2 Let R € (Ry,00). Then |0%u(z,t)| < €( |z] V(x))—l—la\/Q
(0,7p) and o € N3 with |a| < 1.

forxz e BS, t €

Proof: The theorem holds according to [14, Theorem 4.6, 4.8]. We may use these theorems
because the reasoning in [14, Section 4] carries through without change, except that some
references have to be modified. The role of [14, Corollary 3.5, in particular (3.8), (3.9)] is
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played here by Corollary 6.1, whereas [14, Corollary 3.10, in particular (3.16), (3.17)] is
replaced by Corollary 6.2. A proof of [14, Theorem 3.7] adapted to the present situation is
given above (Theorem 6.1). Concerning all the other auxiliary results used in [14, Section
4], their proof remains valid without change in the situation considered in the work at
hand. This is true in particular for the technical tools stated in [14, Theorem 2.8, 2.18,
Corollary 2.19, Lemma 2.20], as well as for some results which are used here as well,
like [14, Lemma 2.10], reappearing here as Lemma 3.4. Whenever [14, Corollary 3.3| is
applied in [14, Chapter 4], only the relation g € LQ(O, Ty, LS/5 (ﬁc)?’) is used, which may
be replaced in that context by g € L2(0, Ty, L3/2(ﬁc)3) (Lemma 6.1). O

With Theorem 6.2 available, we may now use Corollary 6.2 in order to improve the decay
estimate in Theorem 6.2, and thus the estimate derived in [14]. The key result in this
respect, and the main contribution of this section, is

Theorem 6.3 Let R € (Ry,o0). Then there is a set N C (0,00) of measure zero such
that for t € (0,Ty)\N, a. e. © € B, a € N3 with |a| <1,

| 02RO (g|Bs,” x (0,00) ) (w,8) | < € ([z]w(x)) 12,

Proof: Abbreviate r := R — Ry, § := g|B750C x (0,Tp), H;:= (Hml)lngS‘B—&)c x (0,Tp)
for 1 <1 < 3. Let o € C§°(B,2) with ¥|B, 4 = 1. By Lemma 3.4 and 6.1, there is a
set N C (0,00) of measure zero such that fot fB—c |02A(x — y,t — s) - g(y, s)|dyds < oo

for t € (0,00)\N, a. e. x € R® and a € N} with |a| < 1, and such that R (§)(t) €
Wl R3)3, 92RO (§) (= fo st cO%AN(x —y,t — s) - g(y, ) dyds for t, z, a as before.
Take t € (0,7p)\N, «a € Ng with || < 1 and = € Bf, such that the two preceding
relations on integrals of 03A(z —y,t —s) - g(y, s) (y € Bs,*, s € (0,t)) are valid. Then
PR () (2, 1) = Ay + Ag, with Ay = fot fB—SOc ON(z — y,t — s)Y(x —y) - g(y,s)dy ds
and with 20y defined in the same way as i, except that the term ¢ (x — y) is replaced by
1 —(x —y). We may apply Lemma 6.2 to 2z with ((y) := G:(y) := 1 —¥(z—y) (y € R?).
On the other hand, for y € 9Bg,, we have |z —y| > |z|—|y| > R—Sy > R— Ry = r. Hence,

because 1) € C§°(B,/2), we get 1 —(z —y) =1 for y € dBg,. From these considerations
we see that Lemma 6.2 yields

Ao = //B Z@yl [00A(z —y,t —s) (L —(z—y)) ]| Hyly,s)dyds

—8;“‘3(77350)(95,)(3:,75).
We split the preceding integral over Bisoc x (0,t) into a sum By + By, with

t 3
= — oy | O%A(x — — _ _ CH dud
o /0 /A(R+R0)/2 So Z yl[ AT =yt =) (1 b(z—y) )} 1(y,s) dy ds,

=1

and with B9 defined in the same way, but with the domain of integration A(ryry)/2, s,
replaced by B(CR +Ro)/2" Altogether we have arrived at the splitting

IR () (2, t) = Ay + By + By — 9°VBs0) (g,) (1), (6.3)

