Valentin A Zagrebnov 
  
Non-conventional Dynamical Bose Condensation To the memory of Viatcheslav Borisovich Priezzhev

   

Non-conventional Dynamical Bose Condensation

Valentin A.

Introduction

1.1 If one would summarise shortly the last half-century mathematical results concerning of what is called the Bose-Einstein condensation (BEC), then it is compulsory to distinguish two different domains of research in this field. This is a relatively recent activity related to artificial boson systems in magneto-optical traps [START_REF] Lieb | The Mathematics of the Bose Gas and its Condensation[END_REF] and another domain, which is a traditional study of homogeneous boson systems [START_REF] Verbeure | Many-Body Boson Systems (Half a Century Later)[END_REF].

The latter comes back to Einstein's prediction in 1925 of condensate in the perfect Bose-Gas (PBG) [START_REF] Einstein | Quantentheorie des einatomigen idealen Gases[END_REF], then supported after criticism in 1927 [START_REF] Uhlenbeck | Over Statistische Methoden in de Theorie der Quanta, Doctoraalexamen[END_REF] by F.London [START_REF] London | On the Bose-Einstein condensation[END_REF] after discovery of the superfluidity [START_REF] Kapitza | Viscosity of Liquid Helium below the λ-Point[END_REF], [START_REF] Allen | Flow Phenomena in Liquid Helium II[END_REF], and, finally, was seriously bolstered by experimental observation [START_REF] Zh | Bose-condensate search in He II[END_REF][START_REF] Aleksandrov | High energy neutron scattering and the Bose condensate in He II[END_REF][START_REF] Dokukin | Investigation of the temperature dependence of the density of the Bose condensate in Helium-4 in connection with the superfluidity phenomenon[END_REF] of condensate in the superfluid phase of the liquid Helium 4 He. The most striking was a quite accurate coincidence of the critical temperature of condensation T c and the temperature T λ of the superfluidity λ-point, see [START_REF] Dokukin | Investigation of the temperature dependence of the density of the Bose condensate in Helium-4 in connection with the superfluidity phenomenon[END_REF][START_REF] Bogoyavlenskii | Bose condensation in liquid 4 He (Review article)[END_REF] and [START_REF] Bogoyavlenskii | Neutron scattering determination of condensate in liquid 4 He[END_REF][START_REF] Blagoveshchenskii | Structure of the excitation spectrum of liquid 4 He[END_REF]. Even thought these data strongly support the Bogoliubov-Landau theory of superfluidity of the liquid Helium 4 He, which is based on the hypothesis of BEC, the mathematical theory of this phenomenon is still far from being complete.

Although the BEC, or generalised BEC (gBEC) [START_REF] Van Den Berg | A general theory of Bose-Einstein condensation in the free boson gas[END_REF] in PBG, are studied in great details, analysis of condensate in the interacting Bose-gas is a more delicate problem. Recall that effective quantum attraction between bosons, which is behind of the BEC in the PBG, makes this system unstable with respect to any direct attractive interaction between particles. So, efforts around the question: "Why do interacting bosons condense?", were essentially concentrated around repulsive interaction between particles. The studying of stability of the conventional BEC (or gBEC) in the imperfect Bose-Gas (IBG) with a direct fast-decreasing two-body repulsive interaction is still in progress [START_REF] Seiringer | Rigorous upper bound on the critical temperature of dilute Bose gases[END_REF][START_REF] Betz | Critical temperature of dilute Bose gases[END_REF][START_REF] Sütõ | The total momentum of quantum fluids[END_REF][START_REF] Wreszinski | Equilibrium and Non-equilibrium Properties of Superfluids and Superconductors[END_REF]. Whereas, if one counterbalances direct attractive interaction by a repulsion stabilising the boson system, this attraction may be the origin of a new mechanism of condensation called the non-conventional condensation. Implicitly this type of condensation was introduced for the first time in [START_REF] Van Den Berg | The large deviation principle and some models of an interacting Boson Gas[END_REF] on the basis of their rigorous analysis of Bose condensation in the Huang-Yang-Luttinger (HYL) model [START_REF] Huang | Imperfect Bose gas with hard-sphere interations[END_REF].

We note that it was Thouless [START_REF] Thouless | The quantum mechanics of many body systems[END_REF], who presented an instructive "back-of-the-envelope" calculations, which argue that a new kind of Bose condensation may occur in the HYL model of the hard-sphere Bose-gas [START_REF] Huang | Imperfect Bose gas with hard-sphere interations[END_REF]. Ten years after [START_REF] Bru | Exact phase diagram of the Bogoliubov weakly imperfect Bose gas[END_REF], the non-conventional condensation was discovered also in the Bogoliubov Weakly Imperfect Bose Gas (WIBG), see [START_REF] Bru | Exact solution of the Bogoliubov Hamiltonian for weakly imperfect Bose gas[END_REF][START_REF] Bru | On condensations in the Bogoliubov Weakly Imperfect Bose-Gas[END_REF] and review [START_REF] Zagrebnov | The Bogoliubov Model of Weakly Imperfect Bose Gas[END_REF].

The difference between conventional and non-conventional condensations reflects the difference in the mechanism of their formation. The conventional condensation is a consequence of the balance between entropy and kinetic energy, whereas the non-conventional condensation results from the balance between entropy and interaction energy. This difference has an important consequence: the conventional condensation would occur if it occurs in the PBG, whilst non-conventional condensation occurs due to interaction. The latter motivated its another name: the dynamical condensation [START_REF] Bru | Exact phase diagram of the Bogoliubov weakly imperfect Bose gas[END_REF][START_REF] Bru | Exact solution of the Bogoliubov Hamiltonian for weakly imperfect Bose gas[END_REF]. As a consequence, the dynamical condensation may occur in low-dimensional boson systems, as well as to exhibit the first-order phase transition. The both HYL and WIBG models manifest these properties. 1.2 The aim of the paper is to give an introduction into the non-conventional dynamical condensation for homogeneous boson systems.

To this end we first introduce in the next Section 2 a simple toy model that manifests the outlined above peculiarities of this kind of condensate. Properties of this model and description of condensates of different types are presented in Sections 3 and 4. Section 5 is reserved for comments and concluding remarks.

Section 6 is devoted to quantum mechanical origin of the effective off-diagonal interaction in the Hamiltonian of the Bogoliubov WIBG. This is important step to understanding the origin of the non-conventional condensation in this model. Further details are presented in Sections 7-10. Few concluding remarks are in Section 11.

2 Toy model 2.1 Recall that since the first description by Einstein [START_REF] Einstein | Quantentheorie des einatomigen idealen Gases[END_REF] in 1925, it is known that conventional Bose-Einstein condensation with macroscopic occupation of a single level is a very subtle matter. For example, its magnitude strongly depends on the shape of container or on the way to take the thermodynamic limit, see e.g. [START_REF] Van Den Berg | A general theory of Bose-Einstein condensation in the free boson gas[END_REF][START_REF] Ziff | The ideal Bose-Einstein gas, revisited[END_REF] and Section 5.1. It was Casimir [START_REF] Casimir | On Bose-Einstein condensation[END_REF] who showed that in a long prism it is possible for condensation in the Perfect Bose Gas (PBG) to occur in a narrow band rather than in a single level. This was an example of generalised BEC (gBEC), a concept introduced earlier by Girardeau [START_REF] Girardeau | Relationship between systems of impenetrable bosons and fermions in one dimension[END_REF]. The first rigorous treatment of this observation for the PBG is due to van den Berg, Lewis and Pulè in series of papers: [START_REF] Van Den Berg | On generalized condensation in the free boson gas[END_REF]- [START_REF] Pulè | The free boson gas in a weak external potential[END_REF] and [START_REF] Van Den Berg | A general theory of Bose-Einstein condensation in the free boson gas[END_REF]. They proposed a classification of types of gBEC. Then condensate in a single level is the gBEC of type I, see Section 5.1.

The feature of the conventional BEC (generalised or not) is that it appears in noninteracting system of bosons as soon as total particle density gets larger that some critical value. Therefore, behind of conventional BEC there is a saturation mechanism related to the Bose statistics of particles. In [START_REF] Van Den Berg | Condensation in the Imperfect Boson Gas[END_REF] it was demonstrated that the very same mechanism is responsible for BEC in a system of bosons with mean-field repulsive interaction commonly called the Mean-Field imperfect Bose-gas. Moreover, in [START_REF] Michoel | Nonextensive Bose-Einstein condensation model[END_REF] it was shown that, instead of geometry of container, a judicious choice of repulsive interaction may split initial single level condensation (type I) into non-extensive (type III) condensation, when no levels are macroscopically occupied. Therefore, the concept of conventional gBEC caused by the mechanism of saturation fits well for bosons with repulsive interaction.

Since bosons are very sensitive to attraction, there exists non-conventional dynamical condensation induced by this interaction [START_REF] Bru | Exact solution of the Bogoliubov Hamiltonian for weakly imperfect Bose gas[END_REF][START_REF] Bru | Exactly soluble model with two kinds of Bose-Einstein condensations[END_REF][START_REF] Bru | A model with coexistence of two kinds of Bose condensations[END_REF][START_REF] Bru | On condensations in the Bogoliubov Weakly Imperfect Bose-Gas[END_REF]. Again, this kind of condensation shows when total particle density (or chemical potential) becomes larger some critical value, but it is attractive interaction (and not simply Bose statistics) that defines the value of dynamical condensate and its behaviour. To escape the collapse, the attractive interaction in a boson system should be stabilised by a repulsion. Therefore, the conventional and non-conventional condensations may coexist.

Our toy model manifests these two kinds of condensations. The non-conventional one is due to an attraction term in Hamiltonian of the model. This condensation starts at the single lowest level for moderate densities (negative chemical potentials) and saturates after some critical density. It is after this threshold that the conventional BEC shows up to absorb the increasing total particle density (the saturation mechanism). At the threshold one has coexistence of these two kinds of condensations. Moreover the repulsive interaction in our model is such that BEC splits up into non-extensive one, i.e., into the gBEC of type III.

Since known Bose-systems manifesting condensation (e.g., superfluid 4 He) are far from to be perfect, we hope that our toy model would give more insight into possible scenarios for condensations in real systems. For example, in condensate of sodium atoms in trap the interaction seems to predominate compare with kinetic energy [START_REF] Bradley | Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions[END_REF]. Therefore, condensation in trapped alkali dilute-gases [START_REF] Davis | Bose-Einstein Condensation in a Gas of Sodium Atoms[END_REF][START_REF] Anderson | Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor[END_REF], may be a combination of non-conventional and conventional BECs. 2.2 To fix notations and definitions we recall first the Mean-Field (MF) imperfect Bosegas model introduced by Huang [START_REF] Huang | Statistical Mechanics[END_REF] Ch.5.2.6. It is a system of identical bosons of mass m enclosed in a cube Λ ⊂ R d of volume V = |Λ| centered at the origin defined by the Hamiltonian:

H M F Λ = k∈Λ * ε k a * k a k + λ 2V N 2 Λ , ε k := 2 k 2 /2m, λ > 0, (2.1) 
where

N Λ = k∈Λ * a * k a k ≡ k∈Λ *
N k is the particle-number operator and ε k correspond to the one-particle kinetic-energy. Here {a # k } k∈Λ * are the boson creation/annihilation operators in the boson Fock space F Λ over L Then for d > 2, given temperature θ := β -1 and total particle density ρ > ρ P c (θ) (here ρ P c (θ) := ρ P θ -1 , µ = 0 where ρ P (β, µ) is the particle density of the PBG in the grandcanonical ensemble) the MF model manifests a conventional BEC of type I [START_REF] Davies | The thermodynamic limit for an imperfect boson gas[END_REF][START_REF] Fannes | The condensed phase of the imperfect Bose gas[END_REF][START_REF] Van Den Berg | Condensation in the Imperfect Boson Gas[END_REF], i.e. a macroscopic occupation only of the single-particle ground-state level k = 0. See Section 5.1 for classification of conventional BEC.

However, in [START_REF] Michoel | Nonextensive Bose-Einstein condensation model[END_REF] it was shown that the MF model (2.1) perturbed by the repulsive diagonal interaction

U Λ = λ 2V k∈Λ * N 2 k , λ > 0, (2.2) 
demonstrates the BEC which occurs again for densities ρ > ρ P c (θ) (or µ > λρ P c (θ) =: µ M F c (θ)), but now it splits up into BEC of type III. This is a non-extensive condensation, when no single-particle levels are macroscopically occupied (cf. Section 5.1). This model for λ > 0 was introduced in [START_REF] Schröder | On the Bose Gas with Local Mean-Field Interaction[END_REF] and we call it the Michoel-Schröder-Verbeure (MSV) model:

H M SV Λ ≡ H M F Λ + U Λ . (2.3)
Then the conventional BEC of type III means that

lim Λ N k H M SV Λ V = 0, k ∈ Λ * ,
for any ρ, whereas the double limit

lim δ→+0 lim Λ 1 V {k∈Λ * ,0≤ k ≤δ} N k H M SV Λ = ρ -ρ P c (θ) > 0, for µ > µ M F c (θ).
Here we denote by - Λ for the HYL model rigorously studied in [START_REF] Van Den Berg | The large deviation principle and some models of an interacting Boson Gas[END_REF]. There it was shown that HYL model manifests non-conventional condesation of the type I that occurs only at zero-mode k = 0.

H M SV Λ (β, µ), β ≥ 0, µ ∈ R 1 ,
The fact that a gentle repulsive interaction may produce a generalised non-extensive BEC without any change of corresponding pressure has been shown in [START_REF] Bru | Exactly soluble model with two kinds of Bose-Einstein condensations[END_REF]. This was done in context of the model:

H 0 Λ = k∈Λ * \{0} ε k a * k a k + ε 0 a * 0 a 0 + g 0 2V a * 0 a * 0 a 0 a 0 , (2.4) 
with ε 0 ( = ε k=0 ) ∈ R 1 and g 0 > 0, perturbed by the interaction

U Λ = 1 V k∈Λ * \{0} g k (V ) a * k a * k a k a k , 0 < g -≤ g k (V ) ≤ γ k V α k , (2.5) 
with α k ≤ α + < 1 and 0 < γ k ≤ γ + . The perturbation U Λ (similar to the interaction U Λ when g k = λ) leads to Hamiltonian:

H BZ Λ := H 0 Λ + U Λ . (2.6)
In contrast to the MSV model, the grand-canonical pressure for (2.6):

p BZ Λ (β, µ) = p Λ H BZ Λ := 1 βV ln Tr F Λ e -β(H BZ Λ -µN Λ) (2.7)
is defined in the thermodynamic limit only in domain Q = {µ ≤ 0} × {θ ≥ 0} and it is equal to

p BZ (β, µ) := lim Λ p BZ Λ (β, µ) = p P (β, µ) -inf ρ 0 ≥0 (ε 0 -µ) ρ 0 + g 0 ρ 2 0 2 , (2.8) 
see [START_REF] Bru | Exactly soluble model with two kinds of Bose-Einstein condensations[END_REF]. Here p P (β, µ) is the pressure of the PBG in thermodynamic limit. Note that the pressure (2.8) is independent of parameters {g k (V )} k∈Λ * \{0} , i.e. of the interaction (2.5).

Remark 2.1 Let domain D ε 0 be defined by

D ε 0 := (θ, µ) ∈ Q : p P (β, µ) < p BZ (β, µ) .
(2.9)

Then the thermodynamic limit (2.8) says that to insure D ε 0 = {∅} the parameter ε 0 must be negative, i.e.

D ε 0 = {(θ, µ) ∈ Q : ε 0 < µ ≤ 0} . (2.10)
Below we consider only the case ε 0 < 0 and d > 2.

We denote by ρ BZ Λ (β, µ) the total particle density in the grand-canonical ensemble for the model

H BZ Λ : ρ BZ Λ (β, µ) := N Λ V H BZ Λ (β, µ) . (2.11)
Then ρ BZ (β, µ) := lim Λ ρ BZ Λ (β, µ) is the corresponding thermodynamic limit which, according to [START_REF] Van Den Berg | The large deviation principle and some models of an interacting Boson Gas[END_REF], is equal to:

ρ BZ (β, µ) = ρ P (β, µ) , (2.12) 
for (θ, µ ≤ ε 0 ), and to

ρ BZ (β, µ) = ρ P (β, µ) + µ -ε 0 g 0 , (2.13) 
for (θ, ε 0 < µ < 0). We remark that for d > 2 there is a finite critical density

ρ BZ c (θ) := sup µ≤0 ρ BZ θ -1 , µ = ρ BZ θ -1 , µ = 0 = ρ P c (θ) - ε 0 g 0 < +∞, (2.14) 
in this model.

Proposition 2.2 [19] Let ρ > ρ BZ c (θ) (d > 2) and 0 < g -≤ g k (V ) ≤ γ k V α k for k ∈ Λ * \ {0} , with α k ≤ α + < 1 and 0 < γ k ≤ γ + . Then for any ε 0 < 0 we have: (i) a condensation in the mode k = 0 (even if d < 3), i.e. ρ BZ 0 (θ, µ) := lim Λ a * 0 a 0 V H BZ Λ = 0, for (θ, µ) ∈ Q\D ε 0 µ-ε 0 g 0 , for (θ, µ) ∈ D ε 0 ; (2.15) (ii) for any ε 0 ∈ R 1 lim Λ a * k a k V H BZ Λ = 0, k ∈ Λ * \ {0} , (2.16) 
i.e. there is no macroscopic occupation of modes k = 0 but we have a non-extensive BEC:

lim δ→0 + lim Λ 1 V {k∈Λ * : 0< k <δ} N k H BZ Λ = ρ -ρ BZ c (θ) > 0.
(2.17)

For ε 0 < 0 this type III BEC coexists with non-conventional dynamical BEC of type I in the mode k = 0 if (θ, µ) ∈ D ε 0 .
Therefore, Proposition 2.2 demonstrates for densities ρ > ρ BZ c (θ) coexistence of two kinds of condensates in the model (2.6) : -a non-conventional BEC in the single mode k = 0 due to the term (ε 0 a * 0 a 0 ), which mimics for ε 0 < 0 attraction by an external potential [START_REF] Vl | On condensation of a one-dimensional nonideal Boson gas[END_REF] giving rise to a non-conventional condensation of type I (cf. Section 5.1); -a conventional BEC due to saturation of the total particle density, where (similar to the MSV model) the type III of this condensation is due to the elastic repulsive interaction U Λ (2.5) of bosons in modes k = 0. Therefore, the interaction (2.5) is decisive for formation of the non-extensive BEC in the model (2.6), whereas it has no impact on the value of pressure (2.8).

