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Abstract

Near-field source localization problem by a passive antenna array makes the assumption that the time-varying

sources are located near the antenna. In this context, the far-field assumption (i.e. planar wavefront) is, of course, no

longer valid and one has to consider a more complicated model parameterized by the bearing (as in the far-field case)

and by the distance, named range, between the source and a reference coordinate system. One can find a plethora of

estimation schemes in the literature, but their ultimate performance in terms of Mean Square Error (MSE) have not

been fully investigated. To characterize these performance, the Cramér-Rao Bound (CRB) is a popular mathematical

tool in signal processing. The main cause for this is that the MSE of several high-resolution direction of arrival

algorithms are known to achieve the CRB under quite general/weak conditions. In this correspondence, we derive

and analyze the so-called conditional and unconditional CRBs for a single time-varying near-field source. In each

case, we obtain non matrix closed-form expressions. Our approach has two advantages: (i) due to the fact that one

has to inverse the Fisher information matrix, the computational cost for a large number of snapshots (in the case of

the conditional CRB) and/or for a large number of sensors (in the case of the unconditional CRB), of a matrix-based

CRB can be high while our approach is low and (ii) some useful information can be deduced from the behavior of

the bound. In particular, an explicit relationship between the conditional and the unconditional CRBs is provided and

one shows that closer is the source from the array and/or higher is the signal carrier frequency, better is the range

estimation.
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I. INTRODUCTION

Passive sources localization by an array of sensors is an important topic with a large number of applications,

such as sonar, seismology, digital communications, etc. Particularly, the context of far-field sources has been widely

investigated in the literature and several algorithms to estimate the localization parameters have been proposed [2].

In this case, the sources are assumed to be far from the array of sensors. Consequently, the propagating waves are

assumed to have planar wavefronts when they reach the array. However, when the sources are located in the so-

called near-field region, the curvature of the waves impinging on the sensors can no longer be neglected. Therefore,

in this scenario, each source is characterized by its bearing and its range.

In array processing, there exist two different models depending on the assumptions about the signal sources: 1) the

so-called conditional model, i.e., when the signals are assumed to be deterministic but unknown. 2) the so-called

unconditional model, i.e., when the signals are assumed to be driven by a Gaussian random process. Each model

is appropriate for a given situation. For example, the assumption of Gaussian source signal is not realistic for

several applications (for example in radar [3] or radio communication applications [4]). A legitimate choice is then

to assume that the emitted signals are deterministic and unknown. On the other hand, in some applications it is

appropriate to model the sources as stationary Gaussian processes (for examples in seismology and tomography [5]).

One can find many estimation schemes adapted to near-field source localization (e.g. [6], [7], [8]), but only a few

number of works studying the optimal performance associated with this model have been proposed. To characterize

the performance of an estimator in terms of Mean Square Error (MSE), the Cramér-Rao bound (CRB) is certainly

the most popular tool [9].

Since, in array processing, two signals models are generally used, it exists two distinct CRB named the Unconditional

CRB (UCRB) and the Conditional CRB (CCRB). More precisely, the UCRB is achieved asymptotically, i.e. for a

large number of snapshots, by the Unconditional Maximum Likelihood (UML) estimator [10]. Whereas, the CCRB is

achieved asymptotically, i.e. at high signal-to-noise ratio, by the Conditional Maximum Likelihood (CML) estimator

[11].

Most of the results concerning the UCRB and the CCRB available in the literature deal with the far-field case.

Moreover, in some works, only closed-form expressions of the Fisher information matrix are given. We call these

cases matrix expression of the CRB since the inversion of the FIM is not presented. On the other hand, we will refer

to a non-matrix expression of the CRB when the inversion of the FIM is proposed. Note that, in the conditional

signal model case, this distinction is fundamental since the size of the parameter vector grows with the number of

snapshots.

