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On the Spectrum of Multi-Space Euclidean Random Matrices

Aldo Battista and Rémi Monasson∗

Laboratory of Physics of the Ecole Normale Supérieure, CNRS UMR 8023 & PSL Research,
Sorbonne Université, 24 rue Lhomond, 75005 Paris, France

(Dated: May 6, 2020)

We consider the additive superimposition of an extensive number of independent Euclidean Ran-
dom Matrices in the high-density regime. The resolvent is computed with techniques from free
probability theory, as well as with the replica method of statistical physics of disordered systems.
Results for the spectrum and eigenmodes are shown for a few applications relevant to computational
neuroscience, and are corroborated by numerical simulations.

I. INTRODUCTION

In the twenty years following their introduction, Euclidean Random Matrices (ERM) have been studied in a variety of
contexts in physics [1, 2] and mathematics [3–5] . Examples of applications of ERM include the theoretical description
of vibrations in topologically disordered systems [6–8], wave propagation in random media [2, 9], relaxation in glasses
[10], Anderson localization [11] and many more [12].

While determining the spectral properties of ERM is generally quite involved due to the existence of correlations
between the entries of these matrices, a well-understood limit is the so-called high-density regime [1, 3]. Assume N
points ri are drawn uniformly at random in a bounded space, e.g., the unit D-dimensional hypercube HD, and define

the N -dimensional ERM M(1) with entries M
(1)
ij = Γ(|ri − rj |)/N . Here, | · | denotes the Euclidean distance (with

periodic boundary conditions over HD), and Γ is a given function that depends only on the distance | · | and that has
a finite range, independent of N . In the large-N limit (for fixed D), the points effectively form a dense, statistically
uniform sampling of the hypercube; the eigenmodes of M(1) are well approximated by Fourier plane waves [1, 12],
with eigenvalues

Γ̂(k) =

∫
HD

dr e−i 2π k·r Γ(|r|) , (1)

where the components of k = (k1, k2, ..., kD) are integer-valued.
Hereafter, we introduce a novel statistical ensemble of ERMs in the high-density regime obtained by mixing multiple

spaces. Instead of having a single set of N random points ri, we consider L such sets, r`i , with ` = 1, ..., L (and
i = 1, ..., N as usual). Each index ` points to a different “space” (hypercube), and for simplicity all points are drawn
uniformly at random in the different spaces. We define the superimposition of all the ERM attached to the spaces,
with entries

Cij =
1

L

L∑
`=1

Γ
(∣∣r`i − r`j

∣∣) . (2)

We refer to such matrices as Multispace-ERM (MERM). To our knowledge, MERM have not been considered so far
in statistical physics.

Our motivation to study MERM arises from computational neuroscience, more precisely, the need to understand
how the hippocampal place-cell network can account for multiple cognitive maps, coding for various environmental
and contextual situations. A review on place cells and the representation of space in the hippocampus can be found
in [14]. From a model perspective the points r`i correspond to the positions of the centers of the place field of place
cell i in map `. The resulting statistical ensemble for MERM is sketched in Fig. 1. An important issue is the maximal
number L of maps the hippocampal recurrent neural network (with N neurons) can sustain, more precisely, the
maximal ratio

α =
L

N
, (3)
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called critical capacity. This capacity depends on the dimension of the maps, D � N , and of their spatial accuracy
(the precision with which N -dimensional neural configurations encode D-dimensional positions along the map). In a
recent work, we have shown how the critical capacity could be determined from the knowledge of the resolvent of C
[13]. A non trivial statistical setting is obtained when the number L of spaces is of the order of the matrix size, N .
More precisely, we consider herefater the double infinite size limit L,N →∞ at fixed ratio α. This choice corresponds
to the assumption that the hippocampal network activity can code for many different environments [15] or different
contexts [16], and operates, as hypothesized for other cortical areas [17], in a regime close to maximal capacity.

