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Abstract

We study finite ontology mediated query answering
(FOMQA), the variant of ontology mediated query answer-
ing (OMQA) where the represented world is assumed to be
finite, and thus only finite models of the ontology are consid-
ered. The query language we study is conjunctive two-way
regular path queries (C2RPQ), which can be regarded as the
result of adding simple recursion to Conjunctive Queries.
We focus on understanding the finite-controllable fragments
of C2RPQ, that is, on the question: for which fragments of
C2RPQ the OMQA and FOMQA are equivalent? For graph
classes S, we consider fragments C2RPQ(S) of C2RPQ as
the queries whose underlying graph structure is in S.
We completely classify the finite-controllable and non-
finite-controllable fragments under: inclusion dependencies,
(frontier-)guarded rules, frontier-one rules (either with or
without constants), and more generally under guarded-
negation first-order constraints.
For the finite-controllable fragments, we show a reduction
to the satisfiability problem for guarded-negation first-order
logic, yielding a 2EXPTIME algorithm (in combined com-
plexity) for the corresponding (F)OMQA problem.

1 Introduction
In ontology-based reasoning, a knowledge base K repre-
sents a partial view of the world which, although unknown
to us, it is assumed to satisfy a given set of rules and con-
straints (the ontology). The ontology mediated query an-
swering (OMQA) problem consists in deciding whether, for
a given tuple and query, the tuple belongs to the answer of
the query in every plausible world (finite or infinite) which
extends K and satisfies the constraints.

Here, we study the finite ontology mediated query answer-
ing (FOMQA), the variant of ontology mediated query an-
swering (OMQA) where the represented world is assumed
to be finite, and thus only finite models of the ontology are
considered. This is sometimes called finite ontology-based
data access (finite OBDA) or finite open-world query an-
swering (finite OWQA) in database theory jargon, as a form

of query answering under integrity constraints or, more gen-
erally, background knowledge. The finiteness assumption al-
lows, often but not always, to infer more properties.

Two parameters are of relevance in (F)OMQA: the on-
tology language O used to specify the ontology Γ, and the
query language Q used to describe the property q of the an-
swers. The OMQA problem has been extensively studied,
especially for O being Description Logic languages (DL)
and for Q being Unions of Conjunctive Queries (UCQ).

When OMQA and FOMQA problems for O and Q coin-
cide, we say that OMQA ofQ underO is finite-controllable.
This means that if q ∈ Q holds in every finite extension of
K satisfying a Γ ∈ O then q holds also in every infinite
extension satisfying Γ. We study finite-controllability for:

• Guarded Negation fragment of First Order logic (GNFO)
in the role of O, as studied by Bárány, ten Cate, and
Segoufin (2015), which encompasses (frontier-) guarded
existential rules, Guarded FO (Bárány, Gottlob, and Otto
2014), and some expressive DL language families such as
ALC, possibly with inverse roles (I) and role inclusions
(H). OMQA of UCQ under GNFO is finite-controllable
and decidable. This result is a consequence of the fi-
nite model property and decidability of the satisfiability
problem, respectively, for GNFO (Bárány, ten Cate, and
Segoufin 2015) via the fact that: for a finite model G, a
UCQ q, a tuple ā, and a GNFO sentence γ, the property
stating that the model extends G, satisfies γ, and ā is not
an answer to q, is effectively expressible in GNFO.

• Conjunctive regular path queries (CRPQ) possibly with
inverse navigation roles (C2RPQ) and unions thereof
(UC2RPQ) in the role of Q. These are basic extensions
of CQs and UCQs (the most studied query languages in
OMQA) with a simple form of recursion, and an inte-
gral part of the W3C standard for querying RDF data
(SPARQL 1.1) and often popular for querying ontolo-
gies, as revealed by recent studies (Malyshev et al. 2018;
Bonifati, Martens, and Timm 2019).



Contributions. For a class of graphs1 C we consider the
fragment UC2RPQ(C) to be the set of all UC2RPQ whose
underlying graph structure is in C. This is a standard ap-
proach to define syntactic subclasses of queries, as done
extensively for conjunctive queries (e.g., α-acyclicity, tree-
width-k). We show that there is a computable class S1 of
graphs such that OMQA of UC2RPQ(C) under GNFO is
finite-controllable if, and only if, C ⊆ S1. Actually, this
characterization also holds for ontology languages weaker
than GNFO. These languages contain certain “existen-
tial rules” (a.k.a. Datalog± rules, or tuple-generating de-
pendencies), which are first-order sentences of the form
∀x̄ȳ(ϕ(x̄ȳ) ⇒ ∃z̄ψ(x̄z̄)), where ϕ,ψ are conjunctions of
atoms. Let ID stand for the class of inclusion dependencies
(i.e., ϕ and ψ are atoms), and let F1 stand for frontier-one
rules (i.e., x̄ consists of one single variable).
Theorem 1. For every class C of graphs, query language
CRPQ(C) ⊆ Q ⊆ UC2RPQ(C), O0 ∈ {ID,F1}, and set of
constraints O0 ⊆ O ⊆ GNFO we have that OMQA of Q
under O is finite-controllable if, and only if, C ⊆ S1.

In the statement above, we write L1 ⊆ L2 to denote
that properties/queries expressible in L1 are also express-
ible in L2. As a by-product of our proofs, we obtain the
decidability for OMQA of UC2RPQ(S1) under GNFO con-
straints.
Corollary 1. The (F)OMQA problem for UC2RPQ(S1) un-
der GNFO constraints is decidable, 2EXPTIME-complete in
combined complexity.

We also identify a larger class S2 ) S1 which character-
izes the finite-controllable cases for frontier-one existential
rules which have no constants (actually, for a slight general-
ization thereof), which we denote here by TF1.
Theorem 2. For every class C of graphs and query language
CRPQ(C) ⊆ Q ⊆ UC2RPQ(C), we have that OMQA of Q
under TF1 is finite-controllable if, and only if, C ⊆ S2.
Corollary 2. The (F)OMQA problem for UC2RPQ(S2) un-
der TF1 is decidable in 2EXPTIME in combined complexity.

Organization. We define the ontologies and query lan-
guages with which we work in the next Section 2. In Sec-
tion 3 we formally state our main result (a slightly more gen-
eral result than Theorems 1 and 2 above). One direction (the
fact that some instances are finite-controllable) is shown in
Section 4 and the other direction (that some other instances
are not finite-controllable) in Section 5. We discuss related
work in Section 6 and we conclude in Section 7.