Below we study a toy model, which is a modification of the model (2.6). It is, similar to (2.3), stabilised by the MF-interaction (2.1):

H Λ = k∈Λ * \{0} ε k a * k a k + ε 0 a * 0 a 0 + g 0 2V N 2 0 + λ 2V N 2 Λ + g 2V k∈Λ * \{0} N 2 k . (2.18)
Here λ > 0, g 0 > 0, g > 0 but ε 0 < 0. Note that the toy model H Λ for ε 0 = 0 and for λ = g = g 0 coincides with the MSV model (2.3), whilst for ε 0 = 0 and g 0 = g = -a, λ = 2a > 0 one gets: ). Then the effect favouring particle accumulation at zero-mode by the kinetic energy term is enhanced by this last interaction-energy term since it has the smallest value when all bosons occupy the same energy-level. Therefore, it produces a non-conventional dynamical zero-mode BEC, see [START_REF] Van Den Berg | The large deviation principle and some models of an interacting Boson Gas[END_REF].

H HY L Λ = k∈Λ * ε k a * k a k + a 2V N 2 Λ + a 2V {N 2 Λ - k∈Λ * N 2 k }. ( 2 
3 Free-energy density and pressure

3.1 First we consider the toy model (2.18) in canonical ensemble (β, ρ). This simplifies essentially the thermodynamic study of the model. Let f Λ (β, ρ = n/V ) be the corresponding free-energy density:

f Λ (β, ρ) := - 1 βV ln Tr H n Λ,S e -βH Λ , (3.1) 
where

H n Λ,S := S n ⊗ i=1 L 2 (Λ) is symmetrised n Theorem 3.1 Let λ > 0 , g > 0, g 0 > 0 and ε 0 < 0. Then f (β, ρ) := lim Λ f Λ (β, ρ) = λ 2 ρ 2 + inf ρ 0 ∈[0,ρ] ε 0 ρ 0 + g 0 2 ρ 2 0 + f P (β, ρ -ρ 0 ) , (3.2) 
is independent of g provided g > 0.

Here f P (β, ρ) is thermodynamic limit of the PBG free-energy

f P (β, ρ) := lim Λ f P Λ (β, ρ) , (3.3) 
where

f P Λ (β, ρ) := - 1 βV ln {n k =0,1,2,...} k∈Λ * e -β( k∈Λ * ε k n k ) δ k∈Λ * n k =[ρV ] , (3.4) 
and [x] denotes the integer part of x ≥ 0.

Proof. By (2.18) and (3.1) we get

f Λ (β, ρ) = - 1 βV ln{ [ρV ] n 0 =0 e -βV h(ρ, n 0 V ) } + λ 2 ρ 2 , (3.5) 
where

h Λ (ρ, ρ 0 ) := ε 0 ρ 0 + g 0 2 ρ 2 0 - 1 βV ln {n k =0,1,2,...} k∈Λ * \{0} e -β k∈Λ * \{0} [εknk+ g 2V n 2 k ] δ k =0 n k =[ρV ]-[ρ 0 V ] .
(3.6) By (3.5) one gets the estimate

λ 2 ρ 2 + inf ρ 0 ∈[0,ρ] h Λ (ρ, ρ 0 ) - 1 βV ln ([ρV ] + 1) ≤ f Λ (β, ρ) ≤ λ 2 ρ 2 + inf ρ 0 ∈[0,ρ] h Λ (ρ, ρ 0 ) ,
which gives in thermodynamic limit:

f (β, ρ) := lim Λ f Λ (β, ρ) = λ 2 ρ 2 + lim Λ inf ρ 0 ∈[0,ρ] h Λ (ρ, ρ 0 ) . (3.7) 
Notice that (3.6) can be rewritten as

h Λ (ρ, ρ 0 ) = ε 0 ρ 0 + g 0 2 ρ 2 0 - 1 βV ln e -βg 2V k∈Λ * \{0} n 2 k H P Λ (β, ρ -ρ 0 ) , (3.8) 
where -H P Λ (β, ρ -ρ 0 ) is the canonical Gibbs state for the PBG with excluded mode k = 0 for density ρ -ρ 0 , with the corresponding free-energy density f P Λ (β, ρ) defined by (3.4) 

for k ∈ Λ * \ {0}. Since lim Λ f P Λ (β, ρ) = lim Λ f P Λ (β, ρ) , the Jensen inequality e -βg 2V k∈Λ * \{0} n 2 k H P Λ ≥ e -βg 2V k∈Λ * \{0} n 2 k H P Λ and (3.8) imply the estimate lim Λ h Λ (ρ, ρ 0 ) ≤ ε 0 ρ 0 + g 0 2 ρ 2 0 + f P (β, ρ -ρ 0 ) . (3.9) Moreover, since e -βg 2V n 2 k ≤ 1, by (3.6) we have h Λ (ρ, ρ 0 ) ≥ ε 0 ρ 0 + g 0 2 ρ 2 0 + f P Λ (β, ρ -ρ 0 ) ,
which together with (3.9) gives (3.2). 

f Λ (β, ρ) = λ 2 ρ 2 + f BZ Λ (β, ρ) ,
from which by Theorem 3.1 we deduce

f BZ (β, ρ) := lim Λ f BZ Λ (β, ρ) = inf ρ 0 ∈[0,ρ] ε 0 ρ 0 + g 0 2 ρ 2 0 + f P (β, ρ -ρ 0 ) , (3.10 
) 

and f (β, ρ) = λ 2 ρ 2 + f BZ (β, ρ) . ( 3 
p BZ (β, µ) = sup ρ≥0 µρ -f BZ (β, ρ) = sup ρ 0 ≥0 sup ρ≥ρ 0 µρ 0 -ε 0 ρ 0 - g 0 2 ρ 2 0 + µ (ρ -ρ 0 ) -f P (β, ρ -ρ 0 ) = sup ρ 0 ≥0 p P (β, µ) -(ε 0 -µ) ρ 0 - g 0 2 ρ 2 0
which coincides with (2.8) found in [START_REF] Bru | Exactly soluble model with two kinds of Bose-Einstein condensations[END_REF].

3.2 Now we consider our model (2.18) in the grand-canonical ensemble (β, µ). Let

p Λ (β, µ) := 1 βV ln Tr F Λ e -β(H Λ -µN Λ ) .
be the grand-canonical pressure corresponding (2.18).

Theorem 3.4 Let λ > 0 , g 0 > 0, g > 0,and ε 0 < 0, then: (i) the domain of stability of H Λ , i.e.

Q := θ ≥ 0, µ ∈ R 1 : lim Λ p Λ (β, µ) < +∞ , (3.12 
)

is equal to Q = {θ ≥ 0} × {µ ∈ R 1 };
(ii) in the thermodynamic limit one gets

p (β, µ) := lim Λ p Λ (β, µ) = inf α≤0 p BZ (β, α) + (µ -α) 2 2λ (3.13)
for (θ, µ) ∈ Q, where p BZ (β, µ) is the pressure defined by (2.8). Therefore the pressure (3.13) is independent of the parameter g provided it is positive.

Proof. (i) Notice that the Hamiltonian H Λ (2.18) is superstable, i.e. there are B = -ε 0 and C = λ/2 such that

H Λ ≥ -N Λ B + C V N 2 Λ (3.14)
for any box Λ. Therefore by (3.14) we obtain that the infinite volume limit (3.13) exists for any µ ∈ R 1 .

(ii) Since the pressure p (β, µ) is in fact a Legendre transform of the corresponding freeenergy density f (β, ρ) (3.2) or (3.11), by Theorem 3.1 we get

p (β, µ) = sup ρ≥0 {µρ -f (β, ρ)} = sup ρ≥0 µρ - λ 2 ρ 2 -f BZ (β, ρ) , (3.15) 
with f BZ (β, ρ) defined by (3.10). Straightforward calculations give that

inf α≤0 αρ + (µ -α) 2 2λ -f BZ (β, ρ) = µρ - λ 2 ρ 2 -f BZ (β, ρ)
and thus (3.15) takes the form:

p (β, µ) = sup ρ≥0 inf α≤0 αρ + (µ -α) 2 2λ -f BZ (β, ρ) (3.16) 
Notice that the sup ρ≥0 and inf α≤0 do not commute in general. However, convexity of the free-energy density f BZ (β, ρ) (cf. Remark 3.2) implies that

F (ρ, α) := αρ + (µ -α) 2 2λ -f BZ (β, ρ) (3.17)
is a strictly concave function of ρ and a strictly convex function of α. This ensures the uniqueness of the stationary point ( ρ, α) corresponding to 

∂ α F ( ρ, α) = 0, ∂ ρ F ( ρ, α) = 0. Therefore F ( ρ, α) = sup ρ≥0 inf α≤0 {F (ρ, α)} = inf α≤0 sup ρ≥0 {F (ρ, α)} . (3.18) Since sup ρ≥0 F (ρ, α) = (µ -α) 2 2λ + p BZ (β, α) , (3 
:= N Λ V H Λ = ∂ µ p Λ (β, µ) , (4.1) 
where -H Λ (β, µ) represents the grand-canonical Gibbs state for the Hamiltonian H Λ (2.18).

Theorem 4.1 For (θ, µ) ∈ Q (3.12) we have

ρ (β, µ) := lim Λ ρ Λ (β, µ) = ρ BZ (β, α (β, µ)) . (4.2)
Here α (β, µ) ≤ 0 is a unique solution of equation

ρ BZ (β, α) + (α -µ) λ = 0, (4.3 
)

when µ ≤ µ BZ c (θ) := λρ BZ c (θ), whereas for µ > µ BZ c (θ) one gets ρ (β, µ) := lim Λ ρ Λ (β, µ) = µ λ . (4.4) 
Here ρ BZ c (θ) is defined above by (2.14). Proof. Let α (β, µ) ≤ 0 be defined by (3.13), i.e.

p (β, µ) = inf α≤0 p BZ (β, α) + (µ -α) 2 2λ = p BZ (β, α (β, µ)) + (µ -α (β, µ)) 2 2λ . (4.5) 
Since

∂ α p BZ (β, α) + (µ -α) 2 2λ = ρ BZ (β, α) + (α -µ) λ , (4.6) 
then for µ ≤ µ BZ c (θ) = λρ BZ c (θ) (cf. (2.14)) there exists a unique solution α (β, µ) ≤ 0 of (4.3) which coincides with α (β, µ) in (3.13). Since {p Λ (β, µ)} Λ are convex functions of µ ∈ R 1 then combining (4.1) and (4.5) with the Griffiths Lemma ( [START_REF] Griffiths | A Proof that the Free Energy of a Spin System is extensive[END_REF], Section 5.2) we obtain the thermodynamic limit for the total particle density

ρ (β, µ) = ∂ µ p (β, µ) = (µ -α (β, µ)) λ .
This together with (4.3) gives (4.2). Now let µ > µ BZ c (θ). Then by definitions of µ BZ c (θ) and ρ BZ c (θ) (see (2.14)) one gets

∂ α p BZ (β, α) + (µ -α) 2 2λ = ρ BZ (β, α) + (α -µ) λ ≤ 0.
This implies that

p (β, µ) = inf α≤0 p BZ (β, α) + (µ -α) 2 2λ = p BZ (β, 0) + µ 2 2λ , (4.7) 
i.e. α (β, µ) = 0. Therefore, by the Griffiths lemma and (4.1), (4.7) we get (4.4).

Theorem 4.2 Let ε 0 < 0. Then we have:

ρ 0 (θ, µ) := lim Λ a * 0 a 0 V H Λ (β, µ) = 0, for (θ, µ) ∈ Q\ D ε 0 α(β,µ)-ε 0 g 0 , for (θ, µ) ∈ D ε 0 , (4.8) 
with α (β, µ) defined by equation (4.5). Here domain D ε 0 is defined by:

D ε 0 = (θ, µ) ∈ Q : ε 0 < α (β, µ) = (θ, µ) ∈ Q : µ 0 (θ) < µ , (4.9) 
where we denote by µ 0 (θ) a unique solution of the equation

α (β, µ) = ε 0 . (4.10) Proof. Since {p Λ (β, µ)} Λ are convex functions of ε 0 ∈ R 1 , then by a * 0 a 0 V H Λ (β, µ) = -∂ ε 0 p Λ (β, µ) , (4.11) 
and by the Griffiths lemma we obtain that

lim Λ a * 0 a 0 V H Λ (β, µ) = -∂ ε 0 p (β, µ) . (4.12) 
For µ ≤ µ BZ c (θ) = λρ BZ c (θ) there is a unique α (β, µ) ≤ 0 defined by (4.5) which verifies (4.3), whereas for µ > µ BZ c (θ) according to (4.7) we obtain α (β, µ) = 0. Notice that by (2.8) for µ ≤ ε 0 we have p BZ (β, µ) = p P (β, µ) .

Therefore, by (4.9), (4.12) one gets from (4.5) and (4.7) that

lim Λ a * 0 a 0 V H Λ (β, µ) = 0, for α (β, µ) ≤ ε 0 < 0 α(β,µ)-ε 0 g 0 , for ε 0 ≤ α (β, µ) ,
i.e. (4.8).

Hence by Theorem 4.2, the domain D ε 0 (4.9) can be described as

D ε 0 = (θ, µ) ∈ Q : ρ 0 (θ, µ) := lim Λ a * 0 a 0 V H Λ > 0 . (4.13)
Notice that in contrast to D ε 0 , see (2.9), (2.10), the domain D ε 0 has a temperature dependent boundary and extends to positive µ. This macroscopic occupation of the mode k = 0 (4.8) is a non-conventional Bose condensation which occurs in the model (2.18) due to the attraction term ε 0 a * 0 a 0 , for ε 0 < 0 (cf. Section 5.1). It is similar to the first stage of condensation manifested by the model H BZ Λ (2.6) with g k (V ) = g/2) although in the latter case it is possible only for µ ≤ 0, see [START_REF] Bru | Exactly soluble model with two kinds of Bose-Einstein condensations[END_REF]. In particular, we have again a saturation of the condensate density in the mode k = 0:

sup µ∈R 1 ρ 0 (θ, µ) = ρ 0 θ, µ ≥ µ BZ c (θ) = - ε 0 g 0 , (4.14) 
cf. (2.15). Notice that for any µ

lim β→0 + α (β, µ) = -∞.
Thus, in contrast to the model (2.6) (with g k (V ) = g/2), the non-conventional condensation in the model (2.18) depends on the temperature. There is θ 0 (µ) (solution of the equation α θ -1 , µ = ε 0 , (4.10)) such that

ρ 0 (θ, µ) = α (β, µ) -ε 0 g 0 > 0, (4.15) 
for θ ≤ θ 0 (µ) and ρ 0 (θ, µ) = 0, ( 

H Λ,γ := H Λ -γ {k∈Λ * : k ≥δ} a * k a k , (4.17) 
for a fixed δ > 0, and we set p Λ (β, µ, γ) := 1 βV ln Tr F Λ e -βH Λ,γ (µ) . (4.18)

Remark 4.3 Let γ < ε δ := ε k =δ . Then the system with Hamiltonian H Λ,γ has the same properties as the model H Λ modulo the free-particle spectrum transformation:

ε k → ε k,γ := ε k -γ.χ [δ,+∞) ( k ) (4.19)
where χ A (x) is the characteristic function of domain A. In particular, the results of Theorems 3.1 and 3.4 remain unchanged. For (θ, µ) ∈ Q and γ < ε δ we have

p (β, µ, γ) := lim Λ p Λ (β, µ, γ) = inf α≤0 p BZ (β, α, γ) + (µ -α) 2 2λ , (4.20) 
where p BZ (β, µ, γ) is the pressure (2.8) but with the free-particle spectrum (4.19):

p BZ (β, µ, γ) = p P (β, µ, γ) -inf ρ 0 ≥0 (ε 0 -µ) ρ 0 + g 0 ρ 2 0 2 = 1 β (2π) d k∈R d ln 1 -e -β(ε k,γ -µ) -1 d d k -inf ρ 0 ≥0 (ε 0 -µ) ρ 0 + g 0 ρ 2 0 2 . (4.21) Theorem 4.4 For any (θ, µ) ∈ Q we have lim Λ a * k a k V H Λ = 0, k ∈ Λ * \ {0} , (4.22) 
i.e., there is no macroscopic occupation of modes k = 0, whereas for µ > µ BZ c (θ) = λρ BZ c (θ) the model H Λ (2.18) manifests a generalised (non-extensive) BEC for those modes:

lim δ→0 + lim Λ 1 V {k∈Λ * : 0< k <δ} N k H Λ = ρ (β, µ) -ρ BZ c (θ) = 1 λ µ -µ BZ c (θ) > 0. (4.23)
Here ρ (β, µ) is defined by (4.4). If ε 0 < 0, then this condensation coexists with the non-conventional condensation in the mode k = 0 (see Theorem 4.2).

Proof. Let g > 0 and ∆g > 0 be such that g -∆g > 0. Then by the Bogoliubov convexity inequality (see e.g. [START_REF] Bogoliubov | Some classes of exactly soluble models of problems in Quantum Statistical Mechanics : the method of the approximating Hamiltonian[END_REF]), one gets:

0 ≤ ∆g 2V 2 k∈Λ * \{0} N 2 k H Λ ≤ p Λ [H Λ - ∆g 2V k∈Λ * \{0} N 2 k ] -p Λ [H Λ ] . (4.24) 
Notice that by Theorems 3.1 and 3.4 the thermodynamic limits of pressures for two models (2.18) with parameters g > 0 and g -∆g > 0 coincide with (3.13), i.e. one has

lim Λ {p Λ [H Λ - ∆g 2V k∈Λ * \{0} N 2 k ] -p Λ [H Λ ]} = 0. (4.25) 
Since for any k ∈ Λ * \ {0} we have the estimate

0 ≤ N k H Λ V 2 ≤ N 2 k H Λ V 2 ≤ 1 V 2 k∈Λ * \{0} N 2 k H Λ ,
its combination with (4.24) and (4.25) gives (4.22). Let δ > 0, then we have

1 V {k∈Λ * : 0< k <δ} N k H Λ = ρ Λ (β, µ) - a * 0 a 0 V H Λ - 1 V {k∈Λ * : k ≥δ} N k H Λ . (4.26)
Now we can follow the same line of reasoning as in proofs of Theorems 4.1 and 4.2: we have the set

{p Λ (β, µ, γ)} Λ of convex functions of γ ∈ (-∞, ε δ ] with 1 V {k∈Λ * : k ≥δ} N k H Λ,γ = ∂ γ p Λ (β, µ, γ) ,
which by the Griffiths lemma and (4.20), (4.21) implies for γ = 0: 

lim Λ 1 V {k∈Λ * : k ≥δ} N k H Λ = ∂ γ p (β, µ, γ = 0) . ( 4 
∂ γ p (β, µ, γ = 0) = 1 (2π) d k ≥δ d d k e β(ε k -α(β,µ)) -1 (4.28)
and 4.29) by taking first the thermodynamic limit and then the limit δ → +0.

