N

N

Time-dependent incompressible viscous flows around a
rigid body: estimates of spatial decay independent of
boundary conditions

Paul Deuring

» To cite this version:

Paul Deuring. Time-dependent incompressible viscous flows around a rigid body: estimates of spatial
decay independent of boundary conditions. 2020. hal-02508815v1

HAL Id: hal-02508815
https://hal.science/hal-02508815v1

Preprint submitted on 16 Mar 2020 (v1), last revised 14 Mar 2021 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02508815v1
https://hal.archives-ouvertes.fr

Time-dependent incompressible viscous flows around a rigid
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conditions.
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Joseph Liouville, F-62228 Calais, France.

Abstract

We consider the incompressible time-dependent Navier-Stokes system with Oseen
term, in a 3D exterior domain, with the option of adding to the system another term
arising in the study of stability of stationary incompressible Navier-Stokes flows. We
do not impose any boundary conditions. The solutions we consider are supposed to
possess properties of L?-strong solutions: The velocity v is an L*-function in time
and L"-integrable in space for some k € [1,3) and some £ € (3,00), the spatial
gradient V,u is L?-integrable in space and in time, and the nonlinearity (u -V, )u is
L?-integrable in time and L?/2-integrable in space. We show that if the right-hand
side of the equation and the initial data decay pointwise in space sufficiently fast,
then u and V,u also decay pointwise in space, with rates which are higher than those
exhibited in previous articles.
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1 Introduction

We consider the Navier-Stokes system with Oseen term and perturbation terms,

W —=Apu+70r1u+7T(U-Vo)u+7(u- VU +7(u-Vy)u+Ver=f, (1.1)
diveu =0 in Q° x (0,7p),

where Tj € (0, c0] and Q° ¢ R? an exterior domain defined by [ R3\Q, with © an open,
bounded set in R? with Lipschitz boundary and connected complement. The unknowns
of this problem are the functions u : Q° x (0, Ty) — R? (velocity) and 7 : Q° x (0, Tp) — R
(pressure). The parameter 7 € (0,00) (Reynolds number) is given, as are T, the function
f:Q° x(0,Ty) — R® (volume force), and the function U : Q° — R If U = 0, the
preceding system reduces to the Navier-Stokes system with Oseen term, describing the
flow of a viscous incompressible fluid around a rigid body, which is represented by the set
Q). In this model the fluid is supposed to fill all the space around that body. The Oseen
term 7 dxqu arises because u(x,t) corresponds to the velocity above ground of the fluid
particle at the point = in a coordinate system in which the rigid body is at rest. Such a
choice of u is convenient on a mathematical level because the value of v at points far from
the body is zero and the rigid body may be described by a fixed subset of R3. The case of
nonvanishing U arises when stability of a stationary flow around a rigid body is studied.
In this situation, U is the velocity part of a solution (U, IT) of the stationary Navier-Stokes
system with Oseen term, that is,

~AU+70U+7{U-V)U+VII=F, divU =0 inQ". (1.2)



It is well known ([2], [10]) that if U solves (1.2) at least in a weak sense (U € LS(Q°)3, VU €
L2(Q9)9), and if F decreases sufficiently fast, then

0°U ()] < € (2] v(x)) T2 for 2 € By, o e N with o] <1 (1.3)

(decay of U and the first-order derivatives of U), where Ry is some constant with Q C Bpg,,
and Bf = R3\ Br,. The function v appearing on the right-hand side of (1.3) is defined by
v(z) := 1+ |x| — 21 for z € R3. Its presence in (1.3) may be interpreted as a mathematical
manifestation of the wake extending downstream in the fluid behind the rigid body. The
decay rate —1 — || /2 in (1.3) is best possible in the sense that the standard fundamental
solution of the stationary Oseen system (equation (3.4) with A = 0) tends to zero with
exactly that rate for |z| — oo ([41, (1.39)]). In [19] we showed that the velocity part of
L2-strong solutions to (1.1) decay with the same rate uniformly in ¢, that is,

—1-|al/2

0% u(z, )] < € (|z|v(z)) for x € By, t€(0,7p), a € N3, Ja| <1, (1.4)

provided the initial data and the right-hand side f decrease sufficiently fast and u satisfies
Dirichlet boundary conditions with the zero flux condition

/ u(t) - ndo, =0 for t e (0;Tp), (1.5)
o0

where n(®¥ denotes the outward unit normal to €.

It is the aim of the work at hand to improve this result in essentially two respects: Firstly,
we will not impose any boundary conditions on u or m, except that that we distinguish
between the cases that the zero flux condition (1.5) does or does not hold. Secondly, we
will derive a higher rate of decay, showing that

—5/4—|al/2

10%u(z,t)| < € ((|z|v(z)) for ¢, z, a as in (1.4) (1.6)

if (1.5) is satisfied; else the exponent —5/4 — |«|/2 has to be replaced by —1/2 — |«|/2,
that is, by the rate obtained in [14] but under the condition that (1.5) is valid. Of course,
as in the case of (1.4), inequality (1.6) holds under the caveat that the right-hand side and
the initial data decay sufficiently fast. Apart from the absence of boundary conditions,
the type of solutions we consider is exactly the same as in [19]: We suppose regularity
properties of L?-strong solutions, that is, u € LOO(O, 00, L”(ﬁc)?’) for some k € [1,3) and
some k € (3,00), Vyu € L*(0, 00, LQ(QC)Q) and (u- Vg)u € L*(0, 00, L3/2(§c)3). The
system in (1.1) is supposed to be fulfilled in a weak form (see (7.4)) which only involves
the velocity u. We refer to Theorem 7.4 for the detailed statement of our results.

The result that solutions to the time-dependent Navier-Stokes system with Oseen term
exhibit a more rapid spatial decay than solutions to the corresponding stationary system
(estimate (1.6) compared to (1.3)) is due to the fact that fundamental solutions to the
time-dependent Oseen system

W — Apu+ 70 u+ Ver = f, divau=0 (1.7)

decrease faster with respect to the space variables than fundamental solutions to the
stationary Oseen system. The work at hand is the first which exploits this difference in
the nonlinear case.



Results on the asymptotics of stationary Navier-Stokes flows, like inequality (1.3), may
usually be obtained without any assumptions on boundary conditions. In contrast to that,
previous results on spatial decay of unsteady Navier-Stokes flows (see our remarks below)
only hold under Dirichlet boundary conditions. Our proofs indicate why this contrast
arises: without boundary conditions, a weak form of (1.1) as the one used here (equation
(7.4)) does not enforce an initial condition, even though initial data are involved in the
formulation of the problem. In other words, the velocity need not be continuous in ¢ = 0,
an aspect which is at the origin of many of the technical difficulties we encounter when
trying to handle this situation.

We further remark that our regularity assumptions on w are reasonable in the sense that
existence results are available providing solutions which satisfy our assumptions, albeit
under smallness conditions if Ty = co. References in this respect are given in the passage
following (7.4). Here we consider a solution of the type described above as given. Then
all decay estimates follow without any smallness condition.

The work at hand strongly depends on the theory in [23] and [24] on the spatial asymptotics
of solutions to the time-dependent Oseen system (1.7), and on estimates in [19] of the
Navier-Stokes nonlinearity. More precisely, we will use the integral representation given
by equation [24, (5.24)] for Li-weak solutions to the time-dependent Oseen system (1.7),
we will apply the decay estimates derived in [23, Section 4] for the integrals appearing in
this representation, and we will refer to [19, Theorem 4.6 and 4.8] when we estimate the
decay of the solution to the nonlinear problem (Theorem 7.2).

Let us compare the results and the method of proof in the work at hand with related
theories available in literature. Mizumachi [46, Theorem 2] showed (1.4) with a = 0, T =
oo for L2-strong solutions to (1.1), under the assumptions that U = 0, f = 0, the functions
Ojuk(t)|0Q and 7(t)|0Q are bounded with respect to the norm of L!(9€) uniformly in ¢
([46, (2.42)]), the initial data Uy are close to some solution U of the stationary problem
(1.2), and the term |u(z,t)| tends to 0 when |z| tends to infinity, uniformly in ¢ > T for
some T > 0; also see [52, p. 752] for a short discussion of the results in [46]. In [15] and
[18], we could show (1.4) for o € N} with |a| < 1 if u is an L?-weak solution to the time
dependent Oseen system (1.7). As already indicated above, in [19] we derived (1.4) (but
not (1.6)) for the type of solutions specified above and also considered here, but under the
additional assumption that Dirichlet boundary conditions are fulfilled with data verifying
the zero flux condition (1.5).

The proofs in all those references, and also in the work at hand, rely on integral represen-
tations of the velocity part u of solutions to the time-dependent Oseen system (1.7). The
additional terms in (1.1) are considered as part of the right-hand side of (1.7). However,
the previous articles differ from the present one with respect to the choice of such a repre-
sentation. Mizumachi [36] used a Green’s formula. Such an equation has the disadvantage
that it involves an integral on 99 x (0,7y) of V,u and 7. This is the reason why in [36],
the restrictive integrability conditions mentioned above are imposed on V,u|0$2 x (0,Tp)
and m|0Q x (0,Tp). In [15], [18] and [19], we circumvented this difficulty by solving an
integral equation in a certain subspace of L2(0, Ty, L? (8Q)3). This approach provides a
representation formula for solutions to the time-dependent Oseen system (1.7) which does
not contain the critical integrals mentioned above. In addition it even yields existence



of a solution to (1.7) under Dirichlet boundary conditions satisfying (1.5). However, it
is limited to this type of boundary conditions and to an L2-framework, and even in that
context, the decay rate —1 — |a|/2 it provides as indicated in (1.4) is not optimal.

In [20] we derived a new type of representation formula for the velocity part u of regular
solutions to the time-dependent Stokes system v/ — Au + Vyr = f, divyu = 0 in Q.
This representation may be considered as a Green’s formula because it is established by
means of partial integrations. However, it does not contain the critical boundary integrals
appearing in the standard Green’s formula in [46]. As a drawback, the formula in [23]
represents u(z,t) only if the space point z is located outside a ball around ) fixed in
advance. But in our context this restriction does not matter because we are interested in
the behaviour of u far from Q. However, the theory in [20] is essentially restricted to an
L?-framework and is makes use of maximal regularity of solutions to the time-dependent
Stokes system. Solutions to the Oseen system (1.1) do not possess this property, as follows
from the fact that certain Stokes resolvent estimates do not carry over to the Oseen case.
We refer to [27] for a negative result in this respect, and to [54, Theorem 4.2, 3.)] for a
link between these estimates and maximal regularity. It should be further indicated that
the formula in [20] only yields an integral representation of the velocity w itself, but not of
its spatial gradient V, u, thus barring the way to decay estimates of V u. In addition, the
theory in [20] only deals with the case f = 0 and with homogeneous Dirichlet boundary
conditions. But in [23], [24], we found a way to extend this theorey to the Oseen system
(1.7), removing its main deficiencies in the process: The spatial gradient of the velocity
may also be represented, the assumption f = 0 is dropped, and no boundary conditions
are imposed. This is achieved in [23] for regular solutions to (1.7) (see [23, Corollary 5.2]),
and generalized in [24] to L?-weak solutions. The formula obtained in that latter reference
(see [24, Corollary 5.1, 5.2]), reproduced in Theorem 4.4 below, is the starting point of
the work at hand.

Let us mention some references more distantly related to the work at hand. Knightly [39]
considers even the case that the velocity of the rigid body changes with time. However,
his results are valid only under various smallness assumptions. Takahashi [52] deals with
(1.1) in the case U = 0, Q = (. In [3], [4], solutions to (1.1) with U = 0 and to (1.7)
are estimated in weighted LP-norms, with the weights adapted to the wake in the flow
field downstream to the rigid body. Reference [22] by the present author combines decay
estimates in time and in space, as a continuation of [18] (Oseen system (1.7)) and [19]
(stability problem (1.1)), with the same assumptions, methods and rates of spatial decay
as in these references. Various technical aspects of the theory in [15], [18], [19] and [22] are
dealt with in predecessor papers [11] — [14], [16], [17]. Questions of existence, regularity
and stability related to (1.1) and (1.7) are addressed in [30], [31], [32], [36], [37], [40], [43],
[45], [48], [50].

2 Notation. Some auxiliary results.

The symbol | | denotes the Euclidean norm of R™ for any n € N, the length o + s+ a3 of
a multi-index o € Ng, as well as the Borel measure of measurable subsets of R®. When we
write |A| for some A € R3*3 we mean the Euclidean norm of A considered as an element



of RY. For R € (0,00), € R?, put Br(z) := {y € R® : |z —y| < R}. In the case x = 0,
we write Bg instead of Bg(0).

The set  C R3 and the parameter 7 € (0,00) introduced in Section 1 will be kept fixed
throughout. Recall that €2 is open and bounded, with Lipschitz boundary and connected
complement, and that n(*Y denotes the outward unit normal to Q. We put Qg := B r\Q.
Further recall that in Section 1, we introduced the function v : R3 + [1,00) by setting
v(z) =1+ |z| -z for z € R3.

For n € N, I C R", let xs stand for the characteristic function of I in R™. If A C R?,
we denote by A¢ the complement R3\A of A in R3. Put e, := (§j)1<j<3 for 1 <1 <3
(unit vector in R3). If A is some nonempty set and v : A + R a function, we set
V|00 :=sup{|y(z)| : z € A}. If R, S € (0,00) with S < R, we write Ar g for the annular
domain Br\Bzs.

Let p € [1,00), m € N. For A C R? open, the notation | ||, stands for the norm of the
Lebesgue space LP(A), and || || for the usual norm of the Sobolev space W™P(A) of
order m and exponent p. If A C R? possesses a bounded C?-boundary, the Sobolev space
WrP(DA) with r € (0,2) is to be defined as in [26, Section 6.8.6]. Let B C R3 be open.
The spaces L} (B) and W)9(B) are defined as the set of all functions V from B into R
or C such that V|A € LP(A) and V|A € WHP(A), respectively, for any open, bounded set
A CR3 with A € B. We put VV := (9,Vj)1<jr<s for V € W, (B)3.

Let ¥V be a normed space, and let the norm of V be denoted by || |. Take n € N.
Then we will use the same notation || || for the norm on V" defined by ||(f1,..., fn)|| :=
(Z?Zl Il £512 )1/2 for (f1,..., fa) € V™. The space V3*3 as concerns its norm, is identified
with V9.

For open sets A C R?, we define C§%,(A) := {V € Cg°(A)* : divV = 0}, and we write
L5 (A) for the closure of C§%(A) with respect to the norm of LP(A)?, where p € (1,00).
This function space L5 (A) ("space of solenoidal LP-functions”) is equipped with the norm

I {lp-

Let B be a Banach space, p € [1,00] and J C R an interval. Then the norm of LP(J, B)
is denoted by || HLP(JB)' Let a,b € R U {oo} with a < b. Then we write LP(a,b, B)

instead of Lp( (a,b), B ) Moreover, we use the expression LI C( [a,b), B ) for the space of
all functions v : (a,b) — B such that v|(a,T) € LP(a,T, B) for any T' € (a,b). The space
LP (a,b, B) is defined as usual. Let T € (0,00}, A C R open, p € [1,00], ¢ € (1,00)
and n € {1, 3}. Then we write || |[gpr and || [lgpr instead of || ||zeo7, £aay) and
| l»(®,La(a)n), Tespectively. For an interval J C R and a function v : J VV&)C1 (A)3, the

notation Vv stands for the gradient of v with respect to x € A, in the sense that

Vv J e L (A2, Veo(t)(z) = (6$k(vj(t) )(a:)) forteJ, xzecA
1<5,k<3
(spatial gradient of v). Similar conventions are to be valid with respect to the expressions
Agv, divyv and Oz ;v.

Concerning Bochner integrals, if J C R is open, B a Banach space and w : J — B an
integrable function, it is convenient sometimes to write B — [; w(t) dt instead of [, w(t) dt
for the corresponding B-valued Bochner integral. For the definition of the Bochner integral,



we refer to [55, p. 132-133], or to [38, p. 80 ff.].

Let n € N. For the Fourier transform f of a function f € L*(R"), we choose the definition
f(&) = (2m) /2 Jgn €787 f(2) dz (€ € R™), and we define the inverse Fourier transform f
of f by f(€) = (27)™™2 [4. €' f(2) dz(¢ € R™). Analogous definitions and notation are
to hold for the Fourier transform and the inverse Fourier transform of functions belonging
to L?(R™), LP(R™,B) or LP(R™, By + ... + By), where p = 1 or p = 2, and B, By, ..., By
Banach spaces for some k € N.

We write C' for numerical constants and C(v1, ..., 7,) for constants depending exclusively
on paremeters 71, ..., v, € [0,00) for some n € N. However, such a precise bookkeeping
will be possible only at some places. Mostly we will use the symbol € for constants whose
dependence on parameters must be traced from context. Sometimes we write €(vy, ..., V)
in order to indicate that the constants in question is influenced by the quantities 1, ..., Vn-
But in such cases, this constant depends on other parameters as well.

The following simple version of Young’s inequality for integrals will be used frequently.
Stated her for the convenience of the reader, we will refer to it as “Young’s inequality”.

Lemma 2.1 ([1, Corollary 2.25]) Letn € N and q € [1,00]. Then

(.

We will use Minkowski’s inequality for integrals, which we restate, too.

Theorem 2.1 ([1, Theorem 2.9]) Let m,n € N, p € [1l,00), F : R" xR™ — R a
measurable function. Then

</n</m \F(Hf,y)!dy)pdx)l/p < /m(/n ’F(x’y)‘pdx)l/pdy.

We point out some estimates involving the weight function v, beginning with an integral
of negative powers of |z|v(x).

Lemma 2.2 ([23, Corollary 3.2]) Let v € (2,00) and R € (0,00). Then the integral
fBg( 2| v(z)) " dz is bounded by C(vy) R™7+2.

q 1/q
U —y) V) dy| dz) " <CIUN VI, for Ue L'R"), V € LI(R"),

R

Lemma 2.3 ([26, Lemma 4.8]) The inequality v(z —y)~! < C (1 + |y|) v(x)~! holds
for z, y € R3.

Theorem 2.2 ([23, (4.1)]) Let p € (1,0), K € (0,00). Then

/ (2= rtei? + ) dt < Clu, K,7) (|| w(2)) "2 for = € B, (2.1)
0

We will need the following estimates from [41].

Theorem 2.3 There is n € N such that for x € R3,

(@ le=ahvte =)™ (0ol vt)) dy

< C((1+ |af) w(x)) "> (max{1, Infa|})",



/Rs(l =y (e —y) A+ ly) P e(y) T dy < C(L+J2]) 72 () (max{L, In|z[})".

Proof: See [41, (1.39), Remark 3.1, and the proof of Theorem 3.2 and 3.3]. O

Functions in exterior domains with L?-integrable gradient are L?-integrable in a neigh-
bourhood of the complement of the exterior domain:

Lemma 2.4 ([34, Lemma I1.6.1]) Let A C R? be open and bounded, with Lipschitz
boundary, q € (1,00), R € (0,00) with A C Br, V € Wlicl (A°) with VV e LI(A°)3. Then
V|Br\A € WH4(BR\A).

We state a Sobolev inequality in exterior domains.

Theorem 2.4 Let A C R? be open, bounded and with Lipschitz boundary. Let q € (1,3)
andV € I/Vlloc1 (A) with VV e L1(A%)3. Suppose there is some r € (1,00) with V e L"(A°).
Then V € L*YG-D(A%) and ||V ||34/(3-9) < €IV 4.

Proof: This theorem may be deduced from [34, Theorem I1.6.1]; see [21, Theorem 2.4]
and its proof. O

Functions V from Lg (ﬁc) with sufficient regularity satisfy the equation divV =0:
Lemma 2.5 Let g € (1,00) and V € LL(Q°) nW4(Q°)3. Then divV = 0.
Proof: By a simple density argument; see [25, proof of Lemma 2.2]. O

The next theorem deals with solenoidal WO1 4_functions.

Theorem 2.5 ([34, Theorem I11.4.2, I11.6.1]) Letn € N, q, r1, ..., r, € (1,00), A C
R3 open, bounded and with Lipschitz boundary. Let V € Wol’q(ﬂc)?’ with divV = 0. Then
there is a sequence (9,,) in Cgf;(Zc) such that |V —9yll1,4 = 0 and [|[V =y, — 0 (n —
o0) for 1 < j<n.

We introduce the Helmholtz-Fujita decomposition in exterior domains.