Let us estimate 2;, B; and B, beginning with ;. For y € B, 5(r), we have [y| >
|x|/2 + |z|/2 — |z —y| > |z|/2+ R/2 —r/2 = |z|/2 + Ry/2, so that |y| > |z|/2 and
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lyl > (R+ Ry)/2. In addition, also for y € B, j5(x), we find with Lemma 2.3 that v(y)~! <
C(l+|z—y))v(x)™t < C(1+r/2)v(z)~L. Therefore, in view of (1.8), the assumption
Ry > Ry and Theorem 6.2 with (R + Rp)/2 in the role of R, we may conclude that
lg(y,s)| < € ( |x| v(x) )_5/2 for y € BT/Q(x), s € (0,Tp). But ¢(z —y) = 0 for y €
B, j5(x)¢, so we obtain || < € ( |z v(x) )_5/2 f(f fBT/Q(x) |0SA(x —y,t — s)| dy ds. Making
use of inequality (3.5) with K = r/2, we see that the preceding integral is bounded by
¢(r) fg fBT/Q(:C)(]x —y|2+t—s)"3/2711/2 4z ds. Integrating first with respect to s and then
with respect to y, we obtain a bound for this latter integral which is independent of z, ¢
and Tp. Thus we may conclude that [2| < € (|z|v(z) )_5/2.

In order to evaluate By, we recall that H = H® + H®), HSI) € LZ(O,TO, LQ(QC))

and Hgl) € L*(0, Ty, LS(ﬁc)) (Lemma 6.1). Moreover, for y € B, 5(r), we have [y| >
(R+ Ro)/2, as observed above, s0 A(ryry)/2,5, N Bra(r) =0, hence 1 —(x —y) =1 for
Y € A(R+Ro)/2,5,- At this point, we may apply Theorem 3.4 with p = 2, [8]| = 1 to obtain
that |B:| < € (|2 w(z)) 712,

This leaves us to consider By. Let y € Bf with 1 — ¢o(z — y) # 0. The latter

(R+Ro)/2
condition means that |z —y| > r/4, so by (3.4) and (2.1),

t
/0 0y 09 A (z — y, t —s) (1 —p(z —y))|ds
<c /t(|x —y—T1t—s)e|P+t—s) "2l 2qs < e(r) (Jo =yl v(z —y) )—3/2—\04/2
0

<e(r)((A+ |z —yhvl—y) P2 (1<1<3).

Moreover r/4 < |z —y| < r/2, for y € R® with V(1 — ¢ (z —y) ) # 0, hence with (3.5),

/t 00N (z —y,t — s) Oy (1 —Y(x —y) )| ds < €(r) /t(r2 4t s)3/27lal/2 g
0 0
<er) <er) ((1+]z—yhwla—y)) 12 1 <1<3),

On the other hand, from (1.8) and Theorem 6.2 with R replaced by (R + Ry)/2, we get

. ) c
[ Hya(y,5)| < €(lylv(y)) ™ < €((L+|y)v(y)) " for y € Bip,py) e s € (0,1), 1 <
I,m < 3. In this way we arrive at the inequality

By <€ /B (L +fe—y)vl@—y) D2 (@) 2dy. (6.4)

c
(R+Rqg)/2

In order to estimate the product v(z —y) ' v(y)~!, let y € R? and consider the case that

lyl =1 < (Jx| — x1)/4 and |z — y| — (z — y)1 < (|| — z1)/4. Then we may conclude
that |z| —21 = |z| = (@ —y)1 =y < [z —y| + |y| = (@ — y)1 — y1 < (Jz] — 1)/2, hence
ol — 21 = 0. Thus lyl — g1 = (lal — 21)/4 or |z — gl — (& — )1 = (2| — 21)/4, s0
v(y) > v(x)/4 or v(z —y) > v(z)/4. Since v(z) > 1 for any 2 € R?, we may conclude
that v(z —y) " tv(y)~t < 4v(z)~L. We use this observation in the case |a| = 1. If a = 0,
we deduce from (6.4) that [Bs| < € [pu ((1+ [z —y|) v(z —y) )_3/2 ((1+Jy))v(y) )_2 dy,
whereas if || = 1, we refer to (6.4) and to the preceding remark on v(z —y)~ ' v(y)~! to
obtain [Ba| < €v(2) ™! [pa(1+]z —y|)2v(z —y) (1 + |y|) 2 v(y) ' dy. Therefore from

Theorem 2.2, |B,| < € (|z|v(z) )_(3+|a|)/2 (max{1, In|z|})" for some n € N. The theorem
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follows from the preceding estimates of 2y, 81 and B,, Lemma 6.3 and equation (6.3).

O

Our main result now follows immediately:

Theorem 6.4 Let Ty, f, Uy, U, Ry and u be given as specified at the beginning of this
section. Let R € (Ry,00). Then there is a zero measure set N C (0,Ty) such that

|07 u

(z,t)] < €[ (|z|v(z) )_5/4_|a|/2 + |2|7271el] for t € (0,Tp)\N, a. e. x € B, a € N}

with |of < 1. If [0 u(t) - n do, =0 (t€(0,Tp)), the term |z| =212l may be dropped.

Proof: Corollary 6.1, Theorem 6.3. U
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