∂ γ p (β, µ, γ = 0) = 1 (2π) d k ≥δ d d k e βε k -1 (4.29) for µ ≥ µ BZ c (θ). Now,

Comments

We have presented a new exactly soluble model (2.18) which is inspired by the MSV model [START_REF] Michoel | Nonextensive Bose-Einstein condensation model[END_REF] and our model [START_REF] Bru | Exactly soluble model with two kinds of Bose-Einstein condensations[END_REF]. Due to attractive-type interaction in the mode k = 0 it belongs to the family of models which manifest two kinds of condensations: non-conventional one in the mode k = 0 and conventional (generalised) BEC in modes k = 0. These condensations coexist for large total particle densities ρ > ρ BZ c (θ), or µ ≥ µ BZ c (θ) = λρ BZ c (θ). This model demonstrates the richness of the notion of Bose-condensation. It gives also a better understanding of the difference between non-conventional and conventional condensations.

First, in spite of superstability of the model, which implies

sup µ∈R 1 ρ (β, µ) = +∞,
the conventional condensation is due to a mechanism of saturation. Since, after saturation of the non-conventional condensation, the kinetic-energy density attains its maximal value at the critical density ρ BZ c (θ), the further growth of the total energy density for ρ > ρ BZ c (θ) is caused by a macroscopic amount of particles with almost zero momenta.

The second important feature of models (2.18) (similar to [START_REF] Bru | Exactly soluble model with two kinds of Bose-Einstein condensations[END_REF] and in contrast to [START_REF] Bru | Exact solution of the Bogoliubov Hamiltonian for weakly imperfect Bose gas[END_REF]) is that the repulsion between bosons with k = 0 is strong enough to produce a generalized type III (i.e. non-extensive) BEC. Notice that in the Bogoliubov Weakly Imperfect Bose Gas [START_REF] Bru | Exact solution of the Bogoliubov Hamiltonian for weakly imperfect Bose gas[END_REF][START_REF] Bru | On condensations in the Bogoliubov Weakly Imperfect Bose-Gas[END_REF], the BEC is of type I. For reader's convenience we remind a nomenclature of (generalized) Bose-Einstein condensations according to [START_REF] Van Den Berg | A general theory of Bose-Einstein condensation in the free boson gas[END_REF]:

Classification of the Bose-condensation types

-the condensation is called the type I when a finite number of single-particle levels are macroscopically occupied; -it is of type II when an infinite number of the levels are macroscopically occupied; -it is called the type III, or the non-extensive condensation, when no of the levels are macroscopically occupied whereas one has

lim δ→0 + lim Λ 1 V {k∈Λ * ,0< k ≤δ} N k = ρ -ρ c (θ) .
An example of these different condensations is given in [START_REF] Van Den Berg | On generalized condensation in the free boson gas[END_REF]. This paper demonstrates that three types of BEC can be realised in the case of the PBG in an anisotropic rectan-

gular box Λ ⊂ R 3 of volume V = |Λ| = L x •L y •L z and with Dirichlet boundary conditions. Let L x = V αx , L y = V αy , L z = V αz for α x + α y + α z = 1 and α x ≤ α y ≤ α z . If α z < 1/2,
then for sufficient large density ρ, we have the BEC of type I in the fundamental mode k = 2π

Lx , 2π Ly , 2π Lz . For α z = 1/2 one gets a condensation of type II characterized by a macroscopic occupation of infinite package of modes k = 2π

Lx , 2π Ly , 2πn Lz , n ∈ N, whereas for α z > 1/2 we obtain a condensation of type III. In [START_REF] Pulè | The free boson gas in a weak external potential[END_REF] it was shown that the type III condensation can be caused in the PBG by a weak external potential or (see [START_REF] Van Den | On boson condensation into an infinite number of low-lying levels[END_REF]) by a specific choice of boundary conditions and geometry. Another example of the non-extensive condensation is given in [START_REF] Michoel | Nonextensive Bose-Einstein condensation model[END_REF][START_REF] Bru | Exactly soluble model with two kinds of Bose-Einstein condensations[END_REF] for bosons in an isotropic box Λ with repulsive interactions which spread out the conventional BEC of type I into Bose-Einstein condensation of type III.

Non-conventional versus conventional Bose condensation

Here we classify Bose condensations by their mechanisms of formation. In the most of papers (cf. [START_REF] Van Den Berg | On generalized condensation in the free boson gas[END_REF][START_REF] Van Den | On boson condensation into an infinite number of low-lying levels[END_REF][START_REF] Pulè | The free boson gas in a weak external potential[END_REF][START_REF] Michoel | Nonextensive Bose-Einstein condensation model[END_REF]), the condensation is due to saturation of the total particle density, originally discovered by Einstein [START_REF] Einstein | Quantentheorie des einatomigen idealen Gases[END_REF] in the Bose gas without interaction (PBG). We call it conventional BEC [START_REF] Ziff | The ideal Bose-Einstein gas, revisited[END_REF]. The existence of condensations, which is induced by interaction, is pointed out in papers [START_REF] Bru | Exactly soluble model with two kinds of Bose-Einstein condensations[END_REF][START_REF] Bru | Exact solution of the Bogoliubov Hamiltonian for weakly imperfect Bose gas[END_REF][START_REF] Bru | On condensations in the Bogoliubov Weakly Imperfect Bose-Gas[END_REF]. It is also the case of Huang-Yang-Luttinger model [START_REF] Van Den Berg | The large deviation principle and some models of an interacting Boson Gas[END_REF] since it contains attractive interactions. In particular, this is the case of the Bogoliubov Weakly Imperfect Bose-Gas [START_REF] Bru | Exact solution of the Bogoliubov Hamiltonian for weakly imperfect Bose gas[END_REF]. We call it non-conventional Bose condensation. (i) As it is shown above, the non-conventional condensation does not exclude the appearance of the BEC when total density of particles grows and exceeds some saturation limit ρ BZ c (θ). (ii) To appreciate the notion of non-conventional condensation let us remark that in models (2.6) and (2.18) for d = 1, 2, there exists only one kind of condensation, namely the non-conventional.

Remark 5.1 A non-conventional BEC can always be characterized by its type. Therefore, formally one obtains six kinds of condensations: a non-conventional versus conventional of types I, II, or III.

The Griffiths lemma

Lemma 5.1 [START_REF] Griffiths | A Proof that the Free Energy of a Spin System is extensive[END_REF] Let {f n (x)} n≥1 be a sequence of convex functions on a compact I ⊂ R.

If there exists a pointwise limit

lim n→∞ f n (x) = f (x) , x ∈ I, (5.1) 
then lim

n→∞ inf ∂ x f n (x -0) ≥ ∂ x f (x -0) , lim n→∞ sup ∂ x f n (x + 0) ≤ ∂ x f (x + 0) . (5.2)
Proof. By convexity one has

∂ x f n (x + 0) ≤ 1 l [f n (x + l) -f n (x)] , ∂ x f n (x -0) ≥ 1 l [f n (x) -f n (x -l)] , (5.3) 
for l > 0. Then taking the limit n → ∞ in (5.3), by (5.1) we obtain:

lim n→∞ sup ∂ x f n (x + 0) ≤ 1 l [f (x + l) -f (x)] , lim n→∞ inf ∂ x f n (x -0) ≥ 1 l [f (x) -f (x -l)] .
(5.4)

Now taking the limit l → +0, in (5.4), one gets (5.2).

Remark 5.2 In particular, if x 0 ∈ I is such that ∂ x f n (x 0 -0) = ∂ x f n (x 0 + 0) and ∂ x f (x 0 -0) = ∂ x f (x 0 + 0), then lim n→∞ ∂ x f n (x 0 ) = ∂ x f (x 0 ) .
6 Effect of non-diagonal interaction in the Weakly Imperfect Bose-Gas

Note that neither in the toy model (2.18), nor in the HYL model (2.19) there is no two-body potential in direct space, which is responsible for attraction between bosons. Instead, the attraction instability there is mimicked by potentials in the dual (momentum) space. They are favouring the accumulation of bosons in zero-mode k = 0 enhancing the entropy/kinetic-energy mechanism existed for conventional BEC in the perfect Bose-gas.

In this section we present quantum mechanics arguments in order to explain conditions on the two-body particle interaction potential that ensure a non-trivial thermodynamic behaviour and non-conventional (dynamical) BEC manifested by the Weakly Imperfect Bose-Gas (WIBG). They based on the Fröhlich transformation of the Bogoliubov truncated Hamiltonian (known also as the WIBG model [START_REF] Zagrebnov | The Bogoliubov Model of Weakly Imperfect Bose Gas[END_REF]), which is aimed to produce a partial diagonalisation of the Hamiltonian.

6.1

In [START_REF] Bogoliubov | On the theory of superfluidity[END_REF][START_REF] Bogoliubov | About the theory of superfluidity[END_REF] Bogoliubov proposed a model of the Weakly Imperfect Bose-Gas by truncation of the full Hamiltonian for bosons with two-body interaction. In the grand-canonical ensemble this truncation yields

H B Λ (µ) = T Λ (µ) + U D Λ + U Λ , (6.1) 
where

T Λ (µ) = k∈Λ * (ε k -µ) a * k a k , U D Λ = v (0) V a * 0 a 0 k∈Λ * ,k =0 a * k a k + 1 2V k∈Λ * ,k =0 v (k) a * 0 a 0 a * k a k + a * -k a -k + v (0) 2V a * 2 0 a 2 0 , U Λ = 1 2V k∈Λ * ,k =0 v (k) a * k a * -k a 2 0 + a * 2 0 a k a -k ,
with µ the chemical potential. Here {a # k } k∈Λ * are the boson creation and annihilation operators corresponding to the second quantisation in the cubic box

Λ = L × L × L ⊂ R 3 with periodic boundary conditions on ∂Λ, ε k = 2 k 2 /2m, Λ * = {k ∈ R 3 : α = 1, 2, 3 , k α = 2πn α L et n α = 0, ±1, ±2, . . . .}, v (k) = R 3 d 3 xϕ (x) e -ikx
, and V = L 3 . We can remark that H B Λ (µ) is defined in the boson Fock space over L 2 (Λ) , F Λ ≈ F 0Λ ⊗ F Λ where F 0Λ and F Λ are the boson Fock spaces constructed out of H 0Λ (the one-dimensional subspace generated by ψ k=0 ) and of its orthogonal complement H ⊥ 0Λ respectively. Note that for any complex c ∈ C, we can define in F 0Λ a coherent vector

ψ 0Λ (c) = e -V |c| 2 /2 ∞ k=0 1 k! √ V c k (a * 0 ) k Ω 0 , (6.2) 
where Ω 0 is the vacuum of F Λ and then

a 0 ψ 0Λ (c) = c √ V ψ 0Λ (c). Below we suppose that : (A) the pair potential ϕ (x) is absolutely integrable (to ensure the existence of v (k)); (B) the Fourier-transform 0 ≤ v (k) = v (-k) ≤ v (0) and v (0) > 0. 6.2 It is known [48] that the WIBG is thermodynamically stable: the pressure p B (β, µ) = lim Λ p Λ H B Λ is bounded, only for µ ≤ 0. If one considers only the diagonal part of the Bogoliubov Hamiltonian H BD Λ (µ) = T Λ (µ) + U D Λ , one can show (cf. [22]) that p BD (β, µ ≤ 0) = lim Λ p Λ H BD Λ = p P BG (β, µ ≤ 0) , (6.3) 
i.e. that thermodynamics of the diagonal part of the Bogoliubov Hamiltonian and that of the PBG coincide, including the Bose-condensation which occurs at k = 0. This means in particular that the thermodynamic non-equivalence between the Bogoliubov Hamiltonian and PBG, i.e., p B (β, µ ≤ 0) = p P BG (β, µ ≤ 0) , (

is due to non-diagonal terms of interaction U Λ . The formal proof of (6.4) is given in Section 8, Lemma 8.3, cf. [START_REF] Bru | Exact solution of the Bogoliubov Hamiltonian for weakly imperfect Bose gas[END_REF][START_REF] Bru | On condensations in the Bogoliubov Weakly Imperfect Bose-Gas[END_REF].

Note that U Λ corresponds to the interaction between bosons in the mode k = 0 and those with k = 0. We aim to give an evidence that it is effective attraction between particles with k = 0, which is responsible for non-conventional (dynamical ) condensation of particles at k = 0 for µ 0 < µ < 0 discovered in [START_REF] Bru | Exact phase diagram of the Bogoliubov weakly imperfect Bose gas[END_REF]. 6.3 The non-diagonal part U Λ of the Bogoliubov Hamiltonian (6.1) can be represented in term of vertices (see Figure 1). In order to understand the rôle of non-diagonal part of the Bogoliubov Hamiltonian, one has to evaluate the effective interactions, which is induced by U Λ between particles in the zero-mode k = 0 and between particle outside the zero-mode k = 0, see Figure 2 and Figure 3. The simplest way to calculate the corresponding two coupling constants g Λ,pq and g Λ,00 is to use the Fröhlich transformation [START_REF] Fröhlich | Interaction of electrons with lattice vibrations[END_REF] originally proposed to deduce the Bardeen-Cooper-Schriffer-Bogoliubov (BCS-Bogoliubov) model interaction in the theory of superconductivity [START_REF] Bogoljubov | On a new method in the theory of superconductivity[END_REF], [START_REF] Bogoliubov | A new method in the theory of superconductivity[END_REF]. This is unitary transformation of a Hamiltonian H:

H = e -iS He iS , (6.5) 
with self-adjoint generator S = S * . By developing e iS and e -iS , one obtains commutator series :

H = H + i [H, S] - 1 2 [[H, S] , S] + ... (6.6) 
In the case of the Bogoliubov Hamiltonian H B Λ (µ), we have to search for such operator S that the non-diagonal part U Λ will be canceled producing instead two diagonal terms with vertices of the form: g Λ,00 V a * 0 a * 0 a 0 a 0 and g Λ,pq V a * p a * -p a -q a q . (6.7)

To this end, we define the self-adjoint operator S as follows:

S := k∈Λ * ,k =0 Φ(k)a * k a * -k a 2 0 + Φ(k)a * 2 0 a k a -k , (6.8) 
where Φ(k) have to be determined in such a way that to cancel U Λ . Thus, by analogy with perturbation theory, to evaluate g Λ,00 and g Λ,kq , we have to calculate (6.6) up to the second order in v(k). 6.4 Therefore, we obtain

H B Λ = e -iS H B Λ (µ) e iS = H B Λ,1 + H B Λ,2 + ... = = H B Λ (µ) + i H B Λ (µ) , S - 1 2 H B Λ (µ) , S , S + .... (6.9)
Here the first-order term in v(k) is equal to

H B Λ,1 = U D Λ + U Λ + i [T Λ (µ) , S] . (6.10)
Thus, to calculate Φ(k) we have the equation -q

U Λ + i [T Λ (µ) , S] = 0. (6.11) k k k'=0 k'=0 k'=0 k'=0 v(k) v(k) -k -k
v(q) -q q q g Λ p -p v(p) p -p
,pq k=0 k=0

Figure 3. Illustration to the effective vertex, generated by U Λ , for interaction between particles outside the zero-mode condensate.

After direct calculations, one obtains that

i [T Λ (µ) , S] = 2i k∈Λ * ,k =0 ε k Φ(k)a * -k a * k a 2 0 -ε k Φ(k)a * 2 0 a -k a k .
So, to satisfy (6.11) we have to define Φ(k) as

Φ(k) := iv(k) 4V ε k , (6.12) 
for every k ∈ Λ * , k = 0. By (6.9) and (6.12), the second-order term in v(k) is equal to

H B Λ,2 = i U D Λ + U Λ + i 2 [T Λ (µ) , S] , S . (6.13) 
By virtue of equation ( 6.11) we obtain that

U Λ + i 2 [T Λ (µ) , S] = 1 2 U Λ ,
and hence (6.13) yields

H B Λ,2 = i U D Λ , S + i 2 [U Λ , S] . (6.14) 
Note that straightforward calculations allow to check that i U D Λ , S does not give any term with vertices of the forms (6.7) for p, q ∈ Λ * \{0}, which is not surprising. Indeed, one can realise that vertices corresponding to diagonal interaction U D Λ and S can not produce terms of these forms.

