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body: estimates of spatial decay independent of boundary

conditions.
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Université du Littoral Côte d’Opale, Laboratoire de Mathématiques Pures et Appliquées
Joseph Liouville, F-62228 Calais, France.

Abstract

We consider the incompressible time-dependent Navier-Stokes system with Oseen
term, in a 3D exterior domain, with the option of adding to the system another term
arising in the study of stability of stationary incompressible Navier-Stokes flows. We
do not impose any boundary conditions. The solutions we consider are supposed to
possess properties of L2-strong solutions: The velocity u is an L∞-function in time
and Lκ-integrable in space for some κ ∈ [1, 3) and some κ ∈ (3,∞), the spatial
gradient ∇xu is L2-integrable in space and in time, and the nonlinearity (u · ∇x)u is
L2-integrable in time and L3/2-integrable in space. We show that if the right-hand
side of the equation and the initial data decay pointwise in space sufficiently fast,
then u and ∇xu also decay pointwise in space, with rates which are higher than those
exhibited in previous articles.

AMS subject classifications. 35Q30, 65N30, 76D05.
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1 Introduction

We consider the Navier-Stokes system with Oseen term and perturbation terms,

u′ −∆xu+ τ ∂x1u+ τ (U · ∇x)u+ τ (u · ∇)U + τ (u · ∇x)u+∇xπ = f, (1.1)

divxu = 0 in Ω
c × (0, T0),

where T0 ∈ (0,∞] and Ω
c ⊂ R3 an exterior domain defined by Ω

c
:= R3\Ω, with Ω an open,

bounded set in R3 with Lipschitz boundary and connected complement. The unknowns
of this problem are the functions u : Ω

c× (0, T0) 7→ R3 (velocity) and π : Ω
c× (0, T0) 7→ R

(pressure). The parameter τ ∈ (0,∞) (Reynolds number) is given, as are T0, the function
f : Ω

c × (0, T0) 7→ R3 (volume force), and the function U : Ω
c 7→ R3. If U = 0, the

preceding system reduces to the Navier-Stokes system with Oseen term, describing the
flow of a viscous incompressible fluid around a rigid body, which is represented by the set
Ω. In this model the fluid is supposed to fill all the space around that body. The Oseen
term τ ∂x1u arises because u(x, t) corresponds to the velocity above ground of the fluid
particle at the point x in a coordinate system in which the rigid body is at rest. Such a
choice of u is convenient on a mathematical level because the value of u at points far from
the body is zero and the rigid body may be described by a fixed subset of R3. The case of
nonvanishing U arises when stability of a stationary flow around a rigid body is studied.
In this situation, U is the velocity part of a solution (U,Π) of the stationary Navier-Stokes
system with Oseen term, that is,

−∆U + τ ∂1U + τ (U · ∇)U +∇Π = F, divU = 0 in Ω
c
. (1.2)
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It is well known ([2], [10]) that if U solves (1.2) at least in a weak sense (U ∈ L6(Ω
c
)3, ∇U ∈

L2(Ω
c
)9), and if F decreases sufficiently fast, then

|∂αU(x)| ≤ C
(

(|x| ν(x)
)−1−|α|/2

for x ∈ Bc
R0
, α ∈ N3

0 with |α| ≤ 1 (1.3)

(decay of U and the first-order derivatives of U), where R0 is some constant with Ω ⊂ BR0 ,
and Bc

R0
:= R3\BR0 . The function ν appearing on the right-hand side of (1.3) is defined by

ν(x) := 1 + |x|−x1 for x ∈ R3. Its presence in (1.3) may be interpreted as a mathematical
manifestation of the wake extending downstream in the fluid behind the rigid body. The
decay rate −1− |α|/2 in (1.3) is best possible in the sense that the standard fundamental
solution of the stationary Oseen system (equation (3.4) with λ = 0) tends to zero with
exactly that rate for |x| → ∞ ([41, (1.39)]). In [19] we showed that the velocity part of
L2-strong solutions to (1.1) decay with the same rate uniformly in t, that is,

|∂αxu(x, t)| ≤ C
(
|x| ν(x)

)−1−|α|/2
for x ∈ Bc

R0
, t ∈ (0, T0), α ∈ N3

0, |α| ≤ 1, (1.4)

provided the initial data and the right-hand side f decrease sufficiently fast and u satisfies
Dirichlet boundary conditions with the zero flux condition∫

∂Ω
u(t) · n(Ω) dox = 0 for t ∈ (0;T0), (1.5)

where n(Ω) denotes the outward unit normal to Ω.

It is the aim of the work at hand to improve this result in essentially two respects: Firstly,
we will not impose any boundary conditions on u or π, except that that we distinguish
between the cases that the zero flux condition (1.5) does or does not hold. Secondly, we
will derive a higher rate of decay, showing that

|∂αu(x, t)| ≤ C
(

(|x| ν(x)
)−5/4−|α|/2

for t, x, α as in (1.4) (1.6)

if (1.5) is satisfied; else the exponent −5/4 − |α|/2 has to be replaced by −1/2 − |α|/2,
that is, by the rate obtained in [14] but under the condition that (1.5) is valid. Of course,
as in the case of (1.4), inequality (1.6) holds under the caveat that the right-hand side and
the initial data decay sufficiently fast. Apart from the absence of boundary conditions,
the type of solutions we consider is exactly the same as in [19]: We suppose regularity
properties of L2-strong solutions, that is, u ∈ L∞

(
0,∞, Lκ(Ω

c
)3
)

for some κ ∈ [1, 3) and

some κ ∈ (3,∞), ∇xu ∈ L2
(

0,∞, L2(Ω
c
)9
)

and (u · ∇x)u ∈ L2
(

0,∞, L3/2(Ω
c
)3
)
. The

system in (1.1) is supposed to be fulfilled in a weak form (see (7.4)) which only involves
the velocity u. We refer to Theorem 7.4 for the detailed statement of our results.

The result that solutions to the time-dependent Navier-Stokes system with Oseen term
exhibit a more rapid spatial decay than solutions to the corresponding stationary system
(estimate (1.6) compared to (1.3)) is due to the fact that fundamental solutions to the
time-dependent Oseen system

u′ −∆xu+ τ ∂x1u+∇xπ = f, divxu = 0 (1.7)

decrease faster with respect to the space variables than fundamental solutions to the
stationary Oseen system. The work at hand is the first which exploits this difference in
the nonlinear case.
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Results on the asymptotics of stationary Navier-Stokes flows, like inequality (1.3), may
usually be obtained without any assumptions on boundary conditions. In contrast to that,
previous results on spatial decay of unsteady Navier-Stokes flows (see our remarks below)
only hold under Dirichlet boundary conditions. Our proofs indicate why this contrast
arises: without boundary conditions, a weak form of (1.1) as the one used here (equation
(7.4)) does not enforce an initial condition, even though initial data are involved in the
formulation of the problem. In other words, the velocity need not be continuous in t = 0,
an aspect which is at the origin of many of the technical difficulties we encounter when
trying to handle this situation.

We further remark that our regularity assumptions on u are reasonable in the sense that
existence results are available providing solutions which satisfy our assumptions, albeit
under smallness conditions if T0 =∞. References in this respect are given in the passage
following (7.4). Here we consider a solution of the type described above as given. Then
all decay estimates follow without any smallness condition.

The work at hand strongly depends on the theory in [23] and [24] on the spatial asymptotics
of solutions to the time-dependent Oseen system (1.7), and on estimates in [19] of the
Navier-Stokes nonlinearity. More precisely, we will use the integral representation given
by equation [24, (5.24)] for Lq-weak solutions to the time-dependent Oseen system (1.7),
we will apply the decay estimates derived in [23, Section 4] for the integrals appearing in
this representation, and we will refer to [19, Theorem 4.6 and 4.8] when we estimate the
decay of the solution to the nonlinear problem (Theorem 7.2).

Let us compare the results and the method of proof in the work at hand with related
theories available in literature. Mizumachi [46, Theorem 2] showed (1.4) with α = 0, T0 =
∞ for L2-strong solutions to (1.1), under the assumptions that U = 0, f = 0, the functions
∂juk(t)|∂Ω and π(t)|∂Ω are bounded with respect to the norm of L1(∂Ω) uniformly in t
([46, (2.42)]), the initial data U0 are close to some solution U of the stationary problem
(1.2), and the term |u(x, t)| tends to 0 when |x| tends to infinity, uniformly in t ≥ T for
some T > 0; also see [52, p. 752] for a short discussion of the results in [46]. In [15] and
[18], we could show (1.4) for α ∈ N3

0 with |α| ≤ 1 if u is an L2-weak solution to the time
dependent Oseen system (1.7). As already indicated above, in [19] we derived (1.4) (but
not (1.6)) for the type of solutions specified above and also considered here, but under the
additional assumption that Dirichlet boundary conditions are fulfilled with data verifying
the zero flux condition (1.5).

The proofs in all those references, and also in the work at hand, rely on integral represen-
tations of the velocity part u of solutions to the time-dependent Oseen system (1.7). The
additional terms in (1.1) are considered as part of the right-hand side of (1.7). However,
the previous articles differ from the present one with respect to the choice of such a repre-
sentation. Mizumachi [36] used a Green’s formula. Such an equation has the disadvantage
that it involves an integral on ∂Ω× (0, T0) of ∇xu and π. This is the reason why in [36],
the restrictive integrability conditions mentioned above are imposed on ∇xu|∂Ω× (0, T0)
and π|∂Ω × (0, T0). In [15], [18] and [19], we circumvented this difficulty by solving an
integral equation in a certain subspace of L2

(
0, T0, L

2(∂Ω)3
)
. This approach provides a

representation formula for solutions to the time-dependent Oseen system (1.7) which does
not contain the critical integrals mentioned above. In addition it even yields existence
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of a solution to (1.7) under Dirichlet boundary conditions satisfying (1.5). However, it
is limited to this type of boundary conditions and to an L2-framework, and even in that
context, the decay rate −1− |α|/2 it provides as indicated in (1.4) is not optimal.

In [20] we derived a new type of representation formula for the velocity part u of regular
solutions to the time-dependent Stokes system u′ − ∆u + ∇xπ = f, divxu = 0 in Ω

c
.

This representation may be considered as a Green’s formula because it is established by
means of partial integrations. However, it does not contain the critical boundary integrals
appearing in the standard Green’s formula in [46]. As a drawback, the formula in [23]
represents u(x, t) only if the space point x is located outside a ball around Ω fixed in
advance. But in our context this restriction does not matter because we are interested in
the behaviour of u far from Ω. However, the theory in [20] is essentially restricted to an
L2-framework and is makes use of maximal regularity of solutions to the time-dependent
Stokes system. Solutions to the Oseen system (1.1) do not possess this property, as follows
from the fact that certain Stokes resolvent estimates do not carry over to the Oseen case.
We refer to [27] for a negative result in this respect, and to [54, Theorem 4.2, 3.)] for a
link between these estimates and maximal regularity. It should be further indicated that
the formula in [20] only yields an integral representation of the velocity u itself, but not of
its spatial gradient ∇xu, thus barring the way to decay estimates of ∇xu. In addition, the
theory in [20] only deals with the case f = 0 and with homogeneous Dirichlet boundary
conditions. But in [23], [24], we found a way to extend this theorey to the Oseen system
(1.7), removing its main deficiencies in the process: The spatial gradient of the velocity
may also be represented, the assumption f = 0 is dropped, and no boundary conditions
are imposed. This is achieved in [23] for regular solutions to (1.7) (see [23, Corollary 5.2]),
and generalized in [24] to Lq-weak solutions. The formula obtained in that latter reference
(see [24, Corollary 5.1, 5.2]), reproduced in Theorem 4.4 below, is the starting point of
the work at hand.

Let us mention some references more distantly related to the work at hand. Knightly [39]
considers even the case that the velocity of the rigid body changes with time. However,
his results are valid only under various smallness assumptions. Takahashi [52] deals with
(1.1) in the case U = 0, Ω = ∅. In [3], [4], solutions to (1.1) with U = 0 and to (1.7)
are estimated in weighted Lp-norms, with the weights adapted to the wake in the flow
field downstream to the rigid body. Reference [22] by the present author combines decay
estimates in time and in space, as a continuation of [18] (Oseen system (1.7)) and [19]
(stability problem (1.1)), with the same assumptions, methods and rates of spatial decay
as in these references. Various technical aspects of the theory in [15], [18], [19] and [22] are
dealt with in predecessor papers [11] – [14], [16], [17]. Questions of existence, regularity
and stability related to (1.1) and (1.7) are addressed in [30], [31], [32], [36], [37], [40], [43],
[45], [48], [50].

2 Notation. Some auxiliary results.

The symbol | | denotes the Euclidean norm of Rn for any n ∈ N, the length α1 +α2 +α3 of
a multi-index α ∈ N3

0, as well as the Borel measure of measurable subsets of R3. When we
write |A| for some A ∈ R3×3, we mean the Euclidean norm of A considered as an element
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of R9. For R ∈ (0,∞), x ∈ R3, put BR(x) := {y ∈ R3 : |x− y| < R}. In the case x = 0,
we write BR instead of BR(0).

The set Ω ⊂ R3 and the parameter τ ∈ (0,∞) introduced in Section 1 will be kept fixed
throughout. Recall that Ω is open and bounded, with Lipschitz boundary and connected
complement, and that n(Ω) denotes the outward unit normal to Ω. We put ΩR := BR\Ω.
Further recall that in Section 1, we introduced the function ν : R3 7→ [1,∞) by setting
ν(x) := 1 + |x| − x1 for x ∈ R3.

For n ∈ N, I ⊂ Rn, let χI stand for the characteristic function of I in Rn. If A ⊂ R3,
we denote by Ac the complement R3\A of A in R3. Put el := (δjl)1≤j≤3 for 1 ≤ l ≤ 3
(unit vector in R3). If A is some nonempty set and γ : A 7→ R a function, we set
|γ|∞ := sup{|γ(x)| : x ∈ A}. If R, S ∈ (0,∞) with S < R, we write AR,S for the annular
domain BR\BS .

Let p ∈ [1,∞), m ∈ N. For A ⊂ R3 open, the notation ‖ ‖p stands for the norm of the
Lebesgue space Lp(A), and ‖ ‖m,p for the usual norm of the Sobolev space Wm,p(A) of
order m and exponent p. If A ⊂ R3 possesses a bounded C2-boundary, the Sobolev space
W r,p(∂A) with r ∈ (0, 2) is to be defined as in [26, Section 6.8.6]. Let B ⊂ R3 be open.
The spaces Lploc(B) and Wm,q

loc (B) are defined as the set of all functions V from B into R
or C such that V |A ∈ Lp(A) and V |A ∈W 1,p(A), respectively, for any open, bounded set
A ⊂ R3 with A ⊂ B. We put ∇V := (∂kVj)1≤j,k≤3 for V ∈W 1,1

loc (B)3.

Let V be a normed space, and let the norm of V be denoted by ‖ ‖. Take n ∈ N.
Then we will use the same notation ‖ ‖ for the norm on Vn defined by ‖(f1, ..., fn)‖ :=(∑n

j=1 ‖fj‖2
)1/2

for (f1, ..., fn) ∈ Vn. The space V3×3, as concerns its norm, is identified

with V9.

For open sets A ⊂ R3, we define C∞0,σ(A) := {V ∈ C∞0 (A)3 : divV = 0}, and we write

Lpσ(A) for the closure of C∞0,σ(A) with respect to the norm of Lp(A)3, where p ∈ (1,∞).
This function space Lpσ(A) (”space of solenoidal Lp-functions”) is equipped with the norm
‖ ‖p.
Let B be a Banach space, p ∈ [1,∞] and J ⊂ R an interval. Then the norm of Lp(J,B)
is denoted by ‖ ‖Lp(J,B). Let a, b ∈ R ∪ {∞} with a < b. Then we write Lp(a, b, B)

instead of Lp
(

(a, b), B
)
. Moreover, we use the expression Lploc

(
[a, b), B

)
for the space of

all functions v : (a, b) 7→ B such that v|(a, T ) ∈ Lp(a, T, B) for any T ∈ (a, b). The space
Lploc(a, b, B) is defined as usual. Let T ∈ (0,∞], A ⊂ R3 open, p ∈ [1,∞], q ∈ (1,∞)
and n ∈ {1, 3}. Then we write ‖ ‖q,p;T and ‖ ‖q,p;R instead of ‖ ‖Lp(0,T, Lq(A)n) and

‖ ‖Lp(R,Lq(A)n), respectively. For an interval J ⊂ R and a function v : J 7→ W 1,1
loc (A)3, the

notation ∇xv stands for the gradient of v with respect to x ∈ A, in the sense that

∇xv : J 7→ L1
loc(A)3, ∇xv(t)(x) :=

(
∂xk

(
vj(t)

)
(x)
)

1≤j,k≤3
for t ∈ J, x ∈ A

(spatial gradient of v). Similar conventions are to be valid with respect to the expressions
∆xv, divxv and ∂xjv.

Concerning Bochner integrals, if J ⊂ R is open, B a Banach space and w : J 7→ B an
integrable function, it is convenient sometimes to write B−

∫
J w(t) dt instead of

∫
J w(t) dt

for the corresponding B-valued Bochner integral. For the definition of the Bochner integral,
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we refer to [55, p. 132-133], or to [38, p. 80 ff.].

Let n ∈ N. For the Fourier transform f̂ of a function f ∈ L1(Rn), we choose the definition
f̂(ξ) := (2π)−n/2

∫
Rn e

−i ξ·zf(z) dz (ξ ∈ Rn), and we define the inverse Fourier transform f̌

of f by f̌(ξ) := (2π)−n/2
∫
Rn e

i ξ·zf(z) dz(ξ ∈ Rn). Analogous definitions and notation are
to hold for the Fourier transform and the inverse Fourier transform of functions belonging
to L2(Rn), Lp(Rn,B) or Lp(Rn,B1 + ... + Bk), where p = 1 or p = 2, and B, B1, ..., Bk
Banach spaces for some k ∈ N.

We write C for numerical constants and C(γ1, ..., γn) for constants depending exclusively
on paremeters γ1, ..., γn ∈ [0,∞) for some n ∈ N. However, such a precise bookkeeping
will be possible only at some places. Mostly we will use the symbol C for constants whose
dependence on parameters must be traced from context. Sometimes we write C(γ1, ..., γn)
in order to indicate that the constants in question is influenced by the quantities γ1, ..., γn.
But in such cases, this constant depends on other parameters as well.

The following simple version of Young’s inequality for integrals will be used frequently.
Stated her for the convenience of the reader, we will refer to it as “Young’s inequality”.

Lemma 2.1 ([1, Corollary 2.25]) Let n ∈ N and q ∈ [1,∞]. Then(∫
Rn

∣∣∣∫
Rn
U(x− y)V (y) dy

∣∣∣q dx)1/q
≤ C ‖U‖1 ‖V ‖q for U ∈ L1(Rn), V ∈ Lq(Rn).

We will use Minkowski’s inequality for integrals, which we restate, too.

Theorem 2.1 ([1, Theorem 2.9]) Let m, n ∈ N, p ∈ [1,∞), F : Rn × Rm 7→ R a
measurable function. Then(∫

Rn

(∫
Rm
|F (x, y)| dy

)p
dx
)1/p

≤
∫
Rm

(∫
Rn
|F (x, y)|p dx

)1/p
dy.

We point out some estimates involving the weight function ν, beginning with an integral
of negative powers of |x| ν(x).

Lemma 2.2 ([23, Corollary 3.2]) Let γ ∈ (2,∞) and R ∈ (0,∞). Then the integral∫
BcR

(
|x| ν(x)

)−γ
dx is bounded by C(γ)R−γ+2.

Lemma 2.3 ([26, Lemma 4.8]) The inequality ν(x − y)−1 ≤ C (1 + |y|) ν(x)−1 holds
for x, y ∈ R3.

Theorem 2.2 ([23, (4.1)]) Let µ ∈ (1,∞), K ∈ (0,∞). Then∫ ∞
0

(|z − τ t e1|2 + t)−µ dt ≤ C(µ,K, τ)
(
|z| ν(z)

)−µ+1/2
for z ∈ Bc

K . (2.1)

We will need the following estimates from [41].

Theorem 2.3 There is n ∈ N such that for x ∈ R3,∫
R3

(
(1 + |x− y|) ν(x− y)

)−3/2 (
(1 + |y|) ν(y)

)−2
dy

≤ C
(

(1 + |x|) ν(x)
)−3/2

(max{1, ln |x|})n,
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∫
R3

(1 + |x− y|)−2 ν(x− y)−1 (1 + |y|)−2 ν(y)−1 dy ≤ C(1 + |x|)−2 ν(x)−1 (max{1, ln |x|})n.

Proof: See [41, (1.39), Remark 3.1, and the proof of Theorem 3.2 and 3.3]. �

Functions in exterior domains with Lq-integrable gradient are Lq-integrable in a neigh-
bourhood of the complement of the exterior domain:

Lemma 2.4 ([34, Lemma II.6.1]) Let A ⊂ R3 be open and bounded, with Lipschitz
boundary, q ∈ (1,∞), R ∈ (0,∞) with A ⊂ BR, V ∈W 1,1

loc (A
c
) with ∇V ∈ Lq(Ac)3. Then

V |BR\A ∈W 1,q(BR\A).

We state a Sobolev inequality in exterior domains.

Theorem 2.4 Let A ⊂ R3 be open, bounded and with Lipschitz boundary. Let q ∈ (1, 3)
and V ∈W 1,1

loc (A
c
) with ∇V ∈ Lq(Ac)3. Suppose there is some κ ∈ (1,∞) with V ∈ Lκ(A

c
).

Then V ∈ L3q/(3−q)(A
c
) and ‖V ‖3q/(3−q) ≤ C ‖V ‖q.

Proof: This theorem may be deduced from [34, Theorem II.6.1]; see [21, Theorem 2.4]
and its proof. �

Functions V from Lqσ(Ω
c
) with sufficient regularity satisfy the equation divV = 0 :

Lemma 2.5 Let q ∈ (1,∞) and V ∈ Lqσ(Ω
c
) ∩W 1,q(Ω

c
)3. Then divV = 0.

Proof: By a simple density argument; see [25, proof of Lemma 2.2]. �

The next theorem deals with solenoidal W 1,q
0 -functions.

Theorem 2.5 ([34, Theorem III.4.2, III.6.1]) Let n ∈ N, q, r1, ..., rn ∈ (1,∞), A ⊂
R3 open, bounded and with Lipschitz boundary. Let V ∈ W 1,q

0 (A
c
)3 with divV = 0. Then

there is a sequence (ϑn) in C∞0,σ(A
c
) such that ‖V −ϑn‖1,q → 0 and ‖V −ϑn‖rj → 0 (n→

∞) for 1 ≤ j ≤ n.

We introduce the Helmholtz-Fujita decomposition in exterior domains.

Theorem 2.6 Let A ⊂ R3 be open, bounded, with Lipschitz boundary. For q ∈ (1,∞),

there is a linear bounded operator Pq := P(A)
q : Lq(A

c
)3 7→ Lqσ(A

c
) and a linear operator

Gq := G(A)
q : Lq(A

c
)3 7→ W 1,q

loc (A
c
) with ∇Gq(F ) ∈ Lq(A

c
)3, Pq(F ) + ∇Gq(F ) = F for

F ∈ Lq(A
c
)3, Pq(V ) = V for V ∈ Lqσ(A

c
), and Pq(∇Π) = 0 for Π ∈ W 1,q

loc (Ω) with
∇Π ∈ Lq(Ωc

)3. Moreover P ′q = Pq′ for q ∈ (1,∞).

Proof: See [34, Section III.1]. Some additional details may be found in [21, proof of
Theorem 2.11 and Corollary 2.3]. �

We will need certain properties of Bochner integrals. To begin with, we recall a basic tool.

Theorem 2.7 Let B1, B2 be Banach spaces, A : B1 7→ B2 a linear and bounded operator,
n ∈ N, J ⊂ Rn an open set and f : J 7→ B1 a Bochner integrable mapping. Then
A ◦ f : J 7→ B2 is Bochner integrable, too, and A(B1 −

∫
J f dx) = B2 −

∫
J A ◦ f dx.

Proof: See [55, p. 134, Corollary 2], [38, Theorem 3.7.12]. �

As a consequence of Theorem 2.7, a linear bounded operator between two Banach spaces
commutes with the Fourier transform:
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Corollary 2.1 Let B1 and B2 be Banach spaces, and let T : B1 7→ B2 be a linear and
bounded operator. Take n ∈ N and v ∈ L2(Rn, B1). Then T ◦ v ∈ L2(Rn, B2) and T ◦ v̂ =
(T ◦ v)∧.

Proof: Put g(R, ξ) := B1 −
∫
BR

(2π)−n/2 e−i ξ·x v(x) dx for R ∈ (0,∞), ξ ∈ Rn, and let
h(R, ξ) denote the B2-valued Bochner integral obtained by replacing v(x) by (T ◦ v)(x)
in the preceding definition. Let ‖ ‖Bj denote the norm of Bj , for j ∈ {1, 2}. Then∫
Rn ‖v̂(ξ) − g(R, ξ)‖2B1

dξ → 0 and
∫
Rn ‖(T ◦ v)∧(ξ) − h(R, ξ)‖2B2

dξ → 0 for R → ∞
by the definition of v̂ and (T ◦ v)∧. But Theorem 2.7 yields that T

(
g(R, ξ)

)
= h(R, ξ)

for ξ ∈ Rn, R > 0, so the second of the preceding convergence relations yields that∫
Rn ‖(T ◦ v)∧(ξ)− T

(
g(R, ξ)

)
‖2B2

dξ → 0 (R→∞). On the other hand, the boundedness

of T allows to conclude from the first that
∫
Rn ‖T

(
v̂(ξ) − g(R, ξ)

)
‖2B2

dξ → 0 (R → ∞).
Thus the corollary follows. �

We state a density result, already used in [24], in Lp(J,B) for Banach spaces B and
p ∈ [1,∞).

Corollary 2.2 ([24, Corollary 2.1]) Let B be a Banach space, A a dense subset of
B, p ∈ [1,∞), n ∈ N and J ⊂ Rn open. Then the set of sums

∑k
j=1 ϕj aj with k ∈

N, ϕj ∈ C∞0 (J) and aj ∈ A for j ∈ {1, ..., k} is dense in Lp(J,B).

Compatibility result for Bochner integrals with values in Lp-spaces are treated in the
ensuing two lemmas.

Lemma 2.6 ([23, Lemma 2.3]) Let m,n ∈ N, J ⊂ Rn and U ⊂ Rm open sets, q ∈
[1,∞) and f : J 7→ Lq(U)3 integrable as a Bochner integral in Lq(U)3. Then there is a
measurable function g : U × J 7→ R3 such that f(t) = g(t) a. e. in U , for a. e. t ∈ J . We
identify f with g. Then

∫
J |f(z)(x)| dz <∞ and

∫
J f(z)(x) dz =

(
Lq(U)3−

∫
J f(z) dz

)
(x)

for a. e. x ∈ U .