2 Preliminaries
Models. Let Var be a countably infinite set of variables.
We consider a vocabulary composed of a finite set of pred-
icates Pred and an infinite set of constants Const (a.k.a.
individual names). The subset of unary predicates are usu-
ally called ‘concepts’ and the subset of binary predicates are

1Actually, the graphs we consider are enriched with information
on whether a node represents a free variable, and whether an edge
represents an infinite language.

called ‘roles’, which we denote here by NR. By N±R we de-
note the set of all roles NR union the set of all inverse roles
r− for r ∈ NR. A term is either a variable or a constant. An
atom α is of the form P (t̄) where P is a predicate of arity k
and t̄ is a k-tuple of terms. We denote by terms(α) the set of
terms in α and extend the notation to a conjunction of atoms.
For r ∈ NR, we usually write t r−→ t′ instead of r(t, t′). We
will often write x, y, z, . . . [resp. x̄, ȳ, z̄, . . . ] to denote vari-
ables [resp. tuples of variables]; a, b, c, . . . [resp. ā, b̄, c̄, . . . ]
to denote constants [resp. tuples of constants]; and t, t′, . . .
[resp. t̄, t̄′, . . . ] to denote terms [resp. tuples of terms]. A
ground atom contains only constants. A model is a (pos-
sibly infinite) set of ground atoms. The active domain of a
model G, noted adom(G), is the set of all constants it con-
tains in its ground atoms. For a model G, by G± we denote
the extension of G where we add a ground atom r−(b, a) for
every r(a, b) ∈ G, r ∈ NR. A homomorphism from a model
A to a model B is a function h : adom(A)→ adom(B) such
that if R(a1, . . . , an) ∈ A then R(h(a1), . . . , h(an)) ∈ B.
We say that h preserves a set C ⊆ Const, if h(c) = c for
every c ∈ C. A homomorphism from a conjunction of atoms
ϕ to a model B is a function h : terms(ϕ) → adom(B) that
preserves all constants of ϕ, such that if R(t1, . . . , tn) is an
atom of ϕ, then R(h(t1), . . . , h(tn)) ∈ B.

Ontology-mediated querying. A constraint is a property
of a model. Given a query language Q and a constraint lan-
guage O, the ontology-mediated query answering prob-
lem (OMQA) of Q under O is the problem of, given a finite
model G, a finite set of constraints Γ ⊆fin O, a k-ary query
q(x̄) ∈ Q, and a k-ary tuple of constants ā from adom(G),
whether for every model G′ that extends G and satisfies all
the properties Γ we have that ā is in the set of answers q(G′).
We also study a more general version of this problem, which
will be handy for our reductions. The generalized OMQA
(gOMQA) of Q under O is the problem of, given G, Γ ⊆fin

O, and q(x̄) ∈ Q as before, and given a finite set of k-ary tu-
ples of constants X , whether for every G′ ⊇ G satisfying Γ
there exists ā ∈ X such that ā ∈ q(G′). Note that gOMQA
restricted to singleton sets is equivalent to OMQA, hence
the name of ‘generalized’ OMQA. The finite ontology-
mediated query answering problem (FOMQA) and its gen-
eralized version (gFOMQA) are defined analogously, except
that now G′ spans over all finite extensions of G. In inconsis-
tent database querying, FOMQA is equivalent to Consistent
Query Answering under ⊇-repairs (Arenas, Bertossi, and
Chomicki 1999). We write OMQAQ,O [resp. FOMQAQ,O,
gOMQAQ,O, gFOMQAQ,O] to denote the set of all 4-
tuple inputs such that the OMQA [resp. FOMQA, gOMQA,
gFOMQA] problem of Q under O yields a positive an-
swer. Observe that OMQAQ,O ⊆ FOMQAQ,O, but the con-
verse is not necessarily true. If OMQAQ,O = FOMQAQ,O
[resp. gOMQAQ,O = gFOMQAQ,O], we say that OMQA
[resp. gOMQA] ofQ under O has the finite-controllability
property.

Regular path queries. We consider regular languages
over any subset of N±R to be defined by regular expressions,



defined as usual —we use standard notation ε, · | ·, ·∗ and
·+. Henceforth, we simply write “regular language” to de-
note any regular language over a finite subset of N±R , and
we intend it to be represented as a regular expression. A
two-way regular path query (2RPQ) is a binary query of
the form x

L−→ x′, where L is a regular language, and x, x′
are variables. A conjunctive two-way regular path query
(C2RPQ) is of the form γ(x̄) = ∃ȳ ϕ, where ϕ is a con-
junction of 2RPQ, and every variable of x̄ occurs in ϕ but
not in ȳ. The arity of γ(x̄) is the dimension of x̄, x̄ is the
tuple of free variables, and ȳ is the set of bound variables.
A union of C2RPQ (UC2RPQ) γ(x̄) is a finite disjunction
γ1(x̄)∨· · ·∨γn(x̄) of C2RPQ, all sharing the same free vari-
ables x̄. A UC2RPQ is Boolean if it has no free variables.
Given a 2RPQ γ = x

L−→ x′, a model G, and an assign-
ment ν from the free variables of γ to adom(G), we write
G, ν |= γ if there is a directed path from ν(x) to ν(x′) in
G±, labeled with a word from L. Observe that for every reg-
ular language L there is another regular language L− such

that G, ν |= x
L−→ x′ if, and only if, G, ν |= x′

L−−−→ x.
We write () for the 0-ary tuple and ∅ for the empty valua-
tion. We extend this definition to UC2RPQ in the standard
way: G, ν |= ∃x γ if there is some a ∈ adom(G) such that
G, ν ∪̇{x 7→ a} |= γ; G, ν |= γ1 ∨ γ2 if either G, ν |= γ1

or G, ν |= γ2; and G, ν |= γ1 ∧ γ2 if both G, ν |= γ1

and G, ν |= γ2. Hence, for instance if G, ν |= γ(x̄) then
G, ∅ |= ∃x̄ γ. For a UC2RPQ γ(x̄) of arity k we write γ(G)
to denote the set of all tuples ā ∈ (adom(G))k such that
G, {x̄ 7→ ā} |= γ. Observe that if γ is Boolean, then γ(G) is
either {()} (i.e., true) or {} (i.e., false).

Constraint languages. We define here the constraint lan-
guages on which we focus, starting with the most expres-
sive one we consider: guarded-negation. Guarded-negation
first-order logic (GNFO) is a fragment of first-order logic
with equality, given by the following grammar, where P ∈
Pred and α ∈ Pred ∪̇{=}:
ϕ ::= P (x̄) | x = y | ϕ∨ϕ | ϕ∧ϕ | ∃x ϕ | α(x̄ȳ)∧¬ϕ(ȳ)

Here P (x̄) and α(x̄ȳ) are atoms, possibly containing con-
stants, whose free variables are x̄ and x̄ȳ, respectively. Ob-
serve that in GNFO, formulas with 0 or 1 free variables are
closed under negation —the latter through the equivalence
¬ϕ(x) ≡ (x = x ∧ ¬ϕ(x)). GNFO enjoys many desir-
able properties from model-theoretic, expressive, and algo-
rithmic points of view; see (Segoufin 2017) for a survey. In
particular, it has the finite-model property (if ϕ ∈ GNFO is
satisfiable, it is also satisfiable in a finite model) and decid-
able, 2EXPTIME-c, satisfiability problem (Bárány, ten Cate,
and Segoufin 2015). In the next sections, we will use these
facts to prove results on finite-controllability.