Our paper is organized as follows. The spectrum of MERM is computed using arguments borrowed from free
probability theory in Section 2, and re-derived using the replica method in Section 3. We show the results for the
spectrum and eigenmodes for the choice of Γ corresponding to Fig. 1 and compare with numerical simulations in
Section 4. Variations on the choice of Γ are discussed in Section 5. Last of all, Section 6 presents some conclusions.

r`i

r`j r`j

r`i

r`i

r`j

` = 2` = 1 ` = 3

` = 1 ` = 2 ` = 3

FIG. 1: Basic statistical ensemble of MERM considered in this work. L = 3 sets of N = 5 points, r`i , with ` = 1, ..., L and
i = 1, ..., N are drawn uniformly at random in unit squares H2 (dimension D = 2). Points are represented by crosses, whose
colors identify their indices i. The MERM is defined through (2), where Γ is a generic function of the distance between points,
see main text. A possible choice for Γ, inspired from the so-called place cells in neuroscience, is the overlap (common area)
between pairs of disks of surface φ0 < 1 and having centers r`i in each space `.

II. SPECTRUM OF MERM: FREE-PROBABILITY-INSPIRED DERIVATION

Let us consider an extensive number L of spaces, see (3), with

M
(L)
ij =

1

N

L∑
`=1

Γ
(∣∣r`i − r`j

∣∣) , (4)

where the points are independently drawn from one space ` to another and where the single elements of the sum are
ERM defined from N points r`i drawn uniformly at random in the D-dimensional unit hypercube HD:

M
(1)
ij =

1

N
Γ(|r`i − r`j |) . (5)

A. Case of the extensive eigenvalue - k = 0

We would like to compute the resolvent (Stieltjes transform) of M(L) using free-probability arguments [18, 19].
Heuristically, asymptotic freeness between the different ERMs relies on the fact that their eigenvectors basis are
mutually incoherent. In the N → ∞ limit, the eigenvalues of M(1) in space ` are the Fourier coefficients (1) of Γ,

where k ∈ ZD and the associated eigenvectors have components vi(k) ' ei 2π k·r`i/
√
N [1, 3, 12]. All ERMs defined

in the sum in (4) have mutually incoherent eigenbasis only if we restrict the analysis to the subspace orthogonal to
the uniform mode attached to k = 0, shared by all the spaces. Though this argument is not rigorous, we expect this
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restriction to allow us to find all the eigenvalues of M(L), except the one corresponding to the asymptotically uniform
eigenvector.

Furthermore it is easy to determine the leading behavior (when N is large) of the eigenvalue of M(L) corresponding
to k = 0. As the corresponding eigenvector is expected to have all components equal to N−1/2, we find that
the corresponding eigenvalue is extensive in N and approximately equal to Λ = N α Γ̂(0). For the matrix C the

corresponding eigenvalue is zext = Λ
α = N Γ̂(0).

From now on we concentrate on calculating the spectrum of M(L) corresponding to k 6= 0; the term ‘resolvent’ will
refer to the resolvent in the k 6= 0 subspace.

B. Case of a single space (L = 1)

The resolvent of M(1) is defined as

s1(z) =
1

N

〈
Trace

(
M(1) − z Id

)−1
〉

(1)
, (6)

where 〈·〉(1) stands for the average over the distribution of the matrix (5). It is easy to rewrite the resolvent when
N � 1,

s1(z) = − 1

zN

(
N +

∞∑
`=1

∑
k6=0

(|k|≤N)

Γ̂(k)`
1

z`

)
= −1

z
− 1

N z
γ

(
1

z

)
(7)

with

γ(u) =
∑
k6=0

u Γ̂(k)

1− u Γ̂(k)
(8)

and where the sum runs over ZD without the k 6= 0 term.

C. Case of multiple spaces (L = αN)

We now consider the case of M(L). It’s resolvent sL(z) is defined as

sL(z) =
1

N

〈
Trace

(
M(L) − z Id

)−1
〉

(L)
, (9)

where 〈·〉(L) stands for the average over the distribution of the matrix (4), can be computed through the following
steps:

1. Invert (functionally) the resolvent s1(z) of M(1): we first rewrite (7) into the following implicit equation for the
inverse resolvent:

z1(s) = −1

s
− 1

N s
γ

(
1

z1(s)

)
. (10)

We then send N to infinity in the above equation, and obtain that z1(s) = −1/s in this limit. Using this
expression for the argument of the γ function in (10) we obtain the 1

N –correction to the inverse resolvent:

z1(s) = −1

s
− γ(−s)

N s
. (11)

2. Compute the R-transform of M(1), defined through

R1(s) ≡ z1(−s)− 1

s
. (12)

Note the unusual presence of a minus sign in the argument of z1 in the above equation, due to the fact that our
resolvent is defined as the opposite of the standard resolvent [18]. Using (11), we obtain

R1(s) =
γ(s)

N s
+ o

(
1

N

)
. (13)
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3. Compute the R-transform of M(L) through

RL(s) = L R1(s) . (14)

Using (13), we obtain,

RL(s) = α
γ(s)

s
+ o(1) , (15)

where the corrections o(1) vanish when both N,L→∞ at fixed ratio α.