Lemma 2.7 ([24, Lemma 2.2]) Let J ⊂ R be an interval, n ∈ N, B ⊂ Rn and A ⊂
B open sets, q1, q2 ∈ [1,∞) and f : J 7→ Lq1(B)3 a Bochner integrable mapping with
f(t)|A ∈ Lq2(A)3 for t ∈ J and f |A : J 7→ Lq2(A)3 Bochner integrable as well. Then
(Lq1(B)3 −

∫
J f(s) ds)|A = Lq2(A)3 −

∫
J f(s)|Ads.

A much more deep-lying result is the following theorem.

Theorem 2.8 ([29, Theorem 8.20.5]) Let B be a reflexive Banach space, J ⊂ Rn open
and q ∈ (1,∞). Then the dual space of Lq(J,B) is isometrically isomorph to Lq

′
(J,B′).

We state a criterion for the existence of a weak derivative of a function with values in a
Banach space.

Theorem 2.9 Let B be a Banach space, a, b ∈ R with a < b, w, g ∈ L1(a, b, B) and∫ b
a ζ
′(t) η

(
w(t)

)
dt = −

∫ b
a ζ(t) η

(
g(t)

)
dt for ζ ∈ C∞0

(
(a, b)

)
, η ∈ B′. Then there is

w̃ ∈ C0
(

[a, b], B) with w(t) = w̃(t) for a. e. t ∈ (a, b), w̃(b) − w̃(a) =
∫ b
a g(t) dt, w ∈

W 1,1(a, b, B) and w′ = g.

Proof: The theorem follows from [53, Lemma 3.1.1]. �

A variant of Fubini’s theorem for Bochner integrals will be useful:

8



Theorem 2.10 ([38, Theorem 3.7.13]) For j ∈ {1, 2}, let Jj ⊂ R be measurable. Let
B be a Banach space, and let f : J1 × J2 7→ B be integrable as B-valued Bochner integral.
Then the function f(ξ1, · ) : J2 7→ B is integrable in the same sense for a. e. ξ1 ∈ J1, the
function ξ1 7→

∫
J2
f(ξ1, ξ2) dξ2 (ξ1 ∈ J1) is also integrable as B-valued Bochner integral,

and
∫
J1

∫
J2
f(ξ1, ξ2) dξ2 dξ1 =

∫
J1×J2 f(ξ1, ξ2) d(ξ1, ξ2).

We will need Plancherel’s equation for functions with values in Banach spaces. Since its
proof is not too long, and because we do not know a reference, we indicate this proof.

Theorem 2.11 Let B be a reflexive Banach space, n ∈ N and v ∈ L2(Rn, B). Then
v̂ ∈ L2(Rn, B) and ‖v‖L2(Rn,B) = ‖v̂‖L2(Rn,B).

Proof: For any Banach space A, let D(A) denote the set of sums
∑k

j=1 ϕj aj with k ∈
N, ϕj ∈ S(Rn) and aj ∈ A for j ∈ {1, ..., k}, where S(Rn) stands for the usual space
of rapidly decreasing functions on Rn. According to Corollary 2.2, the set D(A) is dense
in L2(Rn, A). Let 〈 , 〉 : B′ × B 7→ C denote the usual dual pairing of B′ and B. For
b′ ∈ B′, define 〈b′, v〉 : Rn 7→ Rn by 〈b′, v〉(x) := 〈b′, v(x)〉 = (b′ ◦ v)(x) for x ∈ Rn. Let
h ∈ D(B′). Then we may choose k ∈ N, ϕj ∈ S(Rn) and b′j ∈ B′ for 1 ≤ j ≤ k with

h(x) =
∑k

j=1 ϕj(x) b′j (x ∈ Rn). By Corollary 2.1, we have (〈b′j , v〉)∧(x) = 〈b′j , v̂(x)〉 (x ∈
Rn), so by Parseval’s equation for functions from L2(Rn),∫

Rn
〈h(x), v(x)〉 dx =

k∑
j=1

∫
Rn
ϕj(x) 〈b′j , v(x)〉 dx =

k∑
j=1

∫
Rn
ϕ̂j(x) 〈b′j , v̂(x)〉 dx (2.2)

=

∫
Rn
〈ĥ(x), v̂(x)〉 dx.

On the other hand, B is reflexive, so we have L2(Rn, B)′ = L2(Rn, B′) (Theorem 2.8).
Therefore, since D(B′) is dense in L2(Rn, B′), we obtain that

‖v‖L2(Rn,B) = sup{
∫
Rn
〈h(x), v(x)〉 dx : h ∈ D(B′), ‖h‖L2(Rn,B′) = 1},

with an analogous formula being valid for v̂. Moreover, since the Fourier transform maps
the space S(Rn) bijectively onto itself, we have {ĥ : h ∈ D(B′)} = D(B′). The theorem
now follows with (2.2). �

3 The Stokes and Oseen resolvent problems.

First we recall a result on interior regularity of weak solutions to the stationary Oseen
system and to the Oseen resolvent problem.

Theorem 3.1 Let A ⊂ R3 be open, λ ∈ C, q, s ∈ (1,∞), F ∈ Lqloc(A)3, U ∈ W 1,1
loc (A)3

with ∇U ∈ Lsloc(A)9 such that∫
A

(
∇U · ∇ϑ+ (τ ∂1U + λU − F ) · ϑ

)
dx = 0 for ϑ ∈ C∞0,σ(A), divU = 0. (3.1)

Then U ∈W 2,q
loc (A)3.
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Proof: The theorem is a consequence of interior regularity of solutions to the Stokes
system; see [21, Theorem 3.2]. �

We will need quite a number of facts about the Stokes resolvent problem. They are stated
in the next four theorems. We begin with a well known result.

Theorem 3.2 Let B ⊂ R3 be open and bounded, with C2-boundary. Take A ∈ {R3, B
c},

and let q ∈ (1,∞). Then, for any λ ∈ C\[0,∞) and for any F ∈ Lq(A)3, there is a unique
function U = U(λ, F ) ∈ W 2,q(A)3 ∩W 1,q

0 (A)3 and a function Π = Π(λ, F ) ∈ W 1,q
loc (A),

unique up to a constant, such that ∇Π ∈ Lq(A)3 and −∆U + λU +∇Π = F, divU = 0.

Let ϑ ∈ [0, π). Then ‖λU(λ, F )‖ ≤ C ‖F‖q for F ∈ Lq(A)3, λ ∈ C\{0} with | arg λ| ≤ ϑ.

Proof: In the case A = R3, we refer to [44, Theorem 3.10]. Else see [35] or [7], [8], [9] or
[51]. �

Theorem 3.3 Let λ ∈ C\{0} with <λ ≥ 0, R ∈ (0,∞), n ∈ N, qj , rj ∈ (1,∞), U (j) ∈
W 1,1
loc (R3)3 with U (j)|Bc

R ∈ Lrj (Bc
R)3, ∇U (j) ∈ Lqj (R3)9 for j ∈ {1, ..., n}. Put U :=∑n

j=1 U
(j), and suppose that divU = 0 and

∫
R3(∇U ·∇ϑ+λU ·ϑ) dx = 0 for ϑ ∈ C∞0,σ(R3).

Then U = 0.

Proof: This theorem may be proved in exactly the same way as [21, Theorem 5.1], which
states an analogous uniqueness result for weak solutions to either the Oseen system or to
the Oseen resolvent system in R3. The proof of [21, Theorem 5.1] refers to [21, Corollary
3.2 (C∞-regularity)] and thus implicitly to [21, Theorem 3.1 (associate pressure) and 3.2
(interior W 2,q-regularity)]. These references may be maintained here because their proof
remains valid in our situation, even becoming somewhat simpler (transition from the
Oseen resolvent to the Stokes resolvent case). Note that [21, Theorem 3.2] is reproduced
as Theorem 3.1 above. �

Theorem 3.4 Let A ⊂ R3 be open, bounded, nonempty, with Lipschitz boundary, R ∈
(0,∞) with A ⊂ BR, λ ∈ C\{0} with <λ ≥ 0. Moreover, let n ∈ N, qj , sj ∈ (1,∞), U (j) ∈
W 1,1
loc (A

c
)3, ∇U (j) ∈ Lqj (A

c
)9 (hence U (j)|BR\A ∈ W 1,qj (BR\A)3 by Lemma 2.4), and

U (j)|Bc
R ∈ Lsj (Bc

R)3 for j ∈ {1, ..., n}. Put U :=
∑n

j=1 U
(j), and suppose that U |∂A =

0, divU = 0 and
∫
R3(∇U · ∇ϑ+ λU · ϑ) dx = 0 for ϑ ∈ C∞0,∞(A

c
). Then U = 0.

Proof: The proof is almost the same as that of [21, Theorem 5.2]. In our situation, it is
based on Theorem 3.3 instead of [21, Theorem 5.1], and as a replacement to [21, Corollary
4.3], it needs an existence and a C∞-regularity result for the problem −∆V +λV +∇Π =
F, divV = 0 in the whole space R3. These results are provided by Theorem 3.2 and by
[21, Corollary 3.2 (C∞-regularity)]. As already mentioned in the proof of the preceding
theorem, the latter reference obviously carries over from the Oseen resolvent case to the
Stokes resolvent case. The same is true for [21, Theorem 3.3 and Corollary 3.1] (boundary
regularity), which, too, are used in the proof of [21, Theorem 5.2]. �

We introduce the Stokes operator. For the convenience of the reader, we list those of its
properties that will be needed later on. Also for the convenience of the reader and for
completeness, we indicate a proof of these properties.

Corollary 3.1 Let A ⊂ R3 be open, bounded, with C2-boundary. Let q ∈ (1,∞), and
define D(Aq) := W 2,q(A

c
)3∩W 1,q

0 (A
c
)3∩Lqσ(A

c
), Aq(U) := Pq(∆U) for U ∈ D(Aq), with
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the operator Pq = P(A)
q introduced in Theorem 2.6.

Then Aq is a linear and densely defined operator from D(Aq) into Lqσ(A
c
). The set

C\(−∞, 0] is contained in the resolvent set %(Aq) of Aq. Let Iq denote the identical map-
ping of Lqσ(A

c
) into itself. Then the operator (λ Iq +Aq)−1 is holomorphic as a function

of λ ∈ %(Aq) with values in the space of linear bounded operators from Lqσ(A
c
) into itself.

Let λ ∈ C\(−∞, 0], F ∈ Lq(A
c
)3, U ∈ W 2,q(A

c
)3 ∩ W 1,q

0 (A
c
)3, Π ∈ W 1,q

loc (A
c
) with

∇Π ∈ Lq(Ac)3, −∆U + λU +∇Π = F, divU = 0. Then U = (λ Iq +Aq)−1
(
Pq(F )

)
. For

ϑ ∈ [0, π), the inequality ‖(λ Iq + Aq)−1(F )‖q ≤ C |λ|−1 ‖F‖q holds for F ∈ Lqσ(A
c
), λ ∈

C\{0} with | arg λ| ≤ ϑ.

Proof: Let λ ∈ C\(−∞, 0], F ∈ Lq(A
c
)3. Then, by Theorem 3.2, there is a pair

(U,Π) =
(
U(λ, F ), Π(λ, F )

)
with properties as stated in that theorem. In particu-

lar U ∈ W 1,q
0 (A

c
)3 and divU = 0, so U ∈ Lqσ(A

c
) by Theorem 2.5. Since in ad-

dition U ∈ W 2,q(A
c
)3, we have U ∈ D(Aq). Applying the operator Pq to the equa-

tion −∆U + λU + ∇Π = F, recalling that ∇Π ∈ Lq(A
c
)3 and referring to Theorem

2.6, we get (λ Iq + Aq)(U) = Pq(F ). Since Pq(F ) = F if F ∈ Lqσ(A
c
), we may con-

clude that λ Iq + Aq : D(Aq) 7→ Lqσ(A
c
) is onto. Let Ũ ∈ D(Aq) satisfy the equation

(λ Iq + Aq)(Ũ) = 0. Since P ′q = Pq′ (Theorem 2.6) and because of Lemma 2.5, we see

that div Ũ = 0 and
∫
R3(∇Ũ · ∇ϑ + λ Ũ · ϑ) dx = 0 for ϑ ∈ C∞0,∞(A

c
). Thus Theorem 3.4

implies Ũ = 0, so the operator λ Iq + Aq is one-to-one. Now we may conclude that the
operator (λ Iq +Aq)−1 exists, has domain Lqσ(A

c
) and (λ Iq +Aq)−1

(
Pq(F )

)
= U(λ, F )

for F ∈ Lq(Ac)3. By Theorem 3.2 with ϑ := | arg λ|, we have ‖U(λ, F )‖q ≤ C(λ) ‖F‖q for
F as before, so (λ Iq + Aq)−1 is bounded. Therefore we get λ ∈ %(Aq). The estimate at
the end of Corollary 3.1 now follows from Theorem 3.2. Abstract theory yields that the
mapping λ 7→ (λ Iq +Aq)−1

(
λ ∈ %(Aq)

)
is holomorphic as described in the corollary. �

We will need a rather detailed theory of the Stokes resolvent problem with nonhomoge-
neous Dirichlet boundary conditions. This theory is provided by

Theorem 3.5 Define g1(r) := e−r + r−2 (e−r + r e−r − 1), g2(r) := e−r + 3 r−2 (e−r +

r e−r−1) (r ∈ C\{0}), Ẽ(λ)
jk (z) := (4π |z|)−1

(
δjk g1(λ1/2 z)− zj zk |z|−2 g2(λ1/2 |z|)

) (
z ∈

R3\{0}, λ ∈ C\(−∞, 0], 1 ≤ j, k ≤ 3
)
, N(z) := (4π |z|)−1 (z ∈ R3\{0}), as well as

S̃
(λ)
jkl := −δjk ∂lN− ∂kẼ

(λ)
jl − ∂jẼ

(λ)
kl

(
λ ∈ C\(−∞, 0], 1 ≤ j, k, l ≤ 3

)
.

Let A ⊂ R3 be open, bounded, with C2-boundary. Denote the outward unit normal to A
by n(A). Define

W̃
(λ)
l (φ)(x) :=

∫
∂A

3∑
j,k=1

−S̃(λ)
jkl (x− y)φj(y)n

(A)
k (y) doy,

Π̃(λ)(φ)(x) :=

∫
∂A

3∑
j,k=1

(
−2 (∂j∂kN)(x− y)− λN(x− y) · δjk

)
φj(y)n

(A)
k (y) doy,

Fl(φ)(x) :=

∫
∂A

(∂lN)(x− y)
(
n(A)(y) · φ(y)

)
doy (3.2)(

λ ∈ C\(−∞, 0], φ ∈ L1(∂A)3, x ∈ R3\∂A, 1 ≤ l ≤ 3),
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T̃
(λ)
l (φ)(x) := 2

∫
∂A

3∑
j,k=1

S̃
(λ)
jkl (x− y)φj(y)n

(A)
k (y) doy(

λ ∈ C\(−∞, 0], φ ∈ Lq(∂A)3 for some q ∈ (1,∞), x ∈ ∂A, 1 ≤ l ≤ 3
)
.

For λ ∈ C\(−∞, 0], φ ∈ L1(∂A)3, with the abbreviations U := W̃ (λ)(φ), Π := Π̃(λ)(φ), the
relations Ul, Π, F(φ) ∈ C∞(R3\∂A) (1 ≤ l ≤ 3), −∆U + λU + ∇Π = 0 and divU = 0
hold. If R ∈ (0,∞) with A ⊂ BR, δ := dist(A, Bc

R), ϑ ∈ [0, π), we have

|
(
W̃ (λ)(φ)− F(φ)

)
(x)| ≤ C(ϑ, δ,R) ‖φ‖1 |λ|−1 |x|−4, (3.3)

|∂xlW̃ (λ)(φ)(x)| ≤ C(ϑ, δ,R) ‖φ‖1 (|λ|−1 |x|−5 + |x|−3)

for φ ∈ L1(∂A)3, x ∈ Bc
R, λ ∈ C\{0} with | arg λ| ≤ ϑ. If ϑ ∈ [0, π), λ0 ∈ (0,∞), q ∈

(1,∞), the estimate

‖φ‖q ≤ C(λ0) (‖φ+ T̃ (λ)(φ)‖q)
(
λ ∈ C, |λ| ≥ λ0, | arg λ| ≤ ϑ, φ ∈ Lq(∂A)3

)
(3.4)

is valid. If λ ∈ C\(−∞, 0], q ∈ (1,∞), b ∈ Lq(∂A)3, then there is a unique function
φ(λ, b) ∈ Lq(∂A)3 with

−(1/2)
[
φ(λ, b) + T̃ (λ)

(
φ(λ, b)

) ]
= b. (3.5)

If ϑ ∈ [0, π), λ0, R ∈ (0,∞) with A ⊂ BR, q ∈ (1,∞), r ∈ (3/2, ∞), then

‖F
(
φ(λ, b)

)
|Bc

R‖r ≤ C(r,R) ‖b‖q for λ ∈ C, |λ| ≥ λ0, | arg λ| ≤ ϑ, b ∈ Lq(∂A)3. (3.6)

If λ ∈ C\(−∞, 0], q ∈ (1,∞), b ∈ W 2−1/q, q(∂A)3, the relations W̃
(
φ(λ, b)

)
|BR\A ∈

W 2,q(BR\A)3 for R ∈ (0,∞) with A ⊂ BR and
[
W̃
(
φ(λ, b)

)
|Ac
]
|∂A = b are valid.

(Note that in general, the boundary value of W̃
(
φ(λ, b)

)
|A does not coincide with that of

W̃
(
φ(λ, b)

)
|Ac.) If λ ∈ C\(−∞, 0], q ∈ (1,∞), b ∈W 2−1/q, q(∂A)3 with

∫
∂A b · n

(A) dox =
0, and if R ∈ (0,∞) with A ⊂ BR, then

∫
∂BR

F
(
φ(λ, b)

)
(y) · |y|−1 y doy = 0.

In the last statement of Theorem 3.5, it would be sufficient to suppose b ∈ Lq(∂A)3. But

since we consider the trace of W̃
(
φ(λ, b)

)
|Ac under the assumption b ∈ W 2−1/q, q(∂A)3,

it will be convenient to keep this assumption.

Proof of Theorem 3.5: Since Ẽ
(λ)
jk , ∂kN ∈ C

∞(R3\{0})
(

1 ≤ j, k ≤ 3, λ ∈ C\(−∞, 0]
)
,

and because ∆N = 0, and in view of the differential equations satisfied by Ẽ
(λ)
jk ([44,

(3.4), (3.6)]), the differentiability properties of U, Π and F(φ) for φ ∈ L1(∂A)3 follow by
Lebesgue’s theorem. For ϑ ∈ [0, π), we have

|∂αẼ(λ)(z)| ≤ C(ϑ) |λ|−1 |z|−3−|α| for λ ∈ C\{0}, | arg λ| ≤ ϑ, z ∈ R3\{0} (3.7)

and α ∈ N3
0 with |α| ≤ 2; see [8, (3.2)]. If R, δ, ϑ are given as in (3.3), then |x − y| ≥

(δ/R + 1) |x|/2 for x ∈ Bc
R, y ∈ ∂A. (Distinguish the cases |x| ≥ 2R and |x| < 2R.)

Thus (3.3) follows from (3.7) and obvious estimates of N. The estimate in (3.4) is the
main difficulty of the theory developed in [7] and [8]. Its proof is the subject of [7]. As
for existence and uniqueness of the solution φ(λ, b) to (3.5), we refer to [8, Lemma 1.1].
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Let R ∈ (0,∞) with A ⊂ BR and put δ := dist(∂A, Bc
R). Then we observe again that

|x − y| ≥ (δ/R + 1) |x|/2 for x ∈ Bc
R, y ∈ ∂A. Thus, for r ∈ (3/2, ∞), q ∈ (1,∞), we

obtain ‖F(φ)|Bc
R‖r ≤ C(R, δ)

( ∫
BcR
|x|−2 r dx

)1/r ‖φ‖1 ≤ C(R, δ) ‖φ‖q. Equation (3.5) and

inequality (3.4) now imply (3.6).

Let us consider the W 2,q-regularity of W̃
(
φ(λ, b)

)
|BR\A for R ∈ (0,∞) with A ⊂ BR.

This kind of regularity may be obtained by an approach used in [8], and which was first
applied by Ladyzhenskaya [42] to the Stokes system (λ = 0) in the bounded domain case.
Since this point is important in what follows, but was only shortly indicated in [8], we
give some details for the convenience of the reader. So take R ∈ (0,∞) with A ⊂ BR, and
let λ ∈ C\(−∞, 0]. Consider a function b belonging to W 2−1/r, r(∂A)3 for all r ∈ (1,∞).

Abbreviate AR := BR\A, W̃ (λ) := W̃ (λ)
(
φ(λ, b)

)
, Π̃(λ) := Π̃(λ)

(
φ(λ, b)

)
, and split Π̃(λ)

in the form Π̃(λ)|AR = Π + λ Π̊, with

Π(x) :=

∫
∂A
−

3∑
j,k=1

2 (∂j∂kN)(x− y)φj(λ, b)(y)n
(A)
k (y) doy,

Π̊(x) :=

∫
∂A
−N(x− y)φ(λ, b)(y) · n(A)(y) doy for x ∈ AR.

By the first part of Theorem 3.5, we have W̃
(λ)
j , Π̃(λ) ∈ C∞(R3\∂A) for 1 ≤ j ≤ 3 and

−∆W̃ (λ) = −λ W̃ (λ) −∇Π̃(λ). (3.8)

Our assumptions on b mean in particular that b is Hölder continuous, so by (3.5) and [8,
Lemma 1.1], we get that φ(λ, b) is Hölder continuous, too. Therefore, according to [8,

(3.9)] and by the choice of φ(λ, b) (see (3.5)), the function W̃ (λ)|Ac may be continuously
extended to Ac, and on ∂A this extension coincides with b. (Continuity of φ(λ, b) would
be sufficient for this conclusion.) Put

Ejk(z) := (8π)−1 (δjk |z|−1 + zj zk |z|−3), E̊
(λ)
jk (z) := Ẽ

(λ)
jk − Ejk(z) for z ∈ R3\{0},

1 ≤ j, k ≤ 3. Then

|∂αE̊(λ)
jk (z)| ≤ C(λ) |z|−|α|+1 for z, j, k as before, α ∈ N3

0, 1 ≤ |α| ≤ 3; (3.9)

see [8, (3.3)]. Define T̊ (λ)
(
φ(λ, b)

)
in the same way as T̃ (λ)

(
φ(λ, b)

)
, but with S̃

(λ)
jkl

replaced by −∂kE̊
(λ)
jl −∂jE̊

(λ)
kl (1 ≤ j, k, l ≤ 3). Due to (3.9), it may be shown that for any

r ∈ (1,∞), the relations T̊ (λ)
(
φ(λ, b)

)
∈ W 2−1/r, r(∂A)3 and ‖T̊ (λ)

(
φ(λ, b)

)
‖2−1/r, r ≤

C(λ, r) ‖φ(λ, b)‖r hold; see the indications in this respect in [8, Section 6]. In particular,

T̊ (λ)
(
φ(λ, b)

)
is Hölder continuous. Since Ẽ

(λ)
jk = Ejk + E̊

(λ)
jk and because of (3.5), we may

now refer to [28, Lemma 7.8] with U replaced by b − T̊ (λ)
(
φ(λ, b)

)
to obtain φ(λ, b) ∈

W 2−1/r, r(∂A)3 and ‖φ(λ, b)‖2−1/r, r ≤ C(λ, r)
(
‖φ(λ, b)‖r + ‖b‖2−1/r, r

)
for r ∈ (1,∞).

This estimate, [28, Lemma 7.15] and the extension of this reference indicated in [8, p. 348]
(r ∈ (1,∞) instead of r ∈ (3/2, ∞)) imply ‖∇Π‖r ≤ C(λ, r)

(
‖φ(λ, b)‖r + ‖b‖2−1/r, r

)
,
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again for r ∈ (1,∞). If R, α, δ ∈ (0,∞) with (8α2 + δ2)1/2 ≤ R, K ∈ C0(BR\{0}) with
C0 := sup

{
|x|2 |K(x)| : x ∈ BR\{0}

}
<∞, and r ∈ (1,∞), the inequality(∫ δ

0

∫
(−α,α)2

∣∣∣∫
(−α,α)2

K(%− η, ε)ψ(η) dη
∣∣∣ d% dε)1/r

≤ C(α, δ, r, C0) ‖ψ‖r (3.10)

holds for ψ ∈ Lr
(

(−α, α)2
)
. This follows by the technique used in [8, first part of Sec-

tion 5]. Note that the condition (8α2 + δ2)1/2 ≤ R ensure that (% − η, ε) ∈ BR for
%, η ∈ (−α, α)2, ε ∈ (0, δ). From (3.7), an obvious estimate of∇N and (3.10), we obtain for

r ∈ (1,∞) that ‖W̃ (λ)|AR‖r+‖∇Π̊|AR‖r ≤ C(λ, r) ‖φ(λ, b)‖r. Since W̃ (λ) ∈ C∞(R3\∂A)3,

we have W̃ (λ)|∂BR ∈ W 2−1/r, r(∂BR)3, and it is obvious that ‖W̃ (λ)|∂BR‖2−1/r, r ≤
C(λ, r,R) ‖φ(λ, b)‖r (r < 1). But (W̃ (λ)|Ac)|∂A = b, as mentioned above, so we get

W̃ (λ)|∂AR ∈ W 2−1/r, r(∂A)3 and ‖W̃ (λ)|∂Ar‖2−1/r, r ≤ (‖φ‖r + ‖b‖2−1/r, r) for r ∈ (1,∞).
In view of equation (3.8), we may now refer to W 2,q-regularity of the Poisson equation
with Dirichlet boundary conditions, in the version stated in [8, Theorem 2.1]. (Note
that in the proof of that theorem, it should read “u|U ∈ W 2,r(U) for r ∈ (3/2, ∞)”
instead of “u|U ∈ Lr(U) for r ∈ (3/2, ∞)”.) By that reference and (3.8), we get

W̃ (λ)|AR ∈W 2,r(AR)3 and

‖W̃ (λ)|AR‖2,r ≤ C(λ, r) (‖ − W̃ (λ) −∇Π− λ∇Π̊|AR‖r + ‖W̃ (λ)|∂AR‖2−1/r, r) (3.11)

for r ∈ (1,∞). We remark that in order to apply [8, Theorem 2.1] to W̃ (λ)|AR, we need

that W̃ (λ)|∂AR is in W 2−1/r, r(∂AR)3 and the right-hand side of (3.8) belongs to Lr(AR)3

for all r ∈ (1,∞), not only for just one such r. This is linked to the problem to obtain
W 2,q-regularity of a solution u to the Poisson equation on a bounded domain U with
u ∈ C0(U) ∩ C∞(U). From (3.11) and the estimates preceding this inequality, and from

(3.4) we conclude that ‖W̃ (λ)|AR‖2,r ≤ C(λ, r) ‖b‖2−1/r, r for r ∈ (1,∞).