An existential rule (a.k.a. Datalog± rules, or tuple-
generating dependencies) is a first-order sentence of the
form ∀x̄ȳ (ϕ(x̄ȳ) ⇒ ∃z̄ ψ(x̄z̄)), where ϕ and ψ are con-
junctions of atoms. We call ϕ and ψ the body and head of
the rule, respectively, and x̄ the frontier variables. Such an
existential rule is frontier-guarded if there is an atom in
the body containing all frontier variables; we denote by FG

the set of all frontier-guarded existential rules. An existen-
tial rule is frontier-one if it has at most one frontier variable;
we denote by F1 the set of all frontier-one existential rules.
A frontier-one rule is term-frontier-one if its body and atom
have at most one term in common (i.e., it could be a variable
or a constant). In particular, a rule (∀x)R(c, x) ⇒ S(c, x)
where c is a constant, is frontier-one but not term-frontier-
one. We denote by TF1 the set of all term-frontier-one rules.
An inclusion dependency is an existential rule with no con-
stants whose head and body consist of only one atom; we
denote by ID the set of all inclusion dependencies. It is easy
to see that these classes ID,F1,FG are definable in GNFO,
through polynomial-time translations.

The Chase. We will resource to the Chase for existen-
tial rules as defined, e.g., in (Calı̀, Gottlob, and Lukasiewicz
2012). Given a finite set Γ of existential rules, Chase(G,Γ)
is a possibly infinite model defined as the infinitary union⋃
i≥0 Gi such that G0 = G, and for every i > 0, Gi

is, roughly speaking, a model extending Gi−1 with finitely
many new ground atoms that witness the head of a rule,
whenever its body is satisfied. Concretely, let S be the set of
all pairs (ψ, h) such that there exists a rule ∀x̄ȳ (ϕ(x̄ȳ) ⇒
∃z̄ ψ(ȳz̄)) in Γ and a homomorphism h from ϕ(x̄ȳ) to Gi−1

such that Gi−1 6|= ∃z̄ ψ(h(ȳ)z̄). For every such pair of S, let
gψ,h : z̄ → Const \ adom(Gi−1) be any injective mapping
from the variables z̄ to constants so that the image of any
two such functions have empty intersection. We define Gi
as Gi−1 ∪

⋃
(ψ,h)∈S Fψ,h, where Fψ,h is the set of all facts

obtained from the atoms of ψ by replacing variables with
constants according to h and gψ,h. Observe that Gi−1 = Gi
iff Gi−1 |= Γ. Further, every Gi is unique modulo renam-
ing of constants from Const \ adom(G), and hence so is
Chase(G,Γ). We call Gi the i-th step of the chase, denoted
by Chasei(G,Γ). This is usually called the ‘standard’ or ‘re-
strictive’ Chase. There are three fundamental properties of
Chase(G,Γ) that we will use in our proofs:
(a) Chase(G,Γ) satisfies Γ.
(b) Chase(G,Γ) is a universal model, meaning that if G′ ⊇
G and G′ satisfies Γ then there is a homomorphism from
Chase(G,Γ) to G′ preserving adom(G).

(c) If Γ ⊆ TF1, then for every a ∈ adom(Chasei(G,Γ)),
i ≥ 0, there is j ≥ i such that all facts containing a
in Chase(G,Γ) are already present in Chasej(G,Γ); in
particular, Chase(G,Γ) is finitely branching.

OMQA of UC2RPQ under GNFO. The OMQA problem
for CRPQ is decidable under GNFO even when extended
with guarded least fixpoint (GNFP). We remind the reader
that GNFO can express guarded and frontier guarded exis-
tential rules.
Proposition 1. The OMQA of UC2RPQ under GNFO is
decidable.

Proof. This follows from a result of Benedikt, Bourhis, and
Vanden Boom (2016), stating that there is an extension
GNFP-UP of GNFP (GNFO extended with guarded least



fixpoint), which captures UC2RPQ and has a decidable sat-
isfiability problem.

However, the respective FOMQA problem remains open
—indeed, while the finite satisfiability problem for GNFP
is decidable (Bárány and Bojańczyk 2012), it is not clear
whether it is also decidable for GNFO-UP.

For the case of constraints defined by guarded existential
rules, Baget et al. (2017) show that OMQA is in 2EXPTIME.

Proposition 2. (Baget et al. 2017) The OMQA of UC2RPQ
under guarded existential rules is 2EXPTIME-complete in
combined complexity, PTIME-complete in data complexity.

3 Main results
As anticipated in Section 1, our results characterize the
classes of finite-controllable UC2RPQ based on the shape
of its underlying graph. However, we want our results to be
more fine-grained than that, and we distinguish, in the un-
derlying graph, which nodes come from a free variable and
which edges come from finite languages. We call this the
skeleton of a C2RPQ. We define a class of skeletons S such
that (i) every query with a skeleton from S is finite control-
lable and (ii) for every skeleton s 6∈ S there is a query which
is not finite-controllable and has skeleton s. We show that
there is a class S with such a property for every language
of constraints containing inclusion dependencies and con-
tained in GNFO, which we denote by S1; and that there is
a strictly larger class satisfying the property for frontier-one
existential rules, which we denote by S2.

A multigraph is a tuple M = (V,E, η) where V is a
finite set of vertices, E is a finite set of edges, and η :
E → V × V associates every edge with its source and tar-
get vertices. The underlying undirected graph GM of M
is the simple undirected graph having V as set of vertices
and {{v, v′} : e ∈ E, η(e) = (v, v′)} as set of edges. An
undirected simple path [resp. undirected cycle] of M is a
(possibly empty) sequence of edges which induces a simple
path [resp. a cycle] in GM .

A skeleton is a triple (M,ν, µ) where M = (V,E, η) is
a multigraph, ν : V → {b, f}, and µ : E → {∞, <∞}.
In this context, we say that a vertex v ∈ V is either free or
bound depending on wether ν(v) = f or ν(v) = b. The
distance between two vertices v, v′ is finite if there is an
undirected path e1, . . . , en so that µ(ei) = <∞ for some i.
An undirected cycle e1, . . . , en of M is infinite if µ(ei) =
∞ for some i, and it is bound if for every i such that η(ei) =
(v1, v2) we have ν(v1) = ν(v2) = b.