Theorem 2.6 Let A C R? be open, bounded, with Lipschitz boundary. For q € (1,00),

there is a linear bounded operator Py := P[EA) . LI(A) — LEL(A®) and a linear operator

Gy = GV LAY s WEI(A®) with VG,(F) € LI(A)3, Py(F) + VG (F) = F for
F e LA, P(V) =V for Ve LL(A"), and Py(VII) = 0 for T € WLI(Q) with
VII € L9(Q°)3. Moreover Py =Py for q € (1,00).

Proof: See [34, Section III.1]. Some additional details may be found in [21, proof of
Theorem 2.11 and Corollary 2.3]. O

We will need certain properties of Bochner integrals. To begin with, we recall a basic tool.

Theorem 2.7 Let By, By be Banach spaces, A : By — By a linear and bounded operator,
n €N, J CR" an open set and f : J — Bi a Bochner integrable mapping. Then
Ao f:Jw By is Bochner integrable, too, and A(By — [; fdx) = By — [, Ao fdu.

Proof: See [55, p. 134, Corollary 2], [38, Theorem 3.7.12]. O

As a consequence of Theorem 2.7, a linear bounded operator between two Banach spaces
commutes with the Fourier transform:



Corollary 2.1 Let By and By be Banach spaces, and let T : By — Bs be a linear and
bounded operator. Take n € N and v € L?>(R", By). Then T ov € L*(R", By) and T 0¥ =
(T ov)".

Proof: Put g(R,§) := By — fBR(Q 7) "2 e % y(z) dx for R € (0,00), € € R™, and let
h(R,&) denote the Bs-valued Bochner integral obtained by replacing v(x) by (T o v)(x)
in the preceding definition. Let || [/, denote the norm of Bj, for j € {1, 2}. Then
Jgn 19(8) — g(R, §)||Bl d¢ — 0 and fRn (T o v)"(€) — h(R,&)||,d6 — 0 for R — oo
by the definition of ¥ and (T o v)". But Theorem 2.7 yields that T'(g(R,&)) = h(R,§)
for £ € R", R > 0, so the second of the preceding convergence relations yields that
Jan T 00) (&) =T (g(R,€))|IB, d€ = 0 (R — 00). On the other hand, the boundedness
of T' allows to conclude from the first that [o, [|7(2(£) — g(R,€))|I%, d€ — 0 (R — o0).
Thus the corollary follows. O

We state a density result, already used in [24], in LP(J, B) for Banach spaces B and
p € [1,00).
Corollary 2.2 ([24, Corollary 2.1]) Let B be a Banach space, A a dense subset of

B, pe[l,x), n € Nand J C R" open. Then the set of sums 2?21 ja; with k €
N, ¢; € C§°(J) and a; € A for j € {1, ..., k} is dense in LP(J, B).

Compatibility result for Bochner integrals with values in LP-spaces are treated in the
ensuing two lemmas.

Lemma 2.6 ([23, Lemma 2.3]) Let m,n € N, J C R" and U C R™ open sets, q €
[1,00) and f : J — LY(U)? integrable as a Bochner integral in LY(U)3. Then there is a
measurable function g : U x J +— R3 such that f(t) = g(t) a. e. inU, fora. e. t €J. We
identify f with g. Then [,|f(z)(z)|dz < oo and [, f(z)(z)dz = (LYU)*— [, f(z)dz)(x)
fora. e.xelU.

Lemma 2.7 ([24, Lemma 2.2]) Let J C R be an interval, n € N, B C R" and A C
B open sets, q1, g2 € [1,00) and f : J — L9 (B)3 a Bochner integrable mapping with
f)l|A E L%(A ) fort € J and f|A J +— L%2(A)3 Bochner integrable as well. Then
(L (B)3 — [, f(s)ds)|A = L=2(A)3 — [, f(s)|Ads.

A much more deep-lying result is the following theorem.

Theorem 2.8 ([29, Theorem 8.20.5]) Let B be a reflexive Banach space, J C R™ open
and q € (1,00). Then the dual space of LI(J, B) is isometrically isomorph to LY (J, B').

We state a criterion for the existence of a weak derivative of a function with values in a
Banach space.

Theorem 2.9 Let B be a Banach space a,b € R witha < b, w,g € L*(a,b, B) and

f;(’(t)n( t))dt = —f Ct)n(g(t))dt for ¢ € CF° ((a,b)), 77 € B' Then there is
w e CO([a,b], B) with w(t) = w(t) for a. e. t € (a,b), w(b) — f g(t)dt, w e
Whl(a,b, B) and w' = g.

Proof: The theorem follows from [53, Lemma 3.1.1]. O

A variant of Fubini’s theorem for Bochner integrals will be useful:



Theorem 2.10 ([38, Theorem 3.7.13]) For j € {1, 2}, let J; C R be measurable. Let
B be a Banach space, and let f: Jy X Joy — B be integrable as B-valued Bochner integral.
Then the function f(&1, -) @ Jo — B is integrable in the same sense for a. e. & € Jy, the
function & — fJ2 f(&1,&)d& (&1 € Ji) is also integrable as B-valued Bochner integral,
and [; [, f(&1,&)ddé = [, f(&1,62) d(&1,62).

We will need Plancherel’s equation for functions with values in Banach spaces. Since its
proof is not too long, and because we do not know a reference, we indicate this proof.

Theorem 2.11 Let B be a reflevive Banach space, n € N and v € L?*(R™, B). Then
v e L*(R™, B) and ||[v| L2@n,5) = 0]l 20, B)-

Proof: For any Banach space A, let D(A) denote the set of sums Z§:1 pja; with k €
N, ¢; € SR") and a; € A for j € {1, ..., k}, where S(R") stands for the usual space
of rapidly decreasing functions on R"™. According to Corollary 2.2, the set D(A) is dense
in L2(R", A). Let (,) : B’ x B + C denote the usual dual pairing of B’ and B. For
b € B, define (V/,v) : R” — R™ by (V/,v)(z) := (/,v(x)) = (b ov)(z) for x € R™. Let
h € D(B’). Then we may choose k € N, ¢; € S(R") and b}; € B’ for 1 < j < k with
h(z) = Z§:1 @;(x)V; (x € R"). By Corollary 2.1, we have ((b},v))"(z) = (0},0(z)) (2 €
R™), so by Parseval’s equation for functions from L?(R™),

_ / (h(x), 5(a)) d.

On the other hand, B is reflexive, so we have L?(R", B) = L*(R", B') (Theorem 2.8).
Therefore, since D(B’) is dense in L?(R", B’), we obtain that

lol2@n. 5y =supd | (Alz), v(z))do = h e D(B'), |Pllc2@n,5) = 1},

with an analogous formula being valid for v. Moreover, since the Fourier transform maps
the space S(R™) bijectively onto itself, we have {h : h € D(B")} = D(B’). The theorem
now follows with (2.2). O

3 The Stokes and Oseen resolvent problems.

First we recall a result on interior regularity of weak solutions to the stationary Oseen
system and to the Oseen resolvent problem.

Theorem 3.1 Let A C R be open, A € C, ¢,5 € (1,00), F € L (A)?, U € Wh(A)?
with VU € L§ (A)° such that

/A(VU-Vﬂ—i-(T@lU—I—)\U—F)-ﬁ)d:sz for ¥ € C§,(A), divU = 0. (3.1)

Then U € W29(A)3.

loc



Proof: The theorem is a consequence of interior regularity of solutions to the Stokes
system; see [21, Theorem 3.2]. O

We will need quite a number of facts about the Stokes resolvent problem. They are stated
in the next four theorems. We begin with a well known result.

Theorem 3.2 Let B C R3 be open and bounded, with C%-boundary. Take A € {R3, B},
and let q € (1,00). Then, for any A\ € C\[0,00) and for any F € LI(A)3, there is a unique
function U = U\, F) € W>1(A)? N Wol’q(A)?’ and a function 11 = TI(\, F) € VVli’cq(A),
unique up to a constant, such that VII € LY(A)? and —AU + AU + VIl = F, divU = 0.

Let 9 € [0,7). Then [[A\U\, F)|| < €||F|lq for F € LI(A)3, X € C\{0} with |arg | <.

Proof: In the case A = R3, we refer to [44, Theorem 3.10]. Else see [35] or [7], [8], [9] or
[51]. O

Theorem 3.3 Let A € C\{0} with RA > 0, R € (0,00), n € N, ¢, r; € (1,00), Ul e
WoLR3)? with UGBS, € L7(B%)?, VUW € L%(R3)® for j € {1,..,n}. Put U :=
> i1 UY), and suppose that divU = 0 and [ (VU -VI+AU-9)dx =0 for 9 € Coo (R3).
Then U = 0.

Proof: This theorem may be proved in exactly the same way as [21, Theorem 5.1], which
states an analogous uniqueness result for weak solutions to either the Oseen system or to
the Oseen resolvent system in R3. The proof of [21, Theorem 5.1] refers to [21, Corollary
3.2 (C*°-regularity)] and thus implicitly to [21, Theorem 3.1 (associate pressure) and 3.2
(interior W24-regularity)]. These references may be maintained here because their proof
remains valid in our situation, even becoming somewhat simpler (transition from the
Oseen resolvent to the Stokes resolvent case). Note that [21, Theorem 3.2] is reproduced
as Theorem 3.1 above. g

Theorem 3.4 Let A C R3 be open, bounded, nonempty, with Lipschitz boundary, R €
(0,00) with A C Br, A € C\{0} with R\ > 0. Moreover, letn € N, ¢;, s; € (1,00), UU) e
WIO’CI(ZC)‘g, VU e L5 (A% (hence UY|BR\A € Wb (Bg\A)? by Lemma 2.4), and

U(lj)|Bf% € L% (B$)3 for j € {1, ..,n}. Put U := > i1 UY), and suppose that U|DA =
0, divU =0 and [ps(VU - VO + AU - 9) dx = 0 for 9 € CZ (A°). Then U = 0.

Proof: The proof is almost the same as that of [21, Theorem 5.2]. In our situation, it is
based on Theorem 3.3 instead of [21, Theorem 5.1], and as a replacement to [21, Corollary
4.3], it needs an existence and a C*°-regularity result for the problem —AV + AV + VII =
F, divV = 0 in the whole space R3. These results are provided by Theorem 3.2 and by
[21, Corollary 3.2 (C*°-regularity)]. As already mentioned in the proof of the preceding
theorem, the latter reference obviously carries over from the Oseen resolvent case to the
Stokes resolvent case. The same is true for [21, Theorem 3.3 and Corollary 3.1] (boundary
regularity), which, too, are used in the proof of [21, Theorem 5.2]. d

We introduce the Stokes operator. For the convenience of the reader, we list those of its
properties that will be needed later on. Also for the convenience of the reader and for
completeness, we indicate a proof of these properties.

Corollary 3.1 Let A C R? be open, bounded, with C?-boundary. Let q € (1,00), and
define D(Ay) == W21(A)3 Wy 1A N LL(AY), A (U) = P,(AU) for U € D(A,), with
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the operator Py = P(EA) introduced in Theorem 2.6.

Then A, is a linear and densely defined operator from D(A,) into LL(A®). The set
C\(—00, 0] is contained in the resolvent set o(Ay) of Aq. Let 7, denote the identical map-
ping of Lq( A into itself. Then the operator (AT, + A,)~" is holomorphic as a function
of X € o(A,) with values in the space of linear bounded operators from L& (A°) into itself.
Let A € C\(—00,0], F € LI(A)3, U € WI(A)3 n Wy I(A)?, Tl € WLI(AY) with
VII € LI(A)3, —~AU + AU + VI = F, divU = 0. Then U = (AL, + Ay) "} (Py(F) ). For
¥ € [0,7), the inequality ||\ T, + Ay) " (F)|ly < €IN"L||F|l, holds for F € LE(AY), X €
C\{0} with |arg \| < 9.

Proof: Let A\ € C\(—00,0], F € LI(A°)3. Then, by Theorem 3.2, there is a pair
(U, 1) = (U(/\,F), H()\,F)) with properties as stated in that theorem. In particu-
lar U € Wy9(A°)? and divU = 0, so U € LL(A) by Theorem 2.5. Since in ad-
dition U € W29(A°)3, we have U € D(Ay). Applying the operator P, to the equa-
tion —AU + AU + VII = F, recalling that VII € L9(A°)? and referring to Theorem
2.6, we get (A\Z, + A,)(U) = P,(F). Since P,(F) = F if F € LL(A°), we may con-
clude that AZ, + A, : D(A,) — LL(A") is onto. Let U € D(A,) satisfy the equation
(AT, + Ay)(U) = 0. Since P, = Py (Theorem 2.6) and because of Lemma 2.5, we see
that divU = 0 and [p3(VU - VY + AU - 9)dz = 0 for 9 € C§% (A°). Thus Theorem 3.4
implies U= 0, so the operator A\Z, + A, is one-to-one. Now we may conclude that the
operator (AZ, + Ag)~! exists, has domain LE(A°) and (AZ, + Ag) "L (Py(F)) = U\, F)
for F € LI(A%)%. By Theorem 3.2 with ¥ := |arg \|, we have |[U(), F)||, < €(\)||F||, for
F as before, so (AZ, + A;)~! is bounded. Therefore we get A € o(A,). The estimate at
the end of Corollary 3.1 now follows from Theorem 3.2. Abstract theory yields that the
mapping A — (A\Z, + A,) "} ()\ S Q(.Aq)) is holomorphic as described in the corollary. [

We will need a rather detailed theory of the Stokes resolvent problem with nonhomoge-
neous Dirichlet boundary conditions. This theory is provided by
Theorem 3.5 Define gi(r) ;= e " +r2(e " +re " —1), gao(r) = e " +3r 2(e" +
— ~(\ _ _
1) (r e C\{0}), By () = (47 [2)) 7" (80 91(AY22) = 252 22 s (N2 2]) ) (= €
R3\{0} A€ C\(—00,0], 1 < j, k <3), Nz) = (4dr|z])7! (= € R¥\{0}), as well as

SO = 0 o — 8kE< V0B (e C\(~00,0], 1< j, k, 1< 3).

Let A C R? be open, bounded, with C?-boundary. Denote the outward unit normal to A
by nY. Define

() /6 AJ; —5N (@ — y) 6;(9) n\ () do,
iV (¢ /d Akz 20,069 (x — ) — ANz — y) - 53 ) b (y) 1l (y) doy,
51(0)(x) = /6 (O (=) (1) - 0(0) ) do, (3.2)

(A€ C\(—0,0], ¢ € L'(9A)*, z e R*\9A, 1 <1<3),
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3
T =2 [ 37 58w =)0, ) do,

j,.k=1
(A€ C\(—00,0], ¢ € LY(QA)? for someq e (1,00), z € 0A, 1 <1< 3).

For A € C\(—00,0], ¢ € L*(DA)3, with the abbreviations U :== WX (¢), II := 1M (¢), the
relations Uy, I1, F(¢) € C(R3\0A) (1 <1< 3), AU + AU + VII = 0 and divU = 0
hold. If R € (0,00) with A C Bg, 6 := dist(A, Bg), 9 € [0,7), we have

r(ij) —§(9)) ()| < C(,8,R) ||l [N~ |24, (3.3)
102, W ()(2)| < C(9,8, R) [|pll1 (1IN 2] 7% + || ~2)

for ¢ € LY(9A)3, = € BE, A € C\{0} with |arg\| < 9. If Y € [0,7), Ao € (0,00), q €
(1,00), the estimate

Iollg < €o) (6 + TN (@)]lg) (NECT, [A| > Ao, |arg\| <0, ¢ € LI(DA))  (3.4)

is valid. If X € C\(—0,0], ¢ € (1,00), b € LI(DA)3, then there is a unique function
$(\,b) € LI(OA) with

—(1/2) [N, b) + TV (p(A,0))] = b. (3.5)
If9 € [0,7), Xo, R € (0,00) with A C Bgr, q € (1,00), r € (3/2, 00), then
I5(H(N,0))|BE|lr < €(r, R) |Iblly  for A€ C, [N > Ao, |argA| <9, be LIAA)3. (3.6)

If A € C\(—00,0], ¢ € (1,00), b € W2 1/09(9A)3, the relations W(gb()\,b)ﬂBR\Z €
W24(BR\A)? for R € (0,00) with A C Bg and [W($(\,b))[A°]|0A = b are valid.
(Note that in general, the boundary value of W(qﬁ()\, b) )|A does not coincide with that of
W (p(Ab))[A%) If A € C\(—00,0], q € (1,00), b€ W2 109(9AY with [, ,b-nA) do, =
0, and if R € (0,00) with A C Bg, then faBR F(d(N0))(y) - |y~ ydoy = 0.

In the last statement of Theorem 3.5, it would be sufficient to suppose b € LI(0A)3. But
since we consider the trace of W ( ¢(), b))|ZC under the assumption b € W2~1/49(9A)3,
it will be convenient to keep this assumption.

Proof of Theorem 3.5: Since EJ(.Q), MM e C(R*N\{0}) (1 <j, k<3, AeC\(—o0,0]),

and because A91 = 0, and in view of the differential equations satisfied by Ej(z) ([44,

(3.4), (3.6)]), the differentiability properties of U, IT and F(¢) for ¢ € L*(9A)? follow by
Lebesgue’s theorem. For 9 € [0, 7), we have

|0°EN (2)] < C(9) A7 2] 7271l for A e C\{0}, |argA| <9, z e RM\{0}  (3.7)

and o € N3 with |a| < 2; see [8, (3.2)]. If R, §, 9 are given as in (3.3), then |z — y| >
(6/R+ 1) |x|/2 for z € B}, y € JA. (Distinguish the cases || > 2R and |z| < 2R.)
Thus (3.3) follows from (3.7) and obvious estimates of 9. The estimate in (3.4) is the
main difficulty of the theory developed in [7] and [8]. Its proof is the subject of [7]. As
for existence and uniqueness of the solution ¢(\,b) to (3.5), we refer to [8, Lemma 1.1].
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Let R € (0,00) with A C Bp and put ¢ := dist(0A, BE). Then we observe again that
|l —y| > (6/R+ 1) |x|/2 for x € B, y € JA. Thus, for r € (3/2, 00), ¢ € (1,00), we
obtain ||§(¢)|B%|» < C(R, ) (fB% |x|_2”dx)1/r lloll1 < €(R,9)|¢llq- Equation (3.5) and

inequality (3.4) now imply (3.6).

Let us consider the W24-regularity of W(qﬁ()\, b) )|Br\A for R € (0,00) with A C Bg.
This kind of regularity may be obtained by an approach used in [8], and which was first
applied by Ladyzhenskaya [42] to the Stokes system (A = 0) in the bounded domain case.
Since this point is important in what follows, but was only shortly indicated in [8], we
give some details for the convenience of the reader. So take R € (0,00) with A C Bg, and
let A € C\(—o0,0]. Consider a function b belonging to W2~1/""(9A)3 for all r € (1, 00).
Abbreviate Ag := Bp\A, W™ := WV (¢(X,b)), TV := TV ( (A, b)), and split T
in the form IIM|Ag = IT+ A I, with

3
M(x) := /aA‘ 3" 2(8;8M) (@ — ) 65 (A, 0)(y) ng () doy,

Jk=1

I(z) := A —N(z —y) ¢\, b)(y) - n D (y) doy, for x € Apg.