Now take q ∈ (1,∞) and b ∈W 2−1/q, q(∂A)3. We may choose a sequence (bn) in C2(∂AR)3

such that ‖bn−b‖2−1/q, q → 0 (n→∞). The preceding estimate of ‖W̃ (λ)|AR‖2,r yields that[
W̃ (λ)

(
φ(λ, bn)

)
|AR

]
is a Cauchy sequence in W 2,q(AR)3. If K ⊂ AR is compact, we have

dist(K, ∂A) > 0, hence we get for n ∈ N that ‖W̃ (λ)
(
φ(λ, bn)

)
− W̃ (λ)

(
φ(λ, b)

)
|K‖q ≤

C ‖φ(λ, bn)−φ(λ, b)‖q ≤ C ‖bn− b‖q. where the second inequality follows from (3.4). Thus

we may conclude that W̃ (λ)
(
φ(λ, bn)

)
|AR ∈ W 2,r(AR)3 and

[
W̃ (λ)

(
φ(λ, bn)

)
|AR

]
con-

verges to W̃ (λ)
(
φ(λ, b)

)
|AR in the norm ofW 2,q(AR)3. But

[
W̃ (λ)

(
φ(λ, bn)

)
|Ac
]
|∂A = bn,

as mentioned above, so
[
W̃ (λ)

(
φ(λ, b)

)
|Ac
]
|∂A = b by a trace theorem.

Now suppose in addition that
∫
∂A b · n

(A) dox = 0. Define S
(λ)
jkl := −δkẼ

(λ)
jl − ∂jẼ

(λ)
kl for

1 ≤ j, k, l ≤ 3, and Jl(x) :=
∫
∂A

∑3
j,k=1−S

(λ)
jkl(x − y)φ(λ, b)j(y)n

(A)
k (y) doy for 1 ≤

l ≤ 3, x ∈ R3\∂A. As above, abbreviate W̃ (λ) := W̃ (λ)
(
φ(λ, b)

)
. Note that W̃ (λ) =

J +F
(
φ(λ, b)

)
. As already mentioned, (W̃ (λ))|Ac)|∂A = b, so

∫
∂A(W̃ (λ)|Ac) ·n(A) dox = 0.

Since div W̃ (λ) = 0 and W̃ (λ)
(
φ(λ, bn)

)
|AR ∈W 2,r(AR)3, the Divergence equation allows

to conclude that
∫
∂BR

W̃ (λ)(y) · |y|−1 y doy =
∫
∂A(W̃ (λ)|Ac)|∂A · n(A) dox = 0. Moreover

Ẽ(λ) ∈ C∞(R3\{0})3×3, so J ∈ C∞(R3\∂A)3, and partial derivatives of J may be moved

into the integral defining this function. Since
∑3

l=1 ∂lẼ
(λ)
jl = 0 for 1 ≤ j ≤ 3, this implies
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in particular that divJ = 0. Therefore
∫
∂BR

J(y) · |y|−1 y doy =
∫
∂Br
|J(y) · |y|−1 y doy for

r ∈ (R,∞) again by the Divergence equation. But
∫
∂Br
|J(y) · |y|−1 y doy → 0 (r →∞) by

(3.7), so we get
∫
∂BR

J(y) · |y|−1 y doy = 0. The equation at the end of Theorem 3.5 now

follows from the relation W = J + F
(
φ(λ, b)

)
. �

The ensuing theorem deals with the Oseen resolvent problem. Its proof is based on the
four preceding theorems on the Stokes resolvent.

Theorem 3.6 Let A ⊂ R3 be open, bounded, with Lipschitz boundary. Take S ∈ (0,∞)

with A ⊂ BS . For q ∈ (1,∞), let Pq = P(BS)
q be defined as in Theorem 2.6, Iq and Aq as in

Corollary 3.1, and F(φ) for φ ∈ L1(∂BS)3 as in (3.2), each time with A replaced by BS . Let

n0 ∈ N, p1, ..., pn0 , q
(1)
0 , q

(2)
0 , q1 ∈ (1,∞), q := min

(
{q(1)

0 , q
(2)
0 , q1} ∪ {pj : 1 ≤ j ≤ n0}

)
,

and pn0+1 := q1. Let ξ ∈ R with |ξ| ≥ 1, F (j) ∈ Lpj (A
c
)3 for 1 ≤ j ≤ n0, V

(µ) ∈
Lq

(µ)
0 (A

c
)3 ∩ W 1,1

loc (A
c
)3, ∇V (µ) ∈ Lq1(A

c
)9 for µ ∈ {1, 2}. Put V := V (1) + V (2), and

suppose that (3.1) is satisfied with A, λ, U replaced by A
c
, i ξ and V, respectively, and with

F =
∑n0

j=1 F
(j). (This means in particular that V is a weak solution of the Oseen resolvent

problem.) Put L := ‖V (1)‖
q
(1)
0

+ ‖V (2)‖
q
(2)
0

+ ‖∇V ‖q1 .

Then there is are functions U (j) ∈ W 2,pj (BS
c
)3 for 1 ≤ j ≤ n0 + 1, U (n0+2) ∈ C∞(BS

c
)3

as well as φ ∈ Lq(∂BS)3 with the following properties:

V |BS
c

=

n0+2∑
j=1

U (j), U (j) = (i ξ Ipj +Apj )−1
(
Ppj (F (j)|BS

c
)
)
, ‖ξ U (j)‖pj ≤ C ‖F (j)‖pj

for 1 ≤ j ≤ n0, ‖ξ U (n0+1)‖pn0+1 ≤ CL, ‖φ‖q ≤ CL. If r ∈ (1,∞), R ∈ (S,∞), then

‖ξ
(
U (n0+2) − F(φ)

)
|Bc

R‖r ≤ C(r,R)L, and if r ∈ (3/2, ∞) and again R ∈ (S,∞), then
‖F(φ)|Bc

R‖r ≤ C(r,R)L. The constants in the preceding estimates do not depend on ξ. If∫
∂A V · n

(A) dox = 0, then
∫
∂BR

F(φ)(y) · |y|−1 y doy = 0 for R ∈ (S,∞).

Proof: We have V ∈W 1,q
loc (A

c
)3 and

∑n0
j=1 F

(j) ∈ Lqloc(A
c
)3. Due to these relations and the

assumptions on V and F (1), ..., F (n0) in the theorem, Theorem 3.1 yields V ∈W 2,q
loc (A

c
)3.

Put F (n0+1) := −τ ∂1V. Then F (n0+1) ∈ Lpn0+1(A
c
)3 by the assumptions on V and the

definition of pn0+1. Again due to the assumptions on V and F (1), ..., F (n0) in the theorem,
we get

divV = 0,

∫
BS

c
(∇V · ∇ϑ+ i ξ U · ϑ−

n0+1∑
j=1

F (j) · ϑ) dx = 0 for ϑ ∈ C∞0,σ(BS
c
). (3.12)

This means that we consider V as the velocity part of a weak solution to the Stokes system
in BS

c
with boundary data V |∂BS . Since A ⊂ BS and F (j) ∈ Lpj (Ac)3, Theorem 3.2 with

B = BS , λ = i ξ yields functions U (j) ∈ W 2,pj (BS
c
)3 ∩W 1,pj

0 (BS
c
)3, P (j) ∈ W 1,pj

loc (BS
c
)3

such that ∇P (j) ∈ Lpj (BS
c
)3,

divW = 0, −∆W + i ξ W +∇P = F (3.13)

in BS
c
, for W = U (j), P = P (j), F = F (j)|BS

c
, and such that ‖ξ U (j)‖pj ≤ C ‖F (j)‖pj , for

1 ≤ j ≤ n0 + 1. Note that ‖F (n0+1)‖pn0+1 ≤ CL. Thus we have ‖ξ U (n0+1)‖pn0+1 ≤ CL.

15



Using Corollary 3.1 with A = BS and with the notation introduced there and recalled in
the theorem, we get that U (j) = (i ξ Ipj +Apj )−1

(
Ppj (F (j)|BS

c
)
)

for 1 ≤ j ≤ n0.

In the following we use notation from Theorem 3.5, but with BS in the role of A. Recalling
that V ∈ W 2,q

loc (A
c
)3, we get V |∂BS ∈ W 2−1/q, q(∂BS)3. In a first application of Theorem

3.5, with A replaced by BS , we may conclude there is φ ∈ Lq(∂BS)3 with

−(1/2)
(
φ+ T̃ (i ξ)(φ)

)
= −V |∂BS . (3.14)

We put U (n0+2) := W̃ (i ξ)(φ)|BS
c
, P (n0+2) := Π̃(i ξ)(φ)|BS

c
. Then again by Theorem 3.5

with BS in the role of A, the relation U
(n0+2)
j , P (n0+2) ∈ C∞(BS

c
) hold for j ∈ {1, 2, 3},

and equation (3.13) is satisfied with W = U (n0+2), P = P (n0+2) and F = 0. Theorem
3.5 further yields that U (n0+2)|AR,S ∈ W 2,q(AR,S)3, U (n0+2)|Bc

R ∈ Lr(Bc
R)3 for R ∈

(S,∞), r ∈ (3/2, ∞) (see (3.3) and (3.6)), ∇U (n0+2)|Bc
R ∈ Lr(Bc

R)9 for r ∈ (1,∞) and
R as before (see (3.3)), and Un0+2|∂BS = V |∂BS . In particular ∇U (n0+2) ∈ Lq(BS

c
)9.

Now we put W := V −
∑n0+2

j=1 U (j). Then we have in particular W |AR,S ∈ W 1,q(AR,S)3

for R ∈ (S,∞), W |∂BS = 0, divW = 0,
∫
BS

c(∇W · ∇ϑ + i ξ W · ϑ) dx = 0 for ϑ ∈
C∞0,σ(BS

c
). Recall that p(j) ∈ W 1,qj

loc (BS
c
) for 1 ≤ j ≤ n0 + 1 and pn0+2 ∈ C∞(BS

c
), so∫

BS
c ∇p(j) · ϑ dx = 0 for ϑ ∈ C∞0,σ(BS

c
), 1 ≤ j ≤ n0 + 2. Moreover, for any R ∈ (S,∞),

each of the functions V (µ)|Bc
R and U (j)|Bc

R (µ ∈ {1, 2}, j ∈ {1, ..., n0 + 2}) is in Lr(Bc
R)3

for some r ∈ (1,∞). In addition, each of the functions ∇V (1), ∇V (2), ∇U (1), ..., ∇U (n0+2)

belongs to Lr(BS
c
)9 for some r ∈ (1,∞). Thus Theorem 3.4 with A = BS yields W = 0,

that is, V |BS
c

=
∑n0+2

j=1 U (j). In addition, using (3.4) with A = BS and (3.14), and
recalling the assumption |ξ| ≥ 1, we get ‖φ‖q ≤ C ‖V |∂BS‖q. But with a standard trace
estimate, ‖V |∂BS‖q ≤ C(S, q) ‖V |AS+1, S‖1,q, hence

‖V |∂BS‖q ≤ C (
2∑

µ=1

‖V (µ)|AS+1, S‖q(µ)0

+ ‖∇V |AS+1, S‖q1) ≤ CL, (3.15)

so ‖φ‖q ≤ CL, where L is defined in the theorem. Moreover, for R ∈ (S,∞), r ∈ (1,∞),
we deduce from (3.3) with A = BS and from the inequality ‖φ‖q ≤ CL that the estimate
‖ξ
(
Un0+2 − F(φ)

)
|Bc

R‖r ≤ C(r,R) ‖φ‖1 ≤ C(r,R)‖φ‖q ≤ C(r,R)L holds. (As mentioned
in the theorem, the function F(φ) is defined in (3.2) with A replaced by BS .) If R ∈
(S,∞), r ∈ (3/2, ∞), due to (3.14) and (3.6) we have ‖F(φ)|Bc

R‖r ≤ C ‖V |∂BS‖q, so with
(3.15), ‖F(φ)|Bc

R‖r ≤ CL.

Suppose that
∫
∂A V · n

(A) dox = 0. Since q ≤ min{q(1)
0 , q

(2)
0 , q1}, we have V |BS\A ∈

W 1,q(BS\A)3. In addition divV = 0, so we may conclude that
∫
∂BS

V (y) · |y|−1 y doy =∫
∂A V · n

(A) dox = 0. As remarked above, we further have V |∂BS ∈W 2−1/q, q(∂BS)3. Now
equation (3.14) and Theorem 3.5 with A = BS imply

∫
∂BR

F(φ)(y) · |y|−1 y dox = 0. �

4 Some fundamental solutions and potential functions.

For most of the results in this section, we refer to [23], where either a proof is given or
suitable articles in literature are cited.
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We define the fundamental solution N of the Poisson equation (”Newton kernel”) by
setting N(x) := (4π |x|)−1 for x ∈ R3\{0}. Let H denote the usual heat kernel in 3D, that
is,

H(z, t) := (4π t)−3/2 e−|z|
2/(4t) for z ∈ R3, t ∈ (0,∞), H(z, 0) := 0 for z ∈ R3\{0}.

Thus, in our context, H is defined on B :=
(
R3 × (0,∞)

)
∪
(

(R3\{0})× {0}
)
.

Theorem 4.1 The relations H ∈ C∞(B),
∫
R3 H(z, t) dt = 1 for t ∈ (0,∞) hold. If

α ∈ N3
0, σ ∈ N0, the inequality |∂αz ∂σt H(z, t)| ≤ C(α, σ) (|z|2 + t)−(3+|α|+2σ)/2 is valid for

z ∈ R3, t ∈ (0,∞).

Proof: See [49] for the preceding estimate. �

The estimate in Theorem 4.1 in the case |α| = 2, σ = 0 allows to define the velocity part
Γ of a fundamental solution to the time-dependent Stokes system,

Γjk(z, t) := H(z, t) δjk +

∫ ∞
t

∂zj∂zkH(z, s) ds for (z, t) ∈ B, j, k ∈ {1, 2, 3},

and the velocity part Λ of a fundamental solution to the time-dependent Oseen system
(1.7),

Λjk(z, t) := Γjk(z − τ t e1, t) for (z, t) ∈ B, j, k ∈ {1, 2, 3}.

We will need the following properties of Λ.

Lemma 4.1 ([23, Lemma 3.3, Corollary 3.3]) For 1 ≤ j ≤ 3, z ∈ R3, t ∈ (0,∞),
the relations Λ ∈ C∞(B)3×3 and

∑3
k=1 ∂zkΛjk(z, t) = 0 are valid. Moreover

|∂αz Λ(z, t)| ≤ C(τ) (|z − τ t e1|2 + t)−(3+|α|)/2 ( z ∈ R3, t ∈ (0,∞), α ∈ N3
0, |α| ≤ 2

)
.(4.1)

Let K > 0. Then

|∂αz Λ(z, t)| ≤ C(τ,K)
[
χ[0,K](|z|) (|z|2 + t)−(3+|α|)/2 (4.2)

+χ(K,∞)(|z|)
(
|z| ν(z) + t

)−(3+|α|)/2 ]
for z, t, α as in (4.1).

Theorem 4.2 ([23, Corollary 4.1]) Let R, R̃ ∈ (0,∞) with R < R̃, p, q ∈ [1,∞].
Then∫ t

0

∫
BR

|∂αx ∂βyΛ(x− y, t− s) · u(y, s)| dy ds ≤ C
(
|x| ν(x)

)−(3+|α|+|β|)/2+1/(2p′) ‖u‖q,p;t

for t ∈ (0,∞), u ∈ Lp
(

0, t, Lq(BR)3
)
, x ∈ Bc

R̃
, α, β ∈ N3

0 with |α| ≤ 1, |β| ≤ 1.

We introduce the first of our potential functions.

Lemma 4.2 ([23, Corollary 3.5]) Let A ⊂ R3 be measurable, q ∈ [1,∞), V ∈ Lq(A)3,
and let Ṽ the zero extension of V to R3. Then

∫
R3 |∂αxΛ(x−y, t) · Ṽ (y)| dy <∞ for α ∈ N3

0

with |α| ≤ 1, x ∈ R3, t ∈ (0,∞). Define I(τ)(V )(x, t) :=
∫
R3 Λ(x−y, t) · Ṽ (y) dy for x ∈

R3, t ∈ (0,∞).

The derivative ∂xlI
(τ)(V )(x, t) exists and equals

∫
R3 ∂xlΛ(x − y, t) · Ṽ (y) dy for x, t as

above, and for l ∈ {1, 2, 3}. The functions I(τ)(V ) and ∂xlI
(τ)(V ) are continuous in

R3 × (0,∞). If q > 1, then ‖I(τ)(V )‖q ≤ C(q, τ) ‖V ‖q.
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We will need a variant of I(τ)(V ).

Lemma 4.3 Let q ∈ (1,∞), A ⊂ R3 be measurable, V ∈ Lq(A)3. Write Ṽ for the zero
extension of V to R3. Then

∫
R3 |∂σt ∂αxH(x−y, t) Ṽ (y)| dy <∞ for x ∈ R3, t ∈ (0,∞), α ∈

N3
0, σ ∈ {0, 1} with |α|+2σ ≤ 2. Therefore we may define the function H(0)(V ) by setting

H(0)(V )(x, t) :=
∫
R3 H(x − y, t) Ṽ (y) dy, H(0)(V )(x, 0) := Ṽ (x, 0) for x ∈ R3, t ∈ (0,∞).

Then H(0)(V ) belongs to C0
(

[0,∞), Lq(R3)3
)

and the estimate ‖H(0)(V )(t)‖q ≤ C ‖V ‖q
holds for q ∈ (1,∞). Moreover, the derivative ∂σt ∂

α
xH(0)(V )(x, t) exists and equals the

integral
∫
R3 ∂

σ
t ∂

α
xH(x − y, t) Ṽ (y) dy for x, t, α, σ as above, and is a continuous function

of (x, t) ∈ R3× (0,∞). The equation ∂tH(0)(V )−∆xH(0)(V ) = 0 holds. Let W ∈ Lqσ(R3).
Then divxH(0)(W ) = 0.

Proof: All the claims of the lemma except the relation H(0)(V ) ∈ C0
(

[0,∞), Lq(R3)3
)

and the equation divxH(0)(W ) = 0 follow by the same arguments as used in [23, proof of
Corollary 3.5] with respect to I(τ)(V ). The continuity at t = 0 of H(τ)(V ) as a mapping
from [0,∞) to Lq(R3)3 holds by a simplified version of the proof of [23, Theorem 3.3].
Continuity at t > 0 may be shown by the same reasoning as in [23, proof of Corollary 3.6].
Let φ ∈ C∞0,σ(R3). By a partial integration in the integral

∫
R3

∑3
j=1 ∂yjH(x− y, t)φ(y) dy,

we obtain divxH(0)(φ)(x, t) = 0 for x ∈ R3, t ∈ (0,∞). There is a sequence (φn) in
C∞0,σ(R3) with ‖W − φn‖q → 0. As a consequence of Theorem 4.1 and Hölder’s inequality,

we get ‖∇xH(0)(W−φn)(t)‖q ≤ C(q) t(−1+3/q)/2 ‖W−φn‖q (n ∈ N). Thus we may conclude
that divxH(0)(W ) = 0. �

We turn to the definition of another potential function.

Lemma 4.4 Let T0 ∈ (0,∞], A ⊂ R3 measurable, q ∈ [1,∞) and f a function from
L1
loc

(
[0, T0), Lq(A)3

)
. Let f̃ denote the zero extension of f to R3 × (0,∞). Then the

integral
∫
R3 |∂αxΛ(x − y, t − σ) · f̃(y, σ)| dy is finite for any x ∈ R3, t ∈ (0,∞), σ ∈

(0, t), α ∈ N3
0 with |α| ≤ 1. Moreover, for a. e. t ∈ (0,∞) and for α as before, the integral∫ t

0

∫
R3 |∂αxΛ(x− y, t− σ) · f̃(y, σ)| dy dσ is finite for a. e. x ∈ R3. Thus we may define

R(τ)(f)(x, t) :=

∫ t

0

∫
R3

Λ(x− y, t− σ) · f̃(y, σ) dy dσ

for such t and x. The relation R(τ)(f)(t) ∈ W 1,1
loc (R3)3 holds for a. e. t ∈ (0,∞), and for

such t ∂xlR
(τ)(f)(t)(x) =

∫ t
0

∫
R3 ∂xlΛ(x − y, t − σ) · f̃(y, σ) dy dσ for l ∈ {1, 2, 3} and a.

e. x ∈ R3.

Moreover the integral
∫ t

0 |
∫
R3 Λ(x− y, t− s) · f̃(y, s) dy| ds is finite for any t ∈ (0,∞) and

for a. e. x ∈ R3. Thus the function R(τ)(f) is well defined even for any t ∈ (0,∞)
(instead of only for a. e. t ∈ (0,∞)) and for a. e. x ∈ R3.

Proof: [23, Lemma 3.8, Corollary 3.7]. �

The next lemma deals with still another potential function, this one defined on the surface
of an open bounded set.

Lemma 4.5 Let q ∈ [1,∞], T0 ∈ (0,∞], A ⊂ R3 open and bounded, with Lipschitz
boundary, φ ∈ L1

loc

(
[0, T0), Lq(∂A)3

)
, φ̃ the zero extension of φ to ∂A × (0,∞). For

t ∈ (0,∞), x ∈ R3\∂A, α ∈ N3
0, the term |∂αxΛ(x − y, t − s) · φ̃(y, s)| is integrable as a
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function of (y, s) ∈ ∂A× (0, t). Define V(τ)(φ) := V(τ, A)(φ) : (R3\∂A)× (0,∞) 7→ R3 by

V(τ)(φ)(x, t) :=

∫ t

0

∫
∂A

Λ(x− y, t− s) · φ̃(y, s) doy ds for x ∈ R3\∂A, t ∈ (0,∞).

Then, for any t ∈ (0,∞), the integral
∫ t

0

∫
∂A Λ(x−y, t−s)·φ̃(y, s) doy ds as a function of x ∈

R3\A belongs to C∞(R3\A)3, and ∂αxV
(τ)(φ)(x, t) =

∫ t
0

∫
∂A ∂

α
xΛ(x−y, t−s) · φ̃(y, s) doy ds

for α ∈ N3
0, x ∈ R3\A.

Proof: The function Λ is C∞ on R3 × (0,∞) (Lemma 4.1), so the lemma follows from
Lebesgue’s theorem. �

We introduce another kernel function, for the definition of which we will refer to [23].
This kernel is a truncated version of Λ. For its definition, we fix numbers R0, S0 ∈ (0,∞)
with R0 > S0, put R1 := (R0 + S0)/2, and choose a function ϕ0 ∈ C∞0 (BR1) with
ϕ|BS0+(R0−S0)/4 = 1, 0 ≤ ϕ0 ≤ 1. The relevant properties of this kernel are collected in
the ensuing theorem.

Theorem 4.3 There is a function G := GR0,S0,ϕ0 : Bc
R0
×BR1 × [0,∞) 7→ R3×3 with the

following properties.

Let x ∈ Bc
R0
, r ∈ [0,∞). Then G(x, · , r) ∈ C∞(BR1)3×3,

∑3
k=1 ∂ykGjk(x, y, r) = 0 for

1 ≤ j ≤ 3, y ∈ BR1 , and G(x, y, r) = Λ(x− y, r) for y ∈ BS0+(R0−S0)/4.

Let x ∈ Bc
R0
, q ∈ (1,∞). Then the mapping r 7→ G(x, · , r)

(
r ∈ [0,∞)

)
belongs

to C1
(

[0,∞), W 1,q(BR1)3×3
)
. Thus a function G′ ∈ C0

(
[0,∞), W 1,q(BR1)3×3

)
may be

defined by the condition ‖
(
G(x, · , r + h) − G(x, · , r)

)
/h − G′(r)‖1,q → 0 (h → 0) for

r ∈ [0,∞). We write ∂rG(x, y, r) instead of G′(r)(y) (r ∈ [0,∞), y ∈ BR1).

Let r ∈ [0,∞), q ∈ (1,∞).

Let σ ∈ {0, 1}, and define L(x) : BR1 7→ R3×3 by L(x)(y) := ∂σrG(x, y, r) for x ∈
Bc
R0
, y ∈ BR1. Then L(x) ∈ C∞0 (BR1)3×3 ∩W 1,q(BR1)3×3 for x ∈ Bc

R0
, and L considered

as a mapping from Bc
R0

into W 1,q(BR1)3×3 is partially differentiable on BR0

c
. Thus we

may define DmL : BR0

c 7→ W 1,q(BR1)3×3 by the condition ‖
(
L(x + h em) − L(x)

)
/h −

DmL(x)‖1,q → 0 (h → 0), for m ∈ {1, 2, 3}, x ∈ BR0

c
. Instead of DmL(x)(y), we write

∂xm∂
σ
rG(x, y, r).

Let l ∈ {1, 2, 3} and define L̃(x) : BR1 7→ R3×3 by L̃(x)(y) := ∂ylG(x, y, r) for x ∈
Bc
R0
, y ∈ BR1 . Then L̃(x) ∈ C∞0 (BR1)3×3 ∩Lq(BR1)3×3 for x ∈ Bc

R0
, and L̃ considered as

an operator from Bc
R0

into Lq(BR1)3×3 is partially differentiable on BR0

c
. Thus we may

define DmL̃ : BR0

c 7→ Lq(BR1)3×3 by the condition ‖
(
L̃(x+h em)−L̃(x)

)
/h−DmL̃(x)‖q →

0 (h→ 0) (m ∈ {1, 2, 3}, x ∈ BR0

c
). Instead of DmL̃(x)(y), we write ∂xm∂ylG(x, y, r).

Let q ∈ (1,∞), p ∈ [1,∞]. Then∫
BR1

|∂αx ∂σt ∂βyG(x, y, t) · V (y)| dy ≤ C
(
|x| ν(x)

)−(3+|α|+σ)/2 ‖V ‖q (4.3)

for V ∈ Lq(BR1)3, t ∈ (0,∞), x ∈ Bc
R0
, α, β ∈ N3

0, σ ∈ {0, 1} with |α| ≤ 1, |β|+ σ ≤ 1,∫ t

0

∫
BR1

|∂αx ∂σt ∂βyG(x, y, t− s) · v(y, s)| dy ds ≤ C
(
|x| ν(x)

)−(3+|α|+σ)/2+1/(2 p′) ‖v‖q,p;t (4.4)

19



for t, x, α, β, σ as in (4.3), and for v ∈ Lp
(

0, t, Lq(BR1)3
)
.