4. Write the functional inverse resolvent of M(L) through

zL(s) = RL(−s)− 1

s
= −1 + αγ(−s)

s
. (16)

5. Compute the resolvent sL(z) of M(L). From (16) and (8) we find the implicit equation satisfied by sL:

z = α
∑
k6=0

Γ̂(k)

1 + sL Γ̂(k)
− 1

sL
. (17)

Note that we are eventually interested in the spectral properties of the matrix C with entries

Cij =
1

L

L∑
`=1

Γ
(∣∣r`i − r`j

∣∣) =
1

α
M

(L)
ij . (18)

Obviously, the resolvent s of C is related to the resolvent sL of M(L) through the equation s(z) = α sL(α z). Hence
we obtain our fundamental implicit equation for the resolvent of C:

z =
∑
k 6=0

α Γ̂(k)

α+ s Γ̂(k)
− 1

s
. (19)

III. SPECTRUM OF MERM: REPLICA-BASED DERIVATION

Here we re-derive the implicit equation (17) for the resolvent of M(L) defined in (9) using the replica method coming
from statistical physics of disordered systems. We start by rewriting the definition of the resolvent as

sL(z) =
2

N
∂z

〈
log det

(
M(L) − z Id

)− 1
2

〉
(L)

, (20)

where 〈·〉(L) it’s still the average over the distribution of the matrix (4). With this representation the determinant

det
(
M(L) − z Id

)− 1
2 can be expressed as a canonical partition function:

ZL(s) = det
(
M(L) − z Id

)− 1
2 =

∫ ∏
i

dφi√
2π

exp
(z

2

∑
i

φ2
i −

1

2

∑
ij

φiM
(L)
ij φj

)
, (21)

where i, j go from 1 to N . Notice that it is legit to adopt a real-valued Gaussian representation for the inverse
square root of the determinant. Each ERM M(1) is a correlation matrix, and have real, non-negative eigenvalues;
consequently, M(L), which is the sum of correlation matrices, also has real and non-negative eigenvalues.

Resolvent (20) can be calculated using the replica trick [20]:

sL(z) =
2

N
∂z
〈

logZL(s)
〉

(L)
=

2

N
∂z

[
lim
n→0

1

n
log
〈
ZL(s)n

〉
(L)

]
(22)

with 〈
ZL(s)n

〉
(L)

=

∫ ∏
ia

dφai√
2π

exp
(z

2

∑
a

∑
i

(φai )2
)〈

exp
(
− 1

2

∑
a

∑
ij

φaiM
(L)
ij φaj

)〉
(L)

, (23)
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where we have replicated the system n times, i.e., a goes from 1 to n.
In order to perform the average in (23) we rewrite (4) by considering the `-th space ERM in its eigenbasis:

M
(L)
ij =

1

N

L∑
`=1

Γ
(∣∣r`i − r`j

∣∣) =
∑
`

∑
k6=0

v`ki Γ̂(k) v`kj , (24)

where ` goes from 1 to L, and the sum over k discards the k = 0 extensive mode because as discussed in the previous
section. The eigenvector components, v`ki ' 1√

N
sin
(
2π k · r`i

)
, 1√

N
cos
(
2π k · r`i

)
, are real due to the symmetry

Γ̂(k) = Γ̂(−k). Hence we get〈
exp

(
− 1

2

∑
a

∑
ij

φaiM
(L)
ij φaj

)〉
(L)

=
〈

exp
(
− 1

2

∑
a,`,k6=0

Γ̂(k)
(∑

i

v`kiφ
a
i

)2)〉
(L)

. (25)

We now use the Stratonovich trick to linearize (
∑
i v
`
kiφ

a
i

)2
:〈

exp
(
− 1

2

∑
a,`,k 6=0 Γ̂(k)

(∑
i v
`
kiφ

a
i

)2)〉
(L)

(26)

=
∏
`

∫ ∏
a,k 6=0

dua
`,k√
2π

exp
(
− 1

2

∑
a,k6=0

(
ua`,k

)2)〈
exp

(
− i
∑
a,k6=0

√
Γ̂(k)ua`k

∑
i φ

a
i v
`
ki

)〉
(L)

.