By the first part of Theorem 3.5, we have Wj()‘), W € C=(R¥\9A) for 1 < j < 3 and
AW = AW — v, (3.8)

Our assumptions on b mean in particular that b is Holder continuous, so by (3.5) and [8,
Lemma 1.1], we get that ¢(\,b) is Holder continuous, too. Therefore, according to [8,
(3.9)] and by the choice of ¢(\,b) (see (3.5)), the function WA may be continuously
extended to A¢, and on 0A this extension coincides with b. (Continuity of ¢(\,b) would
be sufficient for this conclusion.) Put

Eji(z) = 8m) 7 (G |2l + 25 2|2 72), B (2) = EY) — Eju(2) for 2z € R®\{0},
1<, k <3. Then
02 ()] < €(A) |2 71FY for 2, j, k as before, a € N, 1 < |a] < 3; (3.9)

see [8, (3.3)]. Define fo‘)(cb()\,b)) in the same way as T(’\)(cb()\,b)), but with 5522

replaced by —6k£37](2\) —@E’g‘) (1 <3y, k,1<3).Due to (3.9), it may be shown that for any
r € (1,00), the relations 7™ ($(\, b)) € W2 1/77(9A)? and [|[TX ($(A,b))|la_1/rr <

C(A, 1) [|[d(A, b)|| hold; see the indications in this respect in [8, Section 6]. In particular,
T (¢(\, b)) is Hélder continuous. Since E](Q) = Eji, + E:j(.A) and because of (3.5), we may
now refer to [28, Lemma 7.8] with U replaced by b — T()‘)(qﬁ()\, b)) to obtain ¢(\,b) €
W2/mr(0A) and 600 Bllairr < €Our) (16D + [bllaorye,, ) for v € (1,00).
This estimate, [28, Lemma 7.15] and the extension of this reference indicated in [8, p. 348]
(r € (1,00) instead of r € (3/2, 00)) imply ||[VII|, < €(A,r) ( lo(A, B)|r + HbHQ,l/m,),
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again for 7 € (1,00). If R, a, 6 € (0,00) with (8a? 4+ 62)'/2 < R, K € C°(Bg\{0}) with
Co :=sup{ |z|*|K(z)| : z € BR\{0} } < 00, and r € (1,00), the inequality

L.

holds for ¢ € Lr( (—a, a)2). This follows by the technique used in [8, first part of Sec-
tion 5]. Note that the condition (8a? 4 6%)'/2 < R ensure that (o — n,¢) € Bp for
0, M€ (—a,a)?, (O 0). From (3 7), an obvious estimate of V9t and (3.10), we obtain for
7 € (1,00) tl that ||W NAg|lr+ IVII Agllr < €A, 7) [|6(A, b) || Since WX € C°(R3\§A)3,
we have WN|9BR € W2 V/rm(9Bg)3, and it is obvious that ||[W™|0Bg|ls_ Urr <
Q()\ r, R) l¢p(A,0)]|» (r < 1). But (W |A° )JO0A = b, as mentioned above, so we get
W[oAR € WHmr(9A) and [WNOA, a1 /rr < ([8]lr + [Ibll2—1/rr) for r € (1,00).
In view of equation (3.8), we may now refer to W24-regularity of the Poisson equation
with Dirichlet boundary conditions, in the version stated in [8, Theorem 2.1]. (Note
that in the proof of that theorem, it should read “ulU € W27 (U) for r € (3/2, 00)”
instead of “ulU € L"(U) for r € (3/2,00)”.) By that reference and (3.8), we get
M| Ag € W2 (AR)? and

Ko~ n.0) () dn| dode) < Clo,a,r.Co) Joll,  (3.10)

(70470‘)2

WV Agl2,r < €A 7) (| = WY = VIL- AVIIAg|, + [|[WV|0AR[o1/r,)  (3.11)

for r € (1,00). We remark that in order to apply [8, Theorem 2.1] to W()‘)\AR, we need
that W()‘)\BAR is in W2=Y/"7(9AR)? and the right-hand side of (3.8) belongs to L"(Ag)?
for all » € (1,00), not only for just one such r. This is linked to the problem to obtain
W?24-regularity of a solution u to the Poisson equation on a bounded domain U with
u € C%U) N C>®(U). From (3 11) and the estimates preceding this inequality, and from
(3.4) we conclude that ||W ARz, < €\, 7) [|b]o— 1/r,r for 7 € (1,00).

Now take ¢ € (1,00) and b € W2~ 1/%9(9A)3. We may choose a sequence (b,,) in C?(dAg)*
such that |[b,—b[la_1/4,4 — 0 (n — 00). The preceding estimate of ||W(/\) |ARl|2,r yields that
[W()‘) ( o\, by) ) |AR] is a Cauchy sequence in W29(Ag)3. If K C Ap is compact, we have
dist(K,dA) > 0, hence we get for n € N that |[WN (o(X,by)) — W (o(X,0))|K], <
(A, bn) — p(N,b)]lg < C|by, — b||q where the second inequality follows from (3.4). Thus
we may conclude that W* )(d>( n) )|[Ar € W2 (AR)? and [W()‘)(d>( ) )|AR] con-
verges to WM ($(X, b) )| Ag in the norm of W24(Ap)3. But [ WX (¢(A,b,) )[A°]|0A = by,
as mentioned above, so [W(A)((ﬁ()\, b) )|A“]|0A = b by a trace theorem.

Now suppose in addition that faA b - n(A) do; = 0. Define ?ﬁ; = —5kE'](lA) — ajE}j) for
—(A
1< Gk 1 <3 and Ji(w) = [, T3y —S5(e — 9) (0 0);(9) n Y () doy for 1 <

I <3, z € RO\NOA. As above abbrev1ate W = W()‘)(QS(A b) ). Note that W =
J+3F(o(A,b)). As already mentioned, (W)A)|HA = b, so Jou( (WN[AY) - n do, = 0.
Since div W™ =0 and W )(qzb( ,bn) )|Ar € W27 (AR)?, the Divergence equation allows
to conclude that [, WN(y) -yl ydo, = faA(W(A)MC)WA -n do, = 0. Moreover
EM e ¢ (R3\{0})3*3, so J € C>°(R¥\9A)3, and partial derivatives of .J may be moved
into the integral defining this function. Since Z?:l GZEJ(.;‘) =0 for 1 < j < 3, this implies
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in particular that divJ = 0. Therefore [y, J(y) - |y|~"ydo, = faB |J(y) - |y| =t y doy for
r € (R, 00) again by the Divergence equation. But faBr \J(y) - ly| =ty doy, — 0 (r — o0) by
(3.7), so we get faBR J(y) - ly| "' ydo, = 0. The equation at the end of Theorem 3.5 now
follows from the relation W = J + F( (X, b) ). O

The ensuing theorem deals with the Oseen resolvent problem. Its proof is based on the
four preceding theorems on the Stokes resolvent.

Theorem 3.6 Let A C R3 be open, bounded, with Lipschitz boundary. Take S € (0, 00)
with A C Bg. Forq € (1,00), let P, = PéBS) be defined as in Theorem 2.6, I, and A, as in

Corollary 3.1, and §(¢) for ¢ € LY(0Bs)? as in (3.2), each time with A replaced by Bg. Let

1 2 . (1) (2) .
no € N) P1y -5 Pngs Q(() )’ Q(() )7 q1 € (].,OO), q = mln({q q() ) Q1} U {p] o < J < nO})7

and ppys1 = q1. Let € € R with || > 1, FU) ¢ LpJ( Y for1 < j < mg, VW ¢

L(H)(A) mW“(A)3, VV(“)GL‘“( ) forue{l 2}, Put V — V) £ V@, and

suppose that (3 1) is satisfied with A, X\, U replaced by A° , t& and V, respectively, and with
F= Z ). (This means in particular that V is a weak solution of the Oseen resolvent

pmblem) Put £ :=[[V]| FOR 1 @ @ TIVV]g.

Then there is are functions UY) € W2Pi(Bg")? for 1 < j < ng+ 1, UM*2) ¢ 0>®(Bg")3
as well as ¢ € LY(0Bg)? with the following properties:

no+2
VIBs = YUY, UD = (i¢T,, + Ay) (P, (FO[BSY) ), IEUD,, < €| FD,,
j=1

1€ (UMD — F(¢))|BS |- < €(r, R) £, and if v € (3/2, 00) and again R € (S,00), then

15(¢)|Bg ||r < &(r,R) £. The constants in the preceding estimates do not depend on . If

for 1< j < ng [EU0WD], | < €2 6l < €L Ifr e (Loo), R € (S,00), then
Jou V-0 do, = 0, then [op. $(8)(y) - ly|~ Lydo, =0 for R € (S, 00).

Proof: We have V € VVli)’cq(Zc)?’ and 370, FU) e LY (A%)3. Due to these relations and the
assumptions on V and F1) | ... F("0) in the theorem, Theorem 3.1 yields V € I/Vlicq (A%)3.

Put F(0tD) .= —79,V. Then F(0+D) ¢ LProt1(A%)3 by the assumptions on V and the
definition of pp,4+1. Again due to the assumptions on V' and F @) ..., F() in the theorem,
we get

no+1
divV =0, / (VV-VI+igU-9— > FY . 9)de=0 for ¥ € C5%(Bs"). (3.12)
Bs j=1

This means that we consider V' as the velocity part of a weak solution to the Stokes system
in Bg" with boundary data V|9Bg. Since A C Bg and FY) € LPi(A%)?, Theorem 3.2 with
B = Bg, A =i¢ yields functions UD€ W2#i(Bg*)3 n Wy (Bs)?, PW) € WLV (Bg°)3
such that VPU) € LPi(Bg“)3,

diviV =0, —~AW +iW + VP =F (3.13)

in Bg", for W =U", P=PU F=FU|Bs" and such that ||§U(j)||pj <c¢ HF(j)Hp]., for
1 < j < ng+ 1. Note that |0tV < €& Thus we have UM, < eg.
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Using Corollary 3.1 with A = Bg and with the notation mtroduced there and recalled in
the theorem, we get that UV) = (i £ T, s+ A) (P, ( 7)|Bg )) for 1 < j < ny.

In the following we use notation from Theorem 3.5, but with Bg in the role of A. Recalling
that V € V[/'ZQO’CQ(AC)?’, we get V|0Bg € W2~ 1/%9(9Bg)3. In a first application of Theorem
3.5, with A replaced by Bg, we may conclude there is ¢ € L4(0Bg)? with

—(1/2) (¢ + T () ) = —V|0Bs. (3.14)

We put UM0+2) .= W (¢)|Bg®, PM0+2) .= 11 (¢)|Bg". Then again by Theorem 3.5
with Bg in the role of A, the relation Uj(n0+2), P(0+2) ¢ ¢(Bg“) hold for j € {1, 2, 3},
and equation (3.13) is satisfied with W = U0+2) p = p(0+2) and F = 0. Theorem
3.5 further yields that U™2|Ag ¢ € W249(Apg)®, UM2|BS € L7(B%)? for R €
(S,00), 7 € (3/2, ) (see (3.3) and (3.6)), VUM+2)|BS € L"(B%)? for r € (1,00) and
R as before (see (3.3)), and U™*2|0Bg = V|0Bg. In particular VU042 ¢ L(Bg").
Now we put W =V — Z”°+2 UU). Then we have in particular Wl|Ags € WH(Ars)?
for R € (S,00), W|0Bs = 0, divIW = 0, fB (VW -V +iEW -9)de = 0 for 9 €
Cng(BisC). Recall that pU) e VVlofJ(BS ) for 1 < j < np+ 1 and p™*t? € C®(Bg"), so
fB Vpl) .9 dx = 0 for ¥ € C’(‘)’OU(BiSC) 1 < j < ngp + 2. Moreover, for any R € (S, 0),
each of the functions V"|B% and UW|BS (u € {1, 2}, j € {1, ..., ng +2}) is in L"(B%)?
for some 7 € (1,00). In addition, each of the functions VV () VV(Q), vu, .., vyt
belongs to L” (Fsc)g for some r € (1,00). Thus Theorem 3.4 with A = Bg yields W = 0,
that is, V|Bg = Z;Lffz UY). In addition, using (3.4) with A = Bg and (3.14), and
recalling the assumption [£] > 1, we get ||¢|l; < €||[V|0Bg||q- But with a standard trace
estimate, |[V]0Bs|lq < C(S,q) ||V|As+1,sl1,4, hence

IV10Bs|lq )< g, (3.15)

pu=1

so ||¢]lqg < €&, where £ is defined in the theorem. Moreover, for R € (S,00), r € (1, c0),
we deduce from (3.3) with A = Bg and from the inequality ||¢[|; < € £ that the estimate
[€ (U2 —F(8))|BE|lr < €(r,R) ||¢]l1 < €(r, R)||¢]lq < €(r, R) £ holds. (As mentioned
in the theorem, the function §(¢) is defined in (3.2) with A replaced by Bg.) If R €
(S,00), r € (3/2, 00), due to (3.14) and (3.6) we have ||F(¢)|B%|» < €||V]0Bs||q, so with
(3.15), [3(6)| Byl < €L,

Suppose that [,V - n4 do, = 0. Since ¢ < mln{qo ,q0 ,ql} we have V|Bs\A €
Wh4(Bg\A)3. In addition divV = 0, so we may conclude that Jons V@) - 1y~ Ly do, =

Joa V- n do, = 0. As remarked above, we further have V|[0Bg € W2~1/%9(9Bg)3. Now
equation (3.14) and Theorem 3.5 with A = Bg imply faBR F) () |y tydo,=0. O

4 Some fundamental solutions and potential functions.

For most of the results in this section, we refer to [23], where either a proof is given or
suitable articles in literature are cited.
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We define the fundamental solution 9 of the Poisson equation (”Newton kernel”) by
setting N(z) := (47 |z|)~! for z € R\ {0}. Let § denote the usual heat kernel in 3D, that
is,

H(z,t) = (4mwt)~3? e 11U for 2 e R te (0,00), H(2,0):=0 for z € R*{0}.
Thus, in our context, ) is defined on B := (R3 x (0,00) ) U ((R*\{0}) x {0}).

Theorem 4.1 The relations $ € C®(B), [psH(z,t)dt = 1 for t € (0,00) hold. If
a € N3, o € Ny, the inequality |0207 $ ( z, )| < C’(a,a) (|2]? + t)~BHel+29)/2 s yalid for
z€R3 te€(0,00).

Proof: See [49] for the preceding estimate. O

The estimate in Theorem 4.1 in the case |a| = 2, 0 = 0 allows to define the velocity part
I" of a fundamental solution to the time-dependent Stokes system,

Lik(z,t) == 9(2,t) o +/ 0z;021.9(2,s)ds for (z,t) € B, j ke {1, 2, 3},
t
and the velocity part A of a fundamental solution to the time-dependent Oseen system
(1.7),
Aji(z,t) =Tz —1ter, t) for (2,t) €B, j,ke {1, 2, 3}.
We will need the following properties of A.

Lemma 4.1 ([23, Lemma 3.3, Corollary 3.3]) For 1 < j <3, z € R3, t € (0,00),
the relations A € C®(B)>*3 and 33 _, 0z Aji(2,t) = 0 are valid. Moreover

|09A(2,8)] < C(7) (|2 — Tter* + )" CFHD/2 (2 e Rt € (0,00), @ € NG, |a] <2).(4.1)
Let K > 0. Then
02 (2, 1)] < C(r, K) [ X(0,5)(|2]) (|2 + )~/ (4.2)
(i) (12D) (12 0(2) +6) V2T for 2t s in (4.1).

Theorem 4.2 ([23, Corollary 4.1]) Let R, R € (0,00) with R < R, p,q € [1,00].
Then

t
/O /B O2OPA(z — y,t — 5) - uly, s)| dyds < € ([z] p(z) ) EHETIDZFVC) Yy
R

fort e (0,00), u € LP(O,t, Lq(BR)S), T € BQR, a, B € N3 with |a| <1, |B] < 1.

We introduce the first of our potential functions.

Lemma 4.2 ([23, Corollary 3.5]) Let A C R? be measurable, g € [1,00), V € Li(A)?,
and let V the zero extension of V to R®. Then fR3 |80‘A(aj Y, ) V(y )\ dy < oo fora € N3
with |a| < 1, z € R3, t € (0,00). Define 37)( = Jps Az —y,t )- V() dy for x €
R3, t € (0,00).

The derivative dx;37) (V) (x,t) exists and equals Jra OxiA (@ — y,t) - V(y)dy for z, t as
above, and for | € {1,2,3}. The functions 37 (V) and 82,37 (V) are continuous in
R® x (0,00). If ¢ > 1, then |37 (V)lly < Cla,7) [V ]
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We will need a variant of 37 (V).

Lemma 4.3 Let g € (1,00), A C R® be measurable, V € L1(A)3. Write V for the zero
extension of V to R3. Then [z, 107055 (x—y, t) V(y)|dy < oo forz € R3, t € (0,00), a €
N3, o € {0, 1} with |a|+20 < 2. Therefore we may define the function HO (V') by setting
HOWV)(2,1) = fpa Bz —y, 1) V(y) dy, HO(V)(2,0) := V(2,0) for z € R?, t € (0,00).
Then HO (V) belongs to C°([0,00), LI(R3)3) and the estimate [|HO(V)(t)||l, < C V]l
holds for ¢ € (1,00). Moreover, the derivative 709H O (V) (x,t) exists and equals the
integral [ps 07095 (x — y, t) V(y)dy for x, t, a, o as above, and is a continuous function
of (x,t) € R3 x (0,00). The equation d;HO (V) — AHO (V) =0 holds. Let W € LL(R?).
Then div,H©O (W) = 0.

Proof: All the claims of the lemma except the relation #(® (V) € C°([0,00), LI(R3)?)
and the equation div,H () (W) = 0 follow by the same arguments as used in [23, proof of
Corollary 3.5] with respect to I (V). The continuity at ¢ = 0 of % (V) as a mapping
from [0,00) to L(R3)? holds by a simplified version of the proof of [23, Theorem 3.3].
Continuity at t > 0 may be shown by the same reasoning as in [23, proof of Corollary 3.6].
Let ¢ € C5, (R3). By a partial integration in the integral Jzs Z§:1 0y;iH(x -y, t) ¢(y) dy,
we obtain div,H () (¢)(x,t) = 0 for z € R3, t € (0,00). There is a sequence (¢y,) in
Cgf’a(R?)) with [|[W — ¢p]lq = 0. As a consequence of Theorem 4.1 and Hélder’s inequality,
we get || Vo HO (W —¢,) ()], < Clq) tEIH3/D/2 W =g, ||, (n € N). Thus we may conclude
that div,H© (W) = 0. O

We turn to the definition of another potential function.

Lemma 4.4 Let Ty € (0,00}, A C R? measurable, ¢ € [1,00) and f a function from
L},.([0,T0), LI(A)?). Let f denote the zero extension of f to R® x (0,00). Then the

loc
integral [ps |0SA(x — y,t — o) - f(y,0)|dy is finite for any x € R?, ¢t € (0,00), o €
(0,t), a € N3 with |a| < 1. Moreover, for a. e. t € (0,00) and for « as before, the integral
fg Jzs 109A(x — y,t — o) - f(y,0)|dydo is finite for a. e. x € R3. Thus we may define

RO(f) (1) = / [ M@=t =a) fly.o) dydo

for such t and z. The relation R (f)(t) € I/Vli’cl (R3)3 holds for a. e. t € (0,00), and for
such t AR (f)(t)(x) = fg Jgs Oxi Az —y, t — o) - fly,0)dydo forl e {1,2, 3} and a.
e. v €R3.

Moreover the integral fg | Jgs Al —y, t—s) - f(y, s)dy|ds is finite for any t € (0,00) and
for a. e. x € R3. Thus the function R7)(f) is well defined even for any t € (0,00)
(instead of only for a. e. t € (0,00)) and for a. e. x € R3.

Proof: [23, Lemma 3.8, Corollary 3.7]. O
The next lemma deals with still another potential function, this one defined on the surface
of an open bounded set.

Lemma 4.5 Let q € [1,00], Ty € (0,00}, A C R3 open and bounded, with Lipschitz
boundary, ¢ € L} ([O,To), Lq(ﬁA)S), ¢ the zero extension of ¢ to A x (0,00). For

loc ~

t € (0,00), x € RNOA, a € N3, the term [02A(x — y,t — s) - ¢(y, s)| is integrable as a
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function of (y,s) € DA x (0,t). Define BT (¢) := BT (4) : (RP\IA) x (0,00) — R3 by
B (p)(2,t) := /t/ Az —y,t—s)- a(y, s)doyds for x € R*\9A, t € (0,00).
0A

Then, for anyt € (0,00), the integral fg Jou Mz—y, t—s)-g(y, s)doy ds as a function of x €
R3\ A belongs to C°(R3\A)3, and 920 (¢)(z,t) = fg Jo4 OGN (x—y,t—s)- by, s) doy ds
for a € N3, v € R\ A.

Proof: The function A is C* on R3 x (0,00) (Lemma 4.1), so the lemma follows from
Lebesgue’s theorem. O

We introduce another kernel function, for the definition of which we will refer to [23].
This kernel is a truncated version of A. For its definition, we fix numbers Ry, Sy € (0, 00)
with Ry > Sp, put Ry := (Ro + Sp)/2, and choose a function ¢y € C§°(Bpg,) with
cp|B50+( Ro—So)/4 = 1, 0 < o < 1. The relevant properties of this kernel are collected in
the ensuing theorem.

Theorem 4.3 There is a function & := Sg, 5,0, : Bi, X Br, x [0,00) — R3*3 with the

following properties.

Let x € B, v € [0,00). Then &(z, - ,r) € C®(Bg,)**, e Oyk®k(z,y,r) = 0 for

1<j<3, y€ Bg,, and &(z,y,r) = Az —y,7) fory € Bsy+(Ry—So)/4-

Let x € Bg, q € (1,00). Then the mapping r — &(z, - ,7) (r € [0,00)) belongs

to C’l( [0, 00), Wl’q(BRl)gxg). Thus a function G’ € CO( [0, 00), Wl’q(BRl)3X3) may be

defined by the condition ||(&(z, - ,r +h) — &(z, - ,7))/h — G'(r)|1,q4 = 0 (h — 0) for

r € [0,00). We write 0,8(z,y,r) instead of G'(r)(y) (r € [0,00), y € Br,).