On the other hand, direct calculation of the second term of (6.14) gives :

i 2 [U Λ , S] = k∈Λ * ,k =0 q∈Λ * ,q =0 iv(q) 4V {Φ(k)[a * 2 0 a q a -q , a * k a * -k a 2 0 ] + Φ(k)[a * -q a * q a 2 0 , a * 2 0 a -k a k ]} , (6.15) 
with commutator

[a * 2 0 a -q a q , a * k a * -k a 2 0 ] = 2a * 2 0 a 2 0 1 + a * -k a -k + a * k a k δ q,k -2 (1 + 2a * 0 a 0 ) a * k a * -k a -q a q = -[a * -q a * q a 2 0 , a * 2 0 a -k a k ] * . (6.16)
Therefore, (6.15) and (6.16) yield only one vertex of type (6.7) for effective interaction H B,I Λ,2 of bosons all in the zero-mode:

H B,I Λ,2 = - 1 V k∈Λ * ,k =0 [v(k)] 2 4V ε k a * 2 0 a 2 0 . (6.17)
Thus, the coupling constant g Λ,00 corresponding to the effective vertex of Figure 2 is negative and equal to

g Λ,00 = - k∈Λ * ,k =0 [v(k)] 2 4V ε k , (6.18)
or, in the thermodynamic limit, to

g 00 := lim Λ g Λ,00 = - 1 4 (2π) 3 R 3 d 3 k [v(k)] 2 ε k < 0 . (6.19)
On the other hand, the commutator (6.15) contains also terms corresponding to effective vertex for bosons all interacting outside the zero-mode:

H B,II Λ,2 = 1 V k∈Λ * ,k =0 q∈Λ * ,q =0 v(k)v(q) 8 1 ε k + 1 ε q × (1 + 2a * 0 a 0 ) V a * k a * -k a -q a q . (6.20)
Recall that in order to find the effective BCS-interaction between two electrons mediated by the phonons exchange, one has to project the result of the Fröhlich transformation on the quantum state which is vacuum for phonons, i.e. on the fundamental phonon-state, see e.g. [START_REF] Kvasnikov | Thermodynamics and Statistical Physics, Quantum Statistics[END_REF] Ch.5, §1, [START_REF] Davydov | Quantum Mechanics[END_REF] Ch.XI, §88. Since effective interaction between bosons with k, p = 0 is mediated by exchange via zero-mode condensate (see Figure 3.), we project H B,II Λ,2 on the coherent state for the mode k = 0, i.e., on the state |C := ψ 0 (c) ⊗ ψ with a given amount of condensate, where ψ 0 (c) ∈ F 0Λ is defined by (6.2) and ψ ∈ F Λ . Then for condensate density |c| 2 := a * 0 a 0 ψ 0 (c) /V , the operator of effective two-body interaction of bosons outside of condensate is defined in F Λ by sesquilinear forms parameterised by c :

C 1 | H B,II Λ,2 |C 2 = 1 V k∈Λ * ,k =0 q∈Λ * ,q =0 v(k)v(q) 8 1 ε k + 1 ε q × × 1 + 2 a * 0 a 0 ψ 0 (c) V ψ 1 , a * k a * -k a -q a q ψ 2 .
Hence, we obtain that the coupling constant g Λ,pq which corresponds to effective interaction presented on Figure 3 is equal to

g Λ,pq = 1 8V v(p)v(q) 1 ε p + 1 ε q 1 + 2 a * 0 a 0 ψ 0 (c) . (6.21)
Since in general, for the Gibbs state corresponding to Hamiltonian H B Λ ,

ρ B 0 (β, µ) =lim Λ a * 0 a 0 H B Λ V , (6.22) 
is density of the condensate in the mode k = 0, we get that effective interaction between particles outside the zero-mode is proportional to density (6.22) and repulsive if v(k) ≥ 0:

g pq :=lim Λ g Λ,pq = v(p)v(q) 4 ρ B 0 1 ε p + 1 ε q ≥ 0. (6.23) Remark 6.1
We recall that there is another way to truncate the full Hamiltonian (7.2), which is less severe than Bogoliubov's ansatz that gives the WIBG model (6.1). This kind of truncation was proposed by Zubarev and Tserkovnikov in [START_REF] Zubarev | On the theory of phase transition in nonideal Bose-gas, textit[END_REF]. They were inspired by idea of generalisation the Bogoliubov WIBG Hamiltonian and by studies of the BCS-Bogoliubov model, where producing the Cooper pairs coupling plays a central rôle. Later this idea was developed in several papers, e.g., [START_REF] Luban | Statistical Mechanics of a Nonideal Boson Gas: Pair Hamiltonian Model[END_REF][START_REF] Pulè | A pair Hamiltonian model of a non-ideal Boson gas[END_REF] and review [START_REF] Pulè | On solvable boson models[END_REF] with references there.

The Hamiltonian truncated according to the Zubarev-Tserkovnikov ansatz is known as the Pair Hamiltonian. It has the form:

H P air Λ = T Λ + U P airD Λ + U P airN Λ ≡ T Λ + U P air Λ .
(6.24)

Here U P airD Λ is the diagonal part of the interaction in H P air Λ :

U P airD Λ = 1 2V k 1 ,k 2 ∈Λ * v(0)a * k 1 a * k 2 a k 2 a k 1 + 1 2V k 1 ∈Λ * ,k 2 ∈Λ * \{±k 1 } v(k 1 -k 2 )a * k 2 a k 2 a * k 1 a k 1 , (6.25) 
and U P airN Λ is the corresponding nondiagonal part:

U P airN Λ = 1 2V k∈Λ * ,k ∈Λ * \{k} v(k -k )a * k a * -k a -k a k . (6.26) 
From (6.25) and (6.26) it is clear that the full interaction U Λ in (7.2) is truncated in the following way: first, put q = 0 or q = k 1 -k 2 and then

k 1 = k , k 2 = -k , q = k -k .
Another evident remark is that interaction U P air Λ contains the Bogoliubov interacting terms U BD Λ and U B Λ , see (6.1). To obtain U BD Λ one has to truncate the both of the sums in (6.25) by constraints:

k 1 = 0, k 2 = 0 or k 1 = 0, k 2 = 0. Similarity, one obtains U B
Λ via truncation (6.26) by conditions k = 0, k = 0 or k = 0, k = 0.

There are few rigorous results about the model H P air Λ (6.24), see, e.g., [START_REF] Pulè | A pair Hamiltonian model of a non-ideal Boson gas[END_REF][START_REF] Pulè | Proof of the variational principle for a pair Hamiltonian boson model[END_REF][START_REF] Pulè | On solvable boson models[END_REF] and references there. Inspired by the success in the rigorous study of the BCS-Bogoliubov model, the papers [START_REF] Zubarev | On the theory of phase transition in nonideal Bose-gas, textit[END_REF][START_REF] Luban | Statistical Mechanics of a Nonideal Boson Gas: Pair Hamiltonian Model[END_REF][START_REF] Pulè | A pair Hamiltonian model of a non-ideal Boson gas[END_REF][START_REF] Pulè | Proof of the variational principle for a pair Hamiltonian boson model[END_REF] used either the BCS-Bogoliubov variational principle or the Approximating Hamiltonian Method.

An important conclusion of the rigorous analysis was that if U P airN Λ reveals a moderate attractive interaction equilibrated for stability by repulsion in U P airD Λ , then the model (6.24) manifests a conventional and a boson-pairs condensations which may coexist. On the other hand, in [START_REF] Pulè | A pair Hamiltonian model of a non-ideal Boson gas[END_REF] Section 3.C, it was proved that by tuning parameters of attraction and repulsion one can produce a regime, where only pair condensate is possible with a similar to the WIBG model discontinuous. This scenario is quite different from behaviour of condensates in WIBG, see Section 10 and Section 11, where conventional condensation always follows after dynamical condensation, see Figure 4 and Figure 5. 6.5 Thus, the non-diagonal part U Λ of the Bogoliubov Hamiltonian itself yields an effective attraction between particles in the mode k = 0 and effective repulsion of particles outside of the condensate mode k = 0. Therefore, U Λ favours creation of the non-conventional condensation of bosons in the mode k = 0 due to effective attraction between them. We call it non-conventional dynamical condensation in contrast to conventional Bose-condensation, which is due to a simple saturation of occupation numbers at modes k = 0.

To estimate for WIBG H B Λ the effective two-body particle interaction at zero-mode, one has to take into account besides (6.17) also a direct repulsion corresponding to the last term in the diagonal part U D Λ , see (6.10). Thus, we have to evaluate for v(k) ≥ 0 and d = 3 the sign of

v(0) 2 + g 00 = v(0) 2 - 1 4 (2π) 3 R 3 d 3 k [v(k)] 2 ε k . (6.27)
In the next Sections 8 and 10 we show that inequality

v(0) 2 + g 00 < 0, (6.28) 
gives a sufficient condition for existence in WIBG of the non-conventional dynamical condensation at zero-mode, cf. [START_REF] Bru | Quantum interpretation of thermodynamic behaviour of the Bogoliubov weakly imperfect Bose gas[END_REF].

In fact, in Sections 8-10 we shall rigorously show that the condition (6.28), (interpreted here as a competition between U D Λ and U Λ ) is sufficient and necessary for non-equivalence between WIBG and PBG and that under (6.28) (for dimensions d ≥ 1) a non-conventional condensation ρ B 0 = 0 occurs at k = 0 in the WIBG for negative chemical potentials µ ∈ (µ 0 , 0). Notice that if

ρ B 0 (β, µ) = 0, (6.29) 
then g pq = 0 (6.23), and the non-diagonal part U Λ seems to has no influence on the thermodynamics of the WIBG. In fact, we shall show that condition (6.29) implies thermodynamic equivalence between WIBG and PBG.

In Section 10 we show that in the limit µ → 0, for densities ρ > ρ B c (β) := ρ B (β, µ = 0) (where ρ B (β, µ) is the particle density in WIBG), one observes a conventional (generalised ) Bose-condensation. Therefore, the WIBG manifests two different types of Bosecondensation: -the first, for µ 0 < µ < 0, due to attraction between bosons in the mode k = 0 (nonconventional dynamical condensation); -the second, for µ = 0, due to the conventional saturation mechanism (generalised Bosecondensation à la van den Berg-Lewis-Pulè [START_REF] Van Den Berg | A general theory of Bose-Einstein condensation in the free boson gas[END_REF]). Moreover, in this large-density regime the non-conventional condensate and the conventional BEC in WIBG coexist.

For the first time this was established in [START_REF] Bru | Exact solution of the Bogoliubov Hamiltonian for weakly imperfect Bose gas[END_REF] Theorem 4.9, [24] Remark 2.5. These results were summarised in review [START_REF] Zagrebnov | The Bogoliubov Model of Weakly Imperfect Bose Gas[END_REF].

6.6

In conclusion of this section we note that recently the attraction (6.27) and nonconventional dynamical condensation were discussed in the framework of ansatz of formation in condensate the bound atoms pairs [START_REF] Blagoveshchenskii | Superfluid helium as the condensate of bound atoms pairs[END_REF].

First, this idea of pairing allows to avoid a discrepancy between experiment-assistant estimate of g 00 in [START_REF] Blagoveshchenskii | Structure of the excitation spectrum of liquid 4 He[END_REF] and calculations based on formula (6.19). The renormalised (due to the pairing) integrand in (6.19) gives a correct estimate for the bounding energy (6.27).

Second, the pairing induced double-mass helium atom scaling : m → 2m in the van Hove structure factor fits well with experimental data. The Feynman formula demonstrate the excellent agreement with experimental elementary excitations Bogoliubov spectrum [START_REF] Blagoveshchenskii | Structure of the excitation spectrum of liquid 4 He[END_REF].

Third, the coexistence of dynamical condensate and the conventional BEC in the WIBG model bolsters the basic assumption of [START_REF] Blagoveshchenskii | Superfluid helium as the condensate of bound atoms pairs[END_REF] that helium atoms participate in both the single atom-atom and pair-pair motions, thus possessing the independent relaxation times for ground state of liquid helium.

Note that dynamical condensate is saturated by the value ρ B 0 (β, 0) at µ = 0 (Figure 4.) and the critical total particle density ρ = ρ B c (β) := ρ P BG c (β)+ρ B 0 (β, 0), see Figure 5. Then further increasing of the particle density produces conventional BEC: ρ -ρ B c (β) > 0, see [START_REF] Bru | On condensations in the Bogoliubov Weakly Imperfect Bose-Gas[END_REF] Remark 2.5 and Corollary 2.6. Therefore, at zero temperature the totality of particles are in condensate, which is a mixture of dynamical and conventional condensates, as in scenario assumed in [START_REF] Blagoveshchenskii | Superfluid helium as the condensate of bound atoms pairs[END_REF].

We shall return to discussion of these properties of condensate in the WIBG model below in Section 10 and Section 11.

To my knowledge the first attempt to understand a possible rôle of the non-conventional condensate in superfluid 4 He comes back to a very complete review [START_REF] Vilchinskyy | The nature of superfuidity and Bose-Einstein condensation: from liquid 4 He to dilute ultracold atomic gases[END_REF]. In contract to microscopic (cf.Cooper pairs in the BCS-Bogoliubov theory of superconductivity, the boson-pairing in Remark 6.1 or in WIBG [START_REF] Blagoveshchenskii | Superfluid helium as the condensate of bound atoms pairs[END_REF]) the authors claimed a boson soliton-soliton pairing in WIBG via mesoscopic Gross-Pitayevskii description. This might be an interesting direction in understanding one-particle versus pair condensate which could be appropriate for bosons in trap, but out of the scope of the present paper.

7 The Weakly Imperfect Bose-Gas: set up of the problem 7.1 A pragmatic procedure for the description of the properties of superfluids, e.g. derivation of the experimentally observed spectra, was initiated in Bogoliubov's classical papers [START_REF] Bogoliubov | On the theory of superfluidity[END_REF][START_REF] Bogoliubov | About the theory of superfluidity[END_REF], where he considered a Hamiltonian with truncated interaction, giving rise to what will be called the Bogoliubov Hamiltonian for a Weakly Imperfect Bose-Gas (WIBG) [START_REF] Zagrebnov | The Bogoliubov Model of Weakly Imperfect Bose Gas[END_REF].

Consider a system of bosons of mass m in a cubic box Λ ⊂ R 3 of the volume V = L 3 , with periodic boundary conditions on ∂Λ. If ϕ (x) denotes an integrable two-body interaction potential and

v (q) = R 3 d 3 xϕ (x) e -iqx , q ∈ R 3 , (7.1) 
then its second-quantised Hamiltonian acting in the boson Fock space F Λ can be written as

H Λ = k ε k a * k a k + 1 2V k 1 ,k 2 ,q v (q) a * k 1 +q a * k 2 -q a k 1 a k 2 (7.2)
where all sums run over the set Λ * defined by

Λ * = {k ∈ R 3 : α = 1, 2, 3, k α = 2πn α L et n α = 0, ±1, ±2, . . . .} (7.3) 
Here ε k = 2 k 2 /2m is the kinetic energy, and a # k = {a * k , a k } are the usual boson creation and annihilation operator in the one-particle states {ψ k (x) = e ikx / √ V } k∈Λ * ,x∈Λ :

a * k := a * (ψ k ) = Λ dx ψ k (x)a * (x) ,
where a # (x) are the basic boson operators in the Fock space over L 2 (R 3 ). If one expects that BEC, which occurs in the ideal Bose-gas for k = 0, persists for a weak interaction ϕ (x) then, according to Bogoliubov, the most important terms in (7.2) should be those in which at least two operators a * 0 , a 0 appear. We are thus led to consider the following truncated Hamiltonian (the Bogoliubov Hamiltonian for WIBG, see eq.(3.81) in [START_REF] Bogoliubov | Lectures on Quantum Statistics Vol I : Quantum Statistics[END_REF],Part 3):

H B Λ = T Λ + U D Λ + U Λ (7.4) 
where

T Λ = k∈Λ * ε k a * k a k , (7.5) 
U D Λ = v (0) V a * 0 a 0 k∈Λ * ,k =0 a * k a k + 1 2V k∈Λ * ,k =0 v (k) a * 0 a 0 a * k a k + a * -k a -k + v (0) 2V a * 2 0 a 2 0 , (7.6) 
U Λ = 1 2V k∈Λ * ,k =0 v (k) a * k a * -k a 2 0 + a * 2 0 a k a -k . (7.7) 
H BD Λ := T Λ + U D Λ represents the diagonal part of the Bogoliubov Hamiltonian H B Λ while U Λ represents the non-diagonal part.
Remark 7.1 Below the following assumptions on the interaction potential ϕ are imposed:

(A) ϕ ∈ L 1 (R 3 ) and ϕ(x) = ϕ( x ); (B) k → v(k) ∈ R is continuous, such that v (0) > 0 and 0 ≤ v (k) ≤ v (0) for k ∈ R 3 .
It is known [START_REF] Zagrebnov | The Bogoliubov Model of Weakly Imperfect Bose Gas[END_REF] that under these (and in fact, even weaker) conditions pair potential ϕ is superstable and hence that the grand-canonical partition function associated with the full Hamiltonian (7.2)

Ξ Λ (β, µ) = Tr F Λ e -β(H Λ -µN Λ ) (7.8)
and the finite-volume pressure

p Λ [H Λ ] := p Λ (β, µ) = 1 βV ln Ξ Λ (β, µ) (7.9)
are finite for all real µ and all β > 0. However, it is not true for the Bogoliubov Hamiltonian (7.4) :

Proposition 7.2 [START_REF] Angelescu | On Bogoliubov's model of superfluidity[END_REF] Let Ξ B Λ (β, µ) be the grand-canonical partition function associated for the Hamiltonian (7.4). Then :

(a) the Bogoliubov model of WIBG is stable ( Ξ B Λ (β, µ) < +∞ ) for µ ≤ 0 and unstable for µ > 0. (b) for µ ≤ µ * = -1 2 ϕ (0) the pressure p B (β, µ) =lim Λ p Λ H B Λ (7.10)
coincides with the pressure of the perfect Bose-gas (PBG)

p P BG (β, µ) =lim Λ p Λ [T Λ ] . (7.11)
Note that the proof is a corollary of (8.6) and (8.10), whereas the proof of (b) follows from Remark 8.4 and Corollary 8.5. Moreover, the following conjecture was formulated in [START_REF] Angelescu | On Bogoliubov's model of superfluidity[END_REF] :

Conjecture 7.3
The Bogoliubov Hamiltonian H B Λ is exactly soluble in the sense that it is thermodynamically equivalent, in the grand-canonical ensemble, to the PBG for all chemical potential µ ≤ 0; which means precisely that p B (β, µ ≤ 0) = p P BG (β, µ ≤ 0) .

(7.12) 

p BD (β, µ ≤ 0) = lim Λ p Λ H BD Λ = p P BG (β, µ ≤ 0) , (7.13) 
i.e. that thermodynamics of the diagonal part of the Bogoliubov Hamiltonian and that of the ideal gas coincide including Bose-condensation which occurs at k = 0. This means in particular that the thermodynamic non-equivalence between Bogoliubov Hamiltonian and PBG is due to non-diagonal terms of interaction (7.7). Moreover, in this section, we study the Conjecture 7.3. First, we show that for any interaction which satisfies (A) and (B) there is a domain Γ of the phase diagram (plane

Q = µ ≤ 0, θ = β -1 ≥ 0 ) where indeed p B (β, µ ≤ 0) = p P BG (β, µ ≤ 0) . (7.14)
Then we formulate a sufficient condition on the interaction v (k) to ensure the existence of domain D 0 ⊂ Q where p B (β, µ) = p P BG (β, µ) . (7.15)

In fact we show that this is equivalent to the statement that the system H B Λ manifests in this domain a Bose-condensation. Thermodynamic limit of the pressure (7.10) of the system H B Λ in domain D ⊇ D 0 defined by p B (β, µ) = p P BG (β, µ) . (7.16) is studied on Section 9. We give an exact formula for p B (β, µ) showing its relation to the concept of the Bogoliubov approximation à la Ginibre [START_REF] Ginibre | On the Asymptotic Exactness of the Bogoliubov Approximation for many Bosons Systems[END_REF]. As a corollary we get that D = D 0 . In Section 10 we study the breaking of the gauge symmetry and the behaviour of the Bose-condensate, i.e., the phase diagram of the WIBG. We reserve Section 11 for discussions and concluding remarks.