Using the fact that 〈v`ki〉 = 0 and 〈v`kiv`k′ j
〉 = 1

N δijδkk′ it is easy to perform the average in the above equation, with

the result 〈
exp

(
− i

∑
a,k 6=0

√
Γ̂(k)ua`k

∑
i

φai v
`
ki

)〉
(L)

= exp
(
− 1

2

∑
a,b

∑
k6=0

Γ̂(k)qabua`ku
b
`k

)
(27)

where we have defined the overlap qab as

qab =
1

N

∑
i

φai φ
b
i (28)

to be fixed through

1 =

∫ ∏
a≤b

dq̂abdqab

2πi
N

exp
(
N
∑
a≤b

q̂abqab −
∑
a≤b

q̂ab
∑
i

φai φ
b
i

)
. (29)

We can finally write
〈
ZL(s)n

〉
(L)

as

〈
ZL(s)n

〉
(L)

=

∫ ∏
a≤b

dq̂abdqab

2πi
N

exp

{
N

[
log

∫ ∏
a

dφa√
2π

exp
(z

2

∑
a

(φa)2 −
∑
a≤b

q̂abφaφb
)

+
∑
a≤b

q̂abqab + α log

∫ ∏
k6=0,a

duak√
2π

exp
(
− 1

2

∑
k6=0,a

(uak)2 − 1

2

∑
k6=0

∑
a≤b

Γ̂(k)qabuaku
b
k

)]} . (30)

The Gaussian integrals over φa and uak can be easily computed. We then make the Replica Symmetric (RS) Ansatz
on the structure of the order parameters qab and their conjugate variables q̂ab, so that

qab = r + (q − r)δab (31)

and

q̂ab = r̂ + (q̂ − r̂)δab . (32)

The integrals over q, r, q̂ and r̂ are then estimated using the saddle-point method valid for large N , and then taking
the small n limit. The resulting expression for the resolvent of (4) is

sL(z) = 2∂z

[
optq,r,q̂,r̂ lim

n→0
lim
N→∞

1

nN
log
〈
ZL(s)n

〉
(L)

]
= 2∂z

[
optq,r,q̂,r̂f(q, r, q̂, r̂)

]
, (33)
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where f is the free energy density equal to

f(q, r, q̂, r̂) = q̂q − 1

2
r̂r − α

2

∑
k6=0

[
log
(

1 + Γ̂(k)(q − r)
)

+
Γ̂(k)r

1 + Γ̂(k)(q − r)

]
−1

2
log
(

2q̂ − r̂ − z
)
− r̂

2(2q̂ − r̂ − z)

. (34)

The saddle-point equations obtained by optimizing f(q, r, q̂, r̂) with respect to q̂, r̂, q and r read

q = − r̂(
2q̂ − r̂ − z

)2 +
1

2q̂ − r̂ − z , r = − r̂(
2q̂ − r̂ − z

)2 ,

q̂ =
α

2

∑
k 6=0

(
Γ̂(k)

1 + Γ̂(k)(q − r)
− r Γ̂(k)2(

1 + Γ̂(k)(q − r)
)2) ,

r̂ = −α
∑
k6=0

r Γ̂(k)2(
1 + Γ̂(k)(q − r)

)2 . (35)

This system of equations admits r = r̂ = 0 as a solution, which gives, according to (33), the following implicit equation
satisfied by sL(z):

z = α
∑
k6=0

Γ̂(k)

1 + sL Γ̂(k)
− 1

sL
. (36)

This equation is identical to (17) obtained using free probability theory.