Let r € [0,00), q € (1,00).

Let 0 € {0, 1}, and define L(z) : Bgr, + R¥3 by L(x)(y) = 076(x,y,r) for x €

B%,s y € Br,. Then L(x) € C§° (Bgr,)>*3NW4(Bg,)3*3 for x € B o, and L considered

as a mapping from Bf = into W4(Bg,)3*3 is partially differentiable on BiROC. Thus we

may define Dy, L : Br,” — WY4(Bg,)?*3 by the condition |(L(z 4+ hem) — L(z))/h —

D L(2)|l1.4 — 0 (b — 0), form € {1, 2,3}, 2 € Bg, . Instead of D,y L(z)(y), we write

0ry, 076 (x,y,1).

Let | € {1, 2, 3} and define z(x) : B, — R33 by z(x)(y) = Oy®(x,y,r) for v €

B%,, y € Br,. Then L(z) € CS(BRr,)¥3 N LY(Bg,)**3 forz € B, and L considered as

an opemtor from B , into LY(Bg, )3%3 is partially diﬁerentiable on BiROC. Thus we may

define Dy, L : Br,© — Lq(BR )3%3 by the condition H( L(z+hem)—L(z) )/h—DmE(x)Hq —
0(h—0)(me{l,2, 3}, z€Bg,). Instead of Dy L(z)(y), we write 82,0y & (x,y, 7).

Let g € (1,00), p € [1,00]. Then
[ 10sar0ie ) - Vil dy < € (lalvia)) 1N vy, (4.3)
Ry
for Ve LUBg,)?, t € (0,00), x € By, o, B € N}, 0 € {0, 1} with |a] <1, [B] +0 <1,

/ /B 02078 S (2,4t — 5) - vy, )| dyds < € (|a] w(z) )" CHFHC 4 4
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fort, x, a, B, o as in (4.3), and for v € Lp(O,t, Lq(BRl)?’).
Proof: [23, Lemma 3.11, 3.12, 3.13]. O

We note a consequence of the preceding theorem.

Corollary 4.1 ([23, Corollary 4.2]) Let 8 € N3, o € {0, 1} with |8] + o < 1. Let
€ (1,00), and let the function v belong to Lj,.( [0,00), LY(Bg,)*) and the function V to
L(Bg,)3. Define

F(x,t) / / 8"65(’5 (z,y,t —s)-v(y,s)dyds, H(x,t) ::/ &(x—y,t)-V(y)dy
BRI BRI

for x € By, t € (0,00). Take a number | € {1, 2, 3}. Then the derivatives Oz F(x,1)
and Oz H (z,t) exist pointwise, and they equal fg fBR 8x18§85@5(x, y,t —s)-v(y,s)dyds
1
and fBR Ox18(x — y,t) - V(y) dy, respectively, for x € B, t € (0,00)
1

It will then be convenient to subsume a number of terms in a single operator, which we
define here, and whose definition makes sense due to the preceding Corollary 4.1

Let A C Bg, be open and bounded with Lipschitz boundary. Put Ag, := Bg,\A4, Zg, 1 :=
Ag, x (0,T) for T € (0,00]. Let A C R® x R, Ty € (0,00] such that Zg, 1, C A. Let
q€ (1 00) and let v : A — R? be such that v|Zg, 1, € C°([0,Tp), LY(Ag,)*), v(s)|Ar, €
W2 (AR, )? for s € (0,Ty), and V0| Zg, 1, € L, ([0, To), LI(Ag,)?). Then, for t € (0,Tp)

and x € By, , we define

RRo,50,00,4,T5 (V) / /Q Z3yl(’5 Tyt —5) - Oyv(y, s) (4.5)
R

098 (..t =) 0ly.5) 08 (..t =) vly.s) ) dyds + | O(z,y,0) - v(y. 1) dy
Ry

Next we reproduce some decay estimates proved in [23], beginning with a decay estimate
of RRy,50,00,4,1, (V). We use the same notation as in (4.5).

Corollary 4.2 ([23, Corollary 4.3]) Let A, A, Tp, q be given as in (4.5) and pi1, p2 €
1, oo] Then, if v : A — R® with v|Zp, 1, € C°([0,Ty), LU(Ag,)?) as well as v(s)|Ar, €
Wil (AR,)? for s € (0,Ty) and Vyo|Zg, 1, € LP?(0,To, LY(AR,)?), and if € Br,‘, t €

(0,Tp), a € N3 with |a| < 1, the term 0S8Ry, 80,00,4,1 (V) (2, )] is bounded by

€ (Jlv

—(B+lal)/2+1/(2p))

w1 ZRy gt + [0()[ 2R, l4) n{%}(\xrvm)

Lemma 4.6 ([23, Lemma 4.3]) Let A, 2, T, ¢ be given as in (4.5), let n(Y) denote the
outward unit normal to A, and take qi, q2 € [1,00]. Then, for v : A+ R3 with v|Zg, 1, €

LP(0,Ty, LY(AR,)?), v(s)|Ag, € WENAR)? for s € (0,Ty), and V0| ZR, 1, belonging

loc

to LP*(0,To, LY(Ag,)?), © € B, t € (0,Tp), o € Ny with |a] < 2, 1 € {1, 2, 3}, the
term |90 (™A (nl(A) v)(x,t)| is bounded by

2
3+ 2+1/(2
€ (0 Zry tllgprt + V20 Zry tllgpa) D (Il la/2+1/r3),
J=1
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where (n\™V v)(y, 5) .= 0\ (y) v(y) for y € DA, s € (0,Th).

Lemma 4.7 ([23, Lemma 4.4]) Recall that the Newton kernel 9 was introduced at the
beginning of this section. Let A C Bg, open and bounded, with Lipschitz boundary, and
with outward unit normal denoted by nY). Put Ap, := Bg,\A and let q € (1,00). Then the
estimate | [ ,(0“V)N(z —y) (n) V) (y) doy| < €|x|271o ||V ||, holds for V € LI(Ag,)3N
WYL (AR,)? with divV =0, t € (0,00), = € Bf, and o € N3 with |a| < 1. If the zero fluz
condition [, nA) .V do, = 0 is valid, the factor |x|=>71°1 may be replaced by |x|~3~lol.

The potential functions defined above, with the exception of H(?), appear in the the

representation formula stated in the ensuing theorem, which constitutes the starting point
of the theory presented in the work at hand.

Theorem 4.4 Let Ty € (0,00], no, mo € N, P, qo, q1, P1, -, Pngs 01, - > Omg € (1, 00),
and consider functions u : (0,Tp) chl( 92, f9) e Lloc([O,To) LPi(Q°)%) for 1 <

lo

j <mng, GV e (10, Tp), L% (Bg, )? ) for 1 <1< myg, Up € LP(Q°)3 with the following
properties:

ulQs, x (0,Tp) € L, ([0,Ty), L®(Qs,)? ), divyu(t) = 0 and u(t)|Bs,” = Y129 GO(t) for
t € (0,Ty), Voue L ([0, Tp), L1(Q)3),

/TO/ 19+<p()[qu(t)-Vﬂ+76m1u(t)-ﬂ—f(t)-lﬂ)dxdt (4.6)
(0)/Q Uo-0de=0 for o€ CF([0,T0)), ¥ € O35 (@),

with f = Z?il 9. Define n(50)(y) = 0_1 y fory € 0Bg,. Let t € (0,00). Then there is
a measurable set Ny C BROc of measure zero such that the equation

u(e,t) = RO (S FO1Bg, x (0,T0) ) ,0) + 37 (Ul B, )2, ) (4.7)
j=1

3
=3 02850 () ) (2, 1) — / (V) (z — ) (n0) (y) - u(y, t) ) do, + K(u)(x, 1)
=1 9Bs

t
- ettty [ [ sty Zf” y,5) dyds
ARl,SQ 0 ARI’SO

holds for x € Br,"\Ny, where ® = Gp, 5,0, was introduced in Theorem 4.3, and K(u) =
RRo,50,00,Bs,,To (0) was defined in (4.5).

Proof: [24, Corollary 5.1, 5.2], with assumptions on u stated at the beginning of [24
Section 5]. O

5 A result on the Cauchy problem for the heat equation.

We do not know a reference for the ensuing estimate of the spatial gradient of the solution
to the Cauchy problem for the heat equation with initial data in L(R3). However, a proof
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is required since this result is not easy to establish. We present an argument — applying
a multiplier theorem by Benedek, Calderon, Panzone [5] — which only works if ¢ < 2. The
case ¢ > 2 remains open.

Theorem 5.1 Let q € (1,2]. Then |V H O (U)]|g.2:00 < C(q) |Ullg for U € LI(R3)3.

Proof: We establish a framework allowing us to apply [5, Theorem 2]. Let e € (0,00).
We write B for the Banach space of linear bounded operators from R? into L?( (e, o) )3.
This space B is to be equipped with the usual norm, which we denote by | ||z. We
write || ||z2(z2) for the norm of the space L?[R?, L*( (e, oc) )3] The space of functions
U € L*®(R?)3 with compact support is denoted by L3°(R3)3.

Let j € {1, 2, 3}, and define Kc(z)(a)(t) = 0z;9(x,t)a for z,a € R3, t € (¢,00).
Then by Theorem 4.1, [ |Kc(z)(a)(t)?dt < Cla| [T°(|z* +t)~*dt < Cla|(Jz]* +¢)7?
for z,a € R Thus K. (z) € B and ||K(z)|p < C(Jz]> + €)73/2 for z € R3, and
Jps |Ke(2)|% de < Ce 3. In particular K. € L*(R?, B) and K. : R® — B is integrable
on compact subsets of R®. Let U € LF(R®)%. We define AU : R® — L?( (e, oo))3 by
setting (AU)(z) = [ps Ke(z — y)(U(y) ) dy for z € R, where the integral is to be un-
derstood as an Lz((e,oo))g-valued Bochner integral. The function U € LEF(R?)3 be-
longs in particular to L'(R?)?, and |[(AU)(z)|l2 < Jgs |Ke(z — y)||B|U(y)| dy. Therefore
Young’s inequality and the relation [, || Kc(z)||% dz < Ce3 explained above yield that
AU € L?[R3, L?( (e, 00) )3] Let [AU]" : R? — L?( (e, 00) )3 denote the Fourier transform
of AU.

Let us justify the equation [AU]NE)(t) = (27) 32 [Pt (—i¢&5) U¢) for € € R3, t €
(€, 00). To this end, take 1) € C§°( (e, 0) )3 and put T(¢) := [ (- dt for ¢ € L*( (e, 0) )3.
Then T is a linear and bounded operator from L?( (e, 0o) )3 into R, so To[AU|" = [To AU|"
by Corollary 2.1. But for € R3, by Theorem 2.7 and the definition of AU and K. we
have (T o AU)(x) = [s [ L(z,y,t) dt dy, with L(z,y,t) := ¢(t) 0z;9(x — y,t) U(y) for
z,y € R? t € (e,00). Since U € L'(R?)3, as mentioned above, 1 € L!( (e, oo))3 and
|0z;9(x —y,t)] < C(lz —y|* +€)72 for z, y € R3, t € (¢,00) by Theorem 4.1, as already
used above, it is obvious that the integral [ps [ps [*|(27)73/2 716 Lz, y, t)| dt dy dz
is finite for ¢ € R3. Therefore we may apply Fubini’s theorem in the triple integral
Jos Jos [0 (2m) 732 76T L(z,y, t) dt dy dz. But [H(-,)] (&) = (2m)73/2 e 6Pt for ¢ €
R, ¢t € (0,00), so we get by the equations for T o [AU]" and (T o AU)(x) already men-
tioned that [*u(t) - [AUINE)(t)dt = [Fa(t) - (27) 732 e Pt (—ig) U(€) dt. Since ¢
was arbitrarily taken from C§°( (e, o0) )3, we arrive at the equation for [AU]"(€) claimed
above. Therefore with Theorem 2.11,

|AUI212) = [TAU) 222y = € /R / & P at U (€)1 dé < C U]l = CIU

Next take y € R? with |y| > 0, z € R3 with |z| > 4|y|, and t € (¢,00). Then the
equation |0z;9H(z — y,t) — 0z;9(x,t)| = ]fol S xdxH(x — 9y, t) yp d] holds, so
with Theorem 4.1, |02,;9(z — y,t) — dx;9(z, )| < (|z|? +¢)7>/? |y|, where we used the
estimate |z — Jy| > |z| — |y| > 3|z|/4 for ¥ € [0,1], which is valid since |z| > 4]y|. As
a consequence, ||[Kc(z —y) — Ke(z)||p < C ( [(Ja]* +1)7° dt)l/2 ly| < C|z|~*|y|, hence

€

e |[Ke(x —y) — Ke(x)||pdxr < C. Now we see that we may apply |5, Theorem 2| with
Bi
4ly
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By =R3, By = LQ( (e,00) )3, obtaining that HAU”[,!I[]}@ L2((e OO)):S] < C(q)||U||qg for U €

Lg°(R3)3. But by Lemma 2.6 and 4.3, (AU)(z,t) = 9z;HO (U)(z,t) for z € R, t € (¢, 0)
and U as before. Thus

[/Rg (/OO |02 1O (U) (2, 1) fht)q/2 dz ]l/q <C@)|U|l, for Ue LER)>.

€

At this point we exploit the assumption ¢ < 2, which implies 2/¢ > 1. As a conse-
quence, Theorem 2.1 applied with p = 2/q allows to deduce from the preceding estimate of

01O (U) that [ HO V)R X (6,90 puquags) < C@) 1Vl for U € L (B

Since this is true for any e € (0,00), and because the constant C(p) in this inequality
does not depend on €, we thus get [|02;H O (U)]|42:00 < C(q) ||U|l4 for U as before. Now
let U € LY(R3)3, and choose a sequence (U,) in C§°(R?)® with ||[U — U,||; — 0. Then
102 HO(U) [lg2:00 < C(q) |Unllq for n € N by what has been shown already. On the

other hand, by Young’s inequality and Theorem 4.1,

2 © 2 & 2
[ 10emO@, —oy@acs [ [ 10s901dz) v, - vl
t1 t1 R3
to 2
<c (/ua+w%4w)ﬁWh—UMgcmmﬁnmu—wm
RS

t1

forn € N, t1, to € (0,00) with ¢; < ta. From this inequality and the preceding estimate of
102;H O (U,,)||4.2:00 for n € N we may conclude that [|0z; 7 (U)]|g.2:00 < C(q) |U|lg- O

6 Weak solutions to the Oseen system: a representation
formula and spatial decay estimates without assumptions
on continuity of the velocity with respect to time.

When in [24] we derived the representation formula (4.7) for the velocity part of a solution
to the time-dependent Oseen system, we had to require some continuity of the velocity with
respect to the time variable. In the present section, we obtain an integral representation
without such a requirement if the solution and the right-hand side are L2-integrable in
time. This type of integrability is valid in the case of L2-strong solutions to the nonlinear
problem (1.1), as considered in the next section.

As in the passage preceding Theorem 4.3, we fix numbers Ry, Sy € (0,00) with Sy < Ry
and Q0 C Bg,, define Ry := (Sp + Ry)/2, and choose a function pg € C§°(Bg,) with
‘P|BSo+(Ro—So)/4 =1, 0 < ¢y < 1. In addition it will be convenient to use a pair of
numbers Sy, So € (0,S0) with S; < Sy and Q C Bg,. The parameter S; will play the
role of the number S in Theorem 3.6 (see the proof of Theorem 6.1), and the set Bg, will
replace the set 2 in Theorem 4.4 (see the proof of Corollary 6.2). Since Se < Sp, we have
Bg, C Bg, as required in that theorem.

All the Fourier transforms appearing in this section are Fourier transforms with respect
to the time variable t € R.
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Lemma 6.1 Let A C R® be open, qo, ¢1 € (1,00), u € L*(R, L®(A)*) with u(t) €
WA fort € R and Vu € L*(R, LQI( ). Then (Omu)" = Oz for le{l,2, 3}.

loc )
Moreover, let g € (1,00), v € LQ(R Li(A ) and ¥ € C§°(A)3. Put ot = [yo(t)-Vdx
fort € R. Then o € L*(R) and p(¢ fA ) -Vdx for £ € R.

Proof: Let 1 € C°(A)3, 1 <1< 3, o €{0, 1}. The operator V N 8l(g)¢ dz (V €
LP(A)?) is linear and bounded if p = qp and if p = ¢1. Therefore by Corollary 2.1, the
functions p(¢ fA 851/) dx (t E ]R) and w(t) := [, dx(t) - pdx (t € R) belong to
L*(R), and 1 u fA )- O de, B(E) = [4] (%Uw (f) Y dz (£ € R). On the other hand,
wu(t) = —w(t) for t e R, so we get /7 = —. Since this is true for any [ € {1, 2, 3} and
Y € C§°(A)3, we may conclude that v(€) € V[/i)c1 (A)? and Oz0(€) = [Oz0]"(€) for € € R.
The operator V + [,V -9dx (V € LI(A)*) is linear and bounded, too. So the second
claim of the lemma also follows from Corollary 2.1, with a similar argument. U

Theorem 6.1 Let ng € N, py, ..., pny € (1,00) and f9) € L?( 0,00, LPi (Q )3 ) for 1 <
§ < mng. Put fO(t) :=0 fort € (—00,0), 1 < j < ng. Then there is a sequence (R,) in
(1,00) such that the limit

YO (t) = lim @2m) V2t (e T, + Ay) N (P, [ FO(€)|Bs, ] ) de (6.1)
nreo (_anR"l)\(_lvl)

exists in LPi(Bg, )? for j € {1, ..., ng} and a. e. t € R, where Py, is to be chosen as in

Theorem 2.6, and I, and Ay, for j € {1, ..., no} as in Corollary 3.1, in each case with

A= Bislc. The integral in (6.1) is to be understood as a Bochner integral with values in
LPi(Bg,“)®. For j € {1, ..., ng}, the function 49 belongs to L?(R, LPi (37516)3)

Let q(()l)7 q(()z), a1 € (1,00), ul) € L2(0 00, Lq(j)(ﬁc)g) with v (t) € WII(Q) and

loc
div,u9) (t) = 0 for t € (0,00), and V,ul) € L?( 0,00, L9 (Q )9 ) for j € {1, 2}.
Put v := v +u® . Suppose that u satisfies (4.6) with f = Z;Lil f9), Ty = 0o and Uy = 0.
Let ¢ € (1,00) with ¢ < min({q[()l), q§2), atUf{p; : 1 <5< no}). Define ppy+1 =

1 2 1 2
q1, Pno+2 ‘= 4, Pno+3 ‘= Q[() )7 Pno+4 = Q(() )7 Pno+5 ‘= Q(() )) Pno+6 = Q((] )7 Png+7 =
max{2, q}. Let J C R an interval with nonempty interior. Then there is a set N C R of
measure zero and a number ty € J\N as well as functions o € LQ(]R, Li(0Bgs,)? ), GU) ¢

CO(R, LPi (Bis;)?’) for 1 <1 < ng+ 7 with the following properties.
Put €(z,t) := €(p)(x,t) := fale (V) (z —y) (S~ ty - o(y,t) ) doy fort € R, x € Bg,,

with N introduced at the beginning of Section 4. Then, for any t € R\N, j € {1, ..., no},
the limit in (6.1) exists, and

no+7
(w=-€)t)[Bs, = > GV +D (V) -4 (t0)) (6.2)
j=1,5¢Z Jj€EZ

fort € (0,00)\, Z C {1, ..., no}, in particular (u — €)(t)|Bs,” = Z?flﬂ GU)(t) for such
t. Moreover &(t) € C®(Bg,)?, div,€(t) = 0 for t € R. The terms ||€|,or for r €

(3/2, 00) and ||V €||,2.r forr € (1,00) are bounded by €(r) (Hu(l)Hq(l) 2-00+Hu(2)Hq<2) oot
0 145 0 %
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|Vaullgr,2:00). In addition, if R € (S2,00), Z C {1, ..., no}, then for any t € R,

no+7 2
I Y. OOl <€ (XDl 0, + Vel 200 (6.3)
7j=1, j¢Z Jj=1
+ Z ”fj pr 7oo""Z” ])_u(j to))|ARSQ (t_17 t)HLl(t—l tLq(ARS )3))
ji=1,j¢Z JjEZ Y 2

We remark that if we treated only the case T = oo, it would not be necessary to introduce
the parameter ¢y and the functions 40, Our theory would then carry through with the
equation u — & = Z”°+7 GU) instead (6.2), and with (6.3) only in the case Z = §, so that

no+7

H Z GO () AR5, g < € (Z [Pl ) o + Va1 200 + S 179y 20

Jj=1 Jj=1

for R, t as in (6.3). However, since we also want to cover the case Ty < oo (Theorem 6.3),
we will have to use (6.3) with |Z| = 1. Otherwise we will not be able to reduce the case
Ty < oo to the case Ty = co. Some additional indications in this respect are given in the
passage preceding Theorem 6.3.