8 The Bogoliubov weakly imperfect gas versus the perfect Bose-gas 

H BD Λ (µ) = k∈Λ * (ε k -µ) a * k a k + v (0) V a * 0 a 0 k∈Λ * ,k =0 a * k a k + 1 2V k∈Λ * ,k =0 v (k) a * 0 a 0 a * k a k + a * -k a -k + v (0) 2V a * 2 0 a 2 0 , (8.1) 
where

N Λ = k∈Λ * a * k a k . If v (k) satisfies (B)
then one obviously gets : 

H BD Λ (µ) = k∈Λ * (ε k -µ) n k + v (0) V n 0 N Λ - v (0) 2V n 2 0 + n 0 + 1 V k∈Λ * ,k =0 v (k) n 0 n k (8.2) ≥ T Λ (µ) := T Λ -µN Λ . ( 8 
Ξ BD Λ (β, µ) = Tr F Λ e -βH BD Λ (µ) ≤ Tr F Λ e -βT Λ (µ) = Ξ P BG Λ (β, µ) .
Hence, for any µ < 0

p Λ H BD Λ ≤ p Λ [T Λ ] . (8.5) 
By (8.2), we can calculate Tr F Λ in the basis of occupation-number operators :

Ξ BD Λ (β, µ) = ∞ n 0 =0 e [-β(v(0)(n 2 0 -n 0) /2V -µn 0)] k∈Λ * ,k =0 1 -e [-β(ε k -µ+[v(0)+v(k)]n 0 /V )] -1 ,
which gives estimate

Ξ BD Λ (β, µ) ≥ k∈Λ * ,k =0 1 -e [-β(ε k -µ)] -1 .
Therefore, Therefore, taking thermodynamic limit in (8.5), (8.6), by (8.7) we obtain (8.4) for µ < 0.

p Λ H BD Λ ≥ p P BG Λ (β, µ) := 1 βV k∈Λ * ,k =0 ln 1 -e [-β(ε k -µ)] -1 (8.
Then taking limit µ → -0 one gets (8.4) for µ = 0. (b) Follows directly from the estimate (8.6).

Corollary 8.2 Since functions p BD Λ (β, µ) := p Λ H BD Λ Λ⊂R d are convex for µ ≤ 0 and the limit p P BG (β, µ) is differentiable for µ < 0, the Griffiths lemma [START_REF] Griffiths | A Proof that the Free Energy of a Spin System is extensive[END_REF] 

yields lim Λ ∂ µ p BD Λ (β, µ) = ∂ µ p P BG (β, µ) ,
i.e, the particle-density for the system (8.1) coincides with that for the ideal gas :

ρ BD (β, µ) :=lim Λ N V H BD Λ (β, µ) = ∂ µ p P BG (β, µ) := ρ P BG (β, µ) (8.8)
Here -H Λ (β, µ) corresponds to the grand-canonical Gibbs state for Hamiltonian H Λ . Taking in (8.8) the limit µ → -0 we extend this equality to µ ∈ (-∞, 0].

Resuming (8.4) and (8.8) we see that diagonal part of the Bogoliubov Hamiltonian H BD Λ is thermodynamically equivalent to T Λ . The Bose condensate in the system (8.1) has the same properties as in the PBG. Below we show that it is non-diagonal interaction (7.7) that makes the essential difference between H B Λ and T Λ . Proof : By the Bogoliubov convexity inequality (see, e.g., [START_REF] Bogoliubov | Some classes of exactly soluble models of problems in Quantum Statistical Mechanics : the method of the approximating Hamiltonian[END_REF]), one gets :

Domain

1 V U Λ H B Λ ≤ p Λ H BD Λ -p Λ H B Λ ≤ 1 V U Λ H BD Λ . (8.10) 
Since U Λ H BD Λ = 0, combining (8.6), (8.7) and (8.10) we obtain in the thermodynamic limit (8.9). Remark 8.4 Let v (k) satisfy (A) and (B). Then regrouping terms in (7.6), (7.7) one gets

H B Λ = H Λ + 1 2V k∈Λ * ,k =0 v (k) a * 0 a k + a * -k a 0 * a * 0 a k + a * -k a 0 ≥ H Λ , (8.11) 
where

H Λ = k∈Λ * ,k =0 ε k - v (k) 2V + v (0) V n 0 n k + v (0) 2V n 2 0 - 1 2 ϕ (0) n 0 . (8.12) 
Hence, by the Bogoliubov inequality for (8.11) and for its diagonal part (8.12) we obtain in the thermodynamic limit for µ ≤ 0

p B (β, µ) ≤lim Λ p Λ H Λ = sup ρ 0 ≥0 G (β, µ; ρ 0 ) . (8.13) 
Here

G (β, µ; ρ 0 ) := - v (0) 2 ρ 2 0 + µ + 1 2 ϕ (0) ρ 0 + p P BG (β, µ -v (0) ρ 0 ) . (8.14) Corollary 8.5 [48] If µ ≤ -1 2 ϕ (0), then sup ρ 0 ≥0
G (β, µ; ρ 0 ) = p P BG (β, µ). Therefore, by Lemma 8.3 and inequality (8.13) we get

p B (β, µ) = p P BG (β, µ) , for Γ µ * = θ ≥ 0, µ ≤ - 1 2 ϕ (0) := µ * . (8.15)
The next statement extends the domain Γ µ * .

Theorem 8.6 Let v (k) satisfy (A) and (B) and let

h (z, β) := z + v (0) (2π) 3 R 3 d 3 k e β(ε k +z) -1 -1 , (8.16) 
for d = 3. Then we have

p B (β, µ) = p P BG (β, µ) , for (θ, µ) ∈ Γ, (8.17) 
where

Γ = (θ, µ) : 1 2 ϕ (0) ≤ inf z≥-µ h (z, β) ⊂ Q. (8.18)
Proof. By virtue of (8.9) and (8.13), (8.14), the equality (8.17) is insured by 

sup ρ 0 ≥0 G (β, µ; ρ 0 ) = G (β, µ; ρ 0 = 0) . (8.19) If ∂ ρ 0 G (β, µ; ρ 0 ) ≤ 0 or equivalently 1 2 ϕ (0) ≤ h (v (0) ρ 0 -µ, β) for ρ 0 ≥ 0,
Γ θ * = (θ, µ ≤ 0) : 1 2 ϕ (0) ≤ λ (θ) , (8.22) 
which insures (8.17).

Remark 8.8 Note that the inequality h (z, β) ≥ z and (8.18), for -µ ≥ 1 2 ϕ (0) implies (8.15), i.e., Γ µ * ⊂ Γ. On the other hand, (8.18) for µ = 0 implies (8.22), i.e., Γ θ * ⊂ Γ. Remark 8.9 Since ∂ v(0) λ (θ) ≥ 0, one can always insure (8.22) for a fixed temperature θ, by increasing v(0) without changing ϕ (0). Remark 8.10 Note that p P BG (β = +∞, µ) = 0 and λ (θ = 0) = 0. Therefore, at zero temperature the sufficient condition (8.18) reduces to (8.15). In fact this part of Γ is known since [START_REF] Angelescu | On Bogoliubov's model of superfluidity[END_REF]. Theorem 8.6 shows that Conjecture 7.3 formulated there can be extended at least to domain Γ (8.18).

Below we show that this conjecture is not valid in the complement Q\Γ.

Domain

D : p B (β, µ) = p P BG (β, µ)
Let H 0Λ ⊂ L 2 (Λ) be the one-dimensional subspace generated by ψ k=0 , see Section 1. Then F Λ ≈ F 0Λ ⊗ F Λ where F 0Λ and F Λ are the boson Fock spaces constructed out of H 0Λ and of its orthogonal complement H ⊥ 0Λ respectively. For any complex c ∈ C, we can define in F 0Λ a coherent vector

ψ 0Λ (c) = e -V |c| 2 /2 ∞ k=0 1 k! √ V c k (a * 0 ) k Ω 0 , (8.23) 
where Ω 0 is the vacuum of F Λ . Then a 0 ψ 0Λ (c) = cψ 0Λ (c).

Definition 8.11 The Bogoliubov approximation to a Hamiltonian H Λ (µ) := H Λ -µN Λ in F Λ is the operator H Λ c # , µ defined in F Λ by its sesquilinear form:

ψ 1 , H Λ c # ψ 2 F Λ = (ψ 0Λ (c) ⊗ ψ 1 , H Λ ψ 0Λ (c) ⊗ ψ 2 ) F Λ (8.24)
for ψ 0Λ (c) ⊗ ψ 1,2 in the form domain of H Λ (µ), where c # = (c, c).

This formulation of the Bogoliubov approximation [START_REF] Bru | Exact solution of the Bogoliubov Hamiltonian for weakly imperfect Bose gas[END_REF][START_REF] Zagrebnov | The Bogoliubov Model of Weakly Imperfect Bose Gas[END_REF] provides an estimate for the pressure p Λ H B Λ from below which allows to refine (8.9). Proposition 8.12 [START_REF] Angelescu | On Bogoliubov's model of superfluidity[END_REF] For any (θ, µ) ∈ Q one has 

sup c∈C p B Λ β, µ; c # ≤ p Λ H B Λ , (8.25 
H B Λ c # , µ = k∈Λ * ,k =0 ε k -µ + v (0) |c| 2 a * k a k + 1 2 k∈Λ * ,k =0 v (k) |c| 2 a * k a k + a * -k a -k + 1 2 k∈Λ * ,k =0 v (k) c 2 a * k a * -k + c 2 a k a -k -µ |c| 2 V + 1 2 v (0) |c| 4 V. (8.27)
Therefore, after diagonalization one can calculate (8.26) in the explicit form:

p B Λ β, µ; c # = ξ Λ (β, µ; x) + η Λ (µ; x) , ξ Λ (β, µ; x) = 1 βV k∈Λ * ,k =0 ln 1 -e -βE k -1 , η Λ (µ; x) = -1 2V k∈Λ * ,k =0 (E k -f k ) + µx -1 2 v (0) x 2 , (8.28)
where E k and f k are functions of x = |c| 2 ≥ 0 and µ ≤ 0 :

f k = ε k -µ + x [v (0) + v (k)] , h k = xv (k) , E k = f 2 k -h 2 k . (8.29)
Now the strategy for localisation of domain D gets clear: by virtue of (8.9) and (8.25) one has to (θ, µ) ∈ Q such that

p P BG (β, µ) <lim Λ sup c∈C p B Λ β, µ; c # . (8.30)
Proposition 8.14 [START_REF] Angelescu | On Bogoliubov's model of superfluidity[END_REF] Let v (k) satisfy (A), (B) and

v(0) ≥ 1 2 (2π) 3 R 3 d 3 k [v(k)] 2 ε k . (8.31)
Then, cf. (8.6),

sup c∈C p B Λ β, µ; c # = p B Λ (β, µ; 0) = p P BG Λ (β, µ) .
Therefore, in the thermodynamic limit (see (8. 

(C) : v(0) < 1 2 (2π) 3 R 3 d 3 k [v(k)] 2 ε k . (8.33)
Then, there is µ 0 < 0 such that

lim Λ sup x≥0 η Λ (µ; x) = η (µ; x (µ) > 0) > 0 for µ ∈ (µ 0 , 0] . (8.34)
Proof. By the explicit formulae (8.28) and (8.29) we readily get that for µ ≤ 0:

(a) η Λ (µ; x = 0) = 0 and η Λ (µ; x) ≤ const -v (0) x 2 /2; (b) ∂ x η Λ (µ; x = 0) = µ and ∂ 2 x η Λ (µ; x = 0) = 1 2V k∈Λ * ,k =0 [v(k)] 2 (ε k -µ) -v (0) . Since lim Λ 1 2V k∈Λ * ,k =0 [v(k)] 2 (ε k -µ) = 1 2 (2π) 3 R 3 d 3 k [v(k)] 2 (ε k -µ) ,
the condition (8.33) implies the existence of µ 0 < 0 such that

lim Λ ∂ 2 x η Λ (µ > µ 0 ; x = 0) > 0 .
By virtue of (a), (b), and lim

Λ ∂ x η Λ (µ = 0; x = 0) = 0 this means that lim Λ sup x≥0 η Λ (µ = 0; x) = η (µ = 0; x (µ = 0) > 0) > 0 . (8.35)
Therefore, by continuity of (8.35) on the interval ( µ 0 , 0] it follows the existence of µ 0 : µ 0 ≤ µ 0 < 0, such that one has (8.34).

Theorem 8.16 Let v (k) satisfy (A), (B) and (C). Then, for any µ ∈ (µ 0 , 0], there is θ 0 (µ) > 0 such that one has (see Fig. 1) :

p P BG (β, µ) < p B (β, µ) , in D 0 = {(θ, µ) : µ 0 < µ ≤ 0, 0 ≤ θ < θ 0 (µ)} , (8.36)
where µ 0 is defined in Lemma 8.15 and domain D 0 coincides in fact with

D 0 := (θ, µ) : lim Λ sup c∈C p B Λ β, µ; c # > p P BG (β, µ) .
Proof. First we note that by (8. Hence, according to (8.37) and (8.38) one obtains:

(iii) θ > 0 : lim Λ sup c∈C p B Λ β, µ 0 ; c # = sup x≥0 [ξ (β, µ 0 ; x) + η (µ 0 ; x)] = p B β, µ 0 ; c # = 0 = p P BG (β, µ) , (8.39) 
and by (8.37), (ii) and (8.38) we get:

(iν) θ = 0 : lim Λ sup c∈C p B Λ β = ∞, µ 0 ; c # = p B β = ∞, µ 0 ; c # = 0 = p B β = ∞, µ 0 ; c # | |c| 2 =x(µ 0 )>0 = 0.
Now by (8.28), (8.37) and Lemma 8.15 one gets that for µ 0 < µ ≤ 0 lim

Λ sup c∈C p B Λ β, µ > µ 0 ; c # ≥ η (µ > µ 0 ; x (µ) > 0) > 0. (8.40)
Since by (8.37), (ii) the pressure p P BG (β, µ ≤ 0) is monotonously decreasing for θ 0, there is a temperature θ 0 (µ) such that for θ < θ 0 (µ > µ 0 ) we get from (8.40)

p P BG (β > β 0 (µ) , µ > µ 0 ) < η (µ > µ 0 ; x (µ) > 0) (8.41) < lim Λ sup c∈C p B Λ β > β 0 (µ) , µ > µ 0 ; c # .
Then (8.25) and (8.41) imply (8.36) for (θ, µ) ∈ D 0 .

Corollary 8.17 Then by (8.25) and (8.36) one obviously gets

D ⊇ D 0 = {(θ, µ) : µ 0 < µ ≤ 0, 0 ≤ θ < θ 0 (µ)} .
Here µ 0 < 0 is defined in Lemma 8. [START_REF] Seiringer | Rigorous upper bound on the critical temperature of dilute Bose gases[END_REF] Therefore, for the moment we do not know whether condition (C) is necessary for D = {∅}, we postpone the answer to this question to Section 3. Here we discuss a relation of the conditions (8.31), (8.33) which result from the rather restricted analysis of convexity and monotonicity of the p B Λ β, µ; c # in the vicinity of x = 0 and the condition (8.15) which gives triviality of the upper bound (8.13) for p B (β, µ) for all temperatures.

Remark 8.19 Let v (k) satisfy (A), (B) and (C). Then there is µ 0 < 0 such that for µ ≤ µ 0 one has

v (0) ≥ 1 2 (2π) 3 R 3 [v (k)] 2 (ε k -µ) d 3 k, (8.43) 
and by consequence ∂ 2 x η (µ ≤ µ 0 ; x = 0) ≤ 0, see Lemma 8.15. One can represent the inequality (8.43) as

R 3 d 3 k (2π) 3 v (k) v (k) 2 (ε k -µ) - v (0) ϕ (0) ≤ 0. (8.44)
Since by (B) and

µ ≤ 0 v (k) 2 (ε k -µ) ≤ v (0) (-2µ) ,
the condition µ < -1 2 ϕ (0) := µ * (8.15) implies (8.44), i.e., µ * ≤ µ 0 . Therefore, a local convexity condition (8.43) is intimately related to condition insuring p B (β, µ) = p P BG (β, µ). In particular, one has to note that for condition (8.31) the inequality (8.43) is valid for any µ < 0.

We conclude this section by a new simple and important for below characterisation of domain D (cf. (8.42)).

Theorem 8.20 Let ρ B 0 (β, µ) :=lim Λ a * 0 a 0 V H B Λ (β, µ) (8.45)
be density of the Bose-condensate for the Bogoliubov Hamiltonian (7.4). Then

D = (θ, µ) ∈ Q : ρ B 0 (β, µ) > 0 . (8.46)
Proof. Put

H B Λ := H B Λ + 1 2 ϕ (0) a * 0 a 0 . (8.47)
Then by Remark 8.4 we get 

lim Λ p Λ H B Λ ≤sup ρ 0 ≥0 G (ρ 0 , µ) - 1 2 ϕ (0) ρ 0 = p P BG (β, µ) . ( 8 
p Λ H B Λ - ϕ (0) 2 a * 0 a 0 V H B Λ ≤ p Λ H B Λ . (8.49) 
Now by virtue of (8.9), (8.48) and (8.49) we get in the thermodynamic limit that

p P BG (β, µ) - ϕ (0) 2 ρ B 0 (β, µ) ≤ p B (β, µ) - ϕ (0) 2 ρ B 0 (β, µ) ≤ p P BG (β, µ) .
Therefore, p B (β, µ) = p P BG (β, µ) if and only if ρ B 0 (β, µ) = 0, which gives (8.46).

Remark 8.21

The fact that p B (β, µ) = p P BG (β, µ) only when ρ B 0 (β, µ) = 0 is very similar to what is known since Bogoliubov model for superfluidity [START_REF] Zagrebnov | The Bogoliubov Model of Weakly Imperfect Bose Gas[END_REF] Sec.2.2. An essential difference is that in the Bogoliubov model the gapless spectrum occurs for positive chemical potential µ = v (0) ρ, where the system corresponding to the Bogoliubov Hamiltonian for WIBG is unstable, for further discussion see [START_REF] Zagrebnov | The Bogoliubov Model of Weakly Imperfect Bose Gas[END_REF][START_REF] Bru | Large Deviations in the Superstable Weakly Imperfect Bose-Gas[END_REF] and Section 11.