IV. APPLICATION AND COMPARISON WITH NUMERICS

A. Numerical computation of the spectrum

We now aim at solving the implicit equation (19) satisfied by the resolvent of C. We show in Fig. 2(a) the
representative curve of z as a function of s around the pole at the origin (s = 0). A set of forbidden disjoint intervals,

z ∈ [z
(m)
− , z

(m)
+ ], with m = 1, ...,M is found, which cannot be reached for real-valued s; the number M of these intervals

is a decreasing function of the ratio α. When z lies in one of these intervals, we look for a solution to equation (19)
with

s = sr + i si , (37)

where the imaginary part si is strictly positive. For z = x + i ε, the density of eigenvalues at x is given by ρ(x) =
limε→0 si(z)/π by virtue of well-known properties of the Stieljes transform. From now on we will indicate with z the
eigenvalue and with ρ(z) the correspondent density, bearing in mind the ε→ 0 limit.

The implicit equations fulfilled by sr and si for z ∈ [z
(m)
− , z

(m)
+ ], with m = 1, ...,M read

z =
∑
k6=0

α2 Γ̂(k)(
α+ sr Γ̂(k)

)2
+
(
si Γ̂(k)

)2 , (38)

1

s2
r + s2

i

=
∑
k6=0

α Γ̂(k)2(
α+ sr Γ̂(k)

)2
+
(
si Γ̂(k)

)2 , (39)

and can be solved numerically. Figure 3 shows the density of eigenvalues for various values of α. We observe the

presence of the disconnected intervals [z
(m)
− ; z

(m)
+ ] corresponding to non-zero density ρ(z), referred to as “connected

components” below. These connected components originate from the discrete spectrum of ERM (with eigenvalues
labelled by k) and progressively merge as α increases (Fig. 2(b)). We now discuss the mechanism leading to merging
in the large |k|, small α regime.
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(a)

z

(b)
z

↵s

(a) (b)

FIG. 2: (a) z vs. s, see (19), close to the origin (s = 0), for different values of α. (b) Support of the spectrum for different
values of α: black segments show the interval of eigenvalues z with non-zero density ρ(z). Results obtained by taking for Γ the
overlap (common length) between segments of length φ0 = .2, centered in points r`i randomly drawn in the unit interval H1

(D = 1), more precisely Γ(|r`i − r`j |) = φ0 − |r`i − r`j |.

B. Merging of density “connected components”: behavior of the density at small α

For small α, we look for a solution of equation (19) near the poles, so that to consider only a value k 6= 0 in the
sum over the modes:

z(k) =
α Γ̂(k)

α+ s(k) Γ̂(k)
− 1

s(k)
. (40)

We find then s(k) such that dz(k)
ds(k) = 0, i.e., where the resolvent has singularities (eigenvalues), obtaining:

s±(k) = − α

Γ̂(k)

(
1±√α

)
, (41)

this implies that the spectrum has the edges located at:

z±(k) =
Γ̂(k)

α

(
1± 2

√
α
)
. (42)

This means that when α become sufficiently small the spectrum develop a connected component in correspondence

of every k 6= 0 centered in zk = 1
2 (z−(k) + z+(k)) = Γ̂(k)

α and of half-width 1
2 (z+(k) − z−(k)) = 2Γ̂(k)√

α
. In order

now to understand how the density of eigenvalues behaves inside these connected components we look to a solution
of equation (40) of the form

s(k) = sr(k) + i si(k) , (43)

so that to finally obtain the parametric equations for the density ρ(z) of eigenvalues equal to z:

ρ(x; k) =
α

3
2

πΓ̂(k)

√
1− x2 , z(x; k) =

Γ̂(k)

α

(
1 + 2x

√
α
)
, (44)

where x ∈ [−1; 1]. This solution makes sense only for the modes k and ratios α such that the local semi-circle
distributions attached to two contiguous eigenvalues do not overlap. More precisely, the ratio α should be smaller
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than

αmerging(k) ' (Γ̂(k)− Γ̂(kc))2

4(Γ̂(k) + Γ̂(kc))2
, (45)

where kc is the momentum vector corresponding to the closest eigenvalue to Γ̂(k). This formula gives the values of the
ratios at which the small connected components of ρ(z) (Figs. 2(b) and 3) successively merge, and is asymptotically
correct for large |k|.

z

z

z

z

⇢
(z

)

⇢
(z

)

⇢
(z

)

⇢
(z

)

↵ = 1 ↵ = 10

↵ = .02 ↵ = .1

z

z

z

z

⇢
(z

)

⇢
(z

)

⇢
(z

)

⇢
(z

)

↵ = 1 ↵ = 10

↵ = .02 ↵ = .1

↵ = 10↵ = 1

↵ = .1↵ = .02

FIG. 3: Density of eigenvalues of C, without the extensive eigenvalue zext, for various values of α. Orange: results from (38).
Blue: outputs of numerical diagonalization for N = 2500. Same model as in Fig. 2.