Proof of Theorem 6.1: We proceed as follows. First we construct a function §g, on
B, x R with §g,(§) € C’OO(BgQ)?’, div,§s,(€) = 0 (£ € R), and such that the mapping
€= (U —Fs,)(€) (€ € R) may be written as the sum of L%-integrable functions with
values in various Banach spaces. (Here u denotes the zero extension of u to R.) It will turn
out the inverse Fourier transform of this mapping & — & (u—Fs,) (&) is the weak derivative
of the function ¢ — u(t) — €(t) (t € R), where € is the inverse Fourier transform of Fg,
with respect to £ € R. From this we may conclude that v — ¢ is continuous as specified for
u — € in the theorem. In a last step we introduce a function ¢ € L*(R, L%(9Bg,)?) such
that € = &(p), with €(p) defined in the theorem. Actually the argument becomes more
complicated because we additionally introduce the functions Uy by writing the inverse
Fourier transform of certain functions in an explicit way.

Denoting the zero extension of v, u®, u, dz;u and f¥) to R in the same way as the
original functions, we may apply the Fourier transform with respect to the time variable

to these functions (1 < I < 3, 1 < j < ng). Theorem 2.11 then yields that u(® &
(1)

L2(R, L4 (@%)3), dmu) € L2(R, L0 () and f0) € L2(R, L'i(Q°)3) for p €
{1, 2}, 1, j as before. Lemma 6.1 yields that u(®(£) € VVllocl(ﬁc)?’ and OxjuW(§) =
Oxu) (&) for 1 <1< 3, £ € R, pu € {1,2}. As a consequence U(¢) € I/Vllocl(Q )3 and
oxju € LQ(R, Ln (ﬁc)?’) for [, £ as before.

Let ¥ € Cgog(ﬁc) For w : R — Llloc(ﬁc)3, we define the function [gew -9dz : R — R
by (fgew-ddx)(t) = [qew(t)-Idx (t € R). An analogous definition is to be valid for
Jae Vew - VO dx if w: R — VVllocl(Q )%. Then by Lemma 6.1, the functions [ w -9 dx for
we{u(“) 01 SMSQ}U{f(j) 1< j<notU{0zxju : 1 <1<3}and fﬁcku-V79dx
belong to L%(R), and the Fourier transform commutes with the integration. Recall that
we supposed u to satisfy (4.6) with Uy = 0, f = Z;ﬁl Y and Ty = oo. Since u and
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f@ for 1 < j < ng were extended by zero to R, equation (4.6) is then valid even for
¢ € C§°(R), with the integral over (0,00) replaced by one over R. Thus the preceding
results and Parseval’s equation for functions from L?(R) allow us to deduce from (4.6)
with Up =0, f =372, fU), Ty = oo that

7 1€u(€) - u(€) - T Ox1u(€ £ T dé =
/Rso@)/ﬂc(s(s) 9+ VA(E) - VO + 7 0my(€) - 0 — Zfﬂ 9)drde =0 (6.4)

for ¥ € C35,(Q°), ¢ € C°(R), and div,d = 0.

Here it is important that Uy = 0. The set {p : ¢ € C§(R)} is dense in L?*(R), so
we may conclude that for ¢ € R\{0}, the equations in (3.1) (Oseen resolvent system
in a weak form) are satisfied with A, U, F, A replaced by Q°, @(¢), Z?il f(j)(é) and i &,
respectively. At this point, recall the definition of g, pp,+1 and ppy42 in the theorem, as
well as the numbers S, So € (0,00) with S; < 53 fixed at the beginning of this section.
Put L£(§) = Ha(l)(g)Hqél) + H’d@)(g)|]qég> + ||Vou(€)llq, for & € R. Then, using Theorem

3.6 with A, S replaced by Q, Sy, we get that for £ € R with |£| > 1, there are functions
UW(€) € LPi(Bs,")* for 1 < j <o +1, UMH(€) € C=(Bs,")?, ¢(€) € LU(8Bs,)? such
that

()Bs, = S UM(©), U = (16T, + Ap) " (P, [FD©IBs ), (65)
IEUD©)llp, < € FDE)]y, for 1 <j <ng, €TV lpnyir < CLE),

6 lg < €L(E),  N€[UMFD(€) = F(0(€)) ]IBG, I < €L(E) it r € (1,00),
IS (6(€))IBS, [l < €L(E) ifr € (3/2 00),

with all constants being independent of £. The function § ( qb(f)) is taken from Theorem
3.6 with A, S, ¢ replaced by €, S1, ¢(£) and thus is defined as in (3.2) with A = Bg,.
References for the definition of Z,,, A}, and P, are given in the theorem. Theorem 3.6
with the same replacements further yields for £ € R, R € (S7,00) that

i Aﬂa<s>.n<a>dam=o, then | §(6(6))(0) 1ol ydo, =0. .

OBR

We put (&) :== 0, UW(€) := 0 for € € (—1,1), j € {1, ..., ng + 2}. Then F(4(&)) =
0 for £ € (—1,1), and the estimates in (6.5) are valid for all £ € R. We further set
Urot2+u) (¢) .= X(-1,1)(§) (u(“) )/\(§)|Bislc for £ € R, p € {1, 2}. Recalling the definition
of L(§) further above and the definition of py,+3 and p,,+4 in the theorem, and referring
to the first equation in (6.5), we get for £ € R that

Je U2,y < CLE) (e {1 2)), AQBs =Y UWE©.  (67)

For £ € R, we further set

Z(j)(g) — 5U(J’)(£)|Biszc (7 e{l, ....,ng+1}U{ng+ 3, nop +4}), (6.8)
200t () := ¢ [UMT(€) = F(6(9) ) ]Bs,"s (&) = F((€) )| B,
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Due to (6.7), this means in particular that

e[a(€) - §(0(&)Bs =3 """ 2W(g) for ek (6.9)

k=1

Recalling that dz;u = %l\u for 1 <1 < 3, we get by Theorem 2.11 and our assumptions
on f@) and u that fU) e L*(R, LPs (50)3) and

179 gy = 159 e (13 < o), 1€ < €, (6.10)
with 901 := Hqu(()l)72;R + ||u(2)||q52),2;oo + ||Vzul g 2:00- Therefore we may deduce from (6.8),

(6.10), (6.5) and (6.7) that
||Z(j)||pj72%R <c Hf(j)”pj,?;OO (1 <J< nO)’ (6'11)
||Z(j)||pj,2;R <M (no+1<j<no+4), H¢||q,2;R <em, [Fs, r2R < €(r) M

if r € (3/2, 00), in particular 20) e LQ(R, Lp.f(?&c)3) for 1 < j < ng+4, ¢ €
L?(R, LY(8Bs,)?), §s, € L*(R, L"(Bg,)?) if r € (3/2, 00). We further set

PO = [ZD]Y (1<j<ng+4), €:=[Fs]", (6.12)

where the term [Fg,]Y may refer to the space L*(R, L"(Bg,)*) for any r € (3/2, oc)
(Lemma 2.7). Then Theorem 2.11 and (6.11) yield that

1Pl 28 < €[ Dl 2100 (1< < 10), (6.13)
’\P(j)Hpj,2;R <EM(nog+1<j<no+4), |€rae0 <EF)M ifre (3/2, o),

in particular PU) € L2(R, LP(Bg,)?) for 1 < j < ng +4, € € L*(R, L"(Bg,)?) if r €
(3/2, 00). Due to the first inequality in (6.5), the equation in (6.10), the assumption f\@) €
L?( 0,00, LPi (ﬁc)?’), and the definition U (£) = 0 for £ € (—1,1), we see that UY) €
L*(R, LPi(Bg,")?) (1 < j < mg). Put YUY == [UV)]Y for j € {1, ..., no}. Then UV €
L?(R, LPi(Bg,")?) (1 < j < ng) by Theorem 2.11. We further get due to the properties
of the Fourier transform that [U)]" = U for j as before, and there is a sequence (R,,)
in (1, 00) and a zero measure set Ny C R such that R,, — oo and the limit in L (Bg,)? of
LPi(Bg, ) — f(_RmRn)\(_l,l)(Q m)~ Y2 tEUU)(€) de exists for n — oo and equals UV (t),
where ¢ € R\ Ny, j € {1, ..., ng}. Due to the second equation in (6.5);£he term UU)(€)
in the preceding integral may be replaced by (i{Z,, + Apj)_l(ij [f(j)(§)|lec] ), for
€ € R\(—1,1), 1 < j < ng. Therefore the limit in (6.1) exists for t € R\ Ny, 1 < j < ny,
and the function YY) defined by this limit coincides with ¢/() on R\Ny. Hence 4 =
[T, DN = U0, 4U) € L2(R, LPi(Bg,“)®) (1 < j < ng). Let 9 € C5°(Bg,")?. For
G e {u, UL 1 1<j<ngtU{ZW : 1< j<ng+4}, we put (fB—SZcG-ﬁda:)(s) =
fB—SQc G(s) - ¥ds for s € R. Since each of these functions G except G = u belongs to
L*(R, B) for some Banach space B (see (6.13), (6.11) and the preceding remarks about
40)), and because u = uM + u® and w0 e L*(R, Lqéj)(ﬁc)?’) (j € {1, 2}), we may
conclude by Lemma 6.1 that

(

G-9de)’(t) = Gt)-9de (teR, Ge{2Y) :1<j<nyg+4}), (6.14)

C C
Bs, Bg,
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and

(

G-0de) €)= | G&) - Vdr (E€R, Ge{u, EfU{UD, . um}) (6.15)
Bs, Bs,

Let Z C {1, ..., ng}. By the definition of & (see (6.12)), Fs, and 3Y) (see (6.8)), the
equation [(U )] = UU) (1 < j < nyg), equation (6.9) and Lemma 2.7,

no+4
(=& 4MN©)[Bs = ¢ [a©)-F(4(6)) ] -Y 20 = Y 20 (€ eR).
j€z jeZ j=1,j¢Z

Thus we get by (6.12) (definition of PM), ..., P(0+4)) (6.14), (6.15) and Plancherel’s
theorem for L?(R) that for any ¢ € C§°(R ) 19 € C°(Bg,")?

! e - N U@ - vdxd 6.16
e /B<u ZZ )() 0 da dt (6.16)
. iE(u—¢C— S UNNE) - Ydrd

JEG /%sz<u Z; Y(€) - 9 do de
no+4 no+4
=i [ @) ZU(¢) - ddxds =i PU(t) - 9 dx dt.
/R /BS2CJ‘§§EZ / Bs," j= 1J¢Z

Let n € N with n > Sy, and abbreviate A := A,, 5,. The precedlng equation (6.16) is true
in particular for any ¢ € C5°(A)3. Moreover, if G € {u — € — djez () Z”OH ¢z P},
the function ¢ — G(t)|A (¢ € R) belongs to L}, (R, L1(A)?), as follows from (6 13), the
assumptions on v and u®), the relation U € LQ(R, LPs (Bislc)g) for 1 < 7 < ng, as
already proved, and because ¢ < p; (1 < j < ng + 4). Thus, since C§° (A)? is dense in
LY (A)3, and in view of Theorem 2.9, there is a measurable set N, zn C R of measure zero
and a continuous function Kz, : R — L(A)3 such that Kz, (t) = (u—@—zjez U ()| A
fort € R\N zn and such that the equation

t no+4
Kzn(t) = Kzn(to) = LI(A)® — [ i } : PU(s)|Ads (¢, to € R) (6.17)
to 1o
j=1,j¢Z

holds. The integral in (6.17) is Lq(An,R)?’—Valued. Putting Nz, = ﬁZ,n U Ny, with the
zero measure set Ny introduced above in the study of the properties of the functions U ()
we see that Ny, is still a zero measure set, the equation for Rz ,(¢) preceding (6.17) holds
for t € R\Nz,, and the limit in (6.1) exists for all such ¢ and for 1 < j < ng. This is true
for any n € N, n > Sy and any Z C {1, ..., ng}. Put N := U{Nz’n :neN, n>9Sy, ZC

{1, ..., no} } Then we may conclude that N has measure zero and the ensuing equation
no+4
(u—€—> ub) (u—€=> UD)(to)|Ap,s, = / > iPU(s)|Ans, ds (6.18)
J€EZ JjE€Z j=1,5¢Z
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is valid for ¢, typ € R\N, n € N with n > Ss, Z C {1, ..., ng}, and the limit in (6.1) exists
for t € R\N, 1 < j < ng. Recalling the interval J introduced in the theorem, we have
J N (R\N) # 0, so we may fix some ty € J N (R\N). In view of (6.13), we may define

t
GU(t) := L") (Bg,")® — / i PU)(s)ds (1 <j <mng+4), (6.19)

to
Gt (1) = ) (1) B, (€ {1, 21), G (t) 1= E(to)| B, for t € R.

Recall the definitions of pyq44+4, for p € {1, 2} and py,47 in the theorem. Then it is obvious
with (6.13) that GU) ¢ CO(IR{, LPi(Bg, ) (1<j < no —|— 7), and from (6.18) and Lemma
27 we get (1 & = 2, 80)(0Angy = ST GO0 Ansy — s 800 s,
for t e R\N, Z C {1, ..., no} and n € N with n > S, so we finally arrive at (6.2).

Let Z C {1, ..., no}, R € (S2,00), and put A= ARgs,. For t E R let us estimate the
term || Z?S{Zgéz GU)(t)|All,. To this end, put Gj Z?:ﬁjgz , P = Znoﬁygz PU),
In view of (6.13) and because GV) € CO(R, LPi(Bg,")?) and ¢ < p; (1 < j < ng+7), the
function ¢ — G(t)|A (t € R) belongs to C’O(R Lq(g)g) and the function t— P(t)A(te
R) to L}OC(R Li(A)3 ). Let 9 € C§° (A)3, and put Hg(t) = = [7G(t) - Vdz, hy(t) :=
i [{P(t)-9dx for t € R. Then Hy € CO(R), hy € Lloc(]R), and from (6.2) and (6.16)
we get ngo Hy(t)dt = — [po(t) hg(t)dt (¢ € C§°(R)). Thus Hy € I/Vlicl( ) with
H)y = hy. Fix some function ¢y € C*°([0, 1]) with (4(0) =0, (o(1) = 1. Let ¢t € R, and put
Ce(s) == Co(s—t+1) for s € [t—1, t]. Then (; Hy belongs to CO([t—1, t))nwh 1((25—1, t)),
and (¢ Hy)' = Chy + ¢ Hy € L'((t —1,1) ), so Hy(t) = [/ (¢ ho + ¢ Hy)(s)ds. This

is true for any ¥ € C§° (Z) Therefore with Theorem 2.7 and the definition of Hy and

hy we get G(t)|A = Li(A ft [(iG P+ G)(s )|Ads. Replacing P and G by their
definitions on the right- hand side of the precedmg equation and using (6.2), we now find
that G()|A = [ [iG X000, PO+ (u—€=3 4D+ 30, ) (t0) ) | (s)| A ds.
It follows with the definition of G that

no+7 no+4 ~ ~ ~

Y VA, < €/ > IIPY () Allg + [luls)Allg + [€(s)| A, (6.20)

j=1,j¢Z j=1,7¢7
+ 3149 (s) = 4D ko) A, ) ds
JE€EZ

But ¢ < pj, 50 [|[PY)(s)|A]l4 < €(R) [|PY) ()| A, < €(R) | PY(s)||y, for s € (t-1,1), 1 <
Jj <mno+ 4. Thus with (6.13),

no+4 no+4 no '
/ S P Algds <€ Y PP <€D 1Dy, 200 + M),
Lj=1,j¢z J=1,j¢Z J=1,5¢Z

Similarly, since ¢ < g (j € {1, 2}), we get [' | Ju(s)|Algds < € 322, ||u<j>uqéj>,m <

CM. Again with (6.13) ft 1 |€(s |A||qu < €||é||max{27q}’2;oo < M. Now inequality
(6.3) follows from (6 20)
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Let us determine an explicit form of ¢. To this end, recall that ¢ € LQ(R, Lq(ale)f*)
according to (6.11) so that we may define g := ¢. Theorem 2.11 and (6.11) then yield

lollg2r < €M, in particular p € L?(R, LY(0Bg,)*). (6.21)

Let ¥ € Cg°(Bg,")3. Since |z —y| > Sy — 81 > 0 for 2 € B¢,, y € 0Bs,, and because
the function M introduced at the beginning of Section 4 belongs to C°°(R3\{0}), the
function y fBC (VN)(x —y) - I(z)dx (y € 0Bg,), is bounded. Hence the operator V —

faBs Sty -V(y ch (VM) (x —y)-Y(z)dxdoy (V € LY(OBg,)?) is linear and bounded.

Put B(§) = faBs S— 1y (¢ ch (V) (z — y) - 9(z) dx doy (§ € R). By Corollary
2.1 we get B € L?(R) and B(t faBS S~y ot fBC (V) (x — y) - ¥(x) dz do, for
t € R. Again because |z — y! > SQ -5 >0 for T € BS, y € 0Bg, we may apply
Fubini’s theorem, obtaining that B(§) = ch §s, (&) - vdx (€ € R), with Fg, from (6.8),
and B(t ch faBs V‘ﬁ)(w y)(S Ly. Q( )( )) doy - ¥(z) dz (t € R). The second from
last equatlon that is, B(& ch §s, (&) - Vdx (E € R), Corollary 2.1 and the definition
of & (see (6.12)) imply that B(t ch -ddz (t € R). Thus we have found two

equations for B, whose right-hand 51des must therefore coincide. Since this is true for any
VRS CSO(BC )3, it follows that 6( faBS (V) (z —y) (S~ ty - o(t)(y)) doy for a. e.

z € Bg, and for t € R.

With this equation on hand, we may prove some additional properties of ¢. Since 0 €
L2(R, Lq(8351)3) (see (6.21)) and |z —y| > (1 — Sl/Sg)|ac] for x € BS,, y € 0Bs,,
we may conclude by applying Lebesgue’s theorem that ¢c C’OO(BSQ) and 835[(‘3( )(z) =
faB (OVN)(x — )(Sily . g(t)(y))doy (teR, x e 37520, 1<1<3),s0 dlvzt’f( ) =10
because AN = 0. Hence |8§€€(t)(x)| < ¢zl o) < €zl o)y (t, x as
before, a € N} with |a| < 1), and thus with (6.21), (r) llollg2r < €(r)M

for a as before, r € (3/2, 00) in the case o = 0, and r € (1, 00) else.

Altogether we see that if the functions 40) (1 <j < ng), GV (1 <j<ng+7) and o are
defined as above (see (6.1), (6.19) and the passage preceding (6.21)), then the function &
coincides with the function € introduced in Theorem 6.1. Therefore, in view of what has
been shown for G, € and p, Theorem 6.1 is proved. O

In the following corollary, we drop the assumption Uy = 0 in (4.6) imposed in the preceding
theorem.

Corollary 6.1 Let ng €N, py, ..., pn, € (1,00), fU) € L?( 0,00, LPi(Q )3 ) for1 <j<
no, and let U40) for 1 < j < ng be defined as in (6.1). Let q € (1,00) be such that

IVaHOW)IRS x (0,2)llgy 22 < Clar) [Ullgy for U € L (&2, (6.22)

with HO) defined in Lemma 4.3. (This condition is satisfied if ¢ € (1,2]; see The-
orem 5.1.) Let Uy € L¥(R?), g9 € (1,00), u € L?(0,00, L®(Q°)%) with u(t) €
I/Vllo’cl(ﬁc)?’, divgu(t) = 0 for t € (0,00), and Vyu € L*(0,00, L‘H(ﬁc)g). Suppose
that equation (4.6) holds with Ty = oo and f = Z?il fO. Let ¢ € (1,00) with q <
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min({qo, g1} U{p; : 1 < j < ng}), and put ppy+j = q1 for j € {1,2,5,7,9}, pno+j == @
for 7 € {4,6}, and ppy+3 = q, Pno+s = max{2, q}. Let J C R be an interval with
nonempty interior. Then there is a zero measure set N C R, a number ty € J\N and
functions ¢ € L*(R, L1(8Bg,)?), Ggu) ¢ C°(]0,00), LPi (37520)3) (1 <j<mno+9) with
the properties to follow.