Given a C2RPQ q and a skeleton sk = (M,ν, µ), we say
that sk is the skeleton of q if for M = (V,E, η) we have
V is the set of variables of q, E is the set of atoms of q,
η(e) = (v1, v2) iff the atom e is of the form v1

L−→ v2 for
some L, ν(v) = b iff v is bound in q, and µ(e) = ∞ iff the
atom e is of the form v1

L−→ v2 for some infinite language L.
See Figure 1 for an example of a query and its skeleton.

We often refer to the elements of V and E as vertices and
atoms of sk. The skeleton of a UC2RPQ is the set of skele-
tons of the C2RPQ queries therein. Given a set of skeletons
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Figure 1: A query and its skeleton.

S, we define the class UC2RPQ(S) of UC2RPQ as the set
of all UC2RPQ queries whose skeletons are in S.

We define S1 to be the set of all skeletons such that every
undirected infinite cycle contains a free node. We define S2

to be the set of all skeletons such that every infinite bound
cycle contains a node at finite distance from a free node.

Our results can be summarized as follows.
Main Theorem. For every class S of skeletons, for every
O0 ∈ {ID,F1}, for every query language CRPQ(S) ⊆ Q ⊆
UC2RPQ(S), we have that
1. If O0 ⊆ O ⊆ GNFO, then OMQA [resp. gOMQA] of Q

underO is finite-controllable if, and only if, S ⊆ S1; and
2. OMQA [resp. gOMQA] of Q under TF1 is finite-

controllable if, and only if, S ⊆ S2.
Observe that, as a corollary, we obtain Theorems 1 and 2

as stated in Section 1, even for generalized OMQA.

Proof strategy. The right-to-left implications of Main
Theorem (which are in Section 4), will follow from re-
ductions to the finite-satisfiability problem for GNFO.Since
GNFO has the finite-model property, it follows that it is
finite-controllable. These reductions, however, are not com-
pletely straightforward, they are shown through the follow-
ing sequence reductions, for some class of skeletons S0 such
that S0 ( S1 ( S2:

(i) gOMQA of UC2RPQ(S2) under TF1 reduces to
gOMQA of UC2RPQ(S1) under TF1 (Proposition 4);

(ii) gOMQA of UC2RPQ(S1) under GNFO reduces to
gOMQA of UC2RPQ(S0) under GNFO (Proposi-
tion 3);

(iii) gOMQA of UC2RPQ(S0) under GNFO reduces to the
finite satisfiability problem for GNFO (Lemma 1), and
hence it is finite-controllable.

In particular, for the first reduction (i) we need to work
with the most general problem of generalized OMQA. In
fact, it is not clear to us how to reduce UC2RPQ(S2) to
UC2RPQ(S1) without going to this more general setting.
This is the reason why we work with the generalized ver-
sion of the problem.

The complexity statement of Corollary 1 of the intro-
duction is a direct consequence of the fact that reduc-
tions (ii) and (iii) are polynomial-time, combined with
2EXPTIME-completeness of the satisfiability problem for
GNFO (Bárány, ten Cate, and Segoufin 2015). On the other
hand, Corollary 2 follows from Proposition 2, the fact that
UC2RPQ(S2) under TF1 is finite-controllable, and the fact
that guarded rules contain TF1.

The left-to-right implications of Main Theorem (which
are in Section 5) follow, as expected, from counterexamples.



That is, for (S,O) ∈ {(S1,F1), (S1, ID), (S2,TF1)}, and a
skeleton sk /∈ S, we exhibit a model G, a tuple of elements
t̄, a query q ∈ CRPQ with skeleton sk, and a set of con-
straints Γ inO for which t̄ is in the answer set of q on G′, for
every finite extension G′ ⊇ G verifying Γ, but t̄ is not in the
answer of q on some infinite extension of G verifying Γ (in
particular, on Chase(G,Γ)).

4 Reductions to GNFO
In this section, we show the right-to-left implications
of both items of the main theorem. Observe that for
this direction it suffices to prove finite-controllability of
gOMQA for UC2RPQ(S1) [resp. UC2RPQ(S2)] under
GNFO [resp. TF1]. For the first implication, we proceed in
steps. First, we show the implication for a restricted class of
skeletons. Let S0 ⊆ S1 be the set of all skeletons that do not
contain any undirected infinite cycle.

Lemma 1. gOMQA of UC2RPQ(S0) under GNFO is finite-
controllable.

Lemma 1 is our main technical lemma and its proof will
be deferred to the end of the section. Using the lemma above,
the right-to-left implication of item 1 in the main theorem
follows, in fact, quite easily:

Proposition 3. gOMQA of UC2RPQ(S1) under GNFO is
finite-controllable.

Proof. The idea is very simple: to break all cycles in the
query by introducing new free variables and apply Lemma 1.

Let q(x̄) in UC2RPQ(S1) be a query with k free variables
x̄ = (x1, . . . , xk). Suppose that variable xi occurs exactly
mi many times in q(x̄). For k′ =

∑
imi, and the k′-tuple

ȳ = (y1
1 , . . . , y

m1
1 , . . . , y1

k, . . . , x
mk
k ), we define q′(ȳ) as the

result of replacing the j-th occurrence of xi in q(x̄) by yji
(which we assume is not occurring in q), for i = 1 . . . k. Any
cycle in q(x̄) has a free variable, and this cycle is absent in
q′(ȳ), since in q′(ȳ) each free variable is used exactly once.
Hence q′(ȳ) ∈ UC2RPQ(S0).

Observe that for any model G and valuation ν : x̄ →
adom(G), we have G, ν |= q iff G, ν′ |= q′, where ν′ is the
valuation defined by ν′(yji ) = ν(xi). Therefore gOMQA for
to q(x̄) andX is equivalent to gOMQA for q′(ȳ) andX ′, for

X ′ = {(c1, . . . , c1︸ ︷︷ ︸
m1 times

, . . . , ck, . . . , ck︸ ︷︷ ︸
mk times

) | (c1, . . . , ck) ∈ X}.

Hence, by Lemma 1, the statement follows.

The right-to-left implication of item 2 of the main theorem
is shown by reduction to item 1, exploiting two facts: (i)
that we are working with the generalized version gOMQA
of OMQA; and (ii) that the Chase under TF1 rules enjoys
property (c), as defined in Section 2.

Proposition 4. gOMQA of UC2RPQ(S2) under TF1 is
finite-controllable.

Proof. We reduce the gOMQA problem for UC2RPQ (S2)
to the gOMQA problem for UC2RPQ(S1) (both under TF1
rules).

Let q(x̄) in UC2RPQ(S1) be a query with k free variables
x̄ = (x1, . . . , xk), let G be a finite model, let Γ be a finite set
of TF1 rules, and let X be a finite set of k-ary constants.