Exactness of the Bogoliubov approximation

Since the pressure p B (β, µ) = p P BG (β, µ) only in domain D, where the Bose condensate ρ B 0 (β, µ) > 0, the aim of this section is to identify p B (β, µ) in this domain. Below we shall show that According to results of Section 8 it is non-diagonal part U Λ (7.7) of the Bogoliubov Hamiltonian (7.4) that makes that p B (β, µ) = p P BG (β, µ) in domain D = {∅} for (8.33). Since for condition (C) (8.33) the interaction U Λ is known to be effectively attractive (6.28), to prove (9.1) we use the Approximation Hamiltonian Method originally invented for quantum systems with attractive interactions, see e.g. [START_REF] Bogoliubov | Some classes of exactly soluble models of problems in Quantum Statistical Mechanics : the method of the approximating Hamiltonian[END_REF].

p B (β, µ) = lim Λ sup c∈C p B Λ β, µ; c # = sup c∈C p B β, µ; c # , ( 9 
Remark 9.1 This method was adapted by Ginibre [START_REF] Ginibre | On the Asymptotic Exactness of the Bogoliubov Approximation for many Bosons Systems[END_REF] to prove the exactness of the Bogoliubov approximation for non-ideal Bose-gas (7.2) with superstable interaction, which is the case if v (q) satisfies (B). But after truncation of (7.2) the Hamiltonian H B Λ (7.4) is no more superstable. The system (7.4) is unstable for µ > 0, Proposition 7.2. Below we follow the Approximation Hamiltonian Method à la Ginibre adapted for the WIBG model.

Since in the approximating Hamiltonian H B

Λ c # , µ (8.27) the gauge symmetry is broken, we introduce

H B Λ ν # = H B Λ - √ V (νa 0 + νa * 0 ) , H B Λ µ, ν # = H B Λ ν # -µN Λ (9.3) 
with sources ν ∈ C breaking the symmetry of H B Λ , here ν # = (ν, ν). Then by Proposition 8.12 and the Bogoliubov inequality for Hamiltonians: H B Λ µ, ν # and H B Λ c # , µ, ν # , one gets :

0 ≤ ∆ Λ β, µ; c # , ν # := p Λ H B Λ ν # -p B Λ β, µ; c # , ν # ≤ ≤ 1 V H B Λ c # , µ, ν # -H B Λ µ, ν # H B Λ (ν # ) . (9.4) 
Let A := a 0 - √ V c, A * := a * 0 - √ V c.
Then Taylor expansion around a # 0 gives :

H B Λ c # , µ, ν # -H B Λ µ, ν # = -A * a 0 , H B Λ µ, ν # + h.c. + 1 2 A * 2 a 0 , a 0 , H B Λ µ, ν # + h.c. + A * a 0 , H B Λ µ, ν # , a * 0 A - 1 2 A * 2 a 0 , a 0 , H B Λ µ, ν # , a * 0 A + h.c. + 1 4 A * 2 a 0 , a 0 , H B Λ µ, ν # , a * 0 , a * 0 A 2 . ( 9.5) 
Remark 9.2 Explicit calculations show that the third and the fourth other terms in (9.5) are bounded from above :

- v (0) √ V (cA * AA + cA * A * A) - v (0) 2V A * 2 A 2 = 2v (0) |c| 2 A * A - - v (0) 2V A 2 + 2 √ V cA * A 2 + 2 √ V cA ≤ 2v (0) |c| 2 A * A. (9.6) 
Remark 9.3 After some manipulations the terms of the first and the second order in (9.5) can be combined in

- 1 2 A * A, H B Λ µ, ν # , A * A + 2A * A, H B Λ µ, ν # , A * A - 3 2 A * A, H B Λ µ, ν # - 3 2 H B Λ µ, ν # , A * A. (9.7) 
Lemma 9.4 One has the following inequality :

A * A, H B Λ µ, ν # , A * A H B Λ (ν # ) ≥ 0. (9.8) 
Proof. Denote by (•, •) H Λ a positive semi-definite scalar product with respect to a Hamiltonian H Λ :

(X, Y ) H Λ := 1 β Ξ Λ (β, µ) β 0 dτ Tr F Λ e -(β-τ )H Λ (µ) X * e -τ H Λ (µ) Y .
(9.9)

Then (1, Y ) H Λ = Y H Λ and β ([X, H Λ (µ)] , [X, H Λ (µ)]) H Λ = [X, [H Λ (µ) , X * ]] H Λ . (9.10) 
Applying (9.10) to H Λ (µ) = H B Λ µ, ν # and X = A * A one gets (9.8). Lemma 9.5 One has the following estimate :

-2 A * A, H B Λ µ, ν # H B Λ (ν # ) ≤ A * , H B Λ µ, ν # , A H B Λ (ν # ) + A * , H B Λ µ, ν # , A * H B Λ (ν # ) +2β -1 {A, A * } H B Λ (ν # ) , (9.11) 
where {X, Y } = XY + Y X.

Proof. By the spectral decomposition of the Hamiltonian

H B Λ µ, ν # ψ n = E n ψ n one gets A * , H B Λ µ, ν # , A H B Λ (ν # ) = (9.12) 1 Ξ B Λ (β, µ, ν # ) m,n |(ψ m , Aψ n )| 2 (E m -E n ) e -βEn + e -βEm . Since 1 2 (e x + e y ) - 1 2 |e x -e y | ≤ e x -e y x -y ≤ 1 2 (e x + e y ) , (9.13) 
one gets

β (E m -E n ) e -βEn + e -βEm ≤ 2 e -βEn -e -βEm + β (E m -E n ) e -βEn -e -βEm ≤ 2 e -βEn + e -βEm + β (E m -E n ) e -βEn -e -βEm . (9.14) 
Inserting the estimate (9.14) into (9.12) we obtain

A * , H B Λ µ, ν # , A H B Λ (ν # ) ≤ (9.15) 2β -1 AA * + A * A H B Λ (ν # ) + A * , H B Λ µ, ν # , A H B Λ (ν # ) .
Note that

-2 A * A, H B Λ µ, ν # H B Λ (ν # ) = (9.16) A * , H B Λ µ, ν # , A H B Λ (ν # ) + A * , H B Λ µ, ν # , A H B Λ (ν # ) .
Then combining (9.15) and (9.16) one gets (9.11).

Corollary 9.6 Since

A * A, H B Λ µ, ν # H B Λ (ν # ) = H B Λ µ, ν # , A * A H B Λ (ν # ) ,
by (9.11) the mean value of the last two terms of (9.7) is bounded from above:

-3 A * A, H B Λ µ, ν # H B Λ (ν # ) ≤ 3 2 A * , H B Λ µ, ν # , A + h.c. H B Λ (ν # ) + +3β -1 AA * + A * A H B Λ (ν # ) . (9.17) 
Since we are looking for the estimate of (9.5) (and consequently by of (9.7)) from above, inequalities (9.8) and (9.17) show that it rests to estimate the mean value only of the second term in (9.7). Here we formulate the result, see proof in [START_REF] Bru | Exact solution of the Bogoliubov Hamiltonian for weakly imperfect Bose gas[END_REF], Appendix A. Theorem 9.7 Let (θ, µ) ∈ D Then in D there are non-negative functions

a = a θ, µ, ν # , b = b θ, µ, ν # , (9.18) 
such that for |ν| ≤ r 0 , r 0 > 0, one has :

A * A, H B Λ µ, ν # , A * A H B Λ (ν # ) ≤ a A * A H B Λ (ν # ) + b. (9.19) 
Now, to prove the main assertion of this section (Theorem 9.14) we also need the following two lemmata. Lemma 9.8 For (θ, µ) ∈ Q and ν ∈ C we have

p Λ H B Λ ν # ≤ p P BG Λ (β, µ) + 1 βV ∞ n 0 =0 e β 2 [(ϕ(0)+2)n0-v(0)n 2 0 /V ] + |ν| 2 . (9.20)
Proof. By the inequality

- √ V (νa 0 + νa * 0 ) ≥ -a * 0 a 0 -|ν| 2 V,
it follows immediately from the estimate (cf. (8.11), (8.12))

H B Λ ν # -µN Λ ≥ k∈Λ * ,k =0 ε k -µ - v(k) 2V n k + + v(0) 2V n 2 0 -µ + 1 2 ϕ (0) + 1 n 0 -|ν| 2 V.
Corollary 9.9 By (9.20), in the thermodynamic limit, one gets

p B β, µ; ν # ≤ p P BG (β, µ) + 1 2 sup ρ≥0 (ϕ (0) + 2) ρ -v (0) ρ 2 + |ν| 2 (9.21) for (θ, µ) ∈ Q, ν ∈ C.
Lemma 9.10 For any µ < 0 and ν ∈ C one has the estimate

N Λ V H B Λ (ν # ) ≤ g Λ β, µ; ν # < ∞. (9.22) 
Proof. For any µ < 0 there is δ > 0 such that µ + δ < 0. Then by the Bogoliubov inequality we obtain

δ N Λ V H B Λ (ν # ) ≤ p Λ H B Λ ν # -δN Λ -p Λ H B Λ ν # . (9.23) 
Therefore, by Lemma 9.8 one gets (9.22) for

g Λ β, µ; ν # := 1 δ p B Λ β, µ + δ; ν # -p B Λ β, µ; ν # . (9.24) 
Corollary 9.11 In the thermodynamic limit (9.24) gives

ρ B β, µ; ν # = lim Λ N Λ V H B Λ (ν # ) ≤ 1 δ p B β, µ + δ; ν # -p B β, µ; ν # := g β, µ; ν # . (9.25) 
In fact, by the Griffiths lemma (Section 5.2) we get in domain D that

ρ B β, µ; ν # = ∂ µ p B β, µ; ν # , µ < 0, ν ∈ C. (9.26) 
Corollary 9.12 By virtue of (9.22) one obviously get : 3)

a * 0 a 0 V H B Λ (ν # ) ≤ g Λ β, µ; ν # , a * 0 √ V H B Λ (ν # ) = a * 0 √ V H B Λ (ν # ) ≤ g Λ (β, µ; ν # ) . ( 9 
H B Λ c # , µ, ν # = H B Λ c # , µ -V (νc + νc) ≥ H B Λ c # , µ -V |ν| 2 |c| 2 + 1 , (9.28) 
one gets by (8.28) that for any (θ, µ) ∈ Q and a fixed ν # there exists A ≥ 0 such that

p B Λ β, µ; c # , ν # ≤ A - 1 2 v (0) |c| 4 . (9.29) 
Therefore, the optimal value of |c| is bounded by a positive constant M < ∞.

Now we are in position to prove the main statement of this section (see (9.1)) about exactness of the Bogoliubov approximation for the WIBG.

Theorem 9.14 Let (θ, µ) ∈ D. Then lim Λ p B Λ β, µ, ν # -sup c∈C p B Λ β, µ; c # , ν # = 0 (9.30)
for |ν| ≤ r 0 , r 0 > 0.

Proof. By inequality (9.4) one gets

0 ≤ inf c∈C ∆ Λ β, µ; c # , ν # := ∆ Λ β, µ; c # Λ β, µ, ν # , ν # ≤ 1 V H B Λ c # , µ, ν # -H B Λ µ, ν # H B Λ (ν # ) . (9.31) 
In virtue of (9.5)-(9.7), estimates (9.6) (9.8), (9.11), (9.17), (9.19) and Remark 9.13, there are positive constants u and w independent of the volume V , such that

1 V H B Λ c # , µ, ν # -H B Λ µ, ν # H B Λ (ν # ) ≤ (9.32) u + w 2 a * 0 - √ V c * , a 0 - √ V c H B Λ (ν # ) . Put c = a 0 / √ V H B Λ (ν # )
which is bounded, see (9.27). Then

∆ Λ β, µ; c # Λ , ν # ≤ ∆ Λ β, µ; a # 0 / √ V H B Λ (ν # ) , ν # ,
and estimates (9.31), (9.32) give

0 ≤inf c∈C ∆ Λ β, µ; c # , ν # ≤ u V + w 2V {(a * 0 -a * 0 ) , (a 0 -a 0 )} H B Λ (ν # ) , (9.33) 
where for the shorthand a # 0

:= a # 0 H B Λ (ν # )
. Let δa # 0 := a # 0 -a # 0 . Then, by the Harris inequality [START_REF] Harris | Bounds for certain thermodynamic averages[END_REF] one gets

1 2 {δa * 0 , δa 0 } H B Λ (ν # ) ≤ (δa * 0 , δa 0 ) H B Λ (ν # ) + β 12 δa * 0 , H B Λ µ, ν # , δa 0 H B Λ (ν # ) . (9.
34) Since by (B) and Lemma 9.10 we have:

δa * 0 , H B Λ µ, ν # , δa 0 H B Λ (ν # ) = v (0) V N Λ -µ + 1 V k∈Λ * v (k) a * k a k H B Λ (ν # ) ≤ 2v (0) g Λ β, µ; ν # -µ, (9.35) 
by (9.25) and the uniform boundedness of g Λ β, µ; ν # on D for |ν| ≤ r 0 by g 0 , the estimate (9.33) in this compact set gets the form:

0 ≤inf c∈C ∆ Λ β, µ; c # , ν # ≤ 1 V u + w (δa * 0 , δa 0 ) H B Λ (ν # ) . (9.36) 
Now we can proceed along the standard reasoning of the Approximation Hamiltonian Method [START_REF] Bogoliubov | Some classes of exactly soluble models of problems in Quantum Statistical Mechanics : the method of the approximating Hamiltonian[END_REF]. First we note that

(δa * 0 , δa 0 ) H B Λ (ν # ) = 1 β ∂ ν ∂ ν p Λ H B Λ ν # . (9.37) 
By the (canonical) gauge transformation a 0 → a 0 e iϕ , ϕ = arg ν, one gets that in fact

p Λ H B Λ ν # = p B Λ (β, µ; |ν| := r) .
Then passing in (9.37) to polar coordinates (r, ϕ) we obtain :

(δa * 0 , δa 0 ) H B Λ (ν # ) = 1 4βr ∂ r r∂ r p B Λ . (9.38) 
Let c = |c| e iψ , ψ = arg c. Then by (9.3), (9.4) one gets

inf c∈C ∆ Λ β, µ; c # , ν # = inf |c|,ψ ∆ Λ β, µ; |c| e ±iψ , re ±iϕ = inf |c| ∆ Λ β, µ; |c| e ±iϕ , r := inf |c| ∆ Λ (r) . (9.39) 
Therefore, by (9.36)

R+ε R r inf |c| ∆ Λ (r) dr ≤ 1 V u (R + ε) 2 -R 2 2 + w 4β r∂ r p B Λ R+ε R , (9.40) 
for [R, R + ε] ⊂ [0, r 0 ]. Note that by (9.27) we have 

∂ r p B Λ = 2 a 0 / √ V H B Λ (ν # ) ≤ 2g
∆ Λ (r) dr ≤ 1 V u (R + ε) 2 -R 2 2 + w 2β g 1 2 0 (2R + ε) . (9.42) 
Since by Corollary 9.12 and Remark 9.13

∂ r inf |c| ∆ Λ (r) ≤ 2g 1 2 Λ + 2 | c Λ | ≤ 2 g 1 2 0 + M , for r ∈ [R, R + ε] we get : inf |c| ∆ Λ (R) ≤inf |c| ∆ Λ (r) + 2 (r -R) g 1 2 0 + M .
Hence,

inf |c| ∆ Λ (R) (R + ε) 2 -R 2 2 ≤ R+ε R r inf |c| ∆ Λ (r) dr + 2 g 1 2 0 + M r 3 3 -R r 2 2 R+ε R .
Then by (9.42) we obtain

inf |c| ∆ Λ (R) ≤ 1 V u + w β g 1 2 0 ε -1 + g 1 2 0 + M ε R + 2 3 ε R + 1 2 ε . (9.43)
Note that ε > 0 is still arbitrary. Minimising the right-hand side of (9.43) one obtains that for large V the optimal value of ε ∼ 1/ √ V . Hence, for V → ∞ one gets from (9.43) the asymptotic estimate

0 ≤inf c∈C ∆ Λ β, µ; c # , ν # ≤ δ Λ = const. 1 √ V (9.44)
valid for (θ, µ) ∈ D and |ν| ≤ r 0 .

Corollary 9.15 Since the variational pressure p B Λ β, µ; c # , ν # is known in the explicit form (see (8.27)) :

p B Λ β, µ; c # , ν # = p B Λ β, µ; c # + 2 |ν| |c| , (9.45) 
we get that the thermodynamic limits Proof. As in the proof of Theorem 9.14 by the gauge transformation

p B β, µ; c # , ν # = lim Λ p B Λ β, µ; c # , ν # , p B β, µ; c # β, µ; ν # , ν # = lim Λ sup c∈C p B Λ β, µ; c # , ν # = sup c∈C p B β
p B Λ β, µ; c # = 0 = p P BG Λ (β, µ) , (9.50 
p B β, µ; c # , ν # = 1 β (2π) 3 R 3 d 3 k ln 1 -e -βE k (|c| 2 ) -1 - (10.1) - 1 β (2π) 3 R 3 d 3 k E k |c| 2 -f k |c| 2 + µ |c| 2 - 1 2 v ( 
U ϕ a 0 U * ϕ = a 0 e -iϕ = a 0 , ϕ = arg ν
we get

H B Λ (µ, r) = U ϕ H B Λ µ, ν # U * ϕ = H B Λ -µ N Λ - √ V r ( a 0 + a * 0 ) , p Λ H B Λ ν # = p Λ U ϕ H B Λ µ, ν # U * ϕ = p B Λ (β, µ; r = |ν|) . (10.3) By virtue of 0 = H B Λ (µ, r) , N Λ H B Λ (r) = r √ V a 0 -a * 0 H B Λ (r)
, and (cf. (9.10))

0 ≤ N Λ , H B Λ (µ, r) , N Λ H B Λ (r) = r √ V a 0 + a * 0 H B Λ (r) ,
we get that 

a 0 H B Λ (r) = a * 0 H B Λ (r) ≥ 0.
lim Λ ∂ r p Λ H B Λ (r) = lim Λ a 0 + a * 0 √ V H B Λ (r) = 2 | c (β, µ; r)| ,
or by (10.4),

lim Λ a 0 / √ V H B Λ (r) = | c (β, µ; r)| , lim Λ a * 0 / √ V H B Λ (r) = | c (β, µ; r)| .
(10.8)

Returning in (10.8) back to original creation/annihilation operators, one gets

lim Λ a 0 / √ V H B Λ (ν # ) = e +iϕ | c (β, µ; r)| , lim Λ a * 0 / √ V H B Λ (ν # ) = e -iϕ | c (β, µ; r)| .
(10.9)

Then the first part of the statement (10.2) follow from (10.9) and the continuity of the solution c (β, µ; r) at r = 0. Whereas the second part follows from (9.51).