When α is sufficiently large, all connected components have merged into a single continuous, semi-circle distribution,
as could be expected from the vanishing correlation between the matrix elements of C, centered in z1 = 1

2 (z−+z+) = Γ̂1

and of half-width 1
2 (z+ − z−) = 2

√
Γ̂2/α, with Γ̂1 =

∑
k6=0 Γ̂(k) and Γ̂2 =

∑
k6=0 Γ̂(k)2.
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C. Eigenvectors of MERM and Fourier modes associated to the ERMs

We briefly discuss here the properties of the eigenvectors of MERM. We consider a connected component of eigen-
values originated from the same ERM eigenvalue (labelled by k), see previous section. To quantify how much the
MERM eigenvectors v are related to the 2L eigenvectors (Fourier modes) of the L ERMs, we write

vi =

L∑
`=1

(
γ`

1√
N

cos (2π k · r`i) + δ`
1√
N

sin (2π k · r`i)
)

+Ri , (46)

where γ` and δ` are the projection coefficients onto the 2L ERMs eigenvectors and R is the component of v orthogonal
to this subspace.

The distributions of the coefficients γ`, δ` and of the norm of R are shown in Fig. 4 in the case L = 5 and for
increasing values of N . We observe that

• the magnitude of γ` and δ` seems to be independent of N (Fig. 4(a)), which implies that these coefficients
remain finite as N → ∞. Conversely, the projections of v on Fourier modes attached to a momentum k′ 6= k
vanishes with increasing N , see Fig. 4(b). Hence, v retains some coherence with the 2L eigenvectors of the
ERMs attached to the connected component even in the infinite size limit (provided L remains finite).

• the norm of R seems to get peaked as N grows around a non-zero value. Therefore, v has a substantial
component outside the 2L-dimensional subspaces spanned by the ERM eigenmodes.

Notice that the magnitudes of the γ, δ coefficients and of the norm of R are related to each other through 〈γ2〉 =
〈δ2〉 = (1− 〈R2〉)/L to ensure the normalization of v. The results above were derived for finite L and large N ; in the
double scaling limit where both L,N are large at fixed ratio α, we find that the coefficients γ, δ of the projections on
the Fourier modes attached to the connected component also scale as N−1/2, in accordance with the number of those
modes.

�`, �` �`, �` |R|

⇢
(�

`
,�

`
)

⇢
(�

`
,�

`
)

⇢
(|R

|)

(a) (b) (c)

�`, �` �`, �` |R|

⇢
(�

`
,�

`
)

⇢
(�

`
,�

`
)

⇢
(|R

|)

(a) (b) (c)

�`, �` �`, �` |R|

⇢
(�

`
,�

`
)

⇢
(�

`
,�

`
)

⇢
(|R

|)

(a) (b) (c)

�`, �` �`, �` |R|

⇢
(�

`
,�

`
)

⇢
(�

`
,�

`
)

⇢
(|R

|)

(a) (b) (c)
(a) (b) (c)

FIG. 4: (a) Histogram of the coefficients γ` and δ` for different values of N . Results correspond to the k = 1 connected
component of eigenvalues in dimension D = 1 and for L = 5 spaces, averaged over 50 samples. Same model as in Fig. 2. (b)
Histograms of the projections of eigenvectors v to the k = 2 Fourier modes of the ERMs. (c) Histograms of the norm of the
orthogonal component R, see (46).

V. VARIANTS OF MODEL

The function Γ we have considered so far corresponds to the simple model defined in Fig. 1. In a unit cube HD in
D dimensions, a set of N positions r`i (centres of D-dimensional spheres of volume φ0 < 1) are drawn uniformly and
independently at random for each “map” `.

The term Γ
(∣∣r`i − r`j

∣∣) entering in the correlation matrix (2) is simply the overlap (common volume) between the
two spheres in the same space, see Fig. 1. We consider below three variants of this model, of interest for computational
neuroscience, see Section 6.
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A. Dilution

Let us first consider single-space ERM in which a fraction ρ0 of the N positions (chosen at random among 1, ..., N)
carry vanishingly small spheres, and the remaining points are centers of standard spheres of volume φ0, see Fig. 5(a).