In [12], the UCRB was indirectly derived as the asymptotic, in terms of number of snaphots, covariance matrix

of the UML estimator. Ten years after, Stoica et al. [13], Pesavento and Gershman [14] and Gershman et al. [15]

provided a direct (but similar) matrix-based derivation of this bound using the extended Slepian-Bangs formula for

an uniform, a nonuniform and an unknown noise fields, respectively. On the other hand, a matrix-based expression

of the CCRB for the far-field case was derived by Stoica et al. in [16].
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Unlike the far-field case, the CRB for the near-field localization problem has been less studied. One can find in

[17] matrix-based expressions of the UCRB for range and bearing estimation. Ottersten et al. derived a general

matrix-based expressions of the UCRB for unknown parameters associated with the emitted signal [10]. Recently,

Grosicki et al. [6] extended, to the near-field case, the matrix-form expression for the UCRB similar to that given

in [12] in the far-field case. Again, one should note that all the closed-form expressions, given in the literature

and above concerning the near-field case, are matrix-based expressions stopped before the inversion of the Fisher

information matrix. To the best of our knowledge, no non-matrix expressions are available concerning the CCRB

and UCRB for range and bearing estimation in the near-field context. The goal of this paper is to fill this lack.

Particularly, non matrix closed-form expressions of the CRB in the case of a single deterministic (but unknown)

and stochastic time-varying narrow-band source in the near-field region are derived and analyzed. Consequently,

this approach avoids the costly computational cost of the matrix-based CRB expressions particulary for a large

number of snapshots (for the CCRB) and/or for a large number of sensors (for the UCRB). However, it is not

the only reason concerning the usefulness of these non-matrix expressions. Deriving non-matrix expressions of the

CRB enables us to characterize the performance of any unbiased estimator and to use it to deduce some useful

information describing the behavior of the MLE variance as a function of the physical parameters.

This paper is organized as follows. Section II formulates the problem and basic assumptions. In Section III we

present our derivation of the CCRB and the UCRB in the near-field region. Section IV is devoted to the analytical

and numerical analysis of the CRB where we provide a discussion on the CRB’s behavior. Furthermore, simulation

results are provided to validate this theoretical analysis. Finally, conclusions are given in Section V.

Glossary of notation

The following notations are used through the paper. Matrices and vectors are represented by bold uppercase and

bold lowercase characters, respectively. Vectors are, by default, in column orientation, whereas ZT , Z∗, ZH , tr {Z}

and det {Z} denote the transpose, the conjugate, the conjugate transpose, the trace and the determinant of the

matrix Z, respectively. [z]i and [Z]i,k denote the ith element of the vector z and the ith row and the kth column

element of the matrix Z, respectively. Furthermore, <{.}, E {.}, �, ⊗, diag(.), bdiag(.), vec(.), δ(.) and mod(.)

stand for the real part, the expectation, the Hadamard product, the Kronecker product, the diagonal operator, the

block diagonal operator, the vec-operator, the Kronecker symbol and the modulo operator, respectively. 1L and IL

denote the vector of dimension L× 1 filled by ones and the identity matrix of size L× L, respectively. Finally j,

O(ν) and ‖αi‖2 = 1
L

∑L
t=1 α

2
i (t) denote the complex number

√
−1, the terms of order larger or equal to ν and

the normalized norm of the vector αi.

II. PROBLEM SETUP AND ASSUMPTIONS

Consider an Uniform Linear Array (ULA) of N sensors with inter-element spacing d that receives a signal

emitted by a single near-field and narrow-band source. Consequently, the observation model is as follows:

xn(t) = s(t)ej2πτn + vn(t), t = 1, . . . , L, n = 0, . . . , N − 1,
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where xn(t) is the observed signal at the output of the (n + 1)th sensor. In the conditional case, s(t) =