Proof: [23, Lemma 3.11, 3.12, 3.13]. �

We note a consequence of the preceding theorem.

Corollary 4.1 ([23, Corollary 4.2]) Let β ∈ N3
0, σ ∈ {0, 1} with |β| + σ ≤ 1. Let

q ∈ (1,∞), and let the function v belong to L1
loc

(
[0,∞), Lq(BR1)3

)
and the function V to

Lq(BR1)3. Define

F (x, t) :=

∫ t

0

∫
BR1

∂σs ∂
β
yG(x, y, t− s) · v(y, s) dy ds, H(x, t) :=

∫
BR1

G(x− y, t) · V (y) dy

for x ∈ Bc
R0
, t ∈ (0,∞). Take a number l ∈ {1, 2, 3}. Then the derivatives ∂xlF (x, t)

and ∂xlH(x, t) exist pointwise, and they equal
∫ t

0

∫
BR1

∂xl∂
σ
s ∂

β
yG(x, y, t− s) · v(y, s) dy ds

and
∫
BR1

∂xlG(x− y, t) · V (y) dy, respectively, for x ∈ Bc
R0
, t ∈ (0,∞)

It will then be convenient to subsume a number of terms in a single operator, which we
define here, and whose definition makes sense due to the preceding Corollary 4.1

Let A ⊂ BS0 be open and bounded with Lipschitz boundary. Put AR1 := BR1\A, ZR1,T :=
AR1 × (0, T ) for T ∈ (0,∞]. Let A ⊂ R3 × R, T0 ∈ (0,∞] such that ZR1,T0 ⊂ A. Let
q ∈ (1,∞) and let v : A 7→ R3 be such that v|ZR1,T0 ∈ C0

(
[0, T0), Lq(AR1)3

)
, v(s)|AR1 ∈

W 1,1
loc (AR1)3 for s ∈ (0, T0), and∇xv|ZR1,T0 ∈ L1

loc

(
[0, T0), Lq(AR1)9

)
. Then, for t ∈ (0, T0)

and x ∈ Bc
R0

, we define

KR0,S0,ϕ0,A,T0(v)(x, t) :=

∫ t

0

∫
ΩR1

( 3∑
l=1

∂ylG(x, y, t− s) · ∂ylv(y, s) (4.5)

−∂y1G(x, y, t− s) · v(y, s)− ∂sG(x, y, t− s) · v(y, s)
)
dy ds+

∫
ΩR1

G(x, y, 0) · v(y, t) dy.

Next we reproduce some decay estimates proved in [23], beginning with a decay estimate
of KR0,S0,ϕ0,A,T0(v). We use the same notation as in (4.5).

Corollary 4.2 ([23, Corollary 4.3]) Let A, A, T0, q be given as in (4.5) and p1, p2 ∈
[1,∞]. Then, if v : A 7→ R3 with v|ZR1,T0 ∈ C0

(
[0, T0), Lq(AR1)3

)
as well as v(s)|AR1 ∈

W 1,1
loc (AR1)3 for s ∈ (0, T0) and ∇xv|ZR1,T0 ∈ Lp2

(
0, T0, L

q(AR1)9
)
, and if x ∈ BR0

c
, t ∈

(0, T0), α ∈ N3
0 with |α| ≤ 1, the term |∂αxKR0,S0,ϕ0,A,T0(v)(x, t)| is bounded by

C (‖v|ZR1,t‖q,p1;t + ‖∇xv|ZR1,t‖q,p2;t + ‖v(t)|ΩR1‖q) max
j∈{1, 2}

(
|x| ν(x)

)−(3+|α|)/2+1/(2 p′j).

Lemma 4.6 ([23, Lemma 4.3]) Let A, A, T0, q be given as in (4.5), let n(A) denote the
outward unit normal to A, and take q1, q2 ∈ [1,∞]. Then, for v : A 7→ R3 with v|ZR1,T0 ∈
Lp1
(

0, T0, L
q(AR1)3

)
, v(s)|AR1 ∈ W

1,1
loc (AR1)3 for s ∈ (0, T0), and ∇xv|ZR1,T0 belonging

to Lp2
(

0, T0, L
q(AR1)9

)
, x ∈ Bc

R0
, t ∈ (0, T0), α ∈ N3

0 with |α| ≤ 2, l ∈ {1, 2, 3}, the

term |∂αxV(τ,A)(n
(A)
l v)(x, t)| is bounded by

C (‖v|ZR1,t‖q,p1;t + ‖∇xv|ZR1,t‖q,p2;t)

2∑
j=1

(
|x| ν(x)

)−(3+|α|)/2+1/(2 p′j),
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where (n
(A)
l v)(y, s) := n

(A)
l (y) v(y) for y ∈ ∂A, s ∈ (0, T0).

Lemma 4.7 ([23, Lemma 4.4]) Recall that the Newton kernel N was introduced at the
beginning of this section. Let A ⊂ BS0 open and bounded, with Lipschitz boundary, and
with outward unit normal denoted by n(A). Put AR1 := BR1\A and let q ∈ (1,∞). Then the
estimate |

∫
∂A(∂α∇)N(x−y) (n(A) ·V )(y) doy| ≤ C |x|−2−|α| ‖V ‖q holds for V ∈ Lq(AR1)3∩

W 1,1(AR1)3 with divV = 0, t ∈ (0,∞), x ∈ Bc
R0

and α ∈ N3
0 with |α| ≤ 1. If the zero flux

condition
∫
∂Ω n

(A) · V doy = 0 is valid, the factor |x|−2−|α| may be replaced by |x|−3−|α|.

The potential functions defined above, with the exception of H(0), appear in the the
representation formula stated in the ensuing theorem, which constitutes the starting point
of the theory presented in the work at hand.

Theorem 4.4 Let T0 ∈ (0,∞], n0, m0 ∈ N, p̃, q0, q1, p1, ..., pn0 , %1, ..., %m0 ∈ (1,∞),
and consider functions u : (0, T0) 7→ W 1,1

loc (Ω
c
)3, f (j) ∈ L1

loc

(
[0, T0), Lpj (Ω

c
)3
)

for 1 ≤
j ≤ n0, G

(l) ∈ C0
(

[0, T0), L%l(BS0

c
)3
)

for 1 ≤ l ≤ m0, U0 ∈ Lp̃(Ω
c
)3 with the following

properties:

u|ΩS0 × (0, T0) ∈ L1
loc

(
[0, T0), Lq0(ΩS0)3

)
, divxu(t) = 0 and u(t)|BS0

c
=
∑m0

l=1G
(l)(t) for

t ∈ (0, T0), ∇xu ∈ L1
loc

(
[0, T0), Lq1(Ω

c
)3
)
,∫ T0

0

∫
Ω
c

(
−ϕ′(t)u(t) · ϑ+ ϕ(t)

[
∇xu(t) · ∇ϑ+ τ ∂x1u(t) · ϑ− f(t) · ϑ

])
dx dt (4.6)

−ϕ(0)

∫
Ω
c
U0 · ϑ dx = 0 for ϕ ∈ C∞0

(
[0, T0)

)
, ϑ ∈ C∞0,σ(Ω

c
),

with f =
∑n0

j=1 f
(j). Define n(S0)(y) := S−1

0 y for y ∈ ∂BS0 . Let t ∈ (0,∞). Then there is

a measurable set Nt ⊂ BR0

c
of measure zero such that the equation

u(x, t) = R(τ)
( n0∑
j=1

f (j)|Bc
S0
× (0, T0)

)
(x, t) + I(τ)

(
U0|Bc

S0
)(x, t) (4.7)

−
3∑
l=1

∂xlV
(τ,BS0 )(n

(S0)
l u)(x, t)−

∫
∂BS0

(∇N)(x− y)
(
n(S0)(y) · u(y, t)

)
doy + K(u)(x, t)

−
∫
AR1,S0

G(x, y, t) · U0(y) dy −
∫ t

0

∫
AR1,S0

G(x, y, t− s) ·
n0∑
j=1

f (j)(y, s) dy ds

holds for x ∈ BR0

c\Nt, where G = GR0,S0,ϕ0 was introduced in Theorem 4.3, and K(u) =
KR0,S0,ϕ0,BS0 ,T0

(u) was defined in (4.5).

Proof: [24, Corollary 5.1, 5.2], with assumptions on u stated at the beginning of [24,
Section 5]. �

5 A result on the Cauchy problem for the heat equation.

We do not know a reference for the ensuing estimate of the spatial gradient of the solution
to the Cauchy problem for the heat equation with initial data in Lq(R3). However, a proof
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is required since this result is not easy to establish. We present an argument – applying
a multiplier theorem by Benedek, Calderon, Panzone [5] – which only works if q ≤ 2. The
case q > 2 remains open.

Theorem 5.1 Let q ∈ (1, 2]. Then ‖∇xH(0)(U)‖q,2;∞ ≤ C(q) ‖U‖q for U ∈ Lq(R3)3.

Proof: We establish a framework allowing us to apply [5, Theorem 2]. Let ε ∈ (0,∞).

We write B for the Banach space of linear bounded operators from R3 into L2
(

(ε,∞)
)3
.

This space B is to be equipped with the usual norm, which we denote by ‖ ‖B. We

write ‖ ‖L2(L2) for the norm of the space L2
[
R3, L2

(
(ε,∞)

)3 ]
. The space of functions

U ∈ L∞(R3)3 with compact support is denoted by L∞0 (R3)3.

Let j ∈ {1, 2, 3}, and define Kε(x)(a)(t) := ∂xjH(x, t) a for x, a ∈ R3, t ∈ (ε,∞).
Then by Theorem 4.1,

∫∞
ε |Kε(x)(a)(t)|2 dt ≤ C |a|

∫∞
ε (|x|2 + t)−4 dt ≤ C |a| (|x|2 + ε)−3

for x, a ∈ R3. Thus Kε(x) ∈ B and ‖Kε(x)‖B ≤ C (|x|2 + ε)−3/2 for x ∈ R3, and∫
R3 ‖Kε(x)‖2B dx ≤ C ε−3. In particular Kε ∈ L2(R3, B) and Kε : R3 7→ B is integrable

on compact subsets of R3. Let U ∈ L∞0 (R3)3. We define AU : R3 7→ L2
(

(ε,∞)
)3

by
setting (AU)(x) :=

∫
R3 Kε(x − y)

(
U(y)

)
dy for x ∈ R3, where the integral is to be un-

derstood as an L2
(

(ε,∞)
)3

-valued Bochner integral. The function U ∈ L∞0 (R3)3 be-
longs in particular to L1(R3)3, and ‖(AU)(x)‖2 ≤

∫
R3 ‖Kε(x − y)‖B |U(y)| dy. Therefore

Young’s inequality and the relation
∫
R3 ‖Kε(x)‖2B dx ≤ C ε−3 explained above yield that

AU ∈ L2
[
R3, L2

(
(ε,∞)

)3 ]
. Let [AU ]∧ : R3 7→ L2

(
(ε,∞)

)3
denote the Fourier transform

of AU.

Let us justify the equation [AU ]∧(ξ)(t) = (2π)−3/2 e−|ξ|
2 t (−i ξj) Û(ξ) for ξ ∈ R3, t ∈

(ε,∞). To this end, take ψ ∈ C∞0
(

(ε,∞)
)3

and put T (ζ) :=
∫∞
ε ζ·ψ dt for ζ ∈ L2

(
(ε,∞)

)3
.

Then T is a linear and bounded operator from L2
(

(ε,∞)
)3

into R, so T ◦[AU ]∧ = [T ◦AU ]∧

by Corollary 2.1. But for x ∈ R3, by Theorem 2.7 and the definition of AU and Kε we
have (T ◦ AU)(x) =

∫
R3

∫∞
ε L(x, y, t) dt dy, with L(x, y, t) := ψ(t) ∂xjH(x − y, t)U(y) for

x, y ∈ R3, t ∈ (ε,∞). Since U ∈ L1(R3)3, as mentioned above, ψ ∈ L1
(

(ε,∞)
)3

and
|∂xjH(x− y, t)| ≤ C (|x− y|2 + ε)−2 for x, y ∈ R3, t ∈ (ε,∞) by Theorem 4.1, as already
used above, it is obvious that the integral

∫
R3

∫
R3

∫∞
ε |(2π)−3/2 e−i ξ·x L(x, y, t)| dt dy dx

is finite for ξ ∈ R3. Therefore we may apply Fubini’s theorem in the triple integral∫
R3

∫
R3

∫∞
ε (2π)−3/2 e−i ξ·x L(x, y, t) dt dy dx. But [H( · , t)]∧(ξ) = (2π)−3/2 e−|ξ|

2 t for ξ ∈
R3, t ∈ (0,∞), so we get by the equations for T ◦ [AU ]∧ and (T ◦ AU)(x) already men-
tioned that

∫∞
ε ψ(t) · [AU ]∧(ξ)(t) dt =

∫∞
ε ψ(t) · (2π)−3/2 e−|ξ|

2 t (−i ξ) Û(ξ) dt. Since ψ

was arbitrarily taken from C∞0
(

(ε,∞)
)3
, we arrive at the equation for [AU ]∧(ξ) claimed

above. Therefore with Theorem 2.11,

‖AU‖L2(L2) = ‖[AU ]∧‖L2(L2) = C

∫
R3

∫ ∞
ε
|ξj e−|ξ|

2 t|2 dt |Û(ξ)|2 dξ ≤ C ‖Û‖2 = C ‖U‖2.

Next take y ∈ R3 with |y| > 0, x ∈ R3 with |x| > 4 |y|, and t ∈ (ε,∞). Then the
equation |∂xjH(x − y, t) − ∂xjH(x, t)| = |

∫ 1
0

∑3
k=1 ∂xk∂xjH(x − ϑ y, t) yk dϑ| holds, so

with Theorem 4.1, |∂xjH(x − y, t) − ∂xjH(x, t)| ≤ (|x|2 + t)−5/2 |y|, where we used the
estimate |x − ϑ y| ≥ |x| − |y| ≥ 3 |x|/4 for ϑ ∈ [0, 1], which is valid since |x| > 4|y|. As

a consequence, ‖Kε(x − y) − Kε(x)‖B ≤ C
( ∫∞

ε (|x|2 + t)−5 dt
)1/2 |y| ≤ C |x|−4 |y|, hence∫

Bc
4 |y|
‖Kε(x − y) − Kε(x)‖B dx ≤ C. Now we see that we may apply [5, Theorem 2] with
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B1 = R3, B2 = L2
(

(ε,∞)
)3
, obtaining that ‖AU‖

Lq
[
R3, L2

(
(ε,∞)

)3 ] ≤ C(q) ‖U‖q for U ∈

L∞0 (R3)3. But by Lemma 2.6 and 4.3, (AU)(x, t) = ∂xjH(0)(U)(x, t) for x ∈ R, t ∈ (ε,∞)
and U as before. Thus[∫

R3

(∫ ∞
ε
|∂xjH(0)(U)(x, t)|2 dt

)q/2
dx
]1/q
≤ C(q) ‖U‖q for U ∈ L∞0 (R3)3.

At this point we exploit the assumption q ≤ 2, which implies 2/q ≥ 1. As a conse-
quence, Theorem 2.1 applied with p = 2/q allows to deduce from the preceding estimate of
∂xjH(0)(U) that ‖∂xjH(0)(U)|R3× (ε,∞)‖

L2
(
ε,∞, Lq(R3)3

) ≤ C(q) ‖U‖q for U ∈ L∞0 (R3)3.

Since this is true for any ε ∈ (0,∞), and because the constant C(p) in this inequality
does not depend on ε, we thus get ‖∂xjH(0)(U)‖q,2;∞ ≤ C(q) ‖U‖q for U as before. Now
let U ∈ Lq(R3)3, and choose a sequence (Un) in C∞0 (R3)3 with ‖U − Un‖q → 0. Then
‖∂xjH(0)(Un)‖q,2;∞ ≤ C(q) ‖Un‖q for n ∈ N by what has been shown already. On the
other hand, by Young’s inequality and Theorem 4.1,∫ t2

t1

‖∂xjH(0)(Un − U)(t)‖2q dt ≤
∫ t2

t1

(∫
R3

|∂zjH(z, t)| dz
)2
dt ‖Un − U‖q

≤ C
∫ t2

t1

(∫
R3

(|z|+ t1/2)−4 dz
)2
dt ‖Un − U‖q ≤ C ln(t2/t1) ‖Un − U‖q

for n ∈ N, t1, t2 ∈ (0,∞) with t1 < t2. From this inequality and the preceding estimate of
‖∂xjH(0)(Un)‖q,2;∞ for n ∈ N we may conclude that ‖∂xjH(0)(U)‖q,2;∞ ≤ C(q) ‖U‖q. �

6 Weak solutions to the Oseen system: a representation
formula and spatial decay estimates without assumptions
on continuity of the velocity with respect to time.

When in [24] we derived the representation formula (4.7) for the velocity part of a solution
to the time-dependent Oseen system, we had to require some continuity of the velocity with
respect to the time variable. In the present section, we obtain an integral representation
without such a requirement if the solution and the right-hand side are L2-integrable in
time. This type of integrability is valid in the case of L2-strong solutions to the nonlinear
problem (1.1), as considered in the next section.

As in the passage preceding Theorem 4.3, we fix numbers R0, S0 ∈ (0,∞) with S0 < R0

and Ω ⊂ BS0 , define R1 := (S0 + R0)/2, and choose a function ϕ0 ∈ C∞0 (BR1) with
ϕ|BS0+(R0−S0)/4 = 1, 0 ≤ ϕ0 ≤ 1. In addition it will be convenient to use a pair of

numbers S1, S2 ∈ (0, S0) with S1 < S2 and Ω ⊂ BS1 . The parameter S1 will play the
role of the number S in Theorem 3.6 (see the proof of Theorem 6.1), and the set BS2 will
replace the set Ω in Theorem 4.4 (see the proof of Corollary 6.2). Since S2 < S0, we have
BS2 ⊂ BS0 as required in that theorem.

All the Fourier transforms appearing in this section are Fourier transforms with respect
to the time variable t ∈ R.
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Lemma 6.1 Let A ⊂ R3 be open, q0, q1 ∈ (1,∞), u ∈ L2
(
R, Lq0(A)3

)
with u(t) ∈

W 1,1
loc (A)3 for t ∈ R and ∇xu ∈ L2

(
R, Lq1(A)9

)
. Then (∂xlu)∧ = ∂xlû for l ∈ {1, 2, 3}.

Moreover, let q ∈ (1,∞), v ∈ L2
(
R, Lq(A)3

)
and ϑ ∈ C∞0 (A)3. Put %(t) :=

∫
A v(t) · ϑ dx

for t ∈ R. Then % ∈ L2(R) and %̂(ξ) =
∫
A v̂(ξ) · ϑ dx for ξ ∈ R.

Proof: Let ψ ∈ C∞0 (A)3, 1 ≤ l ≤ 3, σ ∈ {0, 1}. The operator V 7→
∫
A V · ∂

(σ)
l ψ dx

(
V ∈

Lp(A)3
)

is linear and bounded if p = q0 and if p = q1. Therefore by Corollary 2.1, the
functions µ(t) :=

∫
A v(t) · ∂lψ dx (t ∈ R) and ω(t) :=

∫
A ∂xlv(t) · ψ dx (t ∈ R) belong to

L2(R), and µ̂(ξ) =
∫
A v̂(ξ) ·∂lψ dx, ω̂(ξ) =

∫
A[∂xlv]∧(ξ) ·ψ dx (ξ ∈ R). On the other hand,

µ(t) = −ω(t) for t ∈ R, so we get µ̂ = −ω̂. Since this is true for any l ∈ {1, 2, 3} and
ψ ∈ C∞0 (A)3, we may conclude that v̂(ξ) ∈ W 1,1

loc (A)3 and ∂xlv̂(ξ) = [∂xlv]∧(ξ) for ξ ∈ R.
The operator V 7→

∫
A V · ϑ dx

(
V ∈ Lq(A)3

)
is linear and bounded, too. So the second

claim of the lemma also follows from Corollary 2.1, with a similar argument. �

Theorem 6.1 Let n0 ∈ N, p1, ..., pn0 ∈ (1,∞) and f (j) ∈ L2
(

0,∞, Lpj (Ωc
)3
)

for 1 ≤
j ≤ n0. Put f (j)(t) := 0 for t ∈ (−∞, 0), 1 ≤ j ≤ n0. Then there is a sequence (Rn) in
(1,∞) such that the limit

U(j)(t) := lim
n→∞

∫
(−Rn,Rn)\(−1,1)

(2π)−1/2 ei t ξ (i ξ Ipj +Apj )−1
(
Ppj
[
f̂ (j)(ξ)|BS1

c ] )
dξ (6.1)

exists in Lpj (BS1

c
)3 for j ∈ {1, ..., n0} and a. e. t ∈ R, where Ppj is to be chosen as in

Theorem 2.6, and Ipj and Apj for j ∈ {1, ..., n0} as in Corollary 3.1, in each case with

A = BS1

c
. The integral in (6.1) is to be understood as a Bochner integral with values in

Lpj (BS1

c
)3. For j ∈ {1, ..., n0}, the function U(j) belongs to L2

(
R, Lpj (BS1

c
)3
)
.

Let q
(1)
0 , q

(2)
0 , q1 ∈ (1,∞), u(j) ∈ L2

(
0,∞, Lq

(j)
0 (Ω

c
)3
)

with u(j)(t) ∈ W 1,1
loc (Ω

c
)3 and

divxu
(j)(t) = 0 for t ∈ (0,∞), and ∇xu(j) ∈ L2

(
0,∞, Lq1(Ω

c
)9
)

for j ∈ {1, 2}.

Put u := u(1)+u(2). Suppose that u satisfies (4.6) with f =
∑n0

j=1 f
(j), T0 =∞ and U0 = 0.

Let q ∈ (1,∞) with q ≤ min
(
{q(1)

0 , q
(2)
1 , q1} ∪ {pj : 1 ≤ j ≤ n0}

)
. Define pn0+1 :=

q1, pn0+2 := q, pn0+3 := q
(1)
0 , pn0+4 := q

(2)
0 , pn0+5 := q

(1)
0 , pn0+6 := q

(2)
0 , pn0+7 :=

max{2, q}. Let J ⊂ R an interval with nonempty interior. Then there is a set N ⊂ R of
measure zero and a number t0 ∈ J\N as well as functions % ∈ L2

(
R, Lq(∂BS1)3

)
, G(j) ∈

C0
(
R, Lpj (BS2

c
)3
)

for 1 ≤ l ≤ n0 + 7 with the following properties.

Put E(x, t) := E(%)(x, t) :=
∫
∂BS1

(∇N)(x − y)
(
S−1 y · %(y, t)

)
doy for t ∈ R, x ∈ Bc

S2
,

with N introduced at the beginning of Section 4. Then, for any t ∈ R\N, j ∈ {1, ..., n0},
the limit in (6.1) exists, and

(u− E)(t)|BS2

c
=

n0+7∑
j=1, j /∈Z

G(j)(t) +
∑
j∈Z

(
U(j)(t)− U(j)(t0)

)
(6.2)

for t ∈ (0,∞)\, Z ⊂ {1, ..., n0}, in particular (u − E)(t)|BS2

c
=
∑n0+7

j=1 G(j)(t) for such

t. Moreover E(t) ∈ C∞(Bc
S2

)3, divxE(t) = 0 for t ∈ R. The terms ‖E‖r,2;R for r ∈
(3/2, ∞) and ‖∇xE‖r,2;R for r ∈ (1,∞) are bounded by C(r) (‖u(1)‖

q
(1)
0 ,2;∞+‖u(2)‖

q
(2)
0 ,2;∞+
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‖∇xu‖q1,2;∞). In addition, if R ∈ (S2,∞), Z ⊂ {1, ..., n0}, then for any t ∈ R,

‖
n0+7∑

j=1, j /∈Z

G(j)(t)|AR,S2‖q ≤ C
( 2∑
j=1

‖u(j)‖
q
(j)
0 ,2;∞ + ‖∇xu‖q1,2;∞ (6.3)

+

n0∑
j=1, j /∈Z

‖f (j)‖pj ,2;∞ +
∑
j∈Z
‖
(
U(j) − U(j)(t0)

)
|AR,S2 × (t− 1, t)‖

L1
(
t−1, t, Lq(AR,S2 )3

)).
We remark that if we treated only the case T0 =∞, it would not be necessary to introduce
the parameter t0 and the functions U(j). Our theory would then carry through with the
equation u−E =

∑n0+7
j=1 G(j) instead (6.2), and with (6.3) only in the case Z = ∅, so that

‖
n0+7∑
j=1

G(j)(t)|AR,S2‖q ≤ C
( 2∑
j=1

‖u(j)‖
q
(j)
0 ,2;∞ + ‖∇xu‖q1,2;∞ +

n0∑
j=1

‖f (j)‖pj ,2;∞

)
for R, t as in (6.3). However, since we also want to cover the case T0 <∞ (Theorem 6.3),
we will have to use (6.3) with |Z| = 1. Otherwise we will not be able to reduce the case
T0 < ∞ to the case T0 = ∞. Some additional indications in this respect are given in the
passage preceding Theorem 6.3.

Proof of Theorem 6.1: We proceed as follows. First we construct a function FS2 on
Bc
S2
× R with FS2(ξ) ∈ C∞(Bc

S2
)3, divxFS2(ξ) = 0 (ξ ∈ R), and such that the mapping

ξ 7→ ξ (û − FS2)(ξ) (ξ ∈ R) may be written as the sum of L2-integrable functions with
values in various Banach spaces. (Here u denotes the zero extension of u to R.) It will turn
out the inverse Fourier transform of this mapping ξ 7→ ξ (û−FS2)(ξ) is the weak derivative

of the function t 7→ u(t) − Ẽ(t) (t ∈ R), where Ẽ is the inverse Fourier transform of FS2

with respect to ξ ∈ R. From this we may conclude that u− Ẽ is continuous as specified for
u− E in the theorem. In a last step we introduce a function % ∈ L2

(
R, Lq(∂BS1)3

)
such

that Ẽ = E(%), with Ẽ(%) defined in the theorem. Actually the argument becomes more
complicated because we additionally introduce the functions U(j) by writing the inverse
Fourier transform of certain functions in an explicit way.