All the entries of ERM M
(1)
ij = Γ(|ri− rj |)/N such that i or j belongs to the first subset (with point-like spheres) are

equal to zero. We are left with a block matrix of dimension (1− ρ0)N × (1− ρ0)N , equal to the ERMs considered so
far with the model of Fig. 1. As a consequence, in the large N limit, the eigenvalues of this block-ERM are equal to
ρ0 Γ̂(k), while the remaining eigenvalues are equal to zero.

The resolvent of this diluted version of ERM in the high-density regime has the same form as (7):

s1(z) = − 1

zN

(
ρ0N +

∞∑
`=1

∑
k 6=0

(|k|≤ρ0N)

Γ̂(k)`
1

z`
+ (1− ρ0)N

)
= −1

z
− 1

N z
γ

(
1

z

)
(47)

where

γ(u) =
∑
k6=0

u ρ0Γ̂(k)

1− u ρ0Γ̂(k)
. (48)

The computation of the functional inverse of the resolvent of the dilute MERM can be done as in the standard case,
and we get:

z =
∑
k6=0

αρ0Γ̂(k)

α+ s ρ0Γ̂(k)
− 1

s
. (49)

We can now solve equation (49) in order to get the density of eigenvalues. The agreement with the spectrum obtained
from numerical simulations is excellent, see Fig. 5(d).

B. Spheres of different volumes

We now discuss the case of a multinomial distribution of sphere volumes. We consider first that, in each space, a
fraction ρ1 of the N spheres have volume φ1, while the remaining fraction ρ2 = 1− ρ1 have volume φ2, see Fig. 5(b).
For every space we build a matrix composed of 4 blocks:

M(1) =
1

N

(
Γ11 Γ12

Γ21 Γ22

)
, (50)

where the block Γab is a ρaN ×ρbN ERM depending on the overlaps between spheres of volumes φa and φb, and with
a, b taking values 1 or 2. We look for eigenvectors of M(1) of components vi(k) ∝ ei 2π k·ri multiplied by αa for the
sites i in the fraction ρa, with a = 1, 2. We obtain the following eigen-system :{

ρ1 Γ̂11(k) α1 + ρ2 Γ̂12(k) α2 = λ(k) α1

ρ1 Γ̂21(k) α1 + ρ2 Γ̂22(k) α2 = λ(k) α2
. (51)

In the system above Γ̂ab(k) = γ̂a(k)γ̂b(k) with a, b taking value 1 or 2 and

γ̂a(k) =

∫
HD

dr γa(r) e−i2πk·r (52)

with γa(r) being the indicator function of the place field of volume φa. We find αa ∝ γ̂a(k) and λ(k) = ρ1(γ̂1(k))2 +
ρ2(γ̂2(k))2.

This result immediately extends to more than two sphere types. If we have K finite (as N →∞) types of spheres,
with associated volumes φa and fractions ρa, with a = 1, ...,K, the eigenvalue of ERM attached to the momemtum k
is given by

λ(k) =

K∑
a=1

ρa (γ̂(k))2 . (53)

It is straightforward to write the resulting self-consistent equation for the MERM resolvent by simply changing

Γ̂(k) → ∑K
a=1 ρa (γ̂aa(k))2 in (19). In Fig. 5(e) we show the perfect agreement of this theoretical result with

numerical simulations.
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C. Multiple spheres per site in each space

We extend the above setting to the case of multiple spheres per site in each space. More precisely, we assume that
for each site i = 1...N , there are c centers r`i,m of spheres, with m = 1, ..., c in each space `, see Fig. 5(c); we assume
that c remains finite as N,L are sent to infinity. The MERM is defined as follows

Cij =
1

L

L∑
`=1

c∑
m,m′=1

Γ
(∣∣∣r`i,m − r`

j,m′

∣∣∣) . (54)

To better understand what happens in this case we consider the limit case of a single map:

M
(1)
ij =

1

N

c∑
m,m′=1

Γ
(∣∣∣ri,m − rj,m′

∣∣∣) . (55)

In the high-density regime the eigenvectors of this ERM have components vi(k) ∝ ∑m e
i 2π k·ri,m with eigenvalues

equal to c Γ̂(k) (for k 6= 0). The only change to the functional inverse of the MERM resolvent is Γ̂(k) → c Γ̂(k), so
that we obtain:

z =
∑
k6=0

α c Γ̂(k)

α+ s c Γ̂(k)
− 1

s
. (56)

We have solved equation (56) in order to get the density of eigenvalues; results are in excellent agreement with
numerics, see Fig. 5(f).