Corollary 10.2 Note that by the gauge invariance

a # 0 √ V H B Λ (ν # =0) = 0. (10.10)
Therefore, we have the gauge-symmetry breaking :

lim ν→0 lim Λ a # 0 √ V H B Λ (ν # ) =lim Λ lim ν→0 a # 0 √ V H B Λ (ν # ) , (10.11) 
as soon as the Bose-condensation ρ B 0 (β, µ) = 0. Corollary 10.3 Since by (10.5), (10.7)

∂ 2 r inf |c| ∆ Λ (r) = ∂ 2 r p B Λ (β, µ; r) -p B (β, µ; r) ≥ -C 2 ,
the Kolmogorov lemma [START_REF] Kolmogorov | On inequalities between the upper bounds of successive derivatives of an arbitrary function on an infinite interval[END_REF] implies that (9.43) and (10.8).

a 0 √ V H B Λ (r) -| c Λ (β, µ; r)| ≤ 2 δ Λ C 2 (10.12) for r ∈ [l Λ , r 0 -l Λ ], l Λ = 2 δ Λ /C 2 , see
Note that the Cauchy-Shwartz inequality gives

a * 0 √ V H B Λ (ν # ) a 0 √ V H B Λ (ν # ) ≤ a * 0 a 0 V H B Λ (ν # )
.

Hence, by (8.45) and (10.2) one gets

| c Λ (β, µ)| 2 ≤lim ν→0 lim Λ a * 0 a 0 V H B Λ (ν # ) = ρ B 0 (β, µ) , (10.13) 
which is in coherence with definitions of domains D 0 and D, cf. Theorem 8.16 and Corollary 8.17. To prove equality in (10.13) we proceed as follows.

Theorem 10.4 Let

H B Λ,α = H B Λ + αa * 0 a 0 H B Λ,α ν # = H B Λ,α - √ V (νa * 0 + νa 0 ) (10.14) for α ∈ R 1 . Then p B α β, µ; ν # = lim Λ p Λ H B Λ,α ν # = lim Λ sup c∈C p B Λ,α β, µ; c # , ν # , (10.15) 
for |ν| ≤ r 0 , r 0 > 0 and (θ, µ) ∈ Q\∂D α where domain Our reasoning below is a translation of some results of Sections 8 and 9 to perturbed Hamiltonian H B Λ,α for small α.

D α := (θ, µ) : p B α β, µ; ν # = 0 > p P BG (β, µ) . ( 10 
Lemma 10.6 If potential v (k) satisfies (A), (B) and (C), then

D 0α := (θ, µ) : sup c∈C p B α β, µ; c # > p P BG (β, µ) = {∅} . (10.17) 
for α < -µ 0 , where µ 0 is defined in Lemma 8.15.

Proof. Since the η Λ,α (µ; x) for the Hamiltonian (10.14) (cf. (8.28)) has the form

η Λ, (µ; x) = - 1 2V k∈Λ * ,k =0 (E k -f k ) + (µ -α) x - 1 2 v (0) x 2 , (10.18) 
one can follow the line reasoning of Lemma 8.15 and Theorem 8.16 to get (10.17) for µ ≤ 0 such that (µ -α) > µ 0 . Therefore, the value of µ 0 + α must be negative. By continuity of (10.18) which respect to α it is clear that lim α→0 D 0α = D 0 . Now we return to the Proof of Theorem 10.4 :

(1) Since the Bogoliubov approximation (8.24) gives the estimate of the pressure p Λ H B Λ,α ν # from below (see Proposition 8.12):

sup c∈C p B Λ,α β, µ; c # , ν # ≤ p Λ H B Λ,α ν # ,
by the Bogoliubov inequality we get (cf. (9.4))

0 ≤ ∆ Λ,α β, µ; c # , ν # := p Λ H B Λ,α ν # -p B Λ,α β, µ; c # , ν # ≤ 1 V H B Λ,α c # , µ, ν # -H B Λ,α µ, ν # H B Λ,α (ν # ) . ( 10.19) 
(2) For operators A # := a # 0 -√ V c # and for a Taylor expansion of H B Λ,α c # , µ, ν # around a # 0 one gets the estimate (

0 ≤ inf c∈C ∆ Λ,α β, µ; c # , ν # = ∆ Λ,α β, µ; c # Λ,α β, µ; ν # , ν # ≤ u α + + w α 2 a * 0 - √ V c , a 0 - √ V c H B Λ (ν # ) . ( 10 
) Put c # = a # 0 / √ V H B Λ,α (ν # ) 3 
in the left-hand side of (10.20). The same line of reasoning as in Theorem 9.14 gives asymptotic estimate

0 ≤inf c∈C ∆ Λ,α β, µ; c # , ν # ≤ δ Λ,α = const. 1 √ V (10.21)
valid for (θ, µ) ∈ Q\∂D α , |α| < -µ 0 , and |ν| ≤ r 0 which ensures the proof of (10.15) for D α = {∅}.

Corollary 10.7 Since

∂ 2 α p Λ H B Λ,α ν # = β V (a * 0 a 0 -a * 0 a 0 H B Λ,α (ν # ) ), (a * 0 a 0 -a * 0 a 0 H B Λ,α (ν # ) ) H B Λ,α (ν # ) ≥ 0 , functions p Λ H B Λ,α ν # = 0 Λ are convex for α ∈ R 1 .
The same is obviously true for (cf. (10.1), (10.14) and (10.15))

lim Λ p Λ H B Λ,α ν # = 0 =sup c∈C p B α β, µ; c # , ν # = 0 = (10.22) p B α β, µ; c # α (β, µ) , 0 = p B β, µ; c # α (β, µ) , 0 -α | c α (β, µ)| 2 .
By explicit calculations one gets that

∂ α p B α β, µ; c # α (β, µ) , 0 = -| c α (β, µ)| 2 < const , (10.23) 
for (θ, µ) ∈ Q and |α| ≤ -µ 0 . Therefore, by the Griffiths lemma (Section 5.2) we obtain : .25) We conclude this section by analysis of the non-conventional Bose-condensate ρ B 0 (β, µ) behaviour. In virtue of (10.25) it reduces to the analysis of the behaviour of | c (β, µ)| which corresponds to the sup c∈C of the trial pressure (10.1) :

lim Λ ∂ α p Λ H B Λ,α ν # = 0 = lim Λ - a * 0 a 0 V H B Λ,α (ν # =0) = -| c α (β, µ)| 2 . ( 10 
B 0 (β, µ) = lim Λ a * 0 a 0 V H B Λ =lim Λ a * 0 √ V H B Λ lim Λ a 0 √ V H B Λ = | c (β, µ)| 2 . ( 10 
p B β, µ; c # , ν # = 0 = ξ β, µ; x := |c| 2 + η µ; x := |c| 2 := p B β, µ; c # , (10.26) 
where (cf. (8.28),(8.29))

ξ (β, µ; x) = 1 (2π) 3 β R 3 d 3 k ln 1 -e -βE k -1 η (µ; x) = 1 2 (2π) 3 R 3 d 3 k (f k -E k ) + µx - 1 2 v (0) x 2 , (10.27) 
f k = ε k -µ + x [v (0) + v (k)] , h k = xv (k) , E k = f 2 k -h 2 k .
Below we collect some properties of the trial pressure (10.26) : 

= ∂ x (ξ + η) (β, µ; x) = 1 (2π) 3 R 3 d 3 k 1 -e βE k -1 ∂ x E k - 1 2 (2π) 3 R 3 d 3 k (∂ x E k -∂ x f k ) + µ -xv (0) . (10.29) 
(2) By definitions (10.27) and the properties (A) and (B) of the potential v (k) one gets that

∂ x f k = v (0) + v (k) , ∂ x E k = E -1 k (f k v (0) + (f k -h k ) v (k))
≥ 0, for µ ≤ 0, x ≥ 0 and any k ∈ R 3 . Therefore, by (10.29) we have

∂ x p B β, µ; c # = 0 ≤ ∂ x η (µ; x = 0) := ∂ x p B β = ∞, µ; c # = 0 = µ . ( 10.30) 
(3) By explicit calculation one finds that ∂ µ ∂ x η (µ; x) ≥ 0 for µ ≤ 0 and x ≥ 0. Hence

∂ x η (µ; x) ≤ ∂ x η (µ = 0; x) , (10.31) 
and ∂ x η (µ = 0; x) is a concave function of (0, ∞) .

(4) Now let potential v (k) satisfy the condition (C). Then

∂ 2 x η Λ (µ = 0; x) = -v (0) + 1 2 (2π) 3 R 3 [v(k)] 2 ε k d 3 k ≥ 0, (10.32) 
Since η Λ (µ = 0; x = 0) = 0, (10.32) means that the trivial pressure

p B β = ∞, µ; c # = η Λ (µ = 0; x)
attains sup x≥0 for x (θ = 0, µ = 0) > 0, and, by continuity for (θ ≥ 0, µ ≥ 0), the domain

D 0 = {(θ, µ) : x (θ, µ) > 0} = {∅} ,
see Lemma 8.15, Theorem 8.16.

(5) Fix µ ∈ D 0 and θ = 0. Then, according to (10.30),

∂ x η Λ (µ; x = 0) = ∂ x p B β = ∞, µ; c # = 0 = η Λ (µ = 0; x) < 0, but ∂ 2 x p B β = ∞, µ; c # , ν # = 0 > 0 ensures | c (β = ∞, µ)| 2 = x (θ = 0, µ) := x (µ) > 0 (see Fig. 2), i.e. p B β = ∞, µ; c # = 0 < p B β = ∞, µ; | c (β = ∞, µ)| 2 .
(10.33)

(6) Since ∂ x ξ (β, µ; x) < 0 (see (10. 29 
)) and

∂ θ ∂ x ξ (β, µ; x) = (-1) (2π) 3 R 3 d 3 k β 2 E k e βE k (1 -e βE k ) 2 ∂ x E k < 0, (10.34) 
there is θ 0 (µ) (cf. Theorem 8.16) such that for µ ∈ D 0 , one gets :

sup x≥0 [ξ (β 0 (µ) , µ; x) + η (µ; x)] = ξ (β 0 (µ) , µ; 0) + η (µ; 0) = ξ (β 0 (µ) , µ; x (θ 0 (µ) , µ) > 0) +η (µ; x (θ 0 (µ) , µ) > 0) , (10.35) 
whereas for θ < θ 0 (µ) the supremum is attained at x = x (θ, µ) > 0 and for θ > θ 0 (µ) it "jumps" to x (θ, µ) = 0. Note that by definition of x (θ, µ) and by (10.25) one gets

x (θ, µ) = | c (β, µ)| 2 = ρ B 0 (β, µ)
. Therefore, we have just proved the following assertion.

Theorem 10.9 If interaction potential v (k) satisfies conditions (A), (B), and (C), then domain D = {∅} and dynamical condensate undergo a jump on the boundary ∂D : .36) Behaviour of the non-conventional dynamical condensate (10.36) is illustrated by Figure 4, where its density is denoted by ρ B 0 (θ, µ).

ρ B 0 β = θ -1 , µ = > 0, (θ, µ) ∈ D = 0, (θ, µ) ∈ Q\D . ( 10 
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First we establish that (similar to the PBG) the total particle density ρ B (θ, µ) of the WIBG is saturated when µ → -0 (or µ ↑ 0), i.e. there exists a critical particle density ρ B c (θ) = lim µ ↑ 0 ρ B (θ, µ). Indeed, using the Griffiths Lemma (Section 5.2) and Theorem 9.14, Theorem 10.9, we obtain for the grand-canonical total particle density in the WIBG:

ρ B (θ, µ) ≡ lim Λ ω B Λ N Λ V = lim Λ 1 V k∈Λ * ω B Λ (N k ) = = lim Λ ∂ µ p B Λ (β, µ) = ∂ µ p B (β, µ; 0) = = 1 (2π) 3 R 3 e β(ε k -µ) -1 -1 d 3 k, (11.1) 
for (θ, µ < 0) ∈ Q\D, whereas for (θ, µ < 0) ∈ D one has:

ρ B (θ, µ) = ∂ µ p B β, µ; c # (θ, µ) = 0 = 1 (2π) 3 R 3 f k E k e βE k -1 -1 + h 2 k 2E k (f k + E k ) c= c(θ,µ) d 3 k + | c (θ, µ)| 2 . (11.2) 
Then, from (11.1) and (11.2), we see that the total particle density ρ B (θ, µ) reaches its maximal (critical) value ρ B c (θ) ≡ ρ B (θ, µ = 0) at µ = 0 : (i) for θ > θ 0 (µ = 0) one gets

ρ B c (θ) = 1 (2π) 3 R 3 e βε k -1 -1 d 3 k = ρ P c (θ) < +∞, (11.3) 
(ii) for θ < θ 0 (µ = 0) one has

ρ B c (θ) = 1 (2π) 3 R 3 f k E k e βE k -1 -1 + h 2 k 2E k (f k + E k ) c= c(θ,0) µ=0 d 3 k + | c (θ, µ = 0)| 2 < +∞, (11.4) 
since the non-conventional condensation density ρ B 0 (θ, µ) is saturated for µ = 0 by | c (θ, µ = 0)| 2 , see Theorem 10.9 and Figure 5.

Note that convexity of p B (β, µ) with respect to µ yields that the function ρ B (θ, µ) is monotonous and

lim µ ↑ µ 0 (θ) ρ B (θ, µ) =: ρ B inf (θ) < lim µ ↓ µ 0 (θ) ρ B (θ, µ) =: ρ B sup (θ) , (11.5) 
where µ 0 (θ) is the inverse function of θ 0 (µ) and

lim θ ↓ θ 0 (0) ρ B c (θ) < lim θ ↑ θ 0 (0) ρ B c (θ) . (11.6) 
The µ → ρ B (θ, µ) for the total particle density of the Weakly Imperfect Bose-Gas is illustrated by Figure 5. Now we consider the WIBG model for temperatures and total particle densities as given parameters. Note that for any finite domain Λ there exists

ε Λ,1 ∈ inf k =0 ε k - v (k) 2V , ε Λ,1 =inf k =0 ε k = ε k = 2π L , (see 7.1) such that for µ < ε Λ,1 < ε k = 2π L , one gets ω B Λ N Λ V < +∞, although the limit lim µ ↑ ε Λ,1 ω B Λ N Λ V = +∞, (11.7) 
see Lemma D.1 in [START_REF] Bru | On condensations in the Bogoliubov Weakly Imperfect Bose-Gas[END_REF]. Therefore, for any ρ > 0, there is a unique value of the chemical potential µ B Λ (θ, ρ) < ε Λ,1 , which satisfies the equation:

N Λ V H B Λ β, µ B Λ (θ, ρ) = ω B Λ N Λ V = ρ. (11.8) 
Note that for ρ < ρ B c (θ) the monotonicity of ρ B (θ, µ) for µ ≤ 0 implies that (11.8) has a unique solution

µ B (θ, ρ) = lim Λ µ B Λ (θ, ρ) < 0 ,
independent of the presence of the non-conventional condensation, see (11.1) and (11.2). Therefore, below the saturation limit ρ B c (θ) only the non-conventional condensate (10.36) is possible.

In the rest of this section we consider the case ρ ≥ ρ B c (θ). In general, for any ρ ≥ ρ B c (θ), one gets by (11.7) and (11.8) 

that µ B Λ (θ, ρ) ≷ 0 and lim Λ µ B Λ θ, ρ ≥ ρ B c (θ) = 0. (11.9) 
From now on we set for the Gibbs state at a fixed density ρ: For discussion of coexistence of these two kind of condensations in the framework of our toy model see Section 4.

ω B Λ,ρ (-) := ω B Λ (-) | µ=µ B Λ (θ,ρ) . ( 11 
To control the conventional condensation for k = 0 we introduce an auxiliary Hamiltonian where the state ω B Λ,ρ (-) stands for ω B Λ (-) with µ = µ B Λ (θ, ρ), cf. (11.10). Note that by Lemma D.2 of [START_REF] Bru | On condensations in the Bogoliubov Weakly Imperfect Bose-Gas[END_REF] and the fact that (iii) for ρ B c (θ) ≤ ρ, there is a second kind of condensation: the conventional type I Bose-Einstein condensation which occurs after the non-conventional one; it appears due to the standard mechanism of the total particle density saturation (Corollary 11.6).

H B Λ,α = H B Λ -α k∈Λ * , a< k <b a * k a k , for 0 < a < b. We set p B Λ (β, µ, α) ≡ 1 βV ln T r F Λ e -βH B Λ,α (µ) , (11.11 
µ B Λ (θ, ρ) < ε Λ,1 < inf k =0 ε k = ε k =2π/
f k E k e βE k -1 -1 + h 2 k 2E k (f k + E k ) c= c(θ,0) µ=0 , (11.27 
When θ > θ 0 (0), there are only two types of thermodynamic behaviour: they correspond to ρ ≤ ρ B c (θ) with no condensation and to ρ B c (θ) < ρ with a conventional condensation as in (iii). Hence, for θ > θ 0 (0) the condensation in the WIBG coincides with the type I generalised Bose-Einstein condensation in the PBG with excluded mode k = 0, see Theorem 11.4 (iii).

Conclusion

The paper presents a review of results regarding the non-conventional dynamical condensation versus conventional Bose-Einstein condensation, including the generalised BEC à la van den Berg-Lewis-Pulé. It is based on discussion of two models: a simple toy model and the Bogoliubov Weakly Imperfect Bose-Gas model, which was invented for explanation of superfluity of 4 He, but which is also instructive for analysis of non-conventional dynamical condensation versus recent reinterpretations of experimental data, see [START_REF] Vilchinskyy | The nature of superfuidity and Bose-Einstein condensation: from liquid 4 He to dilute ultracold atomic gases[END_REF], [START_REF] Blagoveshchenskii | Superfluid helium as the condensate of bound atoms pairs[END_REF].

We forewarn the reader about another usage of expression "non-conventional BEC", e.g., in the preprint arXiv:200101315v1, New scenario for the emergence of non-conventional Bose-Einstein Condensation. Beyond the notion of energy gap, by Marco Corgini.
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  2 (Λ) corresponding to the second quantisation in the box Λ = d × α=1 with periodic boundary conditions, i.e. to the dual Λ * = {k ∈ R d : k α = 2πn α L , n α = 0, ±1, ±2, ...; α = 1, 2, ..., d }.

  the grand-canonical Gibbs state for the Hamiltonian H M SV Λ . Note that Hamiltonian H M F Λ -U Λ /2 coincides for λ = 2a with Hamiltonian H HY L
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 11 The van den Berg-Lewis-Pulè classification: condensation of type I, II and III

Figure 1 .