Denoting the zero extension of u(1), u(2), u, ∂xlu and f (j) to R in the same way as the
original functions, we may apply the Fourier transform with respect to the time variable

to these functions (1 ≤ l ≤ 3, 1 ≤ j ≤ n0). Theorem 2.11 then yields that û(µ) ∈
L2
(
R, Lq

(µ)
0 (Ω

c
)3
)
, ∂̂xlu(µ) ∈ L2

(
R, Lq1(Ω

c
)3
)

and f̂ (j) ∈ L2
(
R, Lpj (Ωc

)3
)

for µ ∈
{1, 2}, l, j as before. Lemma 6.1 yields that û(µ)(ξ) ∈ W 1,1

loc (Ω
c
)3 and ∂̂xlu(µ)(ξ) =

∂xlû(µ)(ξ) for 1 ≤ l ≤ 3, ξ ∈ R, µ ∈ {1, 2}. As a consequence û(ξ) ∈ W 1,1
loc (Ω

c
)3 and

∂xlû ∈ L2
(
R, Lq1(Ω

c
)3
)

for l, ξ as before.

Let ϑ ∈ C∞0,σ(Ω
c
). For w : R 7→ L1

loc(Ω
c
)3, we define the function

∫
Ω
c w · ϑ dx : R 7→ R

by
( ∫

Ω
c w · ϑ dx

)
(t) :=

∫
Ω
c w(t) · ϑ dx (t ∈ R). An analogous definition is to be valid for∫

Ω
c ∇xw · ∇ϑ dx if w : R 7→W 1,1

loc (Ω
c
)3. Then by Lemma 6.1, the functions

∫
Ω
c w · ϑ dx for

w ∈ {u(µ) : 1 ≤ µ ≤ 2} ∪ {f (j) : 1 ≤ j ≤ n0} ∪ {∂xlu : 1 ≤ l ≤ 3} and
∫

Ω
c ∇xu · ∇ϑ dx

belong to L2(R), and the Fourier transform commutes with the integration. Recall that
we supposed u to satisfy (4.6) with U0 = 0, f =

∑n0
j=1 f

(j) and T0 = ∞. Since u and
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f (j) for 1 ≤ j ≤ n0 were extended by zero to R, equation (4.6) is then valid even for
ϕ ∈ C∞0 (R), with the integral over (0,∞) replaced by one over R. Thus the preceding
results and Parseval’s equation for functions from L2(R) allow us to deduce from (4.6)
with U0 = 0, f =

∑n0
j=1 f

(j), T0 =∞ that∫
R
ϕ̂(ξ)

∫
Ω
c

(
i ξ û(ξ) · ϑ+∇xû(ξ) · ∇ϑ+ τ ∂x1û(ξ) · ϑ−

n0∑
j=1

f̂ (j)(ξ) · ϑ
)
dx dξ = 0 (6.4)

for ϑ ∈ C∞0,σ(Ω
c
), ϕ ∈ C∞0 (R), and divxû = 0.

Here it is important that U0 = 0. The set {ϕ̂ : ϕ ∈ C∞0 (R)} is dense in L2(R), so
we may conclude that for ξ ∈ R\{0}, the equations in (3.1) (Oseen resolvent system
in a weak form) are satisfied with A, U, F, λ replaced by Ω

c
, û(ξ),

∑n0
j=1 f̂

(j)(ξ) and i ξ,
respectively. At this point, recall the definition of q, pn0+1 and pn0+2 in the theorem, as
well as the numbers S1, S2 ∈ (0,∞) with S1 < S2 fixed at the beginning of this section.
Put L(ξ) := ‖û(1)(ξ)‖

q
(1)
0

+ ‖û(2)(ξ)‖
q
(2)
0

+ ‖∇xû(ξ)‖q1 for ξ ∈ R. Then, using Theorem

3.6 with A, S replaced by Ω, S1, we get that for ξ ∈ R with |ξ| ≥ 1, there are functions
U (j)(ξ) ∈ Lpj (BS1

c
)3 for 1 ≤ j ≤ n0 + 1, U (n0+2)(ξ) ∈ C∞(BS1

c
)3, φ(ξ) ∈ Lq(∂BS1)3 such

that

û(ξ)|BS1

c
=
∑n0+2

k=1
U (k)(ξ), U (j)(ξ) = (i ξ Ipj +Apj )−1

(
Ppj
[
f̂ (j)(ξ)|BS1

c ] )
, (6.5)

‖ξ U (j)(ξ)‖pj ≤ C ‖f̂ (j)(ξ)‖pj for 1 ≤ j ≤ n0, ‖ξ U (n0+1)(ξ)‖pn0+1 ≤ CL(ξ),

‖φ(ξ)‖q ≤ CL(ξ), ‖ξ
[
U (n0+2)(ξ)− F

(
φ(ξ)

) ]
|Bc

S2
‖r ≤ CL(ξ) if r ∈ (1,∞),

‖F
(
φ(ξ)

)
|Bc

S2
‖r ≤ CL(ξ) if r ∈ (3/2, ∞),

with all constants being independent of ξ. The function F
(
φ(ξ)

)
is taken from Theorem

3.6 with A, S, φ replaced by Ω, S1, φ(ξ) and thus is defined as in (3.2) with A = BS1 .
References for the definition of Ipj , Apj and Ppj are given in the theorem. Theorem 3.6
with the same replacements further yields for ξ ∈ R, R ∈ (S1,∞) that

if

∫
∂Ω
û(ξ) · n(Ω) dox = 0, then

∫
∂BR

F
(
φ(ξ)

)
(y) · |y|−1 y doy = 0. (6.6)

We put φ(ξ) := 0, U (j)(ξ) := 0 for ξ ∈ (−1, 1), j ∈ {1, ..., n0 + 2}. Then F
(
φ(ξ)

)
=

0 for ξ ∈ (−1, 1), and the estimates in (6.5) are valid for all ξ ∈ R. We further set
U (n0+2+µ)(ξ) := χ(−1,1)(ξ)

(
u(µ)

)∧
(ξ)|BS1

c
for ξ ∈ R, µ ∈ {1, 2}. Recalling the definition

of L(ξ) further above and the definition of pn0+3 and pn0+4 in the theorem, and referring
to the first equation in (6.5), we get for ξ ∈ R that

‖ξ U (n0+2+µ)(ξ)‖pn0+2+µ ≤ CL(ξ) (µ ∈ {1, 2}), û(ξ)|BS1

c
=
∑n0+4

k=1
U (k)(ξ) . (6.7)

For ξ ∈ R, we further set

Z(j)(ξ) := ξ U (j)(ξ)|BS2

c
(j ∈ {1, ..., n0 + 1} ∪ {n0 + 3, n0 + 4}), (6.8)

Z(n0+2)(ξ) := ξ
[
U (n0+2)(ξ)− F

(
φ(ξ)

) ]
|BS2

c
, FS2(ξ) := F

(
φ(ξ)

)
|Bc

S2
.
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Due to (6.7), this means in particular that

ξ
[
û(ξ)− F

(
φ(ξ)

) ]
|BS2

c
=
∑n0+4

k=1
Z(k)(ξ) for ξ ∈ R. (6.9)

Recalling that ∂xlû = ∂̂xlu for 1 ≤ l ≤ 3, we get by Theorem 2.11 and our assumptions

on f (j) and u that f̂ (j) ∈ L2
(
R, Lpj (Ωc

)3
)

and

‖f̂ (j)‖pj ,2;R = ‖f (j)‖pj ,2;∞ (1 ≤ j ≤ n0), ‖L‖2 ≤ CM, (6.10)

with M := ‖u‖
q
(1)
0 ,2;R + ‖u(2)‖

q
(2)
0 ,2;∞ + ‖∇xu‖q1,2;∞. Therefore we may deduce from (6.8),

(6.10), (6.5) and (6.7) that

‖Z(j)‖pj ,2;R ≤ C ‖f (j)‖pj ,2;∞ (1 ≤ j ≤ n0), (6.11)

‖Z(j)‖pj ,2;R ≤ CM (n0 + 1 ≤ j ≤ n0 + 4), ‖φ‖q,2;R ≤ CM, ‖FS2‖r,2;R ≤ C(r)M

if r ∈ (3/2, ∞), in particular Z(j) ∈ L2
(
R, Lpj (BS2

c
)3
)

for 1 ≤ j ≤ n0 + 4, φ ∈
L2
(
R, Lq(∂BS1)3

)
, FS2 ∈ L2

(
R, Lr(Bc

S2
)3
)

if r ∈ (3/2, ∞). We further set

P (j) := [Z(j)]∨ (1 ≤ j ≤ n0 + 4), Ẽ := [FS2 ]∨, (6.12)

where the term [FS2 ]∨ may refer to the space L2
(
R, Lr(Bc

S2
)3
)

for any r ∈ (3/2, ∞)
(Lemma 2.7). Then Theorem 2.11 and (6.11) yield that

‖P (j)‖pj ,2;R ≤ C ‖f (j)‖pj ,2;∞ (1 ≤ j ≤ n0), (6.13)

‖P (j)‖pj ,2;R ≤ CM (n0 + 1 ≤ j ≤ n0 + 4), ‖Ẽ‖r,2;∞ ≤ C(r)M if r ∈ (3/2, ∞),

in particular P (j) ∈ L2
(
R, Lpj (BS2

c
)3
)

for 1 ≤ j ≤ n0 + 4, Ẽ ∈ L2
(
R, Lr(Bc

S2
)3
)

if r ∈
(3/2, ∞). Due to the first inequality in (6.5), the equation in (6.10), the assumption f (j) ∈
L2
(

0,∞, Lpj (Ωc
)3
)
, and the definition U (j)(ξ) = 0 for ξ ∈ (−1, 1), we see that U (j) ∈

L2
(
R, Lpj (BS1

c
)3
)

(1 ≤ j ≤ n0). Put U (j) := [U (j)]∨ for j ∈ {1, ..., n0}. Then U (j) ∈
L2
(
R, Lpj (BS1

c
)3
)

(1 ≤ j ≤ n0) by Theorem 2.11. We further get due to the properties

of the Fourier transform that [U (j)]∧ = U (j) for j as before, and there is a sequence (Rn)
in (1,∞) and a zero measure set N0 ⊂ R such that Rn →∞ and the limit in Lpj (BS1

c
)3 of

Lpj (BS1

c
)3 −

∫
(−Rn,Rn)\(−1,1)(2π)−1/2 ei t ξ U (j)(ξ) dξ exists for n→∞ and equals U (j)(t),

where t ∈ R\N0, j ∈ {1, ..., n0}. Due to the second equation in (6.5), the term U (j)(ξ)

in the preceding integral may be replaced by (i ξ Ipj + Apj )−1
(
Ppj
[
f̂ (j)(ξ)|BS1

c ] )
, for

ξ ∈ R\(−1, 1), 1 ≤ j ≤ n0. Therefore the limit in (6.1) exists for t ∈ R\N0, 1 ≤ j ≤ n0,
and the function U(j) defined by this limit coincides with U (j) on R\N0. Hence U(j) =
[U (j)]∨, [U(j)]∧ = U (j), U(j) ∈ L2

(
R, Lpj (BS1

c
)3
)

(1 ≤ j ≤ n0). Let ϑ ∈ C∞0 (BS2

c
)3. For

G ∈ {u, Ẽ}∪ {U(j) : 1 ≤ j ≤ n0}∪ {Z(j) : 1 ≤ j ≤ n0 + 4}, we put
( ∫

BS2
c G ·ϑ dx

)
(s) :=∫

BS2
c G(s) · ϑ ds for s ∈ R. Since each of these functions G except G = u belongs to

L2(R, B) for some Banach space B (see (6.13), (6.11) and the preceding remarks about

U(j)), and because u = u(1) + u(2) and u(j) ∈ L2
(
R, Lq

(j)
0 (Ω

c
)3
)

(j ∈ {1, 2}), we may
conclude by Lemma 6.1 that( ∫

BS2
c
G · ϑ dx

)∨
(t) =

∫
BS2

c
Ǧ(t) · ϑ dx (t ∈ R, G ∈ {Z(j) : 1 ≤ j ≤ n0 + 4}), (6.14)
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and( ∫
BS2

c
G · ϑ dx

)∧
(ξ) =

∫
BS2

c
Ĝ(ξ) · ϑ dx (ξ ∈ R, G ∈ {u, Ẽ} ∪ {U(1), ..., U(n0)}). (6.15)

Let Z ⊂ {1, ..., n0}. By the definition of Ẽ (see (6.12)), FS2 and Z(j) (see (6.8)), the
equation [U(j)]∧ = U (j) (1 ≤ j ≤ n0), equation (6.9) and Lemma 2.7,

ξ (u−Ẽ−
∑
j∈Z

U(j))∧(ξ)|BS2

c
= ξ

[
û(ξ)−F

(
φ(ξ)

) ]
−
∑
j∈Z
Z(j)(ξ) =

n0+4∑
j=1, j /∈Z

Z(j)(ξ) (ξ ∈ R).

Thus we get by (6.12) (definition of P (1), ..., P (n0+4)), (6.14), (6.15) and Plancherel’s
theorem for L2(R) that for any ϕ ∈ C∞0 (R), ϑ ∈ C∞0 (BS2

c
)3∫

R
ϕ′(t)

∫
BS2

c
(u− Ẽ−

∑
j∈Z

U(j))(t) · ϑ dx dt (6.16)

=

∫
R
ϕ̂(ξ)

∫
BS2

c
i ξ (u− Ẽ−

∑
j∈Z

U(j))∧(ξ) · ϑ dx dξ

= i

∫
R
ϕ̂(ξ)

∫
BS2

c

n0+4∑
j=1, j /∈Z

Z(j)(ξ) · ϑ dx dξ = i

∫
R
ϕ(t)

∫
BS2

c

n0+4∑
j=1, j /∈Z

P (j)(t) · ϑ dx dt.

Let n ∈ N with n > S2, and abbreviate A := An,S2 . The preceding equation (6.16) is true

in particular for any ϑ ∈ C∞0 (A)3. Moreover, if G ∈ {u− Ẽ−
∑

j∈Z U(j),
∑n0+4

j=1, j /∈Z P
(j)},

the function t 7→ G(t)|A (t ∈ R) belongs to L1
loc

(
R, Lq(A)3

)
, as follows from (6.13), the

assumptions on u(1) and u(2), the relation U(j) ∈ L2
(
R, Lpj (BS1

c
)3
)

for 1 ≤ j ≤ n0, as
already proved, and because q ≤ pj (1 ≤ j ≤ n0 + 4). Thus, since C∞0 (A)3 is dense in

Lq
′
(A)3, and in view of Theorem 2.9, there is a measurable set ÑZ,n ⊂ R of measure zero

and a continuous function KZ,n : R 7→ Lq(A)3 such that KZ,n(t) = (u−Ẽ−
∑

j∈Z U(j))(t)|A
for t ∈ R\ÑZ,n and such that the equation

KZ,n(t)−KZ,n(t0) = Lq(A)3 −
∫ t

t0

i

n0+4∑
j=1, j /∈Z

P (j)(s)|Ads (t, t0 ∈ R) (6.17)

holds. The integral in (6.17) is Lq(An,R)3-valued. Putting NZ,n := ÑZ,n ∪ N0, with the
zero measure set N0 introduced above in the study of the properties of the functions U (j),
we see that NZ,n is still a zero measure set, the equation for KZ,n(t) preceding (6.17) holds
for t ∈ R\NZ,n and the limit in (6.1) exists for all such t and for 1 ≤ j ≤ n0. This is true
for any n ∈ N, n > S2 and any Z ⊂ {1, ..., n0}. Put N := ∪

{
NZ,n : n ∈ N, n > S2, Z ⊂

{1, ..., n0}
}
. Then we may conclude that N has measure zero and the ensuing equation

(u− Ẽ−
∑
j∈Z

U(j))(t)− (u− Ẽ−
∑
j∈Z

U(j))(t0)|An,S2 =

∫ t

t0

n0+4∑
j=1, j /∈Z

i P (j)(s)|An,S2 ds (6.18)
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is valid for t, t0 ∈ R\N, n ∈ N with n > S2, Z ⊂ {1, ..., n0}, and the limit in (6.1) exists
for t ∈ R\N, 1 ≤ j ≤ n0. Recalling the interval J introduced in the theorem, we have
J ∩ (R\N) 6= ∅, so we may fix some t0 ∈ J ∩ (R\N). In view of (6.13), we may define

G(j)(t) := Lpj (BS2

c
)3 −

∫ t

t0

i P (j)(s) ds (1 ≤ j ≤ n0 + 4), (6.19)

G(n0+4+µ)(t) := u(µ)(t0)|BS2

c
(µ ∈ {1, 2}), G(n0+7)(t) := Ẽ(t0)|BS2

c
, for t ∈ R.

Recall the definitions of pn0+4+µ for µ ∈ {1, 2} and pn0+7 in the theorem. Then it is obvious
with (6.13) that G(j) ∈ C0

(
R, Lpj (BS2

c
)3
)

(1 ≤ j ≤ n0 + 7), and from (6.18) and Lemma

2.7 we get (u − Ẽ −
∑

j∈Z U(j))(t)|An,S2 =
∑n0+7

j=1, j /∈Z G
(j)(t)|An,S2 −

∑
j∈Z U(j)(t0)|An,S2

for t ∈ R\N, Z ⊂ {1, ..., n0} and n ∈ N with n > S2, so we finally arrive at (6.2).

Let Z ⊂ {1, ..., n0}, R ∈ (S2,∞), and put Ã := AR,S2 . For t ∈ R, let us estimate the

term ‖
∑n0+7

j=1, j /∈Z G
(j)(t)|Ã‖q. To this end, put G :=

∑n0+7
j=1, j /∈Z G

(j), P :=
∑n0+4

j=1, j /∈Z P
(j).

In view of (6.13) and because G(j) ∈ C0
(
R, Lpj (BS2

c
)3
)

and q ≤ pj (1 ≤ j ≤ n0 + 7), the

function t 7→ G(t)|Ã (t ∈ R) belongs to C0
(
R, Lq(Ã)3

)
, and the function t 7→ P (t)|Ã (t ∈

R) to L1
loc

(
R, Lq(Ã)3

)
. Let ϑ ∈ C∞0 (Ã)3, and put Hϑ(t) :=

∫
Ã
G(t) · ϑ dx, hϑ(t) :=

i
∫
Ã
P (t) · ϑ dx for t ∈ R. Then Hϑ ∈ C0(R), hϑ ∈ L1

loc(R), and from (6.2) and (6.16)

we get
∫
R ϕ
′(t)Hϑ(t) dt = −

∫
R ϕ(t)hϑ(t) dt

(
ϕ ∈ C∞0 (R)

)
. Thus Hϑ ∈ W 1,1

loc (R) with
H ′ϑ = hϑ. Fix some function ζ0 ∈ C∞([0, 1]) with ζ0(0) = 0, ζ0(1) = 1. Let t ∈ R, and put
ζt(s) := ζ0(s−t+1) for s ∈ [t−1, t]. Then ζtHϑ belongs to C0([t−1, t])∩W 1,1

(
(t−1, t)

)
,

and (ζtHϑ)′ = ζt hϑ + ζ ′tHϑ ∈ L1
(

(t − 1, t)
)
, so Hϑ(t) =

∫ t
t−1(ζt hϑ + ζ ′tHϑ)(s) ds. This

is true for any ϑ ∈ C∞0 (Ã)3. Therefore with Theorem 2.7 and the definition of Hϑ and

hϑ we get G(t)|Ã = Lq(Ã)3 −
∫ t
t−1(i ζt P + ζ ′tG)(s)|Ã ds. Replacing P and G by their

definitions on the right-hand side of the preceding equation and using (6.2), we now find
that G(t)|Ã =

∫ t
t−1

[
i ζt

∑n0+4
j=1, j /∈Z P

(j) +ζ ′t
(
u− Ẽ−

∑
j∈Z U(j) +

∑
j∈Z U(j))(t0)

) ]
(s)|Ã ds.

It follows with the definition of G that

∥∥ n0+7∑
j=1, j /∈Z

G(j)(t)|Ã
∥∥
q
≤ C

∫ t

t−1

( n0+4∑
j=1, j /∈Z

‖P (j)(s)|Ã‖q + ‖u(s)|Ã‖q + ‖Ẽ(s)|Ã‖q (6.20)

+
∑
j∈Z
‖U(j)(s)− U(j)(t0)|Ã‖q

)
ds.

But q ≤ pj , so ‖P (j)(s)|Ã‖q ≤ C(R) ‖P (j)(s)|Ã‖pj ≤ C(R) ‖P (j)(s)‖pj for s ∈ (t−1, t), 1 ≤
j ≤ n0 + 4. Thus with (6.13),∫ t

t−1

n0+4∑
j=1, j /∈Z

‖P (j)(s)|Ã‖q ds ≤ C

n0+4∑
j=1, j /∈Z

‖P (j)‖pj ,2;R ≤ C
( n0∑
j=1, j /∈Z

‖f (j)‖pj ,2;∞ + M
)
.

Similarly, since q ≤ q
(j)
0 (j ∈ {1, 2}), we get

∫ t
t−1 ‖u(s)|Ã‖q ds ≤ C

∑2
j=1 ‖u(j)‖

q
(j)
0 ,2;∞ ≤

CM. Again with (6.13),
∫ t
t−1 ‖Ẽ(s)|Ã‖q ds ≤ C ‖Ẽ‖max{2, q},2;∞ ≤ CM. Now inequality

(6.3) follows from (6.20).
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Let us determine an explicit form of Ẽ. To this end, recall that φ ∈ L2
(
R, Lq(∂BS1)3

)
according to (6.11) so that we may define % := φ̌. Theorem 2.11 and (6.11) then yield

‖%‖q,2;R ≤ CM, in particular % ∈ L2
(
R, Lq(∂BS1)3

)
. (6.21)

Let ϑ ∈ C∞0 (BS2

c
)3. Since |x − y| ≥ S2 − S1 > 0 for x ∈ Bc

S2
, y ∈ ∂BS1 , and because

the function N introduced at the beginning of Section 4 belongs to C∞(R3\{0}), the
function y 7→

∫
BcS2

(∇N)(x− y) ·ϑ(x) dx (y ∈ ∂BS1), is bounded. Hence the operator V 7→∫
∂BS1

S−1 y ·V (y)
∫
BcS2

(∇N)(x− y) ·ϑ(x) dx doy
(
V ∈ Lq(∂BS1)3

)
is linear and bounded.

Put B(ξ) :=
∫
∂BS1

S−1 y · φ(ξ)(y)
∫
BcS2

(∇N)(x − y) · ϑ(x) dx doy (ξ ∈ R). By Corollary

2.1 we get B ∈ L2(R) and B̌(t) =
∫
∂BS1

S−1 y · %(t)(y)
∫
BcS2

(∇N)(x − y) · ϑ(x) dx doy for

t ∈ R. Again because |x − y| ≥ S2 − S1 > 0 for x ∈ Bc
S2
, y ∈ ∂BS1 we may apply

Fubini’s theorem, obtaining that B(ξ) =
∫
BcS2

FS2(ξ) · ϑ dx (ξ ∈ R), with FS2 from (6.8),

and B̌(t) =
∫
BcS2

∫
∂BS1

(∇N)(x− y)
(
S−1 y · %(t)(y)

)
doy ·ϑ(x) dx (t ∈ R). The second from

last equation, that is, B(ξ) =
∫
BcS2

FS2(ξ) · ϑ dx (ξ ∈ R), Corollary 2.1 and the definition

of Ẽ (see (6.12)) imply that B̌(t) =
∫
BcS2

Ẽ(t) · ϑ dx (t ∈ R). Thus we have found two

equations for B̌, whose right-hand sides must therefore coincide. Since this is true for any
ϑ ∈ C∞0 (Bc

S2
)3, it follows that Ẽ(t)(x) =

∫
∂BS1

(∇N)(x − y)
(
S−1 y · %(t)(y)

)
doy for a. e.

x ∈ BS2

c
and for t ∈ R.

With this equation on hand, we may prove some additional properties of Ẽ. Since % ∈
L2
(
R, Lq(∂BS1)3

)
(see (6.21)) and |x − y| ≥ (1 − S1/S2) |x| for x ∈ Bc

S2
, y ∈ ∂BS1 ,

we may conclude by applying Lebesgue’s theorem that Ẽ ∈ C∞(Bc
S2

)3 and ∂xlẼ(t)(x) =∫
∂BS1

(∂l∇N)(x − y)
(
S−1 y · %(t)(y)

)
doy (t ∈ R, x ∈ BS2

c
, 1 ≤ l ≤ 3), so divxẼ(t) = 0

because ∆N = 0. Hence |∂αx Ẽ(t)(x)| ≤ C |x|−2−|α| ‖%(t)‖1 ≤ C |x|−2−|α| ‖%(t)‖q (t, x as

before, α ∈ N3
0 with |α| ≤ 1), and thus with (6.21), ‖∂αx Ẽ‖r,2;R ≤ C(r) ‖%‖q,2;R ≤ C(r)M

for α as before, r ∈ (3/2, ∞) in the case α = 0, and r ∈ (1,∞) else.

Altogether we see that if the functions U(j) (1 ≤ j ≤ n0), G(j) (1 ≤ j ≤ n0 + 7) and % are
defined as above (see (6.1), (6.19) and the passage preceding (6.21)), then the function Ẽ
coincides with the function E introduced in Theorem 6.1. Therefore, in view of what has
been shown for G(j), Ẽ and %, Theorem 6.1 is proved. �

In the following corollary, we drop the assumption U0 = 0 in (4.6) imposed in the preceding
theorem.

Corollary 6.1 Let n0 ∈ N, p1, ..., pn0 ∈ (1,∞), f (j) ∈ L2
(

0,∞, Lpj (Ωc
)3
)

for 1 ≤ j ≤
n0, and let U(j) for 1 ≤ j ≤ n0 be defined as in (6.1). Let q1 ∈ (1,∞) be such that

‖∇xH(0)(U)|R3 × (0, 2)‖q1,2;2 ≤ C(q1) ‖U‖q1 for U ∈ Lq1(R3)3, (6.22)

with H(0) defined in Lemma 4.3. (This condition is satisfied if q1 ∈ (1, 2]; see The-
orem 5.1.) Let U0 ∈ Lq1σ (R3), q0 ∈ (1,∞), u ∈ L2

(
0,∞, Lq0(Ω

c
)3
)

with u(t) ∈
W 1,1
loc (Ω

c
)3, divxu(t) = 0 for t ∈ (0,∞), and ∇xu ∈ L2

(
0,∞, Lq1(Ω

c
)9
)
. Suppose

that equation (4.6) holds with T0 = ∞ and f =
∑n0

j=1 f
(j). Let q ∈ (1,∞) with q ≤
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min({q0, q1} ∪ {pj : 1 ≤ j ≤ n0}), and put pn0+j := q1 for j ∈ {1, 2, 5, 7, 9}, pn0+j := q0

for j ∈ {4, 6}, and pn0+3 := q, pn0+8 := max{2, q}. Let J ⊂ R be an interval with
nonempty interior. Then there is a zero measure set N ⊂ R, a number t0 ∈ J\N and
functions % ∈ L2

(
R, Lq(∂BS1)3

)
, G(j) ∈ C0

(
[0,∞), Lpj (BS2

c
)3
)

(1 ≤ j ≤ n0 + 9) with
the properties to follow.