Let Z be the smallest set of variables of q(x̄) containing
all free variables and satisfying that for every atom x

L−→ y
of q where L is finite, we have x ∈ Z if and only if y ∈ Z.
Suppose Z contains r bound variables y1, . . . , yr of q(x̄).
Consider now the query q′(x̄ȳ), where ȳ = (y1, . . . , yr),
which results from making all variables of Z \ x̄ free. Ob-
serve that q′(x̄ȳ) ∈ UC2RPQ(S1).

Let m be a number which is larger than the length of any
word in any finite language in q(x̄). Let U be the set of all
constants of Chase(G,Γ) at distance ≤ m from a constant
in G. By the property (c) discussed in §2, U is finite. Let
G+ = Chasei(G,Γ), for i large so such that Chasei(G,Γ)
contains U . Note that G+ contains G. Consider now the
set of tuples of arity k + r of atoms in G+, defined as
X ′ = X×Ur. We next show that G,Γ, q(x̄), X is a positive
instance of gOMQA if, and only if, so is G+,Γ, q′(x̄ȳ), X ′.
We then conclude the proof, by Proposition 3, by the fact
that q′(x̄ȳ) ∈ C2RPQ(S1), and that TF1 ⊆ GNFO.

For the left-to-right implication, let G′ ⊇ G+ be a model
that satisfies Γ. Since G′ ⊇ G, we know, by hypothesis, that
for some k-tuple ā ∈ X , we have G′, {x̄ 7→ ā} |= q(x̄).
This implies that there is an r-tuple of constants b̄ such that
G′, {x̄ȳ 7→ āb̄} |= q′(x̄ȳ). By the choice of ȳ, any constant
c of b̄ is at distance at most m from a constant in G, and then
c ∈ U . Therefore, (āb̄) ∈ X ′ and we are done.

For the right-to-left implication, we first observe that
Chase(G,Γ) satisfies Γ by property (a) of the Chase, and
Chase(G,Γ) ⊇ G+ by construction. By hypothesis we know
that for some k-tuple ā and some r-tuple b̄ = (b1, . . . , br)
such that āb̄ ∈ X ′ we have Chase(G,Γ), {x̄ȳ 7→ āb̄} |=
q′(x̄ȳ). Let G′ ⊇ G be a model that satisfies Γ. By prop-
erty (b) of the Chase, we have that that there is a homomor-
phism h : Chase(G,Γ) → G′ such that h(a) = a for every
a ∈ adom(G). Since any query in UC2RPQ is preserved un-
der homomorphisms, we have G′ |= q′(ā, h(b1), . . . , h(br)),
and this implies that G′ |= q(ā).

The remaining of this section is devoted to the proof of
Lemma 1, which is shown via a somewhat involved reduc-
tion to the satisfiability problem for GNFO.

Proof of Lemma 1
For simplicity we consider q(x̄) in C2RPQ(S0), but the
argument can be straightforwardly adapted for q(x̄) in
UC2RPQ(S0). Let G be a finite model, let Γ be a finite set of
GNFO sentences, let q(x̄) in C2RPQ(S0) be a query with k
free variables x̄ = (x1, . . . , xk) and let X ⊆fin (adom(G))k

be a set of k-ary tuples of constants. We construct a sentence
ϕ in GNFO such that

ϕ is satisfiable [resp. finitely satisfiable] if, and
only if, there is a model [resp. finite model] G′ ⊇ G
satisfying Γ such that X ∩ q(G′) = ∅.

(†)

Then we are done, since GNFO has the finite model prop-
erty. In what follows, we first introduce some notions needed



for the proof. Then we define the sentence ϕ. And finally we
verify that it is in GNFO and that it satisfies (†).

Regions. Before giving the definition of ϕ, we introduce
some constructions and notions over the skeleton sk of q.
A region of sk = (M,ν, µ) is the skeleton of a connected
subgraph of M . A finite region r of sk is a region in which
µ(e) = ‘<∞’ for every atom e in r . Although sk ∈ S0 may
contain cycles, the idea is to regard sk as a labeled directed
tree, identifying all maximal finite regions by a single node,
being connected to other nodes only by infinite languages.
Henceforth, by finite region we mean a maximal finite re-
gion of sk and, for simplicity and without loss of general-
ity, we assume that sk is connected. When we look at the
connections between finite regions of sk ∈ S0, it looks a
like a tree, as in Figure 2. The definition of ϕ exploits this
structure to define, bottom-up, the execution of the automata
corresponding to the regular languages in q. In the next para-
graph we introduce some notation for naming different parts
of this tree, to then define formally ϕ.

We say that two finite regions of sk are connected if there
is an infinite edge with the source node in one region and
the target in the other one. Notice that by definition of S0,
a region does not connect to itself and two regions could
be connected by at most one infinite language (as otherwise
sk would contain an infinite cycle). What is more the sim-
ple graph having regions as nodes and an edge between ev-
ery pair of connected regions is a tree (otherwise, the ex-
istence of a cycle in it, together with the connectivity of
the regions, would imply an infinite cycle in sk). We des-
ignate a region root of sk as the root, and we use the usual
tree nomenclature (parent, child, etc.). For a region r , we
denote by ch(r) the set of all its children. Observe that if
r is the parent of r ′, then there is exactly one variable y′
in r ′, exactly one variable y in r , and exactly one infinite
regular language L such that either y L−→ y′ or y′ L−→ y
is in sk. We will denote variables y′ and y by srcr ′ and
tgtr ′ respectively. We define Lr ′ as L in case y′ L−→ y, and
as L− in case y L−→ y′. The parent-interface of a region
r 6= root is srcr . The children-interface of a region r is
the set {tgtr ′ | r ′ ∈ ch(r)}. The region contraction of sk
with root root is the labeled tree-like digraph T whose set
of nodes VT is the set of maximal finite regions of sk, the set
of labeled edges ET ⊆ VT × VT is defined by (r ′, r) ∈ ET
iff r is the parent of r ′, and for (r ′, r) ∈ ET , and we define
the labeling `(r ′, r) = Lr ′ . Notice also that every edge of T
points towards the root root . See Figure 2 for an example.

Sometimes we will refer to a region r also as a node of
T . For simplicity, we replace some of the atoms xi

Li−→ yi

with yi
L−i−−→ xi in q(x̄), so that the new directions agree with

those in T .