α(t)ej(2πf0t+ψ(t)) is the source signal with a carrier frequency equals to f0 where α(t) and ψ(t) are the real

amplitude and the shift phase, respectively. The random process vn(t) is an additive noise and L is the number

of snapshots. The time delay τn associated with the signal propagation time from the first sensor to the (n+ 1)th

sensor is given by [6]: τn = r
2πλ

(√
1 + n2d2

r2 − 2nd sin θ
r − 1

)
, where λ is the signal wavelength and where r and

θ ∈
[
0, π2

]
denote the range and the bearing of the source, respectively. It is well known that, if the source range

is inside of the so-called Fresnel region [7], i.e.,

0.62
(
d3 (N − 1)3

λ

)1/2

< r < 2d2 (N − 1)2

λ
, (1)

then the time delay τn can be approximated by τn = 1
2π

(
ωn+ φn2

)
+O

(
d2

r2

)
. ω and φ are the so-called electric

angles which are connected to the physical parameters of the problem by: ω = −2π dλ sin(θ) and φ = π d
2

λr cos2(θ).

Then, neglecting O
(
d2

r2

)
in the time delay expression [7], the observation model becomes xn(t) = s(t)ej(ωn+φn2)+

vn(t). Consequently, the observation vector can be expressed as

x(t) = a(ω, φ)s(t) + v(t), (2)

where x(t) = [x0(t) . . . xN−1(t)]T , v(t) = [v0(t) . . . vN−1(t)]T and where the (n + 1)th element of the steering

vector a(ω, φ) is given by [a(ω, φ)]n+1 = ej(ωn+φn2). The noise will be assumed to be a complex circular white

Gaussian random process with zero-mean and unknown variance σ2, uncorrelated both temporally and spatially.

Consequently, the joint probability density function of the observations χ = [xT (1) . . .xT (L)]T given a parameter

vector η is given by:

p(χ|η) =
L∏
t=1

p(x(t)|η) =
1

πNLdet {R}
e−(χ−µ)HR−1(χ−µ),

where R and µ denote the covariance matrix and the average of χ, respectively.

III. CRAMÉR-RAO BOUNDS DERIVATION

The goal of this section is to derive the CCRB and the UCRB with respect to the bearing and the range.

Let E
{
(η̂ − η)(η̂ − η)T

}
be the covariance matrix of an unbiased estimator, η̂, of a deterministic parameter

vector η. The covariance inequality principle states that, under quite general/weak conditions, the variance satisfies:

MSE([η̂]i) = E
{

([η̂]i − [η]i)
2
}
≥ [CRB(η)]i,i where CRB(η) = FIM−1(η). In the following, for sake of

simplicity the notation, CRB([η]i) will be used instead of [CRB(η)]i,i. Since we are working with a complex

circular Gaussian observation model, the
(
ith, kth

)
element of the Fisher Information Matrix (FIM) for the parameter

vector η is well known and can be written as [18]

[FIM(η)]i,k = tr

{
R−1 ∂R

∂ [η]i
R−1 ∂R

∂ [η]k

}
+ 2<

{
∂µH

∂ [η]i
R−1 ∂µ

∂ [η]k

}
. (3)

Note that (3) depends on the assumptions on the parameters of the model (equivalently, on the parameter vector

η) via the probability density function p(χ|η). The remaining of the section is dedicated to the study of two

source models: i) the conditional model for which CFIM(η) and CCRB(η) will denote the conditional FIM and
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the conditional CRB w.r.t. the parameter vector η, respectively; ii) the unconditional model for which UFIM(η)

and UCRB(η) will denote the unconditional FIM and the unconditional CRB w.r.t. the parameter vector η,

respectively. For each case we provide an analytical inversion of the FIM which leads to a non matrix closed-form

expression of the CRB according to the electrical angles. Finally, by using a simple change of variables, we obtain

the (non-matrix) expression of CRB according to the physical parameters (bearing and range) for a single source.