The limit in (6.1) defining the functions U(j) (1 ≤ j ≤ n0) exists for any t ∈ R\N. Define
the function E as in Theorem 6.1. Then

(u− E)(t)|BS2

c
=

n0+9∑
j=1, j /∈Z

G(j)(t) +
∑
j∈Z

(
U(j)(t)− U(j)(t0)

)
(6.23)

for Z ⊂ {1, ..., n0}, t ∈ (0,∞)\N, in particular (u − E)(t)|BS2

c
=
∑n0+9

j=1 G(j)(t) for t ∈
(0,∞)\N. Moreover E(t) ∈ C∞(Bc

S2
)3, divxE(t) = 0 for t ∈ R, the quantities ‖E‖r,2;R for

r ∈ (3/2, ∞) and ‖∇xE‖r,2;R for r ∈ (1,∞) are bounded by C(r) (‖u‖q0,2;∞+‖∇xu‖q1,2;∞+
‖U0‖q1). In addition, if R ∈ (S2,∞), Z ⊂ {1, ..., n0}, then

‖
n0+9∑

j=1, j /∈Z

G(j)(t)|AR,S2‖q ≤ C(R)
(
‖u‖q0,2;∞ + ‖∇xu‖q1,2;∞ + ‖U0‖q1 (6.24)

+

n0∑
j=1, j /∈Z

‖f (j)‖pj ,2;∞ +
∑
j∈Z
‖
(
U(j) − U(j)(t0)

)
|AR,S2 × (t− 1, t)‖

L1
(
t−1, t, Lq(AR,S2 )3

))
for any t ∈ [0,∞), in particular

‖
n0+9∑
j=1

G(j)(t)|AR,S2‖q ≤ C
(
‖u(j)‖q0,2;∞ + ‖∇xu‖q1,2;∞ +

n0∑
j=1

‖f (j)‖pj ,2;∞ + ‖U0‖q1
)
. (6.25)

Proof: Abbreviate H := H(0)(U0). By Lemma 4.3, we have ‖H(t)‖q1 ≤ C(q1) ‖U0‖q1 and

H(t) ∈ C2(R3)3 for t ∈ (0,∞), H ∈ C1
(
R3 × (0,∞)

)3
and divxH = 0, ∂tH−∆xH = 0.

The same reference yields thatH is a continuous mapping from [0,∞) into Lq1(R3)3, where
H(0) = U0 by the definition ofH = H(0)(U0). Fix a function γ0 ∈ C∞(R) with γ|(−∞, 1] =
1, γ0|[2,∞) = 0, 0 ≤ γ0 ≤ 1. Then define H̃(x, t) := γ0(t)H(x, t) for x ∈ R3, t ∈
(0,∞). The properties of H listed above immediately imply that ‖H̃(t)‖q1 ≤ C(q1) ‖U0‖q1
and H̃(t) ∈ C2(R3)3 for t ∈ (0,∞), H̃ ∈ C1

(
R3 × (0,∞)

)3
, divxH̃ = 0 and H̃ ∈

C0
(

[0,∞), Lq1(R3)3
)

with H̃(0) = U0. By our assumptions on q1 we get ‖∇xH̃‖q1,2;∞ ≤
‖∇xH|R3×(0, 2)‖q1,2;2 ≤ C(q1) ‖U0‖q1 , in particular ∇xH̃ ∈ L2

(
0,∞, Lq1(R3)3

)
. Since H̃

vanishes on (2,∞), it follows from the estimate ‖H̃(t)‖q1 ≤ C(q1) ‖U0‖q1 (t ∈ (0,∞)) that

also H̃ ∈ L2
(

0,∞, Lq1(R3)3
)

and ‖H̃‖q1,2;∞ ≤ C(q1) ‖U0‖q1 . Define the function f (n0+1)

by setting f (n0+1)(t) := −γ′0(t)H(t) − τ γ0(t) ∂x1H(t)|Ωc (
t ∈ (0,∞)

)
. Recalling that

pn0+1 = q1 by the definition of pn0+1 in the corollary, and using the preceding estimate
of ‖∇xH̃‖q1,2;∞ and ‖H̃‖q1,2;∞, we obtain ‖f (n0+1)‖pn0+1,2;∞ ≤ C(q1, |γ′0|∞) ‖U0‖q1 . Since
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∂tH−∆xH = 0, we further get ∂tH̃ −∆xH̃ = −f (n0+1), and therefore∫ ∞
a

∫
Ω
c

(
−ϕ′(t) H̃(t) · ϑ+ ϕ(t)

[
∇xH̃(t) · ∇ϑ+ τ ∂x1H̃(t) · ϑ+ f (n0+1)(t) · ϑ

])
dx dt

−ϕ(a)

∫
Ω
c
H̃(a) · ϑ dx = 0 for a ∈ (0,∞), ϕ ∈ C∞0

(
[0,∞)

)
, ϑ ∈ C∞0,σ(Ω

c
).

Since H̃ ∈ C0
(

[0,∞), Lq1(R3)3
)
, the preceding equation remains valid for a = 0. Recalling

that H̃(0) = U0, we thus see that equation (4.6) holds with H̃ in the role of u and with
T0 =∞ and f = f (n0+1).

Now put w := u − H̃. Then w(t) ∈ W 1,1
loc (Ω

c
)3
(
t ∈ (0,∞)

)
, ∇xw ∈ L2

(
0,∞, Lq1(Ω

c
)3
)

and divxw = 0. We recall that H̃ ∈ L2
(

0,∞, Lq1(R3)3
)

and u ∈ L2
(

0,∞, Lq0(Ω
c
)3
)
,

and we observe that equation (4.6) is valid with u and f replaced by w and
∑n0+1

j=1 f (j),
respectively, and with T0 =∞, U0 = 0. Thus all assumptions of Theorem 6.1 are satisfied if

the numbers n0, q
(1)
0 , q

(2)
0 and the functions u, u(1), u(2) are replaced by n0+1, q0, q1, w, u

and −H̃|Ωc×(0,∞), respectively, and pn0+1 and f (n0+1) are chosen as above. This theorem
then yields existence of a zero measure set N ⊂ R, an element t0 ∈ J\N and functions
% ∈ L2

(
R, Lq(∂BS1)3

)
, G(j) ∈ C0

(
[0,∞), Lpj (BS2

c
)3
)

(1 ≤ j ≤ n0 + 8) such that the

statements of this theorem hold with n0, q
(1)
0 , q

(2)
0 , u, u(1), u(2) replaced as specified above.

Let us indicate how Corollary 6.1 follows from these statements. With the function E
defined in Theorem 6.1, we have E(t) ∈ C∞(Bc

S2
)3 (t ∈ R), divxE = 0, and ‖E‖r,2;R ≤ CM

for r ∈ (3/2, ∞), ‖∇xE‖r,2;R ≤ CM for r ∈ (1, ∞), where M is an abbreviation for

‖u‖q0,2;∞+‖H̃|Ωc×(0,∞)‖q1,2;∞+‖∇x(u−H̃)‖q1,2;∞. But the estimates of H̃ given above
yield M ≤ C (‖u‖q0,2;∞+‖∇xu‖q1,2;∞+‖U0‖q1), so we obtain the upper bounds of ‖E‖r,2;R
and ‖∇E‖r,2;R stated in the corollary. Equation (6.2) is valid with w in the role of u and
with the upper bound n0 + 8 instead of n0 + 7 in the first sum on the right-hand side.
Inequality (6.3), for R ∈ (S2,∞), Z ⊂ {1, ..., n0 + 1}, t ∈ R, takes the form

‖
n0+8∑

j=1, j /∈Z

G(j)(t)|AR,S2‖q ≤ C
(
M +

n0+1∑
j=1, j /∈Z

‖f (j)‖pj ,2;∞ (6.26)

+
∑
j∈Z
‖
(
U(j) − U(j)(t0)

)
|AR,S2 × (t− 1, t)‖

L1
(
t−1, t, Lq(AR,S2 )3

)).
Put G(j) := G(j)|BS2

c × [0,∞) (1 ≤ j ≤ n0 + 8), G(n0+9) := H̃|BS2

c × [0,∞). Again
by the properties of H̃ derived above, and by the definition of pn0+9 in the corollary,
we see that G(n0+9) ∈ C0

(
[0,∞), Lpn0+9(BS2

c
)3
)

and ‖G(n0+9)(t)‖pn0+9 ≤ C ‖U0‖q1
(
t ∈

[0,∞)
)
. Equation (6.23) follows from the modified version of (6.2) described above and the

definition of w and G(n0+9). We further recall that ‖f (n0+1)‖pn0+1,2;∞ and ‖G(n0+9)(t)‖pn0+9

for t ∈ (0,∞) are bounded by C ‖U0‖q1 , and we note that because q ≤ q1, the inequality
‖G(n0+9)(t)|AR,S2‖q ≤ C(R, q, q1) ‖G(n0+9)(t)|AR,S2‖q1 holds for R ∈ (S2,∞), t ∈ (0,∞).
Due to these relations and the estimate of M given above, inequality (6.24) becomes an
immediate consequence of (6.26). �

The ensuing corollary introduces a representation formula for a velocity u given as in the
preceding corollary.
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Corollary 6.2 Consider the situation in Corollary 6.1, with E, G(j), pj (1 ≤ j ≤ n0 + 9)
introduced as in that reference. Put v(t) := u(t)− E(t)|BS2

c (
t ∈ (0,∞)

)
. By (6.23) with

Z = ∅, we may suppose without loss of generality that v(t) =
∑n0+9

j=1 G(j)(t) for t ∈ (0,∞).

As in Theorem 4.4, put n(S0)(y) := S−1
0 y for y ∈ ∂BS0. Then for t ∈ (0,∞), there is a

zero measure set Nt ⊂ BR0

c
such that

u(x, t) = E(x, t) (6.27)

+R(τ)(f)(x, t) + I(τ)
(
U0|BS0

c
)(x, t)−

3∑
l=1

∂xlV
(τ,BS0 )(n

(S0)
l v)(x, t)

−
∫
∂BS0

(∇N)(x− y)
(
n(S0)(y) · v(y, t)

)
doy + KR0,S0,ϕ0,BS0 ,T0

(v)(x, t)

−
∫
AR1,S0

GR0,S0,ϕ0(x, y, t) · U0(y) dy −
∫ t

0

∫
AR1,S0

GR0,S0,ϕ0(x, y, t− s) · f(y, s) dy ds

for x ∈ BR0

c\Nt, with T0 = ∞, f =
∑n0

j=1 f
(j)|BS0

c × (0,∞), where GR0,S0,ϕ0 was intro-
duced in Theorem 4.3, and KR0,S0,ϕ0,BS0 ,T0

(v) was defined in (4.5). The function N was
introduced at the beginning of Section 4, and the parameters R0, S0, R1 were fixed at the
beginning of the present section.

Proof: We are going to apply Theorem 4.4. So let us check its assumptions using Corollary
6.1. Since E ∈ L2

(
R, Lr(Bc

S2
)3
)

for r ∈ (3/2, ∞) by Corollary 6.1, and because u ∈
L2
(

0,∞, Lq0(Ω
c
)3
)
, we get v|AS0,S2×(0,∞) ∈ L2

(
0,∞, Lmin{2, q0}(AS0,S2)3

)
. In addition

v(t) ∈ W 1,1
loc (BS2

c
)3
(
t ∈ (0,∞)

)
, divxv = 0 and ∇xv ∈ L2

(
0,∞, Lq1(BS2

c
)9
)
, due to

analogous properties of E and u. Further recall that v(t) =
∑n0+9

j=1 G(j)(t) (t > 0). Define

Z(x, t) :=
∫
∂BS1

N(x − y)S−1
1 y · %(y, t) doy for x ∈ BS1

c
, t ∈ R, with % introduced in

Corollary 6.1 and appearing in the definition of E (Theorem 6.1), and S1 fixed at the
beginning of the present section. By Lebesgue’s theorem and because S1 < S2, we have
Z(t) ∈ C∞(BS1

c
) and ∇xZ(t)|Bc

S2
= E(t) (t ∈ R). It follows that

∫
BS2

c ∂xσl v(t) · ϑ dx =∫
BS2

c ∂xσl u(t) · ϑ dx for ϑ ∈ C∞0,σ(BS2

c
), t ∈ (0,∞), σ ∈ {0, 1}, 1 ≤ l ≤ 3. Recall that u

satisfies equation (4.6) with T0 = ∞ and f =
∑n0

j=1 f
(j). At this point we may conclude

that (4.6) holds with T0 =∞ and f =
∑n0

j=1 f
(j)|BS2

c×(0,∞), and with Ω and u replaced
by BS2 and v, respectively. We thus see that all assumptions in Theorem 4.4 are satisfied
if T0, Ω and u are chosen in this way in this theorem, and if m0, p̃, q0, %l, G

(l) (1 ≤ l ≤
m0), U0 are replaced by n0 + 9, q1, min{q0, 2}, pj , G(j)|BS0

c× [0,∞) (1 ≤ j ≤ n0 + 9) and
U0|BS1

c
, respectively. Thus equation (6.27) follows from (4.7). �

Now we are in a position to derive decay estimates of u.

Theorem 6.2 Consider the same situation as in Corollary 6.1, with the choice J =
(−1, 0). Suppose in addition that u|AR1,S0 × (0,∞) ∈ L∞

(
0,∞, Lq2(AR1,S0)3

)
for some

q2 ∈ (1,∞). Recall the zero measure set N ⊂ R and the number t0 ∈ (−1, 0)\N introduced
in Corollary 6.1, and the functions U(j) (1 ≤ j ≤ n0) from (6.1). Then there is a zero
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measure set Ñ ⊂ R with N ⊂ Ñ such that

|
[
∂αxu− ∂αxR(τ)

(∑n0

j=1
f (j)|BS0

c × (0,∞)
)
− ∂αxI(τ)(U0|BS0

c
)
]
(x, t)| (6.28)

≤ C
((
|x| ν(x)

)−5/4−|α|/2
+ |x|−2+|α|

)(
‖u‖q0,2;∞ + ‖∇xu‖q1,2;∞

+‖U0‖q1 + ‖u|AR1,S0 × (0,∞)‖q2,∞;∞ +
∑n0

j=1
‖f (j)|BS0

c × (0, t)‖pj ,2;t

+
∑n0

j=1, j /∈Z
‖f (j)|BS0

c × (0,∞)‖pj ,2;∞ +
∑
j∈Z

sup
s∈(−1,t]\N

‖U(j)(s)|AR1,S2‖q
)

for t ∈ (0,∞)\Ñ , x ∈ BR0

c\Nt, α ∈ N3
0 with |α| ≤ 1, and Z ⊂ {1, ..., n0}, with Nt ⊂ BR0

c

chosen as in Corollary 6.2. In particular (Z = ∅),

|
[
∂αxu− ∂αxR(τ)

(∑n0

j=1
f (j)|BS0

c × (0,∞)
)
− ∂αxI(τ)(U0|BS0

c
)
]
(x, t)| (6.29)

≤ C
((
|x| ν(x)

)−5/2−|α|/2
+ |x|−2+|α|

) (
‖u‖q0,2;∞ + ‖∇xu‖q1,2;∞

+‖U0‖q1 + ‖u|AR1,S0 × (0,∞)‖q2,∞;∞ +
∑n0

j=1
‖f (j)|BS0

c × (0,∞)‖pj ,2;∞
)

for t, x and α as in (6.28). If
∫
∂Ω u(t) · n(Ω) dox = 0 for t ∈ (0,∞), the term |x|−2−|α| in

these upper bounds may be dropped.

Proof: We use equation (6.27). So, as in Corollary 6.2, we define the function v :=
u − E|BS2

c × (0,∞) and suppose without loss of generality that v(t) =
∑n0+9

j=1 G(j)(t)

for t ∈ (0,∞), where the functions G(j) ∈ C0
(

[0,∞), Lpj (BS2

c
)3
)

(1 ≤ j ≤ n0 + 9)
were introduced in Corollary 6.1, as were the exponents p1, ..., pn0+9. For brevity, put
B := AR1,S0 × (0,∞), M := ‖u‖q0,2;∞ + ‖∇xu‖q1,2;∞ + ‖U0‖q1 . Since S2 < S0, q ≤ pj
and G(j) ∈ C0

(
[0,∞), Lpj (BS2

c
)3
)

(1 ≤ j ≤ n0 + 9), we may conclude that v|B ∈
C0
(

[0,∞), Lq(AR1,S0)3
)
. By the choice of q in Corollary 6.1, we have q ≤ q0 and q ≤ q1,

hence ‖u|B‖q,2;∞ ≤ C(R0) ‖u|B‖q0,2;∞ ≤ C(R0)M, and similarly ‖∇xu|B‖q,2;∞ ≤ CM.
Moreover we know from Corollary 6.1 that ‖E‖max{2,q}, 2;R ≤ CM and ‖∇xE‖q,2;R ≤ CM,
so we may conclude by the definition of v that ‖v|B‖q,2;∞ ≤ ‖u|B‖q,2;∞ + ‖E|B‖q,2;R ≤
CM + C(R0) ‖E|B‖max{q,2}, 2;R ≤ CM, and similarly ‖∇xv|B‖q,2;∞ ≤ CM. Together we
have

‖u|B‖q,2;∞ + ‖∇xu|B‖q,2;∞ + ‖v|B‖q,2;∞ + ‖∇xv|B‖q,2;∞ ≤ CM. (6.30)

By Lemma 4.4 and the definition of the norm of L∞
(

0,∞, Lq2(AR1,S0)3
)
, and because

N ⊂ R has measure zero, we may choose a set Ñ ⊂ R also of measure zero such that
N ⊂ Ñ ,

R(τ)(t) ∈W 1,1
loc (R3)3 and ‖u(t)|AR1,S0‖q2 ≤ 2 ‖u|B‖q2,∞;∞ for t ∈ (0,∞)\Ñ . (6.31)

Let t ∈ (0,∞)\Ñ , x ∈ BR0

c\Nt and α ∈ N3
0 with |α| ≤ 1. We are going to estimate the

relevant terms on the right-hand side of (6.27). Lemma 4.6 with Ω replaced by BS0 yields
that

|∂αx ∂xlV(τ,BS0 )(n(S0) · v)(x, t)| ≤ C (‖v|B‖q,2;t + ‖∇xv|B‖q,2;t)
(
|x| ν(x)

)−(5/2+|α|)/2
(6.32)
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(1 ≤ l ≤ 3). Since U0 ∈ Lq1(Ω
c
)3, we get with (4.3) and Corollary 4.1 that∣∣∣∂αx(∫

AR1,S0

GR0,S0,ϕ0(x, y, t) · U0(y) dy
)∣∣∣ ≤ C ‖U0‖q1

(
|x| ν(x)

)−(3+|α|)/2
. (6.33)

Moreover, with (4.4) and Corollary 4.1,∣∣∣∂αx(∫ t

0

∫
AR1,S0

GR0,S0,ϕ0(x, y, t− s) ·
n0∑
j=1

f (j)(y, s) dy ds
)∣∣∣ (6.34)

≤ C
∑n0

j=1
‖f (j)|BS0

c × (0, t)‖pj ,2;t

(
|x| ν(x)

)−(5/2+|α|)/2
.

In addition we may conclude by Corollary 4.2 with Ω, u replaced byBS0 and v, respectively,
and with T0 =∞ that

|∂αxKR0,S0,ϕ0,BS0 ,∞(v)(x, t)| (6.35)

≤ C
(
‖v|B‖q,2;t + ‖∇xv|B‖q,2;t + ‖v(t)|AR1,S0‖q

) (
|x| ν(x)

)−(5/2+|α|)/2
.

We turn to the main difficulty of this proof, which consists in estimating the term A :=
∂αx
(
E(x, t)−

∫
∂BS0

(∇N)(x−y)
[
n(S0)(y) ·v(y, t)

]
doy

)
. Our estimate is based on the split-

ting A = A1+A2+∂αxE(x, t), where A1 := ∂αx
(
−
∫
∂BS0

(∇N)(x−y)
[
n(S0)(y)·u(y, t)

]
doy

)
,

and A2 := ∂αx
( ∫

∂BS0
(∇N)(x − y)

[
n(S0)(y) · E(y, t)

]
doy

)
. We cannot directly evaluate

|∂αxE(x, t)| because we do not have a bound for ‖%(t)‖q, where % was introduced in Corol-
lary 6.1 and appears in the definition of E (Theorem 6.1). In order to handle this diffi-
culty, we define Z(z, s) :=

∫
∂BS1

N(z − y)S−1
1 y · %(y, s) doy for z ∈ BS1

c
, s ∈ R, as in

the proof of Corollary 6.2. Recalling what is already stated in that proof, we note that
Z(s) ∈ C∞(BS1

c
) and ∇xZ(s)|Bc

S2
= E(s) (s ∈ R). Since ∆N = 0, we further have

∆xZ = 0. Returning to the point x and the time t fixed above, we take S ∈ [2 |x|, ∞) and
put n(S,S0)(y) := S−1 y for y ∈ ∂BS , n(S,S0)(y) := −S−1

0 y for y ∈ ∂BS0 , so that n(S,S0) is
the outward unit normal to AS,S0 . Using a standard representation formula for harmonic
functions, we obtain

Z(z, t) =

∫
∂AS,S0

[
N(z − y)n(S,S0)(y) · ∇yZ(y, t) +

(
(∇N)(z − y) · n(S,S0)(y)

)
Z(y, t)

]
doy

for z ∈ AS,S0 , in particular for z ∈ A2 |x|, S0
. But |∂yσl Z(y, t)| ≤ C ‖%‖1 |y|−1−|σ| for y ∈ Bc

R0

because S1 < S2 < R0. Moreover |∂yσl N(z−y)| ≤ (4π)−1 |z−y|−1−|σ| ≤ C(|x|) |y|−1−σ for
z ∈ A2 |x|, S0

, y ∈ Bc
4 |x|. Therefore, by letting S tend to infinity in the preceding equation

for Z(z, t) and recalling the definition of n(S,S0), we obtain

Z(z, t) = −
∫
∂BS0

[
N(z − y)S−1

0 y · ∇yZ(y, t) +
(

(∇N)(z − y) · S−1
0 y

)
Z(y, t)

]
doy

for z ∈ A2 |x|, S0
. By taking the gradient of both sides of the preceding equation, choosing

z = x, and using that ∇xZ|Bc
S2
× R = E, we arrive at the equation

E(x, t) = −
∫
∂BS0

[
(∇N)(x− y)

(
S−1

0 y · E(y, t)
)

+∇x
(

(∇N)(x− y) · S−1
0 y

)
Z(y, t)

]
doy.
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Putting A3 := −∂αx
[ ∫

∂BS0
∇x
(

(∇N)(x − y) · S−1
0 y

)
Z(y, t) doy

]
, and recalling that A =

A1 + A2 + ∂αxE(x, t), we conclude that A = A1 + A3. But according to Lemma 4.7 with
Ω replaced by BS0 , the estimate |A1| ≤ C ‖u(t)|AR1,S0‖q2 |x|−2−|α| holds. In addition,
if
∫
∂Ω u(s) · n(Ω) doy = 0 for s ∈ (0,∞), we have

∫
∂BS0

u(y, s) · |y|−1 y doy = 0 by the

Divergence theorem and because u(s)|ΩS0 ∈ W 1,q(ΩS0)3 and divxu(s) = 0
(
s ∈ (0,∞)

)
.

Therefore under the condition
∫
∂Ω u(s) · n(Ω) doy = 0 for s ∈ (0,∞), Lemma 4.7 with

Ω replaced by BS0 implies that the preceding estimate of |A1| is valid with the exponent
−2−|α| replaced by −3−|α|. Therefore, putting γ := 3 if the preceding zero flux condition
is true, and γ := 2 else, we get

|A1| ≤ C ‖u(t)|AR1,S0‖q2 |x|−γ−|α|. (6.36)

In order to handle the term A3, we put γ := |AR1,S0 |−1
∫
AR1,S0

Z(y, t) dy. Since x ∈ BR0

c
,

we find that
∫
∂BS0

∂αx∇x
(

(∇N)(x− y) · S−1
0 y

)
doy = −

∫
BS0

∂αx∇x
(

(∆N)(x− y)
)
dy = 0,

so we may conclude that A3 = −
∫
∂BS0

∂αx∇x
(

(∇N)(x−y)·S−1
0 y

) (
Z(y, t)−γ

)
doy. Again

since x ∈ BR0

c
, hence |x − y| ≥ (1 − S0/R0) |x| for y ∈ ∂BS0 , we arrive at the inequality

|A3| ≤ C |x|−3−|α| ‖Z(t)−γ|∂BS0‖1. Moreover, by a standard trace theorem and Poincaré’s
inequality, ‖Z(t) − γ|∂BS0‖1 ≤ C ‖Z(t) − γ|AR1,S0‖1,1 ≤ C ‖∇xZ(t)|AR1,S0‖1. Recalling
that ∇xZ(s)|Bc

S2
= E(s) (s ∈ R), we thus get

‖Z(t)− γ|∂BS0‖1 ≤ C ‖E(t)|AR1,S0‖min{q,q2} ≤ C (‖v(t)|AR1,S0‖q + ‖u(t)|AR1,S0‖q2).

As a consequence, |A3| ≤ C (‖v(t)|AR1,S0‖q + ‖u(t)|AR1,S0‖q2) |x|−3−|α|. Combining this
estimate with the equation A = A1 +A3 mentioned above, and with (6.36), (6.31) and the
assumption t ∈ (0,∞)\Ñ , we obtain |A| ≤ C (‖v(t)|AR1,S0‖q+‖u|B‖q2,∞;∞) |x|−γ−|α|. Now
we combine the representation formula (6.27) with the preceding estimate, the inequalities
(6.32) – (6.35), (6.30) and (6.31), and the definition of A. It follows that the left-hand
side of (6.28) is bounded by

C
(
M +

n0∑
j=1

‖f (j)|Bc
S0
× (0, t)‖pj ,2;t + ‖U0‖q1 + ‖u|B‖q2,∞;∞ + ‖v(t)|AR1,S0‖q

)
(6.37)

[ (
|x| ν(x)

)−(5/2+|α|)/2
+ |x|−γ−|α|

]
for a. e. x ∈ Bc

R0
. It remains to estimate ‖v(t)|AR1,S0‖q. Let Z ⊂ {1, ..., n0}. Since t /∈ Ñ ,

hence t /∈ N, equation (6.23) holds. This equation, the relation S0 > S2, the choice of t0
in Theorem 6.2 and inequality (6.24) yield

‖v(t)|AR1,S0‖q ≤ C
(
M +

∑n0

j=1, j /∈Z
‖f (j)‖pj ,2;∞ +

∑
j∈Z

sup
r∈(−1,t]\N

‖U(j)(r)|AR1,S2‖q
)
.