The limit in (6.1) defining the functions U9 (1 < j < ng) exists for any t € R\N. Define
the function € as in Theorem 6.1. Then

no+9
(u—&)B)Bs," = > GV + > (UD(t) - uD(tg)) (6.23)
j=1,7¢2 JjEZ

for Z c {1, ..., ng}, t € (0,00)\N, in particular (u — €)(t)|Bs, = Z;‘iﬁfg GU(t) fort e
(0,00)\N. Moreover &(t) € C’OO(B§2)3, divy€(t) = 0 for t € R, the quantities || €||, 2.r for
r € (3/2, 00) and || V3 €|, 2r forr € (1,00) are bounded by €(r) (||u]|g,2:00 + | Vatel g1 ,2:00 +
Uollq,)- In addition, if R € (S2,00), Z C {1, ..., no}, then

no+9
I Y. 99IARs g < €R) (lulan 2o + [ Vol 200 + [Toll (6.24)
j=1 JéZ
+ Z [ ”p],QOO +Z I( u(a UG (to) )|AR,s, X (t—1, t)HLl(tfl,t,Lq(ARs )3))
j=1,j¢Z JEZ 2

for any t € [0,00), in particular

no+9

|| Z 09 (Ol An sy < € (|4 gy + [ Votllnzion + 3 17Dy 200 + Vol ) 625)
j=1

Proof: Abbreviate H := H()(Up). By Lemma 4.3, we have |H(t)|l4 < C(q1) |[Uollg, and
H(t) € C2(R¥)3 for t € (0,00), H € CL(R3 x (0,00))* and div,H = 0, dH — A,H = 0.
The same reference yields that # is a continuous mapping from [0, co) into L9 (R?)3, where
H(0) = Uy by the definition of H = H(O) (Up). Fix a function vy € C*(R) with v|(—oc, 1] =
1, 0|[2,00) = 0, 0 < 5 < 1. Then define H(z,t) := Y0(t) H(z,t) for x € R3, ¢ €
(0,00). The properties of H listed above immediately imply that ||H(¢)|lq, < C(q1) [|[Uollg
and H(t) € C2(R3) for t € (0,00), H € CY(R3 x (0,00))", div,H = 0 and H €
C°([0,00), L9 (R?)?) with H(0) = Up. By our assumptions on ¢; we get ||VoH||q 2:00 <
IV H|R3 % (0,2)]|4.22 < Cq1) |Uo|lqy» in particular V,H e L*( 0,00, L7(R*)?). Since H
vanishes on (2, 00), it follows from the estimate \|’l—~{(t)|]q1 < C(q1) |Uo|q (t € (0,00)) that
also H € L2(07 oo, L1 (R?)?) and [Hlg1.2:00 < C(q1) |[Uollg, - Define the function f(ro+1)
by setting fotD () := —(t) H(t) — 7y0(t) Dz H(t)|Q° (t € (0,00)). Recalling that
Pno+1 = @1 by the definition of p,,41 in the corollary, and using the preceding estimate
of [V, Hth 2,00 and H%qu,? 100, We obtain ||f (mo+1) Hpn0+1,2,oo < C(q15 [79ls0) [1Uollgy - Since
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OvH — ALH = 0, we further get 8{;':2 — Ax?:Z = —f("OH), and therefore
/ / D+ 1) [ V() VO + 70w F (1) 0 + FO0V (1) 9] ) v
—p(a) / H(a)-9dz =0 for ac (0,00), ¢ € Ci°([0,00)), ¥ € e (Q).

Since H € C 0([0,00), L% (R*)3), the preceding equation remains valid for a = 0. Recalling

that H(0) = Uy, we thus see that equation (4.6) holds with A in the role of u and with
Tp = o and f = fno+D),

Now put w := u — H. Then w(t) € I/Vllocl(ﬁc)3 (t€(0,00)), Vow € L*( 0,00, L% (56)3)
and div,w = 0. We recall that H € L2(0,00, L% (R3)3) and u € L%(0,00, L% (Q)3),
and we observe that equation (4.6) is valid with v and f replaced by w and ZnOH @),
respectively, and V\(f{)ﬁh 1(“(2])— 00, Up = 0. Thus all assurr;;))tlons of Theorem 6.1 are Satlsﬁed 1f

the numbers ng, gy ', ¢y and the functions u, uM, u? are replaced by no+1, qo, q1, w, w
and —H|[Q % (0, 00), respectively, and pp,+1 and f "OH are chosen as above. This theorem
then yields existence of a zero measure set N C R, an element typ € J\N and functions
0 € L*(R, LUdBg,)*), GW € C°([0,00), LPi(Bg,")?) (1 < j < ng + 8) such that the

1 (2 2)

statements of this theorem hold with ng, ¢ 7, ¢y, u, w4 replaced as specified above.

Let us indicate how Corollary 6.1 follows from these statements. With the function &
defined in Theorem 6.1, we have €(t) € C*(Bg,)* (t € R), div,€ = 0, and ||€[|,2r < €M
for r € (3/2, 00), [|[V2€[[;2r < €M for r € (1, 00), where 9 is an abbreviation for
1wl go,2:00 + |H[Q x (0, 00) g1, 2:00 |V (u —H) l|g1,2:00- But the estimates of H given above
yield M < € (||ullgo,2:00 + || Vatull g 2:00 + 11 U0l g1 ), SO we obtain the upper bounds of || €|l 2.r
and ||VE&||,2.r stated in the corollary. Equation (6.2) is valid with w in the role of u and
with the upper bound ng + 8 instead of ng + 7 in the first sum on the right-hand side.
Inequality (6.3), for R € (S2,00), Z C {1, ..., no + 1}, t € R, takes the form

no+8 no+1
Y G<J><t>\AR,s2||qs¢(mt+ S 1D, 200 (6.26)
j=1,j¢Z J=1,3¢Z
(4) _
+ZZH u ))’ARSQ ( I, t)HLl(t—l,t,Lq(ARsQ)?’)>'
JE

Put GO = GU|Bg,” x [0,00) (1 < j < ng +8), G0t .= H|Bg,” x [0,00). Again
by the properties of H derived above, and by the definition of p,,4+9 in the corollary,
we see that G(o+9) ¢ CO( [0, 00), Lp"0+9(3752c)3) and |yg("0+9)(t)||pn0+9 < C||Uollg (t €
[0,00) ). Equation (6.23) follows from the modified version of (6.2) described above and the
definition of w and G("0*9), We further recall that || f(0+1) [y 11,2;00 and |G (mo+9) ()llpng 1o
for t € (0,00) are bounded by € ||Up|4,, and we note that because ¢ < ¢y, the inequality
1G9 (6)| Apsy lg < C(R,q,01) 979 (1)] A5, |y, holds for R € (S,00), £ € (0,00).
Due to these relations and the estimate of 9t given above, inequality (6.24) becomes an
immediate consequence of (6.26). O

The ensuing corollary introduces a representation formula for a velocity u given as in the
preceding corollary.
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Corollary 6.2 Consider the situation in Corollary 6.1, with €, G\, pi (1<j<nog+9)
introduced as in that reference. Put v(t) := u(t) — €(t)|Bs," (t € (0,00)). By (6.23) with
Z =0, we may suppose without loss of generality that v(t) = Z;‘ng Ggu) (t) fort € (0,00).
As in Theorem 4.4, put nt50)(y) = O_ly fory € 0Bg,. Then fort € (0,00), there is a
zero measure set Ny C Bg,* such that

u(z,t) = E(x,t) (6.27)

3
+RO(F)(x,t) + 37 (Us] B, ), 1) — Y 0287550 (nf*) v) (1)
=1

- /aB (V) (2 — y) (n'5)(y) - v(y, 1)) doy + RRy.So.p0,B5,70 (V) (2, 1)
So
t
—/’ 6%&%@%0¢MW@—//1 ® o 0.0 (21— ) - F(y,5) dy ds
ARy, 0 JAR, s,

for & € Br, \Ny, with Ty = oo, f = >y f9)[Bg,” x (0,00), where gy 5950 Was intro-
duced in Theorem 4.3, and RR,,80,00,B5,,1 (V) was defined in (4.5). The function M was
introduced at the beginning of Section 4, and the parameters Ry, Sy, R1 were fixed at the
beginning of the present section.

Proof: We are going to apply Theorem 4.4. So let us check its assumptions using Corollary
6.1. Since ¢ € L?(R, L’"(BEQ)S) for r € (3/2, o0) by Corollary 6.1, and because u €
L2(0,00, L (0°)3 ), we get v|Ag, s, % (0, 00) € L2( 0,00, L™ 0} (Ag, ¢,)%). In addition
u(t) € Wli’cl(Bi&c)S (t € (0,00)), divyv = 0 and Vv € L?(0,00, L% (Bigf)g), due to

analogous properties of € and u. Further recall that v(t) = Z;.‘i?g GY(t) (t > 0). Define
Z(x,t) = fale Nz —y) Sfly - o(y,t)doy for = € Bislc, t € R, with g introduced in
Corollary 6.1 and appearing in the definition of & (Theorem 6.1), and S; fixed at the
beginning of the present section. By Lebesgue’s theorem and because S7 < S2, we have
Z(t) € C°(Bg,") and V.Z(t)|Bs, = €(t) (t € R). It follows that fB—S; Ozfu(t) - ddr =
Ja5e Oufu(t) -9 da for 9 € C%,(Bs, ), t € (0,00), o € {0, 1}, 1 <1 < 3. Recall that u
satisfies equation (4.6) with Ty = oo and f =372, f (9). At this point we may conclude
that (4.6) holds with Ty = oo and f = Y7, f@[Bg,” x (0,00), and with © and u replaced
by Bg, and v, respectively. We thus see that all assumptions in Theorem 4.4 are satisfied
if Ty, Q and u are chosen in this way in this theorem, and if mo, p, qo, 0/, G¥ (1<1<
my), Ug are replaced by ng +9, g1, min{qo, 2}, p;, g(ﬂ')|37500 x [0,00) (1 < j <mnp+9) and
Us|Bs,©, respectively. Thus equation (6.27) follows from (4.7). O

Now we are in a position to derive decay estimates of u.

Theorem 6.2 Consider the same situation as in Corollary 6.1, with the choice J =
(—1,0). Suppose in addition that u|Ag, s, x (0,00) € LOO(O,oo7 LqZ(ARLSO)?’) for some
q2 € (1,00). Recall the zero measure set N C R and the number ty € (—1,0)\N introduced
in Corollary 6.1, and the functions 4o (1 <j <mng) from (6.1). Then there is a zero
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measure set N C R with N C N such that
[0 =0T (377" fDBs,” x (0.00)) = 9597 (U0[Bs,) @ 1)| - (6:28)
< e ((lelw(@) V2 g 2200 (g 200 + Vot 200
HUolgy 4l Ars 50 % (0,00 lgpcioe + " 119 Bsg” x (0.1 2

mo DB x (0 N () (s)1A
# 2 gaa ITBS < Ol + 3o 1896) 7152 l)

fort e (0,00)\]\7, x € Br, \Ni, a € N} with|a| <1, and Z C {1, ..., no}, with N; C Br,"
chosen as in Corollary 6.2. In particular (Z = 0),

[o8u—aemO (3" fOIBs," x (0,00)) = 230 (Uo[Bs,) (@ t) - (6:29)
< & ((lefw@) 22 0250 (ulln 200 + Vot 2200

no N —_—
+Uollq + ||U‘AR1750 % (0,00)lgz,00500 + Zj:l Hf(J)’BSOC x (0, OO)HPJ',ZOO)

fort, x and a as in (6.28). If [, u(t) - n do, = 0 for t € (0,00), the term |z|~271°l in
these upper bounds may be dropped.

Proof: We use equation (6.27). So, as in Corollary 6.2, we define the function v :=
u — €Bg,” x (0,00) and suppose without loss of generality that v(t) = Z?ng GUY(t)
for t € (0,00), where the functions GU) ¢ C°(10,00), LPs (Bs, )®) 1 <j <ng+9)
were introduced in Corollary 6.1, as were the exponents pi, ..., pny+9. For brevity, put
B = Ap,,s5, ¥ (0,00), M := [Jullgo,2100 + [Vetllg 200 + [[Uollg,- Since Sy < So, g < p;
and GU) ¢ ([0, 00), LPJ'(BiSZC)?’) (1 <j <nyp+9), we may conclude that v|B €
C’O( [0,00), LI(AR,.5,)° ) By the choice of ¢ in Corollary 6.1, we have ¢ < qg and g < q1,
hence ||u|B||g2.00 < C(Ro) [|u|B|lg,2:00 < C(Ro) M, and similarly ||V u[B||g2.00 < CM.
Moreover we know from Corollary 6.1 that [|€[|ax{2,g},2;r < €M and ||V, €[4 2r < M,
so we may conclude by the definition of v that ||[v|B]/g2.00 < ||u|B||g.2:00 + | E|B

q,2;R <
EM + C(Ro) |€[B|lmax{q,2}, 2 < €M, and similarly [|[V,v|B||g2,00 < CM. Together we
have

Hu’%Hq,?;oo + ”vquBHq,?;oo + ‘|U|%Hq,2;oo + Hvx”’%“qﬂ;m < M. (6.30)

By Lemma 4.4 and the definition of the norm of LOO(O, oo, L% (AR1,SO)3)7 and because

N C R has measure zero, we may choose a set N C R also of measure zero such that
N CN,

RO () € Wy (R®) and [u(t)| AR, 86llgx < 2[[ulBlgzy0000  for € (0,00)\N. (6.31)
Let t € (0,00)\N, z € Br,"\N; and o € N3 with |a| < 1. We are going to estimate the
relevant terms on the right-hand side of (6.27). Lemma 4.6 with  replaced by Bg, yields
that

0202, 50) (n(50) - 0) (,1)] < € (|[v]B g 2 + |V0|Blg.2) (|| () ) 17 6.32)
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(1 <1< 3). Since Uy € L9 (Q°)3, we get with (4.3) and Corollary 4.1 that

feY —(3+]|al)/2
a° (/A 0530,50,@0(%%75)-Uo(y)dyﬂ < || Uollgy (|2 () )" ETD2 (6.33)
Ry,5¢

Moreover, with (4.4) and Corollary 4.1,

no

¢
9 (/ / & Ro,S0,00 (T, Y, 1 — 5) - Z FD(y,s)dy ds)‘ (6.34)
0 ARleO

j=1

" ) Bg,© —(5/24+|a])/2
<€ IO Bs % 0.0, 20 (|| () ) (5/2+al)/2

In addition we may conclude by Corollary 4.2 with €2, u replaced by Bg, and v, respectively,
and with Ty = oo that

|8§RRO7SO,@O,BSO,OO(U)($7t)’ (6.35)
—(5/2+|al)/2
<€ (JJoBllg2s + Vv Bllgas + 0O Arysollg ) (2] v(z) )22,

We turn to the main difficulty of this proof, which consists in estimating the term 2 :=
o (&(x,t)— fﬁBso (VN)(z—v) [n(SO)(y) -v(y, t) | doy ). Our estimate is based on the split-
ting A = Ay + Ao+ 03 E(x, t), where Ay := 9% (— f3350 (V) (z—y) [n5)(y)-u(y,t)] doy,),
and 2y = 8§(faBSO (VM) (z — y) [n(SO)(y) . Qf(y,t)] doy). We cannot directly evaluate
|0 E(x,t)| because we do not have a bound for | o(t)||4, where ¢ was introduced in Corol-
lary 6.1 and appears in the definition of € (Theorem 6.1). In order to handle this diffi-
culty, we define Z(z,s) := fale N(z—y) S,y - oy,s)doy, for = € Bs,", s € R, as in
the proof of Corollary 6.2. Recalling what is already stated in that proof, we note that
Z(s) € C*(Bg,") and V.Z(s)|Bs, = €(s) (s € R). Since AN = 0, we further have
A;Z = 0. Returning to the point x and the time ¢ fixed above, we take S € [2|z|, c0) and
put n(550) (y) := S~1y for y € IBg, n550)(y) := Sy y for y € dBg,, so that n(5%) is
the outward unit normal to Agg,. Using a standard representation formula for harmonic
functions, we obtain

Z(z,t) = /M [0z —y) n59)(y) -V Z(y,1) + (V) (2 — y) - 050 (y) ) Z(y,t) ] do,

for z € Ag g, in particular for 2 € Ayy, 5,- But [0y Z(y, )| < €|lo[lx ly|~ 1ol for y € B,
because S < Sa < Rg. Moreover [0y70N(z —y)| < (47)~' [z—y|717lol < CO(|2)) |y| =1~ for
z2 € Agjg), 59, Y E BZM. Therefore, by letting S tend to infinity in the preceding equation

for Z(z,t) and recalling the definition of n(%%) we obtain
Z(zt) = —/83 [z =) Sy VyZ(y, 1) + (VW)= —y) - S5 y) Z(y,1) ] doy
So

for z € Ay 4|, 5,- By taking the gradient of both sides of the preceding equation, choosing
z = x, and using that VC,;Z|B§2 x R = €&, we arrive at the equation

E(x,t) = —/aB (V) (z—y) (S5 y- €, 1)) + Vo (V) (z —y) - Sy ' y) Z(y,t)] doy.
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Putting A3 := —8§[faBSO Ve (V) (z —y) - Syt y) Z(y.t) doy ], and recalling that A =
A1 + Ao + 09€E(x,t), we conclude that A = A; + A3. But according to Lemma 4.7 with
Q replaced by Bs,, the estimate |;] < € |lu(t)|ARr,.5ll¢ |2]7271% holds. In addition,
if [,ou(s) ndo, = 0 for s € (0,00), we have faBso u(y, s) - ly|"tydo, = 0 by the
Divergence theorem and because u(s)|Qg, € W4(Qg,)? and divyu(s) =0 (s € (0,00)).
Therefore under the condition [y, u(s) - n® do, = 0 for s € (0,00), Lemma 4.7 with
Q2 replaced by Bg, implies that the preceding estimate of |20 is valid with the exponent
—2—|o replaced by —3 —|a|. Therefore, putting v := 3 if the preceding zero flux condition
is true, and vy := 2 else, we get

[201] < € Jlu(t)| ARy ,ollgs 2] 7771, (6.36)

In order to handle the term A3, we put 7 := |Ag,.s,| " fAR < Z(y,t)dy. Since x € BROC,
120
we find that faBso VL ((VM)(z—y)- S5 ' y) doy = — sto IOV ((AN)(z —y) ) dy = 0,
so we may conclude that A3 = — faBS IV (V) (z—y)-Sy ' y) (Z(y,t)—7 ) doy. Again
0
since z € Bp,, hence |z —y| > (1 — So/Ry) || for y € ABs,, we arrive at the inequality
|| < & |x|3lel||Z(t) =7|0Bs, ||1. Moreover, by a standard trace theorem and Poincaré’s

inequality, [ 2(1) — 7108, |1 < C2(t) — 7|4, sl < C[VaZ(t)|Ar, 1. Recalling
that V. Z(s)|Bg, = €(s) (s € R), we thus get

12(t) =710Bsyllr < € €()[ ARy 50 llmin{q.q0y < € U0()[ ARy, 50llg + () AR, 50]lg2)-

As a consequence, |Az| < € ([|[v(t)|Ar,.50llg + ()| ARy .50llg) lz] 3719, Combining this
estimate with the equation 2 = 2(; + {3 mentioned above, and with (6.36), (6.31) and the
assumption t € (0, 00)\ N, we obtain || < € (|[v(t)| AR, .50llq+ 11D l42.00:00) |2 7771 Now
we combine the representation formula (6.27) with the preceding estimate, the inequalities
(6.32) — (6.35), (6.30) and (6.31), and the definition of 2. It follows that the left-hand
side of (6.28) is bounded by

no
C(M+ D NFVIBG, x (0,05, 2 + 1Uollgy + [[ulBllg2 00100 + 10(D)| Ay 0l ) (6.37)
j=1

[ ( 2| v(z) )*(5/2+\0¢|)/2 + ’x‘—'y—\od ]

for a. e. x € Bf, . It remains to estimate [|v(t)|Ag, s,llq- Let Z C {1, ..., no}. Since t ¢ N,
hence t ¢ N, equation (6.23) holds. This equation, the relation Sy > S, the choice of ¢y
in Theorem 6.2 and inequality (6.24) yield

£)|A <e(m+y " D], 2100 + U9 ()| A .
lo®Ar solla < € (M43 7 17Dl 20 j;e(s‘i%w‘ QIECNEN Y

In view of the upper bound of the left-hand side of (6.28) given in (6.37), the preceding
inequality completes the proof of (6.28). Note that if v = 3 in (6.36), we have |z~ <

¢ ( |z v(z) )_5/4_‘04/2, so the term |z|~7~l%l may be dropped in (6.37), and thus in (6.28)
and (6.29) as well. O
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This leaves us to consider the case Ty < oco. The basic idea consists, of course, to extend
a solution u of (4.6) on (0,7p) to a solution u of a similar equation on (0,00). We could
not find a useful equation if u is simply extended by zero on (7p,c0). So we have to fix
an arbitrary number T € (0,Tp), cut off u smoothly between T" and Ty, and define u as
the zero extension of this truncated version of u. Then we apply Theorem 6.2 to u, in
the hope of extracting an upper bound of u|(0,7") = u|(0,T") only depending on suitable
norms of u, but not on negative powers of Ty — 1. However, this approach turned out to be
difficult since the function p introduced in Corollary 6.1 and entering into the definition
of € is defined via Fourier transforms involving w. Thus the contribution of u|(7, Tp) to an
upper bound of u|(0,7) is difficult to evaluate. This is the reason why we introduced the
functions 4V) in Theorem 6.1 and carried them all the way to Theorem 6.2. They are an
explicit form of the critical Fourier transforms that will have to be estimated in the proof
of the following theorem.