Expressing regions in first order. It is easy to see that for
every atom x

L−→ y of q with L finite there is an equivalent
formula χL(x, y) in positive existential first order logic with
equality over the same alphabet of binary relations com-
putable in linear time.
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Figure 2: In solid lines, a skeleton sk ∈ S1 (infinite lan-
guages in boldface, finite languages in lightface, free vari-
ables as boxes, and bound variables as circles). In dot-
ted lines, the contraction of sk, represented as a tree (re-
gions and arrows between them towards the root). ψr0 =

∃x4((x4
c−→ x3)∨∃z(x4

a−→ z∧z b−→ x3))∧x1
a−→ x3∧x4

b−→
x2 ∧ (x1

a−→ x2 ∨ x1
b−→ x2); according to notation in

(1), its free variables are (b1, b2) = (x3, x4), w = x1 and
srcr = x1.

For every region r 6= root of sk we define the formula

ψr (b̄r , w̄r , srcr )
def
= ∃z̄r

∧
t
L−→t′ is an

atom in r

χL(t, t′), (1)

where b̄r is the tuple of bound variables of r which are
in the children-interface of r , w̄r is the tuple of free vari-
ables of r , srcr is the parent-interface of r , and z̄r is the
tuple of bound variables in r that are not in b̄r . See Fig-
ure 2 for an example. When r = root we define ψr in a
similar way, except that the variable srcr is omitted, and
we simply write ψr(b̄root , w̄root). If there are no atoms in
r we define ψr simply as >. The free variables of ψr are
among b̄r , w̄r , srcr ; notice that this tuple could have rep-
etitions: in case the parent-interface of r is also a child-
interface (namely, srcr ∈ b̄r , or srcr is free, see Figure 2).

Notice that ψr is basically the subformula of q(x̄) for
which r is the corresponding skeleton, except that the bound
variables in b̄r are not quantified in ψr . In other words, r is
the skeleton of ∃b̄rψr .

Let adom(G) = {v1, . . . , vn}. We denote by v̄ the tuple
(v1, . . . , vn). For every variable y of q(x̄) and k-tuple of
constants ā = (a1, . . . , ak) ∈ (adom(G))k, we define ā[y]
as the constant symbol vj whenever y = xi is a free variable
of q(x̄) and ai = vj , and as the variable name y otherwise.
For every ā ∈ X , we define ψār as the result of replacing
every variable y ∈ w̄r with ā[y] in ψr .The free variables of
ψār are among those in b̄r , srcr . We explicitly use notation
ψār (b̄r , srcr ) to stress this fact, although srcr might not be in
this formula.



The formula ϕ. Suppose that q(x̄) = ∃ȳ∧i∈I ti Li−→ t′i.
For every regular language Li, we denote the NFA that ac-
cepts it as Ai and we assume that it has one initial state q0

and one final state qf . If for region r, Lr = Li then we
define Ar as Ai.

We define ϕ over the signature extending that of G (both
constants and predicates) with unary relations sāAi for each
state s of Ai (i ∈ I), and for every ā ∈ X . Concretely, the
sentence ϕ is defined by

ϕ
def
= ϕ1 ∧ ϕ2 ∧

∧
ā∈X

(ϕā3 ∧ ϕā4 ∧ ϕā5).

The idea is that if ϕ holds in a structureM then ϕ1 expresses
that G ⊆ M, and ϕ2 that M satisfies the constraints. ϕ3

expresses that any region r 6= root that can be realized in
M and that is a leaf in T is forced to start the automatonAr

of its parent-interface node; any region that can be realized
in M is also forced to start, provided the automaton of all
its children have reached the final state. ϕā4 expresses that the
states of the automaton of any infinite language in q(x̄) are
forced to be spread over M according to its rules. Finally,
ϕā5 expresseses that if all the nodes in the children-interface
of root are in the final state of the corresponding languages,
then root is not realized inM.

Observe that sentences ϕ1 and ϕ2 are trivial to encode in
GNFO. We show how to define the remaining subsentences.

ϕā
3 : Initiating automata. For every ā ∈ X and region r ,

let

θār (b̄r , srcr )
def
= ψār (b̄r , srcr ) ∧

∧
r ′∈ch(r)

qf
ā
Ar′

(ā[tgtr ′ ]),

(when r = root , we simply write θāroot(b̄root)) and for any
ā ∈ X and r 6= root , we define

ϕā3
def
=

∧
r 6=root

∀b̄r∀srcr
(
θār (b̄r , srcr )⇒ q0

ā
Ar

(ā[srcr ])
)
.

The idea of ϕā3 is, for every region r 6= root , to force
to trigger the run of the automaton corresponding to the
parent-interface of r whenever all the nodes of the children-
interface of r have reached the final state, and the restriction
given by r is satisfied. This is done for any possible assign-
ment of variables in b̄r , and of srcr , the parent interface of r ,
whenever it is bound in r . Observe that if r ′ is a child of r ,
we have that ā(tgtr ′) is a constant in adom(G) in case tgtr ′
is free and is a variable in b̄r otherwise. A similar situation
occurs with srcr : in case srcr is free then srcr ∈ adom(G)
and the quantifier ∀srcr is spurious; else, ā(srcr ) = srcr
and is universally quantified.

ϕā
4 : Runs of automata. For every ā ∈ X , we define

ϕā4
def
= ∀x, y

∧
|Li|=∞ in q(x̄),

t
α−→s inAi

(
tāAi(x) ∧ χα(x, y) =⇒ sāAi(y)

)
.

The formula ϕā4 forces to spread the states of the automata
of infinite languages in q(x̄) as unary relations over nodes of
the model (finite languages are already handled by ϕā3).

ϕā
5 : Root does not terminate. Finally, for every ā ∈ X ,

ϕā5
def
= ¬∃b̄root θāroot(b̄root).

It negates the possibility that all the nodes in the children-
interface of root may reach the final state and the region
root can be realized.

Verification. It is easy to verify that ϕ is in GNFO. We
now prove property (†). Let us first show the left-to-right
implication. Let H be a model that satisfies ϕ and let H′ be
the reduct of H to the predicate symbols in G. Since H |=
ϕ1∧ϕ2,H′ ⊇ G andH′ satisfies Γ. We show that ā /∈ q(H′)
for all ā ∈ X and then we are done, since H is finite iff H′
is so.

Assume by contradiction that ā ∈ X is a k-tuple of con-
stants such that H′ |= q(ā). Then there is a valuation ν in
H′ that interprets all variables b̄r , srcr , for all regions r in
sk such that H, ν |= ψār (b̄r , srcr ) for any r . Furthermore, if
r is the parent of r ′ then there is aw-labeled path inH′ from
ν(srcr ′) to ν(tgtr ′), with w ∈ Lr ′ .

It can be shown by induction in T that for every region r :

1. H, ν |= θār (b̄r , srcr ),

2. q0
ā
Ar

is true inH at the node ν(ā[srcr ]), and

3. qf āALr
is true inH at the node ν(ā[tgtr ]).

In particular, item 1 is true for r = root . Since root has
no parent interface, this means thatH, ν |= θāroot(b̄root) and
this contradicts the fact thatH |= ϕā5 .