In view of the upper bound of the left-hand side of (6.28) given in (6.37), the preceding
inequality completes the proof of (6.28). Note that if γ = 3 in (6.36), we have |x|−γ−|α| ≤
C
(
|x| ν(x)

)−5/4−|α|/2
, so the term |x|−γ−|α| may be dropped in (6.37), and thus in (6.28)

and (6.29) as well. �
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This leaves us to consider the case T0 < ∞. The basic idea consists, of course, to extend
a solution u of (4.6) on (0, T0) to a solution ũ of a similar equation on (0,∞). We could
not find a useful equation if u is simply extended by zero on (T0,∞). So we have to fix
an arbitrary number T ∈ (0, T0), cut off u smoothly between T and T0, and define ũ as
the zero extension of this truncated version of u. Then we apply Theorem 6.2 to ũ, in
the hope of extracting an upper bound of ũ|(0, T ) = u|(0, T ) only depending on suitable
norms of u, but not on negative powers of T0−T. However, this approach turned out to be
difficult since the function % introduced in Corollary 6.1 and entering into the definition
of E is defined via Fourier transforms involving ũ. Thus the contribution of ũ|(T, T0) to an
upper bound of ũ|(0, T ) is difficult to evaluate. This is the reason why we introduced the
functions U(j) in Theorem 6.1 and carried them all the way to Theorem 6.2. They are an
explicit form of the critical Fourier transforms that will have to be estimated in the proof
of the following theorem.

Theorem 6.3 Suppose that T0 ∈ (0,∞). Let n0 ∈ N, p1, ..., pn0 ∈ (1,∞), f (j) ∈
L2
(

0, T0, L
pj (Ω

c
)3
)

for 1 ≤ j ≤ n0. Let q1 ∈ (1,∞) be such that condition (6.22) is

valid. Let U0 ∈ Lq1σ (R3), q0, q2 ∈ (1,∞), u ∈ L2
(

0, T0, L
q0(Ω

c
)3
)
∩ L∞

(
0, T0, L

q2(Ω
c
)3
)

with u(t) ∈ W 1,1
loc (Ω

c
)3, divxu(t) = 0 for t ∈ (0, T0), and ∇xu ∈ L2

(
0, T0, L

q1(Ω
c
)9
)
.

Suppose that equation (4.6) holds with f =
∑n0

j=1 f
(j). Then there is a zero mesure set

Ñ ⊂ R such that

|
[
∂αxu− ∂αxR(τ)

(∑n0

j=1
f (j)|BS0

c × (0, T0)
)
− ∂αxI(τ)(U0|BS0

c
)
]
(x, t)| (6.38)

≤ C
((
|x| ν(x)

)−5/2−|α|/2
+ |x|−2+|α|

) (
‖u‖q0,2;T0 + ‖∇xu‖q1,2;T0

+‖U0‖q1 + ‖u‖q2,∞;T0 +
∑n0

j=1
‖f (j)|BS0

c × (0, T0)‖pj ,2;∞
)

for t ∈ (0, T0)\Ñ , a. e. x ∈ BR0

c
, α ∈ N3

0 with |α| ≤ 1. If
∫
∂Ω u(t) · n(Ω) dox = 0

for t ∈ (0, T0), the factor |x|−2−|α| in (6.38) may be dropped. The constant in (6.38) is
independent of T0.

Proof: Fix some function ψ0 ∈ C∞(R) with ψ0|(−∞, 1/4] = 0, ψ0|[3/4, ∞) = 1, ψ′0 ≥ 0
and 0 ≤ ψ0 ≤ 1. Let T ∈ (0, T0), and put ϕT (s) := ψ0

(
(T0−s)/(T0−T )

)
for s ∈ R, T1 :=

3T/4 + T0/4, T2 := T/4 + 3T0/4. Then T < T1 < T2 < T0, ϕT ∈ C∞(R), 0 ≤ ϕT ≤
1, ϕT |(−∞, T1] = 1, ϕT |[T2,∞) = 0, ϕ′T ≤ 0 and supp(ϕ′T ) ⊂ [T1, T2]. All the con-

stants C appearing in the following are independent of T and T0. Further define f
(j)

(t) :=

ϕT (t) f (j)(t) for t ∈ (0, T0), 1 ≤ j ≤ n0, f
(n0+1)

(t) := ϕ′T (t)u(t), u(t) := ϕT (t)u(t)

for t ∈ (0, T0). The functions f
(1)
, ..., f

(n0+1)
, u are supposed to vanish on [T0,∞). We

additionally put pn0+1 := q2. Since supp(ϕ′T ) ⊂ [T1, T2] and u ∈ L∞
(

0, T0, L
q2(Ω

c
)3
)
,

we have in particular that f
(n0+1) ∈ L2

(
0,∞, Lpn0+1(Ω

c
)3
)
. It is obvious that u ∈

L2
(

0,∞, Lq0(Ω
c
)3
)
∩ L∞

(
0,∞, Lq2(Ω

c
)3
)
, u(t) ∈ W 1,1

loc (Ω)3, divxu(t) = 0 for t ∈
(0,∞)

)
, ∇xu ∈ L2

(
0,∞, Lq1(Ω

c
)9
)

and

‖f (j)|Bc
S0
× (0,∞)‖pj ,2;∞ ≤ ‖f (j)|Bc

S0
× (0, T0)‖pj ,2;T0 (1 ≤ j ≤ n0), (6.39)

‖u‖q2,∞;∞ ≤ ‖u‖q2,∞;T0 , ‖∇xu‖q1,2;∞ ≤ ‖∇xu‖q1,2;T0 .
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By the definition of f
(n0+1)

and because ϕT |[T1,∞) = 0, we further get that equation (4.6)

is fulfilled with T0 = ∞, f =
∑n0+1

j=1 f
(j)
, and with u in the place of u. Thus we see that

all assumptions of Corollary 6.1 and Theorem 6.2 are satisfied with n0 +1, u in the role of

n0 and u, respectively, and f
(j)

(1 ≤ j ≤ n0 + 1) in that of f (j) (1 ≤ j ≤ n0). Therefore we
may apply Theorem 6.2 with these replacements. This means in particular there are zero
measure sets N, Ñ ⊂ R with N ⊂ Ñ , and a sequence (Rn) in (1,∞) with the following
two properties. Firstly, the limit U(n0+1)(t) := limn→∞An(t) exists in Lpn0+1(BS1

c
)3 for

t ∈ R\N, where

An(t) (6.40)

:= (2π)−1/2

∫
(−Rn,Rn)\(−1,1)

ei t ξ (i ξ Ipn0+1 +Apn0+1)−1
(
Ppn0+1

(
[f

(n0+1)
]∧(ξ)|BS1

c ))
dξ

for n ∈ N, t ∈ R. This integral is to be understood as a Bochner integral with values in
Lpn0+1(BS1

c
)3. The operator Ppn0+1 is to be chosen as in Theorem 2.6, and the operators

Ipn0+1 and Apn0+1 as in Corollary 3.1, each time with BS1

c
in the place of A. The second

property associated with the sequence (Rn) and the sets N and Ñ is that for t ∈ (0,∞)\Ñ ,
a. e. x ∈ BR0

c
, α ∈ N3

0 with |α| ≤ 1 and Z ⊂ {1, ..., n0 + 1}, inequality (6.28) holds

with n0 + 1, u, f (j) (1 ≤ j ≤ n0) in the role of n0, u and f
(j)

(1 ≤ j ≤ n0 + 1),
respectively. We choose Z = {n0 + 1}, and use the possibility to fix the parameter
q ∈ (1,∞), under the restriction that it is below the threshold imposed in Corollary 6.1,
setting q := min({q0, q1, q2} ∪ {pj : 1 ≤ j ≤ n0 + 1}). Then we get for t ∈ (0, T )\Ñ , a. e.
x ∈ BR0

c
and α ∈ N3

0, |α| ≤ 1 that

Nα,x,t ≤ CV(x, α) (M(t) + sup
r∈(−1,t]\N

‖U(n0+1)(r)|AR1,S2‖q), (6.41)

with Nα,x,t := |
[
∂αxu− ∂αxR(τ)

(∑n0+1
j=1 f

(j)|Bc
S0
× (0,∞)

)
− ∂αxI(τ)(U0|Bc

S0
)
]
(x, t)|,

M(t) := ‖u‖q0,2;∞ + ‖∇xu‖q1,2;∞ + ‖U0‖q1 + ‖u|AR1,S0 × (0,∞)‖q2,∞;∞

+
∑n0+1

j=1
‖f (j)|BS0

c × (0, t)‖pj ,2;t +
∑n0

j=1
‖f (j)

BS0

c × (0,∞)‖pj ,2;∞,

and V(x, α) :=
(
|x| ν(x)

)−5/4−|α|/2
+ |x|−2−|α|, where the term |x|−2−|α| may be dropped

if the integral
∫
∂Ω u(s) · n(Ω) doy vanishes for s ∈ (0, T0), a condition which means that∫

∂Ω u(s)·n(Ω) doy = 0 for s ∈ (0,∞).We are going to exploit (6.41) in the case t ∈ (0, T )\Ñ .
Since f (j)|(0, T ) = f

(j)|(0, T ) for 1 ≤ j ≤ n0, we get R(τ)
(
f (j)|Bc

S0
× (0, T0)

)
(x, t) =

R(τ)
(
f

(j)|Bc
S0
×(0,∞)

)
(x, t) for 1 ≤ j ≤ n0, t ∈ (0, T ), x ∈ R3. Moreover f

(n0+1)|(0, T ) =

0, so R(τ)
(
f

(n0+1)|Bc
S0
× (0,∞)

)
(x, t) = 0 for t, x as before. Recalling that u|(0, T ) =

u|(0, T ), we thus get

Nα,x,t = |
[
∂αxu− ∂αxR(τ)

( n0∑
j=1

f (j)|BS0

c × (0, T0)
)
− ∂αxI(τ)(U0|Bc

S0
)
]
(x, t)|, (6.42)
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for t ∈ (0, T ), x ∈ BR0

c
, α ∈ N3

0 with |α| ≤ 1. Again since f
(n0+1)|(0, T ) = 0, and because

of (6.39), we find

M(t) ≤ ‖u‖q0,2;T0 + ‖∇xu‖q1,2;T0 + ‖U0‖q1 + ‖u|AR1,S0 × (0, T0)‖q2,∞;T0 (6.43)

+
∑n0

j=1
‖f (j)|BS0

c × (0, T0)‖pj ,2;T0

for t ∈ (0, T ). We still have to estimate the term supr∈(−1,t]\N ‖U(n0+1)(r)|AR1,S2‖q for

t ∈ (0, T )\N. Our starting point is the relation ‖U(n0+1)(s) − An(s)‖pn0+1 → 0 (n → ∞)
for s ∈ R\N, with An(s) defined in (6.40). We recall that pn0+1 = q2 by the definition
of pn0+1 further above. Therefore we may write q2 instead of pn0+1 in the following.

By the definition of f
(n0+1)

, by Corollary 2.1 and because supp(ϕ′T ) ⊂ [T1, T2], we have

Pq2
(

[f
(n0+1)

]∧(ξ)|BS1

c )
= (2π)−1/2

∫ T2
T1
ϕ′T (r) e−i ξ r Pq2

(
u(r)|BS1

c )
dr, with the Bochner

integral being Lq2(BS1

c
)3-valued. We then get with Fubini’s theorem for Bochner integrals

(Theorem 2.10) that for s ∈ R,

An(s) (6.44)

= (2π)−1

∫ T2

T1

ϕ′T (r)

∫
(−Rn,Rn)\(−1,1)

ei ξ (s−r) (i ξ Iq2 +Aq2)−1
[
Pq2
(
u(r)|BS1

c ) ]
dξ dr,

where both Bochner integrals are Lq2(BS1

c
)3-valued. Let B denote the space of linear

bounded operators of the space Lq2(BS1

c
)3 into itself. We equip B with its usual norm,

which we denote by ‖ ‖B. In the rest of this proof, all Bochner integrals with respect to
the variable λ are to be understood as B-valued.

Take s ∈ (−∞, T )\N. The constants C appearing in what follows are independent of s
and, of course, of T and T0. For r ∈ [T1, T2], define T(λ, r, s) := e(s−r)λ (λ Iq2 + Aq2)−1

for λ ∈ C\(−∞, 0]. Referring to Corollary 3.1, we see that T( · , r, s) : C\(−∞, 0] 7→ B is
holomorphic for any r ∈ [T1, T2]. Morever, by the same reference, for any ϑ ∈ [0, π), the
inequality

‖T(λ, r, s)‖B ≤ C(ϑ) e(s−r)<λ |λ|−1 (r ∈ [T1, T2], λ ∈ C\{0} with | arg(λ)| ≤ ϑ) (6.45)

is valid. We further put g(r) := Pq2
(
u(r)|Bc

S1

)
for r ∈ [T1, T2]. Theorem 2.6 yields

‖g(r)‖q2 ≤ C ‖u(r)|BS1

c‖q2 for r ∈ [T1, T2]. (6.46)

Set Λ
(n)
1 := {i a : a ∈ [−Rn,−1]}, Λ

(n)
2 := {i a : a ∈ [1, Rn]} (n ∈ N). Then, using

Theorem 2.7, we may rewrite (6.44) in the form

An(s) = (2π i)−1

∫ T2

T1

ϕ′T (r)
( 2∑
j=1

∫
Λ
(n)
j

T(λ, r, s) dλ
)
g(r) dr (n ∈ N). (6.47)

Here and in the following, all line integrals are to be oriented as is indicated implicitly by
the way we define the respective curve. Fix some angle ϑ ∈ [0, π/2). For n ∈ N, define

Λ
(n)
3 := {Rn e−i (π/2−ϕ) : ϕ ∈ [0, π/2 − ϑ]}, Λ

(n)
4 := {−a e−i ϑ : a ∈ [−Rn,−1]}, Λ5 :=

Λ
(n)
5 := {e−i ϕ : ϕ ∈ [ϑ, π/2]}, Λ6 := Λ

(n)
6 := {ei (π/2−ϕ) : ϕ ∈ [0, π/2 − ϑ]}, Λ

(n)
7 :=
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{a ei ϑ : a ∈ [1, Rn]}, Λ
(n)
8 := {Rn ei ϕ : ϕ ∈ [ϑ, π/2]}. Since T( · , r, s) : C\(−∞, 0] 7→ B is

holomorphic, we find∑2

j=1

∫
Λ
(n)
j

T(λ, r, s) dλ =
∑8

j=3

∫
Λ
(n)
j

T(λ, r, s) dλ for n ∈ N, r ∈ [T1, T2]. (6.48)

Define Λ9 := {e−i ϕ : ϕ ∈ [−π/2, π/2]}, Λ10 := Λ
(n)
10 := {ei ϕ : ϕ ∈ [−ϑ, ϑ]}, L(s) :=

(2π i)−1
∫ T2
T1
ϕ′T (r)

(∫
Λ9

T(λ, r, s) dλ
)
g(r) dr. Then we find that

∑
j∈{5, 6}

∫
Λj

T(λ, r, s) dλ =∑
j∈{9, 10}

∫
Λj

T(λ, r, s) dλ for r ∈ [T1, T2]. From (6.47), (6.48) and the preceding equation,

for n ∈ N,

An(s) = (2π i)−1

∫ T2

T1

ϕ′T (r)
( ∑
j∈{3, 4, 10, 7, 8}

∫
Λ
(n)
j

T(λ, r, s) dλ
)
g(r) dr + L(s). (6.49)

If r ∈ [T1, T2], we have s < T < T1 ≤ r, so r− s > T1−T > 0. For n ∈ N, r ∈ [T1, T2] with

Rn > T1−T, define Λ
(n,r)
3 := Λ

(n)
3 , Λ

(n,r)
11 := {−a e−i ϑ : a ∈ [−Rn, −(r− s)−1]}, Λ

(n,r)
12 :=

Λ
(r)
12 := {(r − s)−1 ei ϕ : ϕ ∈ [−ϑ, ϑ]}, Λ

(n,r)
13 := {a ei ϑ : a ∈ [(r − s)−1, Rn]}, Λ

(n,r)
8 :=

Λ
(n)
8 . Again because T( · , r, s) : C\(−∞, 0] 7→ B is holomorphic, equation (6.49) remains

valid for n ∈ N with Rn > (T1 − T )−1 if the sum with respect to j is extended over
j ∈ {3, 11, 12, 13, 8} instead of j ∈ {3, 4, 10, 7, 8}. In the next step, we let n tend to

infinity. To this end, we define Λ
(r)
14 := {−a e−i ϑ : a ∈ (−∞, −(r−s)−1]}, Λ

(r)
15 := {a ei ϑ :

a ∈ [(r − s)−1, ∞)} for r ∈ [T1, T2]. Inequality (6.45) implies that∥∥∥ ∑
j∈{14, 12, 15}

∫
Λ
(r)
j

Tr(λ) dλ
∥∥∥
B
≤ C for r ∈ [T1, T2], (6.50)

with a constant C independent of s and r. Usually the role of the negative real s − r
appearing in the definition of T is taken by a positive real, and ϑ is supposed to belong
to (π/2, π) (so that cosϑ < 0) instead of (0, π/2) (so that cosϑ > 0), as required here.
But these two differences compensate, so standard computations as in [47, p. 30-31] carry
through in our situation as well. On the basis of (6.50), let us show that Kn(s)→ 0 (n→
∞), where Kn(s) denotes the term∥∥∥An(s)− (2π i)−1

∫ T2

T1

ϕ′T (r)
( ∑
j∈{14, 12, 15}

∫
Λ
(r)
j

T(λ, r, s) dλ
)
g(r) dr − L(s)

∥∥∥
q2

(6.51)

(n ∈ N). In fact, for n ∈ N and r ∈ [T1, T2], with the abbreviation λ(n, ϕ) := Rn e
−i (π/2−ϕ),

we find that∥∥∥∫
Λ
(n)
3

T(λ, r, s) dλ
∥∥∥
B

=
∥∥∥∫ π/2−ϕ

0
e(s−r)λ(n,ϕ) i λ(n, ϕ)

(
λ(n, ϕ) Iq2 +Aq2

)−1
dϕ
∥∥∥
B
,

so
∥∥∫

Λ
(n)
3

T(λ, r, s) dλ
∥∥
B
≤ C

∫ π/2−ϕ
0 e(s−r)Rn cos(π/2−ϕ) dϕ due to (6.45) with ϑ replaced

by π/2, for example. Hence∥∥∥∫
Λ
(n)
3

T(λ, r, s) dλ
∥∥∥
B
≤ C

∫ π/2

ϑ
e(s−r)Rn cos(ζ) dζ ≤ C

∫ π/2

ϑ
e(s−r)Rn cos(ζ) sin(ζ) dζ

≤ C
(

(r − s)Rn
)−1 ≤ C

(
(T1 − T )Rn

)−1 (
n ∈ N, r ∈ [T1, T2]

)
.
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Analogously we get
∥∥∫

Λ
(n)
8

T(λ, r, s) dλ
∥∥
B
≤ C

(
(T1 − T )Rn

)−1
for n, r as before. More-

over, for r ∈ [T1, T2], n ∈ N with Rn > (T1 − T )−1, with λ(a) := a e−i ϑ for a ∈ [Rn,∞),(∥∥∥∫
Λ
(r)
14

−
∫

Λ
(n,r)
11

)
T(λ, r, s) dλ

∥∥∥
B

=
∥∥∥∫ ∞

Rn

e(s−r)λ(a) e−i ϑ
(
λ(a) Iq2 +Aq2

)−1
da
∥∥∥
B

≤ C

∫ ∞
Rn

e(s−r) a cosϑ a−1 da ≤ CR−1
n

∫ ∞
Rn

e(s−r) a cosϑ da ≤ C
(
Rn (T1 − T ) cosϑ

)−1
,

where the first inequality follows from (6.45), and the second is a consequence of the
relation s < T < T1 ≤ r for r ∈ [T1, T2]. We may proceed in the same way when the curves

Λ
(r)
14 and Λ

(n,r)
11 are replaced by Λ

(r)
15 and Λ

(n,r)
13 , respectively. The preceding estimates

beginning with that of
∥∥∫

Λ
(n)
3

T(λ, r, s) dλ
∥∥
B

combined with (6.49) with a sum over j ∈
{3, 11, 12, 13, 8} instead of j ∈ {3, 4, 10, 7, 8} – replacement justified above – yield that

Kn(s) ≤ C
(
Rn (T1 − T )

)−1
∫ T2

T1

−ϕ′T (r) ‖g(r)‖q2 dr (6.52)

for n ∈ N with Rn > (T1 − T )−1, where Kn(s) is an abbreviation of the term in (6.51), as
we may recall. Here we used that ϕ′T ≤ 0. On the other hand, because of (6.46) and the
relation u ∈ L∞

(
0, T0, L

q2(Ω
c
)3
)
, and since ϕT (T1) = 1, ϕT (T2) = 0,∫ T2

T1

−ϕ′T (r) ‖g(r)‖q2 dr ≤ C ‖u‖q2,∞;T0

∫ T2

T1

−ϕ′T (r) dr = C ‖u‖q2,∞;T0 . (6.53)

Since Rn → ∞, it follows that the right-hand side of (6.52) vanishes when n tends to
infinity. As a consequence Kn(s) → 0 (n → ∞). But s /∈ N, so ‖U(n0+1)(s) − An(s)‖q2 →
0 (n → ∞), as mentioned in the passage preceding (6.40). Therefore we may conclude
that

U(n0+1)(s) = (2π i)−1

∫ T2

T1

ϕ′T (r)
( ∑
j∈{14, 12, 15}

∫
Λ
(r)
j

Tr(λ) dλ
)
g(r) dr + L(s). (6.54)

(The term L(s) is defined in the passage following (6.48).) But

∥∥∫ T2

T1

ϕ′T (r)
( ∑
j∈{14, 12, 15}

∫
Λ
(r)
j

T(λ, r, s) dλ
)
g(r) dr

∥∥
q2
≤ C

∫ T2

T1

−ϕ′T (r) ‖g(r)‖q2 dr, (6.55)

as follows from (6.50) and because ϕ′T ≤ 0. Obviously, due to (6.45) and since ϕ′T ≤ 0

and s − r < 0 for r ∈ [T1, T2], we get ‖L(s)‖q2 ≤ C
∫ T2
T1
−ϕ′T (r) ‖g(r)‖q2 dr. At this point

we may deduce from (6.53) – (6.55) that ‖U(n0+1)(s)‖q2 ≤ C‖u‖q2,∞;T0 . But q ≤ q2, so

we finally arrive at the inequality ‖U(n0+1)(s)|AR1,S2‖q ≤ C‖u‖q2,∞;T0 . Recall that s is
an arbitrary number from (−∞, T )\N. The preceding estimate, inequality (6.41), (6.43)
and equation (6.42) imply that inequality (6.38) holds for t ∈ (0, T )\N, a. e. x ∈ BR0

c

and α ∈ N3
0, |α| ≤ 1, with a constant C independent of T and T0, and without the term

|x|−2−|α| if u satisfies the zero flux condition stated in the theorem. Since T was taken
arbitrarily in (0, T0), the theorem is proved. �
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Concerning the left-hand side of the decay estimates (6.29) and (6.38), we remark that the
asymptotics of the terms ∂αxR

(τ)
(∑n0

j=1 f
(j)|BS0

c×(0, T0)
)
(x, t) and ∂αxI

(τ)(U0|BS0

c
)(x, t)

are a seperate problem, only depending on the behaviour of f (j) (1 ≤ j ≤ n0) and U0,
respectively. If these latter functions have compact support, then the two terms in question

are both bounded by C
(
|x| ν(x)

)−3/2−|α|/2
for x ∈ BR0

c
, t ∈ (0, T0); see [23, Lemma 4.1]

for ∂αxI
(τ)(U0|BS0

c
) and [23, Lemma 4.2] for ∂αxR

(τ)
(∑n0

j=1 f
(j)|BS0

c × (0, T0)
)
. In this

situation these terms decrease faster than the right-hand side of (6.29) and (6.38). For

conditions on f (j) and U0 leading to the decay bound C
(
|x| ν(x)

)−1−|α|/2
, we refer to [18,

Theorem 3.1] and [17, Theorem 3.1], respectively.

7 Spatial decay of L2-strong solutions to the nonlinear prob-
lem (1.1).

We start by specifying our assumptions on the data and the solution. We fix S0 ∈ (0,∞)
with Ω ⊂ BS0 , T0 ∈ (0,∞], and assume there is qf ∈ (1, 6/5), Rj ∈ (S0,∞), Cf ∈ (0,∞)
and f ∈ L2

(
0, T0, L

2(Ω
c
)3
)
∩ L2

(
0, T0, L

qf (Ω
c
)3
)

such that

|∂αxR(τ)
(
f |BS0

c × (0, T0)
)
(x, t)| ≤ Cf

(
|x| ν(x)

)−5/4−|α|/2
(7.1)

for x ∈ BRf
c
, t ∈ (0, T0), α ∈ N3

0 with |α| ≤ 1. Moreover let Ri ∈ (S0,∞), Ci ∈ (0,∞)
and U0 ∈ L2

σ(R3)3 such that

|∂αxI(τ)(U0|BS0

c
)(x, t)| ≤ Ci

(
|x| ν(x)

)−5/4−|α|/2
for x ∈ BRi

c
, t, α as in (7.1). (7.2)

Conditions (7.1) and (7.2) are a concrete form of the indication following (1.6) and stating
that (1.6) holds if the right-hand side and the initial data decay sufficiently fast. Also see
the remark at the end of Section 6 in this respect. Concerning the function U in (1.1), we
require that

U ∈ L6(Ω
c
)3 ∩W 1,1

loc (Ω
c
)3, ∇U ∈ L2(Ω

c
)9, divU = 0, (7.3)

|∂αU(x)| ≤ CU
(
|x| ν(x)

)−1−|α|/2
for x ∈ BRU

c
, α ∈ N3

0 with |α| ≤ 1,

with certain parameters RU ∈ (S0,∞), CU ∈ (0,∞). As explained in the context of (1.3),
these assumptions are also realistic because U should be considered as a standard weak
solution to (1.2), and as such it satisfies these conditions if the right-hand side in (1.3)
decays sufficiently fast. We further fix a real number R0 ≥ max{Rf , Ri, RU}.
As regards our assumptions on the solution of (1.1), we suppose there are numbers
s0 ∈ [1, 3), r0 ∈ (3,∞) such that u ∈ L∞

(
0, T0, L

κ(Ω
c
)3
)

for κ ∈ {s0, r0}, and we

require that u(t) ∈ W 1,1
loc (Ω

c
)3 for t ∈ (0, T0), ∇xu ∈ L2

(
0, T0, L

2(Ω
c
)9
)
, (u · ∇x)u ∈

L2
(

0, T0, L
3/2(Ω

c
)3
)
, divxu = 0, and∫ T0

0

∫
Ω
c

(
−ϕ′(t)u(t) · ϑ+ ϕ(t)

[
∇xu(t) · ∇ϑ+

(
τ ∂x1u(t) + g(t)− f(t)

)
· ϑ
])
dx dt (7.4)

−ϕ(0)

∫
Ω
c
U0 · ϑ dx = 0 for ϕ ∈ C∞0

(
[0, T0)

)
, ϑ ∈ C∞0,σ(Ω

c
),
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where

g(x, t) := τ
[ (
u(x, t) · ∇x

)
u(x, t) +

(
U(x) · ∇x

)
u(x, t) +

(
u(x, t) · ∇)U(x)

]
(7.5)

for x ∈ Ω
c
, t ∈ (0, T0). These are exactly the same conditions on u as in [19], except that

we do not impose any boundary condition. Without loss of generality, we may suppose
that s0 ≥ 2.