 1 Figure 1. Vertices corresponding to the non-diagonal part U Λ of the Bogoliubov Hamiltonian for WIBG.

Figure 2 .

 2 Figure 2. Illustration to the effective vertex, generated by U Λ , for interaction between particles in the condensate (zero-mode).

8. 1

 1 Diagonal part of the Bogoliubov Hamiltonian The diagonal part of the Bogoliubov Hamiltonian H BD Λ = T Λ + U D Λ (7.5)-(7.6) can be rewritten using the occupation-number operators for modes k ∈ Λ * , n k = a * k a k . So, the Hamiltonian H BD Λ (µ) := H BD Λ -µN Λ has the form

. 3 ) 8 . 1

 381 Theorem Let v (k) satisfy (A) and (B). Then (a) for any µ ≤ 0 and β > 0 one hasp BD (β, µ) :=lim Λ p Λ H BD Λ = p P BG (β, µ) ,(8.4) (b) for any β > 0 one has p BD (β, µ > 0) = +∞ Proof. (a) In virtue of representation (8.2) and inequality (8.3) we get that partition function

6 )

 6 Note that p P BG Λ (β, µ) is the pressure of an ideal Bose-gas with excluded mode k = 0 and p P BG Λ (β, µ) < +∞ for µ <inf k =0 ε k . Hence, for any µ < 0 one gets lim Λ p P BG Λ (β, µ) = lim Λ p Λ [T Λ ] = p P BG (β, µ) (8.7)

  µ; c # = p P BG (β, µ) . (8.32) Lemma 8.15 Let v (k) satisfy (A), (B) and

  28)-(8.29) one has ξ Λ (β, µ; x = 0) = p P BG Λ (β, µ) and (i) ∂ x ξ Λ (β, µ; x) ≤ 0 and lim x→+∞ ξ Λ (β, µ; x) = 0, for any Λ; (ii) ∂ θ ξ Λ (β, µ; x) ≥ 0 and lim θ→0 ξ Λ (β, µ; x) = 0, for any Λ. (8.37) Next, by Lemma 8.15 for µ = µ 0 < 0 we have lim Λ sup x≥0 η Λ (µ 0 ; x) = η (µ 0 ; 0) = η (µ 0 ; x (µ 0 ) > 0) = 0 . (8.38)

  Let D := (θ, µ) : p B (β, µ) > p P BG (β, µ) . (8.42) 

. 27 )

 27 Remark 9.13 To optimise the estimate (9.4) we have to estimate the value of sup c∈C p B Λ β, µ; c # , ν # . Since by Definition 8.11 and (9.

1 2 0

 12 , (θ, µ) ∈ D, |ν| ≤ r 0 .

) by ( 8 .

 8 [START_REF] Anderson | Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor[END_REF],(8.46) and (9.2) we getD 0 = {(θ, µ) : | c (β, µ; ν)| > 0} = (θ, µ) : ρ B 0 (β, µ) > 0 = D. (9.51) Therefore, (see Remark 8.18) the condition (C) is sufficient and necessary for D = {∅}. 10 Non-conventional condensate in Weakly Imperfect Bose-Gas Since the pressure p B Λ (8.28) and lim Λ p B Λ = p B are known explicitly:

  0) |c| 4 + (νc + νc) , Theorem 9.14 and Corollaries 9.15, 9.16 give exact solution of the model (7.4) on the level of thermodynamics. Therefore,(9.49) gives access to thermodynamic properties of the Weakly Imperfect Bose-Gas for all (θ, µ) ∈ Q except the line of transitions ∂D, Figure4.The aim of this section is to discuss thermodynamic properties of the model (7.4) and in particular the Bose-condensate which appears in domain D. The first statement concerns the gauge-symmetry breaking in domain D.
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 101 Let D = {∅}. Then quasi-averages lim (ν # ) = e ±iϕ | c (β, µ)| = = 0, (θ, µ) ∈ D = 0, (θ, µ) / ∈ D (10.2)

  a 0 + a * 0 ) -a 0 + a * 0 H B Λ (r) }, {( a 0 + a * 0 ) -a 0 + a * by the Theorem 9.14 and Corollary 9.15 the sequence of the convex (for r ≥ 0) functions p B Λ (β, µ; r) Λ converges to the (convex function) p B (β, µ; r) := sup c∈C p B β, µ; c # , ν # = sup |c|≥0 ψ=arg c p B β, µ; |c| e ±iψ , |ν| e ±iϕ = p B β, µ; | c (β, µ; r)| e ±iϕ , |ν| e ±iϕ , (10.6) see (9.38) and (10.1), uniformly on D × [0, r 0 ]. By explicit calculations one gets that derivatives 0 ≤ ∂ r p B (β, µ; r) = 2 | c (β, µ; r)| ≤ C 1 , 0 ≤ ∂ 2 r p B (β, µ; r) = 2∂ r | c (β, µ; r)| ≤ C 2 (10.7) are continuous and bounded in D × [0, r 0 ]. Therefore, by the Griffiths lemma

. 20 )

 20 by carrying through verbatim the arguments developed starting on Remark 9.2 and finishing by Remark 9.13. The only difference with the case α = 0 comes fromA, H B Λ,α µ, ν # , A * = A, H B Λ µ, ν # , A * + α,cf. (9.35) and the note that lim α→0 u α = u and lim α→0 w α = w.

)

  For µ ≤ 0 the function (10.26) is differentiable with respect to x = |c| 2 ≥ 0 and lim |c| 2 →∞ p B β, µ; c # = -∞, (10.28) Hence, sup x≥0 (ξ + η) (β, µ; x) is attained either at x = 0, or at a positive solution of the equation 0

. 10 )

 10 According to Section 10 the WIBG non-conventional condensate in the mode k = 0 is saturated for µ ↑ 0 either by | c (θ, 0)| 2 > 0 (for θ < θ 0 (0)), or by | c (θ, 0)| 2 = 0 (for θ > θ 0 (0)), see (10.36) and Figure4. Therefore, (11.1)-(11.4) and saturation of the total particle density ρ B (θ, µ) for µ ↑ 0 yield a conventional Bose-condensation in modes next to k = 0.
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 21112221 µ)for grand-canonical Gibbs state corresponding to H B Λ,α (µ). Recall that µ 0 (θ) is the function (inverse to θ 0 (µ)), which defines the borderline of domain D, see Figure4. Proposition 11.1 Let α ∈ [-δ, δ] where 0 ≤ δ ≤ ε a /2 and ε a = inf k ≥a ε k . Then there exists a domain D δ ⊂ D:D δ ≡ {(θ, µ) : µ 0 < µ 0 (δ) ≤ µ ≤ 0, 0 ≤ θ ≤ θ 0 (µ, δ) < θ 0 (µ)} (11.12) such that p B Λ (β, µ, α) -sup c∈C p B Λ β, µ, α; c # ≤ K (δ) √ V(11.13)for V sufficiently large, uniformly in α ∈ [-δ, δ] and for:(i) (θ, µ) ∈ D δ , if µ B Λ θ, ρ ≥ ρ B c (θ) ≤ 0; or (ii) (θ, µ) ∈ D δ ∪ (θ, µ) : 0 ≤ µ ≤ µ B Λ θ, ρ ≥ ρ B c (θ) , 0 ≤ θ ≤ θ 0 (µ = 0, δ) , if µ B Λ θ, ρ ≥ ρ B c (θ) ≥ 0. (11.14)Proof. The existence of the domain D δ follows from the proof of Theorem 9.14. This means that the estimate (11.13) is stable with respect to local perturbations of the freeparticle spectrum:ε k → ε k -αχ (a,b) ( k ) for |α| ≤ δ ≤ ε a /2 in a reduced domain D δ ⊂ D. Here χ (a,b) ( k ) is the characteristic function of interval (a, b) ⊂ R. Extension in(11.14) is due to continuity of the pressure p B Λ (β, µ, α) and the trial pressurep B Λ β, µ, α; c # in parameters α ∈ [-δ, δ] and µ ≤ µ B Λ θ, ρ ≥ ρ B c (θ) , see (11.8), (11.9). Corollary 11.2 Let ρ ≥ ρ B c (θ), see (11.3),(11.4). Then for θ < θ 0 (0) one haslim 2E k (f k + E k ) c= c(θ,0) µ=0 , whereas for θ > θ 0 (0) one gets lim Λ k∈Λ * , a< k <b ω B Λ,ρ (N k ) = 1 (2π) 3 a< k <b d 3 k e βε k -1 -1 . (11.16)Proof. Consider the sequence of functions p B Λ β, µ B Λ (θ, ρ) , α Λ defined by(11.11), where chemical potential is a solution of (11.8), for the corresponding Hamiltonian and α ∈ [-δ, δ]. Since by(11.11)∂ α p B Λ β, µ B Λ (θ, ρ) , α = k∈Λ * ,a< k <b ω B,α Λ,ρ (N k ) ,(11.17) and p B Λ β, µ B Λ (θ, ρ) , α Λ are convex functions of α ∈ [-δ, δ], Proposition 11.1 and the Griffiths Lemma implylim Λ ∂ α p B Λ β, µ B Λ (θ, ρ) , α = lim Λ k∈Λ * ,a< k <b ω B,α Λ,ρ (N k ) = ∂ α lim Λ sup c∈C p B Λ β, µ B Λ (θ, ρ) , α; c # ,(11.18)for α ∈ [-δ, δ]. By explicit calculations in the right-hand side of (11.18) one obtains for α = 0 equalities (11.15) and(11.16).Remark 11.3 Note that mean particle valuesω B Λ (N k ) = N k H B Λ (β, µ) (and similar ω B Λ,ρ (N k ) = N k H B Λ β, µ B Λ (θ, ρ)) are defined on the discrete set Λ * (7.3). Below we denote by ω B Λ (N k ) k∈R 3 a continuous interpolation of these values from the set Λ * to R 3 . Now we are in position to prove the main statement of this section about nonconventional and conventional condensations showing up in the WIBG for densities ρ > ρ B c (θ). Theorem 11.4 Let ρ > ρ B c (θ). Then we have that : θ, 0)| 2 , θ < θ 0 (0) 0, θ > θ 0 (0) ;(11.19)(ii) for any k ∈ Λ * , such that k > 2π L , for θ < θ 0 (0) and for all k ∈ Λ * , such that k > δ >2E k (f k + E k ) c= c(θ,(iv) the double limitρ B 0 (θ) := lim δ→0 + lim Λ {k∈Λ * ,0< k ≤δ} ω B Λ,ρ (N k ) = ρ -ρ B c (θ) ,(11.23)which means that the WIBG manifests a conventional (generalised) Bose condensation ρ B 0 (θ) > 0 in modes next to the zero-mode due to particle density saturation.Proof. (i) Since by (11.9) we havelim Λ µ B Λ (θ, ρ) = 0,(11.24) the thermodynamic limit (11.19) results from Theorem 4.4 and Corollary 4.8 of [23], see (10.36) for µ = 0. (ii) Since k > 2π/L and Λ = L × L × L is a cube, which excludes generalized Bose-Einstein condensation due to anisotropy (see Section 5.1), the thermodynamic limit (11.20) follows from µ B Λ (θ, ρ) < ε k =2π/L and estimate (D.10) in Lemma D.2 of [24]. (iii) Let us consider g θ (k) defined for k ∈ R 3 , k > δ > 0 by g θ (k) := lim Λ ω B Λ,ρ (N k ) , (11.25)
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 13 L , the thermodynamic limit(11.25) exists and it is informly bounded for k > δ > 0. Moreover, for any interval (a > δ, b) we havelim Λ k∈Λ * , k ∈(a,b) k g θ (k) χ (a,b) ( k ) ,where again χ (a,b) ( k ) is the characteristic function of (a, b). Then Corollary 11.2 implies that1 (2π) 3 k >δ d 3 kg θ (k) χ (a,b) ( k ) = 1 (2π) 3 k >δ d 3 k f θ (k) χ (a,b) ( k ) ,(11.26)where f θ (k) is a continuous function on k ∈ R 3 defined by (11.15),(11.16), i.e., f θ (k) := 1 (2π)3 
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 121 )for θ < θ 0 (0) andf θ (k) := 1 (2π) 3 e βε k -1 -1 ,(11.28)for θ > θ 0 (0). Since the relation(11.26) is valid for any interval (a > δ, b) ⊂ R one getsg θ (k) = f θ (k) , k ∈ R 3 , k > δ > 0.By this and (11.25)-(11.28) we deduce(11.21) and(11.22).(iv) Since the total density ρ is fixed, by definition (11.10) we have1 V {k∈Λ * ,0< k ≤δ} ω B Λ,ρ (N k ) = ρ -ω B {k∈Λ * : k >δ} ω B Λ,ρ (N k ) . (11.29) By Corollary 11.2 for a = δ and b → +∞ we obtain for θ < θ 0 2E k (f k + E k ) c= c(θ,(11.3), (11.4), (11.19), (11.29)-(11.31) we deduce (11.23) by taking the limit δ ↓ 0.Therefore, according to(11.23) for θ > θ 0 (0) and ρ > ρ B c (θ) the WIBG manifests only one kind of condensation, namely the conventional Bose-Einstein condensation which occurs in modes k = 0, whereas for θ < θ 0 (0) it manifests for ρ > ρ B c (θ) this kind of condensation at the second stage after the non-conventional Bose condensation | c (θ, 0)| 2 , see(11.19). For classification of different types of condensations see Section 5.1. Remark 11.5 In domain: θ < θ 0 (0), ρ > ρ B c (θ), we have coexistence of these two kinds of condensations, namely: -the non-conventional one which starts when ρ becomes larger than ρ B sup (θ), see (11.5) and Figure 2 (b), and which reaches its maximal value ρ B 0 (θ, 0) for ρ ≥ ρ B c (θ) > ρ B sup (θ) ; -and the conventional Bose condensation ρ B 0 (θ) which appears when ρ > ρ B c (θ), see (11.23). Since the Bose-Einstein condensation (11.23) occurs in modes k = 0, it should be classified as a generalised condensation. According to the van den Berg-Lewis-Pulè classification (see Section 5.1), from (11.20) and (11.23) we can deduce only that the generalised conventional condensation in the WIBG can be either a condensation of type I in modes k = 2π/L, or a condensation of type III if modes k = 2π/L are not macroscopically occupied (non-extensive condensation), or finally it can be a combination of the two. Corollary 11.6 For ρ > ρ B c (θ) and periodic boundary conditions on ∂Λ the (generalised) conventional condensation (11.23) is of type I in the first 2d(= 6) modes next to the zeromode k = 0, i.e. ρ B 0 (θ) = lim Λ {k∈Λ * , k = 2π L } ω B Λ,ρ (a * k a k ) = ρ -ρ B c (θ) . (11.32)

  .19)Remark 2.3 Note that in the toy model (2.18) the effect favouring non-conventional condensation of bosons at zero-mode is due to the kinetic-energy term, which is enhanced

by "interaction"-energy term for ε 0 < 0, see Section 4. On the other hand, the Huang-Yang-Luttinger model (2.19) is the MF Bose-gas (2.1) (that manifests a conventional zero-mode BEC) perturbed by interaction energy, see the last term in

(2.19

  Remark 3.2 Let denote by f BZ Λ (β, ρ) the free-energy density corresponding to H BZ

					Λ	(2.6)
	with g k (V ) = g/2, i.e.				
	f BZ Λ (β, ρ) := -	1 βV	ln Tr H n Λ,S	e -βH BZ Λ	.
	Then (2.6) (2.18) and (3.1) imply that				

  Therefore, the same is true for f (β, ρ) , see (3.2) and(3.11). Since the pressure p BZ (β, µ) is a Legendre transform of the corresponding free-energy density f BZ (β, ρ), we get from (3.10) that

	Remark 3.3

.11) 

By explicit calculation one checks convexity of f BZ (β, ρ) as a function of ρ.

  by virtue of (4.4), (4.14) and definition (2.14) we obtain (4.23) from (4.26), (4.27) and (

  Similar to PBG the Bogoliubov WIBG exists only for µ ≤ 0, see Proposition 7.2. In fact we can claim more.

	Lemma 8.3 For any µ ≤ 0, one has	
	p P BG (β, µ) ≤ p B (β, µ) .	(8.9)

Γ : p B (β, µ) = p P BG (β, µ)

  then sufficient condition (8.18) guarantees(8.19) and hence, (8.17).

	Corollary z≥-µ	h (z, β) ,	(8.20)
	where		
	λ (θ) :=inf z≥0	h (z, β) .	(8.21)
	Therefore, by (8.20) we get a sufficient condition independent of µ ≤ 0 (high-temperature
	domain) :		

8.7 Since h (z, β) is a convex function of z ≥ 0 and h (z, β) ≥ z, then by (8.16) we get λ (θ) ≤ inf

  )

	where	p B Λ β, µ; c # :=	1 βV	ln Tr F Λ e -βH B Λ (c # ,µ) .	(8.26)
	Remark 8.13 By Definition 8.11 we get from (7.4)-(7.7) that	

  Therefore, the condition (C) is necessary for D = {∅}, cf. Remark 8.18. By definition of p B β, µ; c # , see (8.25)-(8.28), the statement (9.1) means that the Bogoliubov approximation for the WIBG is exact. Since p B Λ β, µ; c # is known explicitly the statement (9.1) gives exact solution of this model on the thermodynamic level.

	and that in fact (cf. (8.36), (8.42)) one has	
	D = D 0 .	(9.2)
		.1)

  .[START_REF] Betz | Critical temperature of dilute Bose gases[END_REF] 

	Remark 10.5 Since H B Λ,α=ϕ(0)/2 = H B Λ , see (8.47), by the Theorem 8.20 we get that
	D α=ϕ(0)/2 = {∅}.

  .24) Corollary 10.8 By the continuity in α → 0, equations (10.2) and (10.24) imply that ρ
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Proof. Since for

by Lemma D.2 [START_REF] Bru | On condensations in the Bogoliubov Weakly Imperfect Bose-Gas[END_REF] we obtain

where

Since by Lemma D.1 [START_REF] Bru | On condensations in the Bogoliubov Weakly Imperfect Bose-Gas[END_REF] one has

3), (11.4) and (11.30) we deduce that

by taking the limit δ ↓ 0 in the right-hand side of (11.33) after the thermodynamic limit. Hence combining the inequality

with (11.23) and (11.34), we obtain (11.32). Therefore, for temperature θ and total particle density ρ as parameters, we obtain three regimes in thermodynamic behaviour of the WIBG when θ < θ 0 (0) (see Figures 4 and5):

, there is a non-conventional condensation (10.36) in the mode k = 0 due to non-diagonal interaction in the Bogoliubov Hamiltonian, see Figure 4;