Theorem 6.3 Suppose that Ty € (0,00). Let ng € N, pi, ..., pny € (1,00), fU) €
L2(0,Ty, LPi(Q°)3) for 1 < j < ng. Let ¢1 € (1,00) be such that condition (6.22) is
valid. Let Uy € LI (R3), qo, g2 € (1,00), u € L2(0,Ty, L@ (Q)3) N L>®(0,Tp, L=(Q°)?)
with u(t) € VVlt)Cl(Q )3, divyu(t) = 0 for t € (0,Tp), and Vyu € L2(0,Tp, L% (Q%)7).

Suppose that equation (4.6) holds with f = Z?il fU). Then there is a zero mesure set
N C R such that

[05u—0gR@ (3 7 f9Bs," x (0,T0)) — 9237 (Uo|Bs,) ] ()] (6.38)
—5/2—|a|/2 —91a
< & ((lafw(@)) 212 4 o200 (ullgo 27, + IVatillar 27

no N
+”U0Hq1 + HUqu,OO;To + ijl ||JC(J)|BSOC x (OvTO)Hij;OO)

for t € (0,To)\N, a. e. = € Bg,*, o € N3 with |a| < 1. If Joq u(t) - n do, = 0
for t € (0,Ty), the factor |z|~>71°1 in (6.38) may be dropped. The constant in (6.38) is
independent of Tp.

Proof: Fix some function ¢y € C*°(R) with ¢g|(—o0, 1/4] = 0, v|[3/4, c0) =1, ¢, > 0
and 0 < ¢9 < 1. Let T € (0,Tp), and put ¢r(s) := tho((To—s)/(To—T) ) for s € R, Ty :=
3T/4+ Tp/4, Ty = T/4+3Tp/4. Then T < T} < Tp < Ty, o € CZ(R), 0 < or <
1, prl(—o0,Th] = 1, er|[Tz,00) = 0, ¢ < 0 and supp(y¢l) C [T1,T5]. All the con-
stants € appearing in the following are independent of T' and Tj. Further define f (t)

no+1 _
pr(t) ) for t € (0.T0), 1< < o f‘° () = O ult), wlt) = pr(t)u(t
for t € (0,7p). The functions ?(1 o f (ro+1) , u are supposed to vanish on [TQ, ) We
additionally put pp,+1 := go. Since supp(«pT) [T1,T>]) and u € LOO(O To, L2(Q2 )

we have in particular that f(nOH) € Lz(0,00, Lp"0+1(Q )3 ) It is obvious that w €

L2( 0,00, LO(Q°)3) N L>®(0,00, L2(Q°)?), @(t) € WE(Q)?, divya(t) = 0 for t €
(0,00)), Vzu € L2(0,00, L%(02°)?) and

*( ) c -
17 1B, % (0,00)[lp; 200 < [1FDV|B, % (0,T0)llp, 21, (1< 5 < mo),  (6.39)

HEHQ%OO;OO < HUHQ2700§T07 Hvaqu,Q;oo < ||v$qu1»2;T0’
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By the definition of f 70t and because or|[T1,00) = 0, we further get that equation (4.6)

is fulfilled with Ty = 0o, f = Z”OH f 79 , and with @ in the place of u. Thus we see that
all assumptions of Corollary 6.1 and Theorem 6.2 are satisfied with ng+ 1, @ in the role of
ngy and u, respectively, and fU) (1 <j<mng+1)in that of f) (1 < j < ng). Therefore we
may apply Theorem 6.2 with these replacements. This means in particular there are zero
measure sets N, N C R with N C N, and a sequence (R,,) in (1,00) with the following
two properties. Firstly, the limit {0+ (#) := lim,, o0 A, (t) exists in LPro+1(Bg, )3 for
t € R\N, where

An(t) (6.40)
—2m2 | € Tps + Apugs) " (Poags (" 1NOIB”) ) e
(=Rn,Rn)\(-1,1)

for n € N, t € R. This integral is to be understood as a Bochner integral with values in
Lpno“(BSlc)?’. The operator P, is to be chosen as in Theorem 2.6, and the operators

7 and A

Png+1 Png+1
property associated with the sequence (R, ) and the sets N and N is that for ¢ € (0, 00)\N,
a. e. © € Br,, @ € N} with |a|] <1 and Z C {1, ..., ng + 1}, inequality (6.28) holds
with ng + 1, @, fY (1 < j < ng) in the role of ng, u and f(]) (1 <j<mg+1),
respectively. We choose Z = {ny + 1}, and use the possibility to fix the parameter
q € (1,00), under the restriction that it is below the threshold imposed in Corollary 6.1,
setting ¢ := min({qo, ¢1, @2} U {p; : 1 <j <ng+1}). Then we get for ¢t € (0, T)\N, a. e.
x € Br," and o € N3, |a| <1 that

no+1
as in Corollary 3.1, each time with 351c in the place of A. The second

Nog < €0z, ) )+ sup  [UTFD ()| Ap, s,]), (6.41)
re(—1,t\N

with Ny = [ 027 — 92RO (1 7V Bg, % (0,00) ) — 9237 (U BE, ) ] (2, 1)1,

E)ﬁ(t) = Hﬂqu?;oo + vaﬁ”qﬂ;oo + ”U0Hq1 + HmARLSo X (OvOO)qu,OO;oo
notl  —(j) H—c no =)z
#30 ITV1Bs < (0,0 + D 17V B, x (0,00) 2

and V(z, a) == (|z|v(z) )75/440"/2 + |z|~271el, where the term |z| =271l may be dropped
if the integral [, u(s) - n? do, vanishes for s € (0,Tp), a condition which means that
Jo0 (s)-nY do, = 0 for s € (0,00). We are going to exploit (6.41) in the case ¢ € (0, T)\N.
Since fO|(0,7) = 790, T) for 1 < j < np, we get RO (FD|BE x (0,Tp) )(w,t) =
%(T)(f(j)\Bc x(0,00) )(z,t) for 1 < j < ng, t € (0,T), z € R*. Moreover 7(n0+1)\(0,T) =

0, so iR(T)( (mo+1) |BS, % (0,00) )(z,t) = 0 for t, z as before. Recalling that u[(0,T) =
u|(0,T), we thus get

Nor = |[0%u — 02RT) Zf Bs,” % (0,Tp)) — 0237 (Uo|BE,) | (2, t)],  (6.42)
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for t € (0,T), = € Bg, , a € N} with |a| < 1. Again since f( no+1) |(0,T) = 0, and because
of (6.39), we find

Dﬁ(t) < Hqulm2 To + HvquQLZTO + HU0||Q1 + Hu’ARhSO X (07T0)HQ2,003T0 (6'43)
Z Hf ’BSO (07T0)HPJ'72;T0

for t € (0,7). We still have to estimate the term sup,c_q N |4+ (1) AR, 5,4 for
t € (0,T)\N. Our starting point is the relation |40+ (s) — An(8)|lppyr — 0 (n — o0)
for s € R\N, with A, (s) defined in (6.40). We recall that p,,+1 = g2 by the definition
of ppy+1 further above Therefore we may write g2 instead of pp,4+1 in the following.
By the definition of f no+1) , by Corollary 2.1 and because supp(¢f) C [T1,T5], we have
Pos ( [f(n0+1 JN€)|Bs,”) = (2m)~1/2 fgf @l (r) e 6" Py, (u(r)|Bs, ) dr, with the Bochner
integral being L% (Bg1 )3-valued. We then get with Fubini’s theorem for Bochner integrals
(Theorem 2.10) that for s € R,

An(s) (6.44)

T> ] —
= (2 77')1/ SOIT(T) \/(\R R LD) 815(577‘) (Z§Iq2 +Aq2)71|:7)q2(u(r)’BS1 )} dfdr,

T

where both Bochner integrals are L% (Biglc)?’-valued. Let B denote the space of linear
bounded operators of the space L92 (351c)3 into itself. We equip B with its usual norm,
which we denote by || ||5. In the rest of this proof, all Bochner integrals with respect to
the variable A are to be understood as B-valued.

Take s € (—oo,T)\N. The constants € appearing in what follows are independent of s
and, of course, of T and Ty. For r € [T1, T], define T(\, 7, s) 1= NN, + Ay) !
for A € C\(—o0,0]. Referring to Corollary 3.1, we see that T(-,r,s) : C\(—o00,0] — B is
holomorphic for any r € [T1,T»]. Morever, by the same reference, for any 9 € [0, 7), the
inequality

1T 7, 8)||lB < €(9) e TN (r € [T, To], A € C\{0} with |arg()\)| <) (6.45)

is valid. We further put g(r) := Py, (u(r)|Bg, ) for r € [Ty, Ts]. Theorem 2.6 yields

lg()llg < €llu(r)|Bs, |l for r € [T, T2). (6.46)
Set A(n ={ia : a € [-Ry,—1]}, Agn) = {ia : a € [1,R,]} (n € N). Then, using

Theorem 2.7, we may rewrite (6.44) in the form

Ty 2
A(s) = (2mi) ! /T | @T(r)(j; /A (o SO7) N)g(r)dr (neN).  (6.47)

Here and in the following, all line integrals are to be oriented as is indicated implicitly by
the way we define the respective curve. Fix some angle ¢ € [0, 7/2). For n € N, define

AP = (R, emi2=0) o e [0, 7/2— 0]}, A = {—ae"V : a € [-R,,—1]}, Ay =
Aén) ={e¥ : p e[, m/2]}, A := A((in) = {e7/2=9) e [0, 1/2 — Y]}, A(7n) =
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{ae'? . a € [1,R,]}, Aén) = {R,e'% : p€[9, m/2]}. Since T(-,7,s): C\(—00,0] — B is
holomorphic, we find

>

Define A9 = {e7% . p € [-7/2, 7/2]}, Ao = A%) = {e'? ¢ e [-9,9]}, L(s) =
(2mi)~t T1 ol (r (ng T\, 7, 8) d)\)g( ) dr. Then we find that >- .5 ¢ fAj T\, ry8)d\ =
> jef9,10} fAj (A, 7, 8)dA for r € [T1,T3]. From (6.47), (6.48) and the preceding equation,
for n € N,

T
An(s) = (27ri)_1/T o (r ) Z / TN\, 8 d)\) (r)ydr+ L(s). (6.49)

j€{3,4,10,7,8}

T(A,ry8)dN = Z _ )T(/\,r, s)d\x for neN, re[T1,Ty]. (6.48)
j=

(n) (n
Aj Aj

Ifre [T, T]),wehave s < T < Ty <r;sor—s>T1—T > 0. Forn €N, r € [T}, Ty with
R, > T, —T, define Agnr) = Ag"), A%”) ={—ae ™ :a€[-R, —(r—s)71}, A} nr) :
AD = {(r—s) e e [=0,0)}, AT = {aei? :a € [(r—s)), R}, AB"” =
Agn). Again because T(-,r,s) : C\(—o00,0] — B is holomorphic, equation (6.49) remains
valid for n € N with R, > (T3 — T)~! if the sum with respect to j is extended over
Jj € {3, 11, 12, 13, 8} instead of j € {3, 4, 10, 7, 8}. In the next step, we let n tend to
infinity. To this end, we define Agz) ={—ae : ac(—oo0, —(r—s)71]}, Ag? = {ae'?
a € [(r—s)71, o0)} for r € [T1, Tp]. Inequality (6.45) implies that

| >

T,.(\) dAH <¢ for re Ty, T (6.50)
je{14,12,15} B

)
Aj

with a constant € independent of s and r. Usually the role of the negative real s — r
appearing in the definition of ¥ is taken by a positive real, and ¢ is supposed to belong
to (7/2, m) (so that cos? < 0) instead of (0,7/2) (so that cos? > 0), as required here.
But these two differences compensate, so standard computations as in [47, p. 30-31] carry
through in our situation as well. On the basis of (6.50), let us show that &,(s) - 0 (n —
00), where K, (s) denotes the term

HAn(s)—(2m)—1/TlT2<p£[( Wy / T(\ 7 5) d)\> () dr — L(s)

je{14,12,15}

(6.51)

q2

(n € N). In fact, for n € N and r € [T, T3], with the abbreviation A\(n, ¢) := R,, e* (7/2=¢),
we find that

H/A(n) T(A, 1, 5) d)\HB = H/OW/Z_@ eI AR i N (n, ) (An, ) Ty, + Ay, )_1 dngB’
3

SO HfAém T\ s)dA||; < € foﬂ/2_¢ e(s7) Bin cos(7/2=¢) p due to (6.45) with ¥ replaced
by /2, for example. Hence

w/2
e(5=1) Rncos(Q) ¢ < ¢ / e(87m) Bn cos(©) win(¢) d¢

T\, 7, 5) d)\HB <c /W/2 i

H Ag") 9

S@((T—S)Rn)il

1

<C€((I—T)Ry)  (neN, re[l,T]).
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Analogously we get HfAW T(A\, 1, 5) d)\HB <C ( (Th —T)R, )_1 for n, r as before. More-
8 .
over, for r € [T}, Ty], n € N with R,, > (Ty — T)~!, with \(a) := ae? for a € [R,, ),

(H/Am —/A(m)‘z()\,r, s)dAHB = H/:e(s—r)A(a) =1 (A(a) Iy, Jrqu)—1 daHB
14 11 n

o0 o0
<¢ e(sfr)acosﬂafl da < Q:R;l e(sfr)acosﬂ da < ¢ (Rn (Tl . T) Cosﬁ)il,

R, Ry
where the first inequality follows from (6.45), and the second is a consequence of the
relation s < T < Ty < r for r € [T1,T»]. We may proceed in the same way when the curves
Aﬁ) and Agrlw) are replaced by A(s) and A(n ), respectively. The preceding estimates
beginning with that of HfA(n) T(A,7ys d)\HB combined with (6.49) with a sum over j €

3

{3, 11, 12, 13, 8} instead of j € {3, 4, 10, 7, 8} — replacement justified above — yield that

Ts
-1
Ru(s) < € (R (T =T)) ™ [ “ =) )y (6:52)
1
for n € N with R,, > (T1 — T)~!, where £,(s) is an abbreviation of the term in (6.51), as
we may recall. Here we used that ¢/, < 0. On the other hand, because of (6.46) and the
relation v € L>(0,Tp, L% (56)3), and since pr(T1) =1, ¢r(T2) =0,

T2 T2
/T _QDL.F(T) Hg(r)qu dr <€ HqumOO;To / _‘PL.F(T) dr=¢C€ Hqu27OO§TO' (6.53)
1

T
Since R, — oo, it follows that the right-hand side of (6.52) vanishes when n tends to
infinity. As a consequence &,(s) — 0 (n — 00). But s ¢ N, so [U0FD(s) — A, ()] —
0 (n — o0), as mentioned in the passage preceding (6.40). Therefore we may conclude
that

Ts
u<no+1>(8):(2m)—1/ (X / Jo(r)dr+£(s).  (6.54)

7 36{14 12,15}

(The term L(s) is defined in the passage following (6.48).) But

T T
TRECINDS / SO ) d) o) dr |, < € [ <) o) v, (650

je{14,12,15}

as follows from (6.50) and because ¢/, < 0. Obviously, due to (6.45) and since ¢/, < 0
and s —r < 0 for r € [T1, T3], we get [[L(s)]lq, < Qf (1) 119(7)||g, dr. At this point

we may deduce from (6.53) — (6.55) that [|¢("0+D) (s )Hq2 § ||l ga,00:1- But ¢ < go, so
we finally arrive at the inequality [|[U0FD(s)|AR, s,llq < €llullgro0m,- Recall that s is
an arbitrary number from (—oo,T)\N. The preceding estimate, inequality (6.41), (6. 43)
and equation (6.42) imply that inequality (6.38) holds for t € (0,T)\N, a. e. = € B,

and o € N}, |a] < 1, with a constant € independent of T and Tp, and without the term
|| =2l if u satisfies the zero flux condition stated in the theorem. Since T" was taken
arbitrarily in (0, Tp), the theorem is proved. O
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Concerning the left-hand side of the decay estimates (6.29) and (6.38), we remark that the
asymptotics of the terms 9R() (3210, fU)|Bg,“x (0, Tp) ) (2, t) and 923 (Uo|Bs, ) (=, t)
are a seperate problem, only depending on the behaviour of f(j) (1 < j < ng) and Uy,
respectively. If these latter functions have compact support then the two terms in question
are both bounded by € ( |z|v(x) )73/27‘04/2 for x € BRO , t € (0,Tp); see [23, Lemma 4.1]
for 9237 (Uy|Bs,”) and [23, Lemma 4.2] for 920 (Zno f9|Bg,” x (0,Tp) ). In this
situation these terms decrease faster than the right- hand side of (6.29) and (6.38). For
conditions on f¢) and Uy leading to the decay bound ¢ (|lz|v(z) )—1—|a|/2
Theorem 3.1] and [17, Theorem 3.1], respectively.

, we refer to [18,

7 Spatial decay of L?-strong solutions to the nonlinear prob-
lem (1.1).

We start by specifying our assumptions on the data and the solution. We fix Sy € (0, 00)
with Q C Bg,, Tp € (0,00], and assume there is q¢ € (1, 6/5), R; € (Sp,00), Cs € (0,00)
and f € L%(0,Ty, L*(Q)%) N L2(0,Tp, L9 (Q°)3) such that
o —5/4—|a
958 (f1Bs,” x (0.70) ), 8)| < C (Jaf wa) )~/
for x € BRfC, t € (0,Tp), a € N3 with |a| < 1. Moreover let R; € (Sp, ), C; € (0,00)
and Uy € L2(R?)? such that

(7.1)

1093 (Up|Bs, ) (x, )| < C; (|| V(a:))75/47‘a|/2 for x € Bp,, t, a asin (7.1). (7.2)

Conditions (7.1) and (7.2) are a concrete form of the indication following (1.6) and stating
that (1.6) holds if the right-hand side and the initial data decay sufficiently fast. Also see
the remark at the end of Section 6 in this respect. Concerning the function U in (1.1), we
require that

UeLS@Q)nwhl@93, vU e L*@Q°)°, divU =0, (7.3)

0°U ()] < Cur (|2 (@) 7' V? for 2 € Br,*, o € N with |a| <1,
with certain parameters Ry € (Sp, 00), Cu € (0,00). As explained in the context of (1.3),
these assumptions are also realistic because U should be considered as a standard weak

solution to (1.2), and as such it satisfies these conditions if the right-hand side in (1.3)
decays sufficiently fast. We further fix a real number Ry > max{R¢, R;, Ry}.

As regards our assumptions on the solution of (1.1), ~we suppose there are numbers
so € [1,3), ro € (3,00) such that u € L*(0,Tp, L®(Q°)%) for & € {so, 70}, and we
require that u(t) € WEH(QY)? for t € (0,Tp), Veu € L?(0,Ty, L2(§C)9), (u-Vgy)u €

loc

L2(O,T07 L3/2(Q )3 ), div,u = 0, and

To
/ / ) -9+ @(t) [ Vou(t) - VI + (7 0z1u(t) + g(t) — f(1)) -ﬁ])dmdt (7.4)

@(0)/ Up-ddz=0 for € C5°([0,Tp)), 79608?0(56),
o
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where
g(z,t) =7 (u(z,t) - Vi )u(z,t) + (U(z) - Vo )u(z, t) + (u(z,t) - V)U(z) ] (7.5)

for z € Q°, t € (0,Tp). These are exactly the same conditions on u as in [19], except that
we do not impose any boundary condition. Without loss of generality, we may suppose
that sg > 2.