For the right-to-left implication of (†), assume that there
is a model H ⊇ G satisfying Γ such that H 6|= q(ā) for
every ā ∈ X . We define the first order model H′ as the one
induced by H plus some interpretation for unary relations
sāAr

, for each ā ∈ X , region r of sk and state of s of Ar in
such a way thatH′ |= ϕ. Then we are done, sinceH is finite
iffH′ is so.

We define sāAr
recursively as follows:

i. If r is a leaf in sk then q0
ā
Ar

is true inH′ at all elements
d of H′ such that for some assignment ν over variables
b̄r , srcr , we have 1) H, ν |= θār (b̄r , srcr ) and 2) d =
ν(srcr ).

ii. sāAr
is true at all elements d of H′ such that there is a

transition t α−→ s inAr and an element c ofH′ satisfying
tāAr

and c α−→ d inH′.
iii. If r is not a leaf in sk then q0

ā
Ar

is true in H′ at all
elements d of H′ such that for some assignment ν over
variables b̄r , srcr , we have 1), 2) as in item i, and 3) for
all r ′ child of r we have that ν(tgtr ′) satisfies qf āAr′

.

By construction, it is clear that H′ |= ϕ1 ∧ ϕ2 and it is also
clear that for any ā ∈ X we have H′ |= ϕā4 . Let ā ∈ X , and
ν be a valuation that interprets all variables b̄r , srcr , for all
regions r in sk.

One can show that H′, ν |= θār (b̄r , srcr ) =⇒
q0
ā
ALr

(ā[srcr ]) for all r 6= root , and H′, ν 6|= θāroot(b̄root).
This shows thatH′ |= ϕā3 ∧ ϕā5 .
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Figure 3: (a) A skeleton (notation conventions as in Fig-
ure 2) and the labeling of edges. In grey, the distinguished
bound cycle. The distinguished edge is the rightmost in the
cycle. (b) Chase(G,Γ) for the proof of Proposition 5. (c)
Chase(G,Γ) for the proof of Proposition 8.

5 Non-finite-controllable cases
We first show that non-finite-controllable cases can be found
for any skeleton outside S1 under frontier-guarded rules
(FG), even if we only consider rules with no constants. This
means that item 1 of the main theorem holds even for any
fragment T of GNFO containing FG without constants.
Proposition 5. If S 6⊆ S1, then OMQA of CRPQ(S) under
FG is not finite-controllable. This holds even for a singleton
set of rules with no constants.

Proof. We show that if sk 6∈ S1 there exists a model G, a
query q ∈ CRPQ({sk}), a tuple t̄ of constants of G, and a
finite set Γ of FG rules such that

1. q(t̄) is false in some infinite model extending G that sat-
isfies Γ (in particular, in Chase(G,Γ), and

2. q(t̄) is true in every finite extension of G that satisfies Γ.

As in the proof of Proposition 4, we resource to the Chase.
The skeleton sk gives the shape of q, where we only have

to fill in the languages we want to use respecting the fi-
nite/infinite cardinality according to the skeleton. Suppose
sk has free variables x̄ = x1, . . . , xk. There must be some
infinite edge in a bound cycle. On this edge, we put b+, and
in the rest of the edges of this cycle, we put c∗ for every in-
finite edge and ε for every finite edge. To all the other edges
in sk, we put either a∗ or a | ε depending on whether they
are infinite or finite, respectively. See Figure 3(a) for an ex-
ample.

We then define the following singleton set of FG rules:

∀x, y((x
a−→ y ∧ x a−→ x)⇒ ∃z(y b−→ z ∧ x a−→ z ∧ z a−→ x))

Let G = {v a−→ v} and let ν be the valuation ν(xi) = v for
all i. It can be shown that Chase(G,Γ) is the infinite model
depicted in Figure 3(b). Observe that all edges of G are la-
beled with a or b, so if Chase(G,Γ), ν |= q, there should to
be a nontrivial cycle of b’s in Chase(G,Γ), which is not true.
Therefore Chase(G,Γ), ν 6|= q, and item 1 is shown.

To see item 2, let G′ be a finite model that extends G and
satisfies Γ. Let h : Chase(G,Γ) → G′ be a homomorphism.

There must be some i < j so that h(zi) = h(zj). Con-
sider the following assignment ν′ of the variables of q to
the vertices of G′: all free variables are mapped to h(v), and
all other variables are mapped to h(zi). We show that every
atom in q is true in G′ under ν′.

Suppose x L−→ y is an atom in q. If x and y are free in q,
then L is either a | ε or a∗, and ν′(x) = ν′(y) = h(v). Then
the atom is true, since ε ∈ L. If x is free and y is bound
in q, then L is either a | ε or a∗, and ν′(x) = h(v) and
ν′(y) = h(zi). Then the atom is true, since a ∈ L and in
Chase(G,Γ) there is an a-labeled edge from v to zi. If x is
bound and y is free, the argument is similar. If x and y are
bound in q, then ν′(x) = ν′(y) = h(zi). By construction,
either ε ∈ L, in which case, the atom is true, or L = b+, in
which case the atom is also true, since there is a non-trivial
cycle h(zi)

b−→ h(zi+1)
b−→ · · · b−→ h(zj) = h(zi) in G′.

In the presence of constants in the rules, a similar proof
yields the following.

Proposition 6. If S 6⊆ S1, then OMQA of CRPQ(S) under
F1 is not finite-controllable.

Proof. We proceed as in the proof of Proposition 5, with the
only difference that now the set Γ consists of the rule

∀y(v
a−→ y ⇒ ∃z(y b−→ z ∧ v a−→ z ∧ z a−→ v))

using the constant v. It follows that the Chase generates the
same model as in Proposition 5.

Observe that in the proof above we need to use constants
in the rules. Indeed, as we know from item 2 of the main
theorem, should constants be disallowed we would be in the
TF1 class and thus it would be finite-controllable.

Proposition 7. If S 6⊆ S1, then OMQA of CRPQ(S) under
ID is not finite-controllable.

Proof. We reason as in the proof of Proposition 5. We de-
fine the labeling of sk as in that proof. We define G =

{R(v, w,w), v
b−→ w, v

a−→ v}, and the valuation ν for each
free variable xi of q is defined by ν(xi) = v. We let

Γ = {R(x, y, z)⇒ R(x, z, t), R(x, y, z)⇒ y
b−→ z,

R(x, y, z)⇒ x
a−→ z, R(x, y, z)⇒ z

a−→ x}
(quantifications over variables x, y, z, t are implicit). It
follows that Chase(G,Γ) is the model defined in Figure
3(b) extended with the facts {R(v, w,w), R(v, w, t0)} ∪
{R(v, ti, ti+1) | i ≥ 0}. The rest of the proof is as the one
in Proposition 5.