Existence of this type of solution to (1.1) was shown by Heywood [37, Theorem 2, 6,
2′], who considered the case u ∈ L∞

(
0, T0, H

1(Ω
c
)3
)

and ∇xu ∈ L2
(

0, T0, L
2(Ω

c
)9
)
. In

this situation we may choose r0 = 6, s0 = 2 in the above list of assumptions. A similar
kind of solutions comes up in the theory developed by Solonnikov [50] in a more general
framework. (Take p = 2 in [50, Theorem 10.1, Remark 10.1].) Mild solutions to (1.1) were
constructed by Miyakawa [45, Theorem 5.2] and Shibata [48, Theorem 1.4], with initial
data in L3 in the case of the latter author, and in Lr with r > 3 in the case of the former
one. Each of the preceding authors imposed Dirichlet boundary conditions and proved
existence either for small T0 or for T0 =∞ and small data. Temporal decay estimates of
spatial Lp-norms of solutions to (1.1) were established by Masuda [43], Heywood [37, p.
675], [36], Shibata [48], Enomoto and Shibata [31] and Bae and Roh [4].

We now present the modifications we bring to the linear theory in [19]. This modified
theory will then be used (Theorem 7.3) in order to improve the decay estimates in [19] of the
solution u to (1.1) introduced above. We start by defining functions h : Ω

c×(0, T0) 7→ R3×3

and gb : ∂Ω× (0, T0) 7→ R3 by setting

Hkl(t) := τ
(
ul(t)uk(t) + ul(t)Uk + Ul uk(t)

) (
t ∈ (0, T0), 1 ≤ k, l ≤ 3

)
, (7.6)

gb,k(y, s) :=
∑3

l=1
S−1

0 ylHkl(y, s)
(
s ∈ (0, T0), y ∈ ∂BS0 , 1 ≤ k ≤ 3

)
.

Lemma 7.1 Put H
(1)
kl (t) := τ uk(t)ul(t), H

(2)
kl (t) := τ (uk(t)Ul + Uk ul(t)) for t ∈ (0, T0)

and 1 ≤ k, l ≤ 3, so that H = H(1)+H(2). Then the following relations hold true: u belongs

to L2
(

0, T0, L
6(Ω

c
)3
)
∩L∞

(
0, T0, L

3(Ω
c
)3
)
, H

(1)
kl to L2

(
0, T0, L

2(Ω
c
)
)
, and ∂xmH

(2)
kl , fk

and gk are in the space L2
(

0, T0, L
3/2(Ω

c
)
)
. In addition H

(2)
kl ∈ L2

(
0, T0, L

3(Ω
c
)
)

and

∂xmH
(1)
kl ∈ L1

(
0, T0, L

3/2(Ω
c
)
)

for 1 ≤ k, l,m ≤ 3. The function gb defined in (7.6)
belongs to L2

(
0, T0, L

1(∂BS0)3
)
.

Proof: For t ∈ (0, T0), we have u(t) ∈ Ls0(Ω
c
)3 and ∇xu(t) ∈ L2(Ω

c
)9, so ‖u(t)‖6 ≤

C‖∇xu(t)‖2 by Theorem 2.4. As a consequence u ∈ L2
(

0, T0, L
6(Ω

c
)3
)
. The assumptions

on u yield immediately that u ∈ L∞
(

0, T0, L
3(Ω

c
)3
)
. The two preceding relations, the

assumptions U ∈ L6(Ω
c
)3, ∇U ∈ L2(Ω

c
)9 (see (7.3)), ∇xu ∈ L2

(
0, T0, L

2(Ω
c
)9
)

and

(u · ∇x)u ∈ L2
(

0, T0, L
3/2(Ω

c
)3
)
, and the conditions on f imply the other claims of the

lemma. �

Lemma 7.2 Abbreviate H·l := (Hml)1≤m≤3 for 1 ≤ l ≤ 3. Let ζ ∈ C∞(R3) be a bounded
function with bounded first-order derivatives. Let t ∈ (0, T0).

Then
∫
BS0

c |∂yl
(

Λjm(x − y, t − s) ζ(y)
)
· Hml(y, s)| dy < ∞ for x ∈ R3, s ∈ (0, t) and

1 ≤ j, l,m ≤ 3. Let x ∈ BS0

c
with

∫ t
0

∣∣ ∫
BS0

c
∑3

l=1 Λ(x − y, t − s) ζ(y) g(y, s) dy
∣∣ ds <
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∞. (By Lemma 4.4, this assumption is true for a. e. x ∈ R3.) Then the integral∫ t
0

∣∣ ∫
BS0

c
∑3

l=1 ∂yl
(

Λ(x− y, t− s) ζ(y)
)
·H·l(y, s) dy

∣∣ ds is finite. Put

Qζ(x, t) := −
∫ t

0

∫
BS0

c

3∑
l=1

∂yl
(

Λ(x− y, t− s) ζ(y)
)
·H·l(y, s) dy ds.

Then R(τ)
(
ζ g|BS0

c × (0, T0)
)
(x, t) = −V(τ,BS0 )(ζ gb)(x, t) + Qζ(x, t), with gb introduced

in (7.6).

Proof: The first claim of the lemma follows from Lemma 4.4 and 7.1. As for the main
part of the lemma, in particular the equation at its end, the first step of its proof consists
in transforming the integral

∫
ΩR

Λ(x− y, t− s) · ζ(y) g(y, s) dy by a partial integration, for

x ∈ BS0

c
, s ∈ (0, t), R ∈ [S0,∞). Note that for such x and s, the term Λ(x − y, t − s)

as a function of y ∈ R3 belongs to C∞(R3)3×3 (Lemma 4.1). Further note that gm =∑3
l=1 ∂ylHml for 1 ≤ m ≤ 3 because divU = divxu = 0; see (7.3) and the assumptions

on u. More details of the proof of Lemma 7.2 can be taken from the proof of [19, Lemma
3.8], where the references [19, (1.16), Lemma 3.1, Corollary 3.3, Theorem 3.7] may be
replaced by Lemma 7.1, and where Lemma 4.4 may take the role of [19, Corollary 2.9,
Lemma 2.10]. In addition, inequality (4.2) may be used instead of [19, Corollary 2.7]. As

an example of how to handle these replacements, we remark that since H
(1)
kl (s) ∈ L2(Ω

c
)

and H
(2)
kl (s) ∈ L3(Ω

c
) (Lemma 7.1), and because of Lebesgue’s theorem and the first claim

in Lemma 4.4, we obtain
∫
R3\BR |∂yl

(
Λjm(x − y, t − s) ζ(y)

)
Hml(y, s)| dy → 0 (R → ∞)

for 1 ≤ j, l,m ≤ 3, x ∈ R3, s ∈ (0, t). �

Lemma 7.3 The inequality |∂αxV(τ,BS0 )(gb)(x, t)| ≤ C
(
|x| ν(x)

)−5/4−|α|/2
is valid for t ∈

(0, T0), x ∈ Bc
R0
, α ∈ N3

0 with |α| ≤ 1.

Proof: Put g
(j)
b (y, s) :=

(∑3
l=1 S

−1
0 ylH

(j)
kl (y, s)

)
1≤k≤3

for j ∈ {1, 2}, y ∈ ∂BS0 , s ∈
(0, T0), with H(1), H(2) from Lemma 7.1. Take x, t, α as in the lemma. Then by Lemma

7.1 and 4.6, the term |∂αxV(τ,BS0 )(g
(1)
b )(x, t)| is bounded by

C
[ (
|x| ν(x)

)−5/4−|α|/2 ‖H(1)‖2,2;T0 +
(
|x| ν(x)

)−3/2−|α|/2 ‖∇xH(1)‖3/2,1;T0

]
.

The same references yield

|∂αxV(τ,BS0 )(g
(2)
b )(x, t)| ≤ C

(
|x| ν(x)

)−5/4−|α|/2
(‖H(2)‖3,2;T0 + ‖∇xH(2)‖3/2,2;T0). �

Theorem 6.2, 6.3, assumption (7.1), (7.2) and Lemma 7.3 allow to reduce a decay estimate
of u to one of R(τ)

(
g|BS0

c × (0, T0)
)

or alternatively of the function Qζ from Lemma 7.2
with ζ = 1. The details are given in the next two corollaries. The first replaces [19, (3.8),
(3.9)].

Corollary 7.1 Put J (x, t) := u(x, t) + R(τ)
(
g|BS0

c × (0, T0)
)
(x, t) for x ∈ BS0

c
, t ∈

(0, T0). Then J (t) ∈ W 1,1
loc (BS0

c
)3
(
t ∈ (0, T0)

)
, and there is a zero measure set N ⊂

(0, T0) such that |∂αxJ (x, t)| ≤ C
[ (
|x| ν(x)

)−5/4−|α|/2
+ |x|−2−|α| ] for t ∈ (0, T0)\N, a.

e. x ∈ BR0

c
, and for α ∈ N3

0 with |α| ≤ 1, where the term |x|−2−|α| may be dropped if∫
∂Ω u(t) · n(Ω) dox = 0 for t ∈ (0, T0).
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Proof: The relation J (t) ∈ W 1,1
loc (BS0

c
)3 follows with Lemma 4.4. By Lemma 7.1, we

know that f − g ∈ L2
(

0, T0, L
3/2(Ω

c
)3
)

and u ∈ L2
(

0, T0, L
6(Ω

c
)3
)
. Thus, in view of

our conditions on U0 and u, we see that the assumptions of Theorem 6.2 (T0 = ∞) or
Theorem 6.3 (T0 < ∞) are satisfied with n0 = 1, p1 = 3/2, q0 = 6, q1 = 2, q2 = s0 and
f (1) = f − g. These references, in particular (6.29) and (6.38), then yield that there is a
zero measure set N ⊂ R such that

|
[
∂αxu− ∂αxR(τ)

(
f − g|BS0

c × (0, T0)
)
− ∂αxI(τ)(U0|BS0

c
)
]
(x, t)| (7.7)

≤ C
((
|x| ν(x)

)−5/4−|α|/2
+ |x|−2−|α|

)
for t ∈ (0, T0)\N, a. e. x ∈ BR0

c
and α ∈ N3

0, |α| ≤ 1, where the term |x|−2−|α| may be
omitted if the zero flux condition stated in the corollary holds true. Taking account of
what we supposed on R(τ)

(
f |BS0

c × (0, T0)
)

in (7.1) and on I(τ)(U0|BS0

c
) in (7.2), and

because R0 ≥ max{Rf , Ri}, we see that the estimate in Corollary 7.1 follows from (7.7).
�

The second corollary announced above will play the role of [19, (3.16), (3.17)].

Corollary 7.2 Put J̃ (x, t) := J (x, t)−V(τ,BS0 )(gb)(x, t) for x ∈ BS0

c
, t ∈ (0, T0), with J

from Corollary 7.1. Then u(x, t) = J̃ (x, t)+Q(x, t) for t ∈ (0, T0) and for a. e. x ∈ BS0

c
,

where Q = Qζ is to be defined as in Lemma 7.2 with ζ = 1.

There is a zero measure set N ⊂ (0, T0) such that for t ∈ (0, T0)\N, a. e. x ∈ BR0

c
and

α ∈ N3
0, |α| ≤ 1, the inequality |∂αx J̃ (x, t)| ≤ C

[ (
|x| ν(x)

)−5/4−|α|/2
+ |x|−2−|α| ] holds. If∫

∂Ω u(t) ·n(Ω) dox = 0 for t ∈ (0, T0)
)
, the term |x|−2−|α| may be omitted on the right-hand

side of the preceding estimate.

Proof: The equation for u(x, t) follows from the definition of J in Corollary 7.1 and
from Lemma 7.2. The estimate stated in the corollary is a consequence of Lemma 7.3 and
Corollary 7.1. �

We verify that [19, Theorem 3.7] remains valid in the present situation.

Theorem 7.1 There is σ1 ∈ (1, 2) such that u ∈ L∞
(

0, T0, L
p(Ω

c
)3
)

for p ∈ [σ1, 2].

Moreover |u| |U | ∈ L∞
(

0, T0, L
1(Ω

c
)
)
.

Proof: Let us show that R(τ)
(
g|BS0

c × (0, T0)
)
∈ L∞

(
0,∞, Lκ(R3)3

)
for a range

of exponents κ ≤ 2. Since by our assumptions u is in L∞
(

0, T0, L
s0(Ω

c
)3
)

for some

s0 ∈ [2, 3), and ∇xu is L2-integrable on Ω
c × (0, T0), we obtain with Hölder’s inequal-

ity that 1 ≤ 2/(1 + 2/s0) < 6/5 and |u| |∇xu| ∈ L2
(

0, T0, L
2/(1+2/s0)(Ω

c
)3
)
; see [19,

(3.6)]. Moreover, by Lemma 2.2 and our assumptions on U (see (7.3)) and u, we get
(u · ∇)U + (U · ∇x)u ∈ L2

(
0, T0, L

11/10(Ω
c
)3
)
; see [19, (3.2), (3.4)]. Since (u · ∇)U + (U ·

∇x)u = (
∑3

l=1 ∂xlH
(2)
ml )1≤m≤3 belongs to L2

(
0, T0, L

3/2(Ω
c
)3
)

by Lemma 7.1 and (u·∇x)u

is in the same space by assumption, we may conclude that g ∈ L2
(

0, T0, L
σ0(Ω

c
)3
)
, with

σ0 := max{11/10, 2/(1 + 2/s0)} ∈ (1, 6/5). With this property of g at hand, we may
reason as in [19, p. 1406, second paragraph] to obtain that (1/σ0 − 1/3)−1 < 2 and
R(τ)

(
g|BS0

c × (0, T0)
)
∈ L∞

(
0,∞, Lκ(R3)3

)
for κ ∈

(
(1/σ0 − 1/3)−1, 2

]
.

On the other hand, Corollary 7.1 and Lemma 2.2 yield that J |Bc
R0
× (0, T0) belongs to
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L∞
(

0, T0, L
q(BR0

c
)3
)

for q ∈ (8/5, ∞). Since in addition, u ∈ Lr0
(

0, T0, L
σ0)(Ω

c
)3
)

for
some r0 > 3 by our assumptions, Corollary 7.1 allows to conclude at this point that the
first claim of the theorem is valid with σ1 := max{8/5, (1/σ0− 1/3)−1}. Morever by (7.3)
and Lemma 2.2 we have U ∈ Lq(Ωc

)3 for p ∈ (2, 6]. This observation and the first claim
of the theorem imply the second. �

Due to the preceding results, the decay estimate from [14] (inequality (1.4)) carries over
to the present situation. This is made precise by the ensuing theorem and its proof.

Theorem 7.2 Let R ∈ (R0,∞). Then |∂αxu(x, t)| ≤ C
(
|x| ν(x)

)−1−|α|/2
for x ∈ Bc

R, t ∈
(0, T0) and α ∈ N3

0 with |α| ≤ 1.

Proof: The theorem holds according to [19, Theorem 4.6, 4.8]. We may use these theorems
because the reasoning in [19, Section 4] carries through without change, except that some
references have to be modified. The role of [19, Corollary 3.5, in particular (3.8), (3.9)] is
played here by Corollary 7.1, whereas [19, Corollary 3.10, in particular (3.16), (3.17)] is
replaced by Corollary 7.2. A proof of [19, Theorem 3.7] adapted to the present situation is
given above (Theorem 7.1). For all the other auxiliary results used in [19], the assumptions
(or lack of them) particular to the work at hand are not relevant. This is true in particular
for the technical tools stated in [19, Theorem 2.8, 2.18, Corollary 2.19, Lemma 2.20], as
well as for some results which are used here as well, like [19, Lemma 2.10], reappearing
here as Lemma 4.4. Whenever [19, Corollary 3.3] is applied in [19, Chapter 4], only
the relation g ∈ L2

(
0, T0, L

6/5(Ω
c
)3
)

is used, which may be replaced in that context by

g ∈ L2
(

0, T0, L
3/2(Ω

c
)3
)

(Lemma 7.1). �

With Theorem 7.2 available, we may now use Corollary 7.2 in order to improve the decay
estimate in Theorem 7.2, and thus the estimate derived in [19]. The key result in this
respect, and the main contribution of this section, is

Theorem 7.3 Let R ∈ (R0,∞). Then there is a set N ⊂ (0,∞) of measure zero such
that for t ∈ (0, T0)\N, a. e. x ∈ Bc

R, α ∈ N3
0 with |α| ≤ 1,∣∣∣∂αx(∑3

l=1
∂xlR

(τ)
(
g|BS0

c × (0,∞)
)
(x, t)

∣∣∣ ≤ C
(
|x| ν(x)

)−5/4−|α|/2
. (7.8)

Proof: Abbreviate r := R−R0, g̃ := g|BS0

c × (0, T0), H·l := (Hml)1≤m≤3|BS0

c × (0, T0)
for 1 ≤ l ≤ 3. Let ψ ∈ C∞0 (Br/2) with ψ|Br/4 = 1. By Lemma 4.4 and 7.1, there is a

set N ⊂ (0,∞) of measure zero such that
∫ t

0

∫
BS0

c |∂αxΛ(x − y, t − s) · g(y, s)| dy ds < ∞
for t ∈ (0,∞)\N, a. e. x ∈ R3 and α ∈ N3

0 with |α| ≤ 1, and such that R(τ)(g̃)(t) ∈
W 1,1
loc (R3)3, ∂αxR

(τ)(g̃)(x, t) =
∫ t

0

∫
BS0

c ∂αxΛ(x− y, t− s) · g(y, s) dy ds for t, x, α as before.

Take t ∈ (0, T0)\N, α ∈ N3
0 with |α| ≤ 1 and x ∈ Bc

R such that the two preceding
relations on integrals of ∂αxΛ(x − y, t − s) · g(y, s)

(
y ∈ R3, s ∈ (0, t)

)
are valid. Then

∂αxR
(τ)(g̃)(x, t) = A1 + A2, with A1 :=

∫ t
0

∫
BS0

c ∂αxΛ(x − y, t − s)ψ(x − y) · g(y, s) dy ds

and with A2 defined in the same way as A1, except that the term ψ(x − y) is replaced
by 1 − ψ(x − y). For any x0 ∈ R3, we may apply Lemma 7.2 to A2 with the function ζ
from that lemma chosen as ζ(y) := 1 − ψ(x0 − y) (y ∈ R3). This is true for an arbitrary
x0 in R3, so we may then choose x0 = x. On the other hand, for y ∈ ∂BS0 , we have
|x − y| ≥ |x| − |y| ≥ R − S0 > R − R0 = r. Hence, because ψ ∈ C∞0 (Br/2), we get
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1− ψ(x− y) = 1 for y ∈ ∂BS0 . From these considerations we see that Lemma 7.2 yields

A2 =

∫ t

0

∫
BS0

c
−

3∑
l=1

∂yl
[
∂αxΛ(x− y, t− s)

(
1− ψ(x− y)

) ]
·H·l(y, s) dy ds

−∂αxV(τ,BS0 )(gb)(x, t).

We split the preceding integral into a sum B1 + B2, with

B1 :=

∫ t

0

∫
A(R+R0)/2, S0

−
3∑
l=1

∂yl
[
∂αxΛ(x− y, t− s)

(
1− ψ(x− y)

) ]
·H·l(y, s) dy ds,

and with B2 defined in the same way, but with the domain of integration A(R+R0)/2, S0

replaced by Bc
(R+R0)/2. Altogether we have arrived at the splitting

R(τ)(g̃)(x, t) = A1 + B1 + B2 − ∂αxV(τ,BS0 )(gb)(x, t). (7.9)

Let us estimate A1, B1 and B2, beginning with A1. For y ∈ Br/2(x), we have |y| ≥
|x|/2 + |x|/2 − |x − y| ≥ |x|/2 + R/2 − r/2 = |x|/2 + R0/2, so that |y| ≥ |x|/2 and
|y| ≥ (R+R0)/2. In addition, also for y ∈ Br/2(x), we find with Lemma 2.3 that ν(y)−1 ≤
C (1 + |x − y|) ν(x)−1 ≤ C (1 + r/2) ν(x)−1. Therefore, in view of (7.3), the assumption
R0 ≥ RU and Theorem 7.2 with (R + R0)/2 in the role of R, we may conclude that

|g(y, s)| ≤ C
(
|x| ν(x)

)−5/2
for y ∈ Br/2(x), s ∈ (0, T0). But ψ(x − y) = 0 for y ∈

Br/2(x)c, so we obtain |A1| ≤ C
(
|x| ν(x)

)−5/2 ∫ t
0

∫
Br/2(x) |∂

α
xΛ(x− y, t− s)| dy ds. Making

use of inequality (4.2) with K = r/2, we see that the preceding integral is bounded by
C(r)

∫ t
0

∫
Br/2(x)(|x−y|

2 + t−s)−3/2−|α|/2 dx ds. Integrating first with respect to s and then

with respect to y, we obtain a bound for this latter integral which is independent of x, t

and T0. Thus we may conclude that |A1| ≤ C
(
|x| ν(x)

)−5/2
.

In order to evaluate B1, we recall that H = H(1) + H(2), H
(1)
ml ∈ L2

(
0, T0, L

2(Ω
c
)
)

and H
(2)
ml ∈ L2

(
0, T0, L

3(Ω
c
)
)

(Lemma 7.1). Moreover, for y ∈ Br/2(x), we have |y| ≥
(R+R0)/2, as observed above, so A(R+R0)/2, S0

∩Br/2(x) = ∅, hence 1− ψ(x− y) = 1 for
y ∈ A(R+R0)/2, S0

. At this point, we may apply Theorem 4.2 with p = 2, |β| = 1 to obtain

that |B1| ≤ C
(
|x| ν(x)

)−7/4−|α|/2
.

This leaves us to consider B2. Let y ∈ Bc
(R+R0)/2 with 1 − ψ(x − y) 6= 0. The latter

condition means that |x− y| ≥ r/4, so by (4.1) and (2.1),∫ t

0
|∂yl∂αxΛ(x− y, t− s)

(
1− ψ(x− y)

)
| ds

≤ C

∫ t

0
(|x− y − τ (t− s) e1|2 + t− s)−2−|α|/2 ds ≤ C(r)

(
|x− y| ν(x− y)

)−3/2−|α|/2

≤ C(r)
(

(1 + |x− y|) ν(x− y)
)−3/2−|α|/2 (

1 ≤ l ≤ 3
)
.

Moreover r/4 ≤ |x− y| ≤ r/2, for y ∈ R3 with ∇y
(

1− ψ(x− y)
)
6= 0, hence with (4.2),∫ t

0
|∂αxΛ(x− y, t− s) ∂yl

(
1− ψ(x− y)

)
| ds ≤ C(r)

∫ t

0
(r2 + t− s)−3/2−|α|/2 ds

≤ C(r) ≤ C(r)
(

(1 + |x− y|) ν(x− y)
)−3/2−|α|/2

(1 ≤ l ≤ 3).
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On the other hand, from (7.3) and Theorem 7.2 with R replaced by (R + R0)/2, we get

|Hml(y, s)| ≤ C
(
|y| ν(y)

)−2 ≤ C
(

(1 + |y|) ν(y)
)−2

for y ∈ Bc
(R+R0)/2, s ∈ (0, t), 1 ≤

l,m ≤ 3. In this way we arrive at the inequality

B2 ≤ C

∫
Bc

(R+R0)/2

(
(1 + |x− y|) ν(x− y)

)−(3+|α|)/2 (
(1 + |y|) ν(y)

)−2
dy. (7.10)

In order to estimate the product ν(x− y)−1 ν(y)−1, let y ∈ R3 and consider the case that
|y| − y1 ≤ (|x| − x1)/4 and |x − y| − (x − y)1 ≤ (|x| − x1)/4. Then we may conclude
that |x| − x1 = |x| − (x − y)1 − y1 ≤ |x − y| + |y| − (x − y)1 − y1 ≤ (|x| − x1)/2, hence
|x| − x1 = 0. Thus |y| − y1 ≥ (|x| − x1)/4 or |x − y| − (x − y)1 ≥ (|x| − x1)/4, so
ν(y) ≥ ν(x)/4 or ν(x− y) ≥ ν(x)/4. Since ν(z) ≥ 1 for any z ∈ R3, we may conclude that
ν(x − y)−1 ν(y)−1 ≤ 4 ν(x)−1. We use this observation in the case |α| = 1. If α = 0, we

deduce from (7.10) that |B2| ≤ C
∫
R3

(
(1 + |x − y|) ν(x − y)

)−3/2 (
(1 + |y|) ν(y)

)−2
dy,

whereas if |α| = 1, we refer to (7.10) and to the preceding remark on ν(x− y)−1 ν(y)−1 to
obtain |B2| ≤ C ν(x)−1

∫
R3(1 + |x− y|)−2 ν(x− y)−1(1 + |y|)−2 ν(y)−1 dy. Therefore from

Theorem 2.3, |B2| ≤ C
(
|x| ν(x)

)−(3+|α|)/2
(max{1, ln |x|})n for some n ∈ N. The theorem

follows from the preceding estimates of A1, B1 and B2, Lemma 7.3 and equation (7.9).
�

Our main result now follows immediately:

Theorem 7.4 Let T0, f, U0, U, R0 and u be given as specified at the beginning of this
section. Let R ∈ (R0,∞). Then there is a zero measure set N ⊂ (0, T0) such that

|∂αxu(x, t)| ≤ C
[ (
|x| ν(x)

)−5/4−|α|/2
+ |x|−2−|α| ] for t ∈ (0, T0)\N, a. e. x ∈ Bc

R, α ∈ N3
0

with |α| ≤ 1. If
∫
∂Ω u(t) · n(Ω) dox = 0

(
t ∈ (0, T0)

)
, the term |x|−2−|α| may be dropped.

Proof: Corollary 7.1, Theorem 7.3. �
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