Existence of this type of solution to (1.1) was shown by Heywood [37, Theorem 2, 6,
2'], who considered the case v € L>(0,Tp, Hl(ﬁc)?’) and Vyu € L2(0, Ty, Lz(ﬁc)g). In
this situation we may choose rg = 6, so = 2 in the above list of assumptions. A similar
kind of solutions comes up in the theory developed by Solonnikov [50] in a more general
framework. (Take p = 2 in [50, Theorem 10.1, Remark 10.1].) Mild solutions to (1.1) were
constructed by Miyakawa [45, Theorem 5.2] and Shibata [48, Theorem 1.4], with initial
data in L2 in the case of the latter author, and in L" with » > 3 in the case of the former
one. Each of the preceding authors imposed Dirichlet boundary conditions and proved
existence either for small Tj or for Ty = oo and small data. Temporal decay estimates of
spatial LP-norms of solutions to (1.1) were established by Masuda [43], Heywood [37, p
675], [36], Shibata [48], Enomoto and Shibata [31] and Bae and Roh [4].

We now present the modifications we bring to the linear theory in [19]. This modified
theory will then be used (Theorem 7.3) in order to improve the decay estimates in [19] of the
solution u to (1.1) introduced above. We start by defining functions h : Q°x (0, Tp) + R3*3
and gy : 9Q x (0,Tp) — R3 by setting

Hy(t) =7 (w(t) ue(t) + w(@) Ux + Uyug(t)) (t€(0,Tp), 1 <k,1<3), (7.6)
3

gok(y;8) =D Syt yi Hu(y, s) (s € (0,Ty), y € 0Bsg,, 1 <k <3).
Lemma 7.1 Put H{)(t) := 7 ug(t) w(t), H () := 7 (up(t) Uy + Upwi(t)) for t € (0,Tp)
and1 < k,l <3, sothat H= H(1)+H(2) Then the following relations hold true: u belongs
to L2(0,Ty, L83 )NL>(0, Ty, L3(Q°)®), HY, to L2(0,Tp, LX), and dz,mHY, fi
and gy are in the space L2(0 Ty, L32(Q° )) In addition H,g) S L2(O,Tg, L3(Q° )) and
OxmH ,S) € L'(0,Ty, L3%(Q )) for 1 < k,I,m < 3. The function g, defined in (7.6)
belongs to L*(0, Ty, L'(0Bs,)?).
Proof: For t € (0,Tp), we have u(t) € L*(Q°)3 and V,u(t) € L*(Q°)?, so |lu(t)|s <
¢||[Vu(t)||2 by Theorem 2.4. As a consequence u € L?( 0, Ty, LO(Q5)3 ). The assumptions
on u yield immediately that u € LOO(O, Ty, L? (ﬁc)?’). The two preceding relations, the
assumptions U € LS(Q°)%, VU € L*(Q°)° (see (7.3)), Vu € L?(0,Tp, L*(2°)?) and
(u-Vaz)u € L*(0,Ty, L32(Q°)3 ), and the conditions on f imply the other claims of the

lemma. O

Lemma 7.2 Abbreviate H; := (Hy)1<m<s for 1 <1< 3. Let ¢ € C®°(R3) be a bounded
function with bounded first-order derivatives. Let t € (0,Tp).

Then fﬁc 0y (Ajm(z — y,t — $)C(y)) - Hou(y, s)|dy < oo for z € R3, s € (0,t) and
0
1 <g4,l,m < 3. Letx € Bigoc with fg‘fB—SOc Z?:lA(x —y,t — S)C(y)g(y,s)dy|ds <
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co. (By Lemma 4.4, this assumption is true for a. e. x € R3.) Then the integral
t . .
fO ‘ fB—SOc Z?:l ayl(A(az —y,t — ) C(y)) -Hy(y,s)dy ‘ ds is finite. Put

3

Q)= [ [ S om(Aw =t =) W) - Hal ) dyds.

Then %(T)(Cg|Big,oc x (0,Tp) ) (z,t) = —0"Bso) (¢ gy) () + Q¢ (1), with gy introduced
in (7.6).

Proof: The first claim of the lemma follows from Lemma 4.4 and 7.1. As for the main
part of the lemma, in particular the equation at its end, the first step of its proof consists
in transforming the integral fQR Alx—y,t—s)-C(y) g(y, s) dy by a partial integration, for
z € Bs,", s € (0,t), R € [Sp,00). Note that for such z and s, the term A(z — y,t — s)
as a function of y € R3 belongs to C*°(R3)3*3 (Lemma 4.1). Further note that g,, =
Z?Zl Oy Hyy for 1 < m < 3 because divU = divyu = 0; see (7.3) and the assumptions
on u. More details of the proof of Lemma 7.2 can be taken from the proof of [19, Lemma
3.8], where the references [19, (1.16), Lemma 3.1, Corollary 3.3, Theorem 3.7] may be
replaced by Lemma 7.1, and where Lemma 4.4 may take the role of [19, Corollary 2.9,
Lemma 2.10]. In addition, inequality (4.2) may be used instead of [19, Corollary 2.7]. As
an example of how to handle these replacements, we remark that since H ,g})(s) e L*(Q)
and H ,E?) (s) € L3(Q°) (Lemma 7.1), and because of Lebesgue’s theorem and the first claim
in Lemma 4.4, we obtain fRS\BR 0y (Ajm(z — y,t — 8)C(y) ) Hpu(y, s)| dy — 0 (R — 00)
for 1 <j,l,m <3, x €R3 s€(0,t). O
Lemma 7.3 The inequality |00550) (g,)(x, )| < € (|z|v(z) )_5/4_|a‘/2 is valid fort €
(0,Tv), = € By, a € N§ with |af < 1.

Proof: Put glgj)(y,s) = (Z?:l St H,g)(y,s))lgk§3 for j € {1,2}, y € 0Bg,, s €

(0,Tp), with HW H® from Lemma 7.1. Take z, ¢, a as in the lemma. Then by Lemma
7.1 and 4.6, the term ]83%(7’350)(%(,1))(1',15)\ is bounded by

—5/4—|ax|/2 —3/2—|a|/2
[ (Jelv(a)) V2 YED g0, + (Jelv(@)) > 2V HO 3910, ]
The same references yield
102050 (g2 (2, )] < € (|| v(2) )~V HO 3 0m, + IV HP ll5)000,). O

Theorem 6.2, 6.3, assumption (7.1), (7.2) and Lemma 7.3 allow to reduce a decay estimate
of u to one of 9{(7)(9\3506 x (0,Tp) ) or alternatively of the function Q¢ from Lemma 7.2
with ¢ = 1. The details are given in the next two corollaries. The first replaces [19, (3.8),

(3.9)].

Corollary 7.1 Put J(z,t) := u(x,t) + %(T)(g]?%c x (0,Tp) )(z,t) for x € Bg,", t €
(0,Tv). Then J(t) € VVllo’Cl(Bigoc)3 (t € (0,Tv)), and there is a zero measure set N C
(0,To) such that |02 (x,t)] < €[ (|z]v(x)) 712 L 1z[=2-101] for t € (0,TH)\N, a.
e. T € BROC, and for o € N3 with || < 1, where the term |z| 27121 may be dropped if
Joqu®) - n'D do, =0 fort € (0,Tp).
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Proof: The relation J(t) € W' (Bg,“)? follows with Lemma 4.4. By Lemma 7.1, we

know that f — g € L*(0, T, Lé%(ﬁ )?) and u € L*(0, T, Lﬁ(ﬁc)?’). Thus, in view of
our conditions on Uy and u, we see that the assumptions of Theorem 6.2 (Ty = oo) or
Theorem 6.3 (T < oo) are satisfied with ng =1, p1 = 3/2, g0 =6, q1 = 2, ¢2 = sp and
fM = f — g. These references, in particular (6.29) and (6.38), then yield that there is a
zero measure set N C R such that

[05u— 08RO (f = g[Bs,” x (0,Ty)) - 9290 (Uo[Bs,) (2. 0)] (T.7)
< & ((lalw(a)) T2 4 faf 721

for t € (0,Ty)\N, a. e. x € Bg,” and a € N3, |a| < 1, where the term |z|~271%l may be
omitted if the zero flux Condltlon stated in the corollary holds true. Taking account of
what we supposed on R(" (f\BSO (0,T) ) in (7.1) and on 37Uy Bg,*) in (7.2), and
because Ry > max{R, R;}, we see that the estimate in Corollary 7.1 follows from (7.7).
U

The second corollary announced above will play the role of [19, (3.16), (3.17)].

Corollary 7.2 Put J(z,t) := J(x, t)— 0(Bs0) () (x,t) forz € Bs,*, t € (0,Tp), withj
from Corollary 7.1. Then u(x,t) = J (z,t)+Q(z,t) fort € (0,Ty) and for a. e. z € Bg,",
where Q = Q¢ is to be defined as in Lemma 7.2 with ¢ = 1.

There is a zero measure set N C (0,Tp) such that for t € (0,To)\N, a. e. € Bg,  and
a € N \a| < 1, the inequality |02J (x,t)| < € [ (|=|v(z) )_5/4_‘04/2 + [z 721 holds. If
S0 u( D do, =0 fort € (0,Ty) ), the term |z|~271%l may be omitted on the right-hand
side of the precedmg estimate.

Proof: The equation for u(z,t) follows from the definition of J in Corollary 7.1 and
from Lemma 7.2. The estimate stated in the corollary is a consequence of Lemma 7.3 and
Corollary 7.1. O

We verify that [19, Theorem 3.7] remains valid in the present situation.

Theorem 7.1 There is o1 € (1,2) such that u € L>(0, Ty, Lp(ﬁc)g‘) for p € [01,2].
Moreover |u| |U| € L>(0, Ty, LY(Q) ).

Proof: Let us show that %(T)(g|Bigoc x (0,Tp)) € L*>(0,00, L*(R?)%) for a range
of exponents k < 2. Since by our assumptions u is in LOO(O,TO, L5 (ﬁc)?’) for some
so € [2,3), and V,u is L3-integrable on Q° x (0,Tp), we obtain with Holder’s inequal-
ity that 1 < 2/(1 +2/s9) < 6/5 and |u| |V,u| € L?(0,Tp, L¥1+2/50)(Q°)3); see (19,
(3.6)]. Moreover, by Lemma 2.2 and our assumptions on U (see (7.3)) and u, we get
(u VWU +(U-V )u € L2(0,Tp, L*/*(Q%3); see [19, (3.2), (3.4)]. Since (u-V)U + (U -

Vo)u= (31, Oz H' 2)1<m<3 belongs to L2( 0, T, L*/2(Q%)?) by Lemma 7.1 and (u-V,)u
is in the same space by assumption, we may conclude that g € LQ(O, Ty, Lo° (§6)3), with
oo := max{11/10, 2/(1 4+ 2/s0)} € (1, 6/5). With this property of g at hand, we may
reason as in [19, p. 1406, second paragraph] to obtain that (1/09 — 1/3)~! < 2 and
R (g[Bs,” x (0,Tp) ) € L®(0,00, L*(R3)?) for & € ((1/o0 —1/3)7", 2].

On the other hand, Corollary 7.1 and Lemma 2.2 yield that J[B%, x (0,Tp) belongs to
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L>=(0,Ty, LY(Bg,")?) for q € (8/5, 00). Since in addition, u € L™ (0, Tp, L7 (Q)?) for
some 19 > 3 by our assumptions, Corollary 7.1 allows to conclude at this point that the
first claim of the theorem is valid with oy := max{8/5, (1/o9 — 1/3)~'}. Morever by (7.3)
and Lemma 2.2 we have U € L(Q°)3 for p € (2,6]. This observation and the first claim
of the theorem imply the second. O

Due to the preceding results, the decay estimate from [14] (inequality (1.4)) carries over
to the present situation. This is made precise by the ensuing theorem and its proof.

Theorem 7.2 Let R € (Rp,0). Then |0%u(zx,t)| < Q:( 2] V(x))flfla\/Z
(0,Tp) and o € N§ with |a| < 1.

forx € By, t €

Proof: The theorem holds according to [19, Theorem 4.6, 4.8]. We may use these theorems
because the reasoning in [19, Section 4] carries through without change, except that some
references have to be modified. The role of [19, Corollary 3.5, in particular (3.8), (3.9)] is
played here by Corollary 7.1, whereas [19, Corollary 3.10, in particular (3.16), (3.17)] is
replaced by Corollary 7.2. A proof of [19, Theorem 3.7] adapted to the present situation is
given above (Theorem 7.1). For all the other auxiliary results used in [19], the assumptions
(or lack of them) particular to the work at hand are not relevant. This is true in particular
for the technical tools stated in [19, Theorem 2.8, 2.18, Corollary 2.19, Lemma 2.20], as
well as for some results which are used here as well, like [19, Lemma 2.10], reappearing
here as Lemma 4.4. Whenever [19, Corollary 3.3] is applied in [19, Chapter 4], only
the relation g € LZ(O, Ty, LY/ 5(50)3) is used, which may be replaced in that context by
g€ L*(0,Tp, L3*(Q%)3) (Lemma 7.1). O

With Theorem 7.2 available, we may now use Corollary 7.2 in order to improve the decay
estimate in Theorem 7.2, and thus the estimate derived in [19]. The key result in this
respect, and the main contribution of this section, is

Theorem 7.3 Let R € (Rg,00). Then there is a set N C (0,00) of measure zero such
that for t € (0,Ty)\N, a. e. © € B, a € N3 with |a| <1,

oy (Z?Zl 81:59{(T)(g|37800 x (0,00) )(1:, t)‘ <c¢ ( || v(z) )—5/4—|a|/2. (7.8)

Proof: Abbreviate r := R — Ry, §:= g|Bs, % (0,T0), Hj:= (Hp)1<m<3|Bs, x (0,Tp)

for 1 <1 < 3. Let v € C§°(B,/2) with ¥[B,/; = 1. By Lemma 4.4 and 7.1, there is a

set N C (0,00) of measure zero such that f(f fﬁc |0SA(x — y,t — s) - g(y,s)|dyds < oo
0

for t € (0,00)\N, a. e. z € R® and o € N3 with |a| < 1, and such that R (G)(t) e
I/VZLCI(R?’)?’, 8?9%(7) (9)(z,t) = fg f@c SN (x —y,t —s) - g(y,s)dyds for t, z, a as before.
0

[

Take t € (0,7p)\N, « € N3 with |a] < 1 and x € B% such that the two preceding
relations on integrals of 9%A(x — y,t — s) - g(y,s) (y € R?, s € (0,t)) are valid. Then
PR () (2, 1) = Ay + Ap, with Ay = fg fB—SOc ANz — y,t — s)Y(z —y) - 9(y, s) dyds
and with 2y defined in the same way as 21, except that the term ¢ (z — y) is replaced
by 1 — ¢ (z — y). For any 2o € R3, we may apply Lemma 7.2 to s with the function ¢
from that lemma chosen as ((y) := 1 — 9 (zo — y) (y € R3). This is true for an arbitrary
zo in R, so we may then choose o = x. On the other hand, for y € 0Bg,, we have
|z —yl > [z] — |yl > R~ Sy > R— Ry = r. Hence, because 1) € C§°(B, /), we get

46



1 —9¢(zx—y)=1for y € 0Bs,. From these considerations we see that Lemma 7.2 yields

t 3
% :/0 /Bsoc_zé’yz[aﬁf\(w—yvt—ﬂ?) (1=v(x—y))] Haly 5)dyds

=1
—900™Bs0) (g, (, t).
We split the preceding integral into a sum 8B 4+ B, with

t 3
B = / / —Sou[08A@ —y,t—s5) (1 —v(z—1)) ] - Haly, s) dyds,
0 JA(Rr+Rg)/2, 5

=1
and with B, defined in the same way, but with the domain of integration A( R+Ro)/2, S0
replaced by B(CR +Ro)/2" Altogether we have arrived at the splitting

R () (x, 1) = Ay + By + By — 990TBs0) (g, (, ). (7.9)

Let us estimate 2;, By and B, beginning with ;. For y € B, 5(v), we have [y| >
|z|/2 + |z|/2 — |z — y| > |z|/2 + R/2 — r/2 = |z|/2 + Ro/2, so that |y| > |z|/2 and
ly| > (R+ Ro)/2. In addition, also for y € B, 5(z), we find with Lemma 2.3 that v(y)~! <
C(l+|r—y)v(x)™t < C(1+r/2)v(z)~!. Therefore, in view of (7.3), the assumption
Ry > Ry and Theorem 7.2 with (R + Ro)/2 in the role of R, we may conclude that
lg(y, s)| < C(\x|u(m))_5/2 for y € B,5(x), s € (0,7p). But ¢(z —y) = 0 for y €
B, j5(x)¢, so we obtain 2| < € (|z] v(z) )_5/2 f(f fBT/Q(a:) |0SA(x —y,t — s)| dy ds. Making
use of inequality (4.2) with K = r/2, we see that the preceding integral is bounded by
¢(r) fg fBT/Q(z)(kE —y|2+t—s)73/27101/2 4z ds. Integrating first with respect to s and then
with respect to y, we obtain a bound for this latter integral which is independent of z, ¢
and Tp. Thus we may conclude that 24| < € (|z|v(z) )_5/2.

In order to evaluate By, we recall that H = H® + H®), Hr(;l) € LQ(O,TO, LQ(QC))
and HZ ¢ LQ(O,TO, L3(§C)) (Lemma 7.1). Moreover, for y € B, 3(z), we have |y| >

ml

(R+ Ro)/2, as observed above, s0 A(ryry)/2,5, N Brja(®) =0, hence 1 —(x —y) =1 for
Y € A(Rt+Ro)/2, 5+ At this point, we may apply Theorem 4.2 with p = 2, || = 1 to obtain

that |B:| < € (|| w(z)) /712,

This leaves us to consider Bs. Let y € B€R+Ro)/2 with 1 — ¢o(z — y) # 0. The latter

condition means that |z —y| > r/4, so by (4.1) and (2.1),
t
/0 0y 05 Az —y,t —s) (1 —v(z—y))|ds
t
< / (z—y—7(t—s)el* +t—s) 212 ds < e(r) (|o — ylv(a —y)) 2> 12
0

<€) (A +le—ylvie—y) 7 (1<1<3).
Moreover r/4 < |z —y| < r/2, for y € R® with V(1 — ¢ (z —y) ) # 0, hence with (4.2),

t t
/ |09A(x —y,t — 8) Oy (1 — Y(z —y) )| ds < €(r) / (12 4t — 5)~3/27lal/2 g
0 0

—3/2—|al/2

<e(r) <€) ((L+]e—y)vle—y)) (1<i<3).
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On the other hand, from (7.3) and Theorem 7.2 with R replaced by (R + Ry)/2, we get

- -2
Hona(y, 9) < € (ylw(v)) > < €((1+ D)) > for y € By py o 5 € (0.1), 1<
I,m < 3. In this way we arrive at the inequality

By < € / (L +lz—yhv@—y) D2 (@ ) P dy.  (7.10)
B(CR+RO)/2

In order to estimate the product v(z —y) ™' v(y)~, let y € R? and consider the case that

lyl —y1 < (Jx| — x1)/4 and |z — y| — (z — y)1 < (|| — z1)/4. Then we may conclude
that Jo] — 21 = J2] — (& — )1 — 91 < |2 — ] + |9l — @ — 91 — 91 < (7] — 21)/2, hence
z[ — 21 = 0. Thus |y[ =y > (Jo] = 21)/4 or & —y| — (x = y)1 = (Jz] = 21)/4, s0
v(y) > v(x)/4 or v(x —y) > v(x)/4. Since v(z) > 1 for any 2 € R?, we may conclude that
v(z —y) tv(y)t < 4v(x)"l. We use this observation in the case |a| = 1. If a = 0, we
deduce from (7.10) that [Ba| < € fos ((1+ |z — ) vz —y)) "> ((1 + |y v(y)) " dy,
whereas if |a| = 1, we refer to (7.10) and to the preceding remark on v(x —y)~! v(y)~! to
obtain [Ba| < €v(z) ™! [pa(1+ ]z —y|)2v(z —y) "1+ |y|) 2 v(y) ' dy. Therefore from
Theorem 2.3, |B,| < € (|z] v(x) )7(3+|a|)/2 (max{1, In|z|})" for some n € N. The theorem
follows from the preceding estimates of 2, 81 and 85, Lemma 7.3 and equation (7.9).
U

Our main result now follows immediately:

Theorem 7.4 Let Ty, f, Uy, U, Ry and u be given as specified at the beginning of this
section. Let R € (Ry,o0). Then there is a zero measure set N C (0,Ty) such that

|0%u(z, t)| < €[ (|z|v(z) )75/47@'/2 + |z|72712l] for t € (0,Tp)\N, a. e. x € B, a € N}
with | < 1. If [ ult) - n do, =0 (t€(0,Tp)), the term |z| =271l may be dropped.

Proof: Corollary 7.1, Theorem 7.3. g
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