Proposition 8. If S 6⊆ S2, then OMQA of CRPQ(S) under
TF1 is not finite-controllable.

Proof. Again, we reason as in the proof of Proposition 5. We
define the labeling of sk as before, but this time the distin-
guished cycle C has only bound variables, all of which are
at infinite distance from every free variable.



We define G and ν as in the proof of Proposition 5. The
singleton set Γ ⊆ TF1 of rules is now:

∀x, y(x
a−→ y ⇒ ∃z(y a−→ z ∧ z a−→ y ∧ y b−→ z)).

It follows that Chase(G,Γ) is the infinite model depicted in
Figure 3(c). As before, Chase(G,Γ), ν 6|= q.

Let G′ be a finite model that extends G and satisfies Γ. Let
h : Chase(G,Γ) → G′ be a homomorphism and let i < j
so that h(zi) = h(zj). Consider the following assignment
ν′: if x is a free or bound variable at a finite distance from
a free variable, we let ν′(x) = h(v). For all the other vari-
ables x, we let ν′(x) = h(zi). Suppose x L−→ y is an atom
in q. If x and y are variables at finite distance from a free
variable, then x L−→ y is true in G′, ν′ since by construction
we have ε ∈ L. If x is at finite distance from a free variable
and y is not (or vice-versa), then L is infinite. Notice that
neither x nor y belong to C. By construction L = a∗ and
then the atom x

L−→ y is true in G′, ν′. Suppose that x and y
are variables at infinite distance from any free variable. Then
ν′(x) = ν′(y) = h(zi). If both x and y are out of C, then
ε ∈ L and we are done. If one of them is in C and the other
one is not, the argument is similar. If x and y are variables
in C, then and either ε ∈ L, or L = b+. In both cases, the
atom x

L−→ y is true in G′, ν′.

6 Related work
Barceló and Fontaine (2017) study the problem of consis-
tent query answering of CRPQ under conjunctive regular
path constraints (CRPC). CRPC are defined as the contain-
ment of CRPQ queries. The problem of consistent query an-
swering under superset repairs they study is equivalent to
the FOMQA problem. Their results imply that FOMQA of
CRPQ under CRPC is undecidable, and this even holds if the
query and constraints are fixed, non-recursive RPQs. How-
ever, the regular path constraints are not in GNFO, as they
are not guarded nor frontier-guarded, and this is a crucial
requisite for their undecidability results. However, if con-
straints are further restricted to have a single edge on the
right-hand side the FOMQA problem becomes decidable,
NL in data complexity.

There have not been, to the best of our knowledge, other
works dealing with finite OMQA for CRPQ. Still, we review
here some of the works most relevant to our setting that has
been done on either finite OMQA or OMQA for CRPQ.

Finite OMQA Prior work on finite ontology mediated
query answering has been done for unions of Conjunc-
tive Queries (UCQ) or the equi-expressive class of posi-
tive existential queries. FOMQA of UCQ’s and positive-
existential queries under guarded TGD and frontier-guarded
TGD is finite-controllable and decidable in 2EXPTIME and
PTIME in data complexity (Baget et al. 2011). This 2EXP-
TIME bound holds even for GNFO queries and constraints.
These results are a consequence of the finite model prop-
erty and decidability of the satisfiability problems for GNFO
(Bárány, ten Cate, and Segoufin 2015) and GFO (Bárány,
Gottlob, and Otto 2014). See (Segoufin 2017) for a survey on

GNFO. Whether FOMQA of CRPQ under GTGD or any of
its extensions above is decidable is an open question, one of
the issues being that CRPQ lacks finite-controllability with
respect to GTGD.

Gogacz, Ibáñez-Garcı́a, and Murlak (2018) study the
FOMQA for UCQ in the presence of expressive descrip-
tion logics with transitive roles. We, on the other hand, study
query languages with transitivity but on ontologies with no
transitive roles. In the presence of transitive roles, FOMQA
is undecidable already for SHOIF (Rudolph 2016), and
they show decidability for three fragments thereof: SOI,
SOF , and SIF . Another known decidable ontology for
positive existential queries FOMQA is the Horn fragment of
ALCIF (Ibáñez-Garcı́a, Lutz, and Schneider 2014) (with-
out transitivity).

Gogacz et al. (2019) have studied a related problem, the
finite query entailment for positive existential queries under
SQ ontologies, possibly extended with nominals (O) and
inverse roles (I).

OMQA for CRPQ On the other hand, there have been
works on regular path queries, but focused on OMQA (i.e.,
on arbitrary, unrestricted models). Baget et al. (2017) have
studied the OMQA for C2RPQ under guarded existential
rules (cf. Proposition 2) However, since C2RPQ are not
finite-controllable under guarded existential rules, this does
not bring any results on the finitary version of the prob-
lem, FOMQA. Our work can be seen as the answer to the
question: Which classes of C2RPQ are finite-controllable
for guarded existential rules, and thus amenable to the tech-
niques developed by Baget et al.?

Gutiérrez-Basulto, Ibáñez-Garcı́a, and Jung (2018) study
(unrestricted) OMQA for positive existential two-way Reg-
ular Path Queries (in particular containing CRPQ and
C2RPQ) with respect to the SQ description logics, sup-
porting transitive roles (S) and number restrictions (Q).
They show a tree-like model property yielding a decidable,
2ExpTime, upper bound. As they observe, SQ lacks finite-
controllability even for the single-atom Boolean CQ and, un-
fortunately, this work does not shed light on the FOMQA
problem.

7 Discussion
An inspection of the proofs for the non-finite-controllable
cases shows that even the most basic CRPQ, having only
regular expressions of the form a∗, ε and a | ε (where a is a
role name), and thus that our main theorem also holds when
we restrict the query language to have these very simple ex-
pressions.

The standard definition of UC2RPQ that we use does not
make use of constants. However, in practice constants are
important for querying. Our results can be easily extended
to UC2RPQ with constants and even conjunctions of rela-
tions of arbitrary arity (in particular generalizing CQs with
constants on arbitrary arity relations).

The current work can be seen as a step forward in the
investigation of the seemingly difficult question of FOMQA
for CRPQ under GNFO-definable rules.
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Gutiérrez-Basulto, V.; Ibáñez-Garcı́a, Y. A.; and Jung, J. C.
2018. Answering regular path queries over SQ ontologies.
In AAAI Conference on Artificial Intelligence, 1845–1852.
AAAI Press.
Ibáñez-Garcı́a, Y. A.; Lutz, C.; and Schneider, T. 2014. Fi-
nite model reasoning in horn description logics. In Prin-
ciples of Knowledge Representation and Reasoning (KR).
AAAI Press.
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