A. The conditional model

First, let us consider the conditional model. Let us define ψ = [ψ(1) . . . ψ(L)]T and α = [α(1) . . . α(L)]T . The

unknown parameter vectors are ξ = [ω φ ψT αT σ2]T or κ = [θ r ψT αT σ2]T depending if we are working

on the electrical angles or on the physical parameters of interest. First, we derive CCRB(ξ). Second, by using

an appropriate change of variables we will deduce CCRB(κ). Note that κ and ξ are assumed to be deterministic

and that their size grows with the number of snapshots. First, let us focus on the derivation of CCRB(ξ). Due to

the conditional model assumption we have R = σ2INL and µ = [s(1)aT (ω, φ) . . . s(L)aT (ω, φ)]T . Consequently,

by applying (3) one obtains

[CFIM(ξ)]i,k =
NL

σ4

∂σ2

∂ [ξ]i

∂σ2

∂ [ξ]k
+

2
σ2
<

{
∂µH

∂ [ξ]i

∂µ

∂ [ξ]k

}
. (4)

1) Block-diagonal structure of the Fisher information matrix: Using (4) and after some tedious, but straightfor-

ward, algebraic calculations, one can easily prove the following lemma:

Lemma 1: The structure of CFIM(ξ) for a single near-field source is given by

CFIM(ξ) = bdiag (Q,Y ) , (5)

in which

Q =


fωω fωφ fωψ

fφω fφφ fφψ

fψω fψφ Fψψ

 , (6)

and Y = bdiag
(

2N
σ2 IL, NLσ4

)
, where the conditional SNR is denoted by CSNR = ||α||2/σ2, fωω =

CSNR LN(N−1)(2N−1)
3 , fφφ = CSNR LN(N−1)(2N−1)(3N2−3N−1)

15 , and fωφ = fφω = CSNR LN
2(N−1)2

2 .

Furthermore, the L× 1 vectors fψω, (fωψ)T , fψφ and (fφψ)T are given by fψω = (fωψ)T = 1
σ2N(N − 1)(α� α)

and fψφ = (fφψ)T = 1
σ2

N(N−1)(2N−1)
3 (α� α). The L× L matrix Fψψ is given by Fψψ = 2N

σ2 diag(α�α).

We notice that, thanks to the time-diversity of the source signal, Fαψ = (Fψα)T are null matrices. We also note

the well-known property that the signal parameters (i.e., ω, φ, ψ, α) are decoupled from the noise variance [19].

The other zero terms are due to the consideration on the real part which appears in (4) applied to purely imaginary

quantities and imply that the amplitude of the signal source α is decoupled from the other model signal parameters

(i.e., ω, φ and ψ).
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a) Analytical inversion: since the size of CFIM(ξ) proposed in (5) is equal to (2L+ 3) × (2L+ 3), it

depends on the number of snapshots. A brute-force numerical inversion to obtain CCRB(ξ) can consequently be

a costly operation. Using an appropriate partition of CFIM(ξ) and after writing analytically the expression of the

inverse of the Schur complement of the square matrix Fψψ in the upper-left block matrix of CFIM(ξ), we can

state the following theorem:

Theorem 1: non matrix closed-form expressions of CCRB(ξ) corresponding to the electrical angles, the

amplitudes and the shift phases relatively to the model (2) exist iff N ≥ 3 and α(t) 6= 0 ∀ t = 1 . . . L.

They are expressed as follows

CCRB(ω) =
6(2N − 1)(8N − 11)

CSNR L(N2 − 1)N(N2 − 4)
, (7)

CCRB(φ) =
90

CSNR L(N2 − 1)N(N2 − 4)
, (8)

CCRB(ψ(t)) =
8N2−12N+4+L‖α‖2(N3+3N2+2N)

CSNR α2(t)N2(N+1)(N+2)
, and CCRB(α(t)) = σ2

2N . Furthermore the cross terms are given

by: [CCRB(ξ)]1,2 = [CCRB(ξ)]2,1 = −90

CSNR LN(N2−4)(N+1)
, [CCRB(ξ)]1,3:3+L = [CCRB(ξ)]3:3+L,1 =

−9(2N−1)

CSNR LN(N+1)(N+2)
1TL , and [CCRB(ξ)]2,3:3+L = [CCRB(ξ