VI. CONCLUSION

In this work we have introduced a novel statistical ensemble for Euclidean random matrices (ERM), where the
element i, j of the matrix depend on the distances between representative points of i and j in more than one space.
Using a combination of heuristic assumptions and analytical and numerical calculation, we have shown that the high-
density limit is non trivial when the number L of spaces and the size N of the matrix are sent to infinity, with a
fixed ratio α = L/N . We have analytically studied the density of eigenvalues of this Multiple-space–ERM (MERM)
ensemble, based on free-probability identities and on the replica method. Our results are in very good agreement with
numerical simulations for all the cases we have considered. We stress that our results are, at this stage, not rigorous,
and we hope that mathematical studies will focus on MERM properties in future.

Our motivation to introduce and study MERM came from computational neuroscience [13], in particular the
modeling of spatial representations in the mammalian hippocampus. The activity of place cells strongly depends on
the position of the animal in the environment, defining spatial place fields in which they are active. Experiments on
rodents and bats show that place fields are approximately disks in two-dimensional environments and spheres in three
dimensions. Our basic model, shown in Fig. 1, assumes that all place fields cover the same area/volume. However,
in the CA3 region of the hippocampus in particular, neurons may have place fields in some environment and none in
other environments, which corresponds to the dilute model introduced in Section 5. In addition, we have introduced
other variants, in which the radius of place fields varies or a place field is made of more than one connected spatial
component, as seen in large environments [21]. While the variants of the model considered here lead to different
densities of eigenvalues z, the behaviours of these densities for z → 0 and α → 0 seem qualitatively robust, which
suggests that the storage capacity of recurrent neural networks is a robust property of the space-to-neural activity
encoding [13].

In addition to the neuroscience motivation reported above, we hope that MERM will find applications and be
of interest in other fields, i.e., in applied mathematics or in information theory. In particular, our results could be
used for functions Γ with a dependence on the pairwise distances different from the ones considered in this article.
From a random matrix point of view, it would also be natural to consider models for MERM, where the statistical
features of the L ERM’s are non independent from space to space. In the context of place cells and fields, it is known
that neurons have some individuality, that is, retain some properties in the different environments. In particular it
was reported experimentally [21, 22] that each place cell has its own propensity to have one place field per square
meter: many neurons have very low propensity values, i.e., have no place field at all in many maps as in Fig. 5(a),
and few neurons that have very high propensity and therefore tend to code almost all maps even with more than
one place field connected component per map (Fig. 5(c)). It would be very interesting to study the consequences
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FIG. 5: Top panels: sketches of the model variants, respectively (a) dilution, (b) spheres of different sizes and (c) multiple
spheres. Bottom panels: (d) Density of eigenvalues for the MERM for φ0 = .2 with different dilution fractions ρ0. (e) Density
of eigenvalues of MERM with different fractions ρφ0=.2 of spheres with volume φ0 = .2 and ρφ0=.4 of spheres with volume
φ0 = .4 in each space. (f) Density of eigenvalues of MERM for φ0 = .2 with c = 2 spheres for each index i in each map.
Parameters: N = 2500, D = 1, α = 1. In all cases we do not show the extensive eigenvalue.

of non-independence between the elementary ERMs composing the MERM on the density of eigenvalues and the
structure of the eigenvectors.
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[20] M. Mézard, G. Parisi and M. Virasoro. “Spin glass theory and beyond: An Introduction to the Replica Method and Its

Applications”. Vol. 9. World Scientific Publishing Company, (1987).
[21] P. D. Rich , H. P. Liaw and A. K. Lee. “Large environments reveal the statistical structure governing hippocampal

representations”. Science, 345(6198), 814-817, (2014).
[22] J. S. Lee, J. Briguglio, S. Romani and A. K. Lee. “The statistical structure of the hippocampal code for space as a function

of time, context, and value”. bioRxiv, 615203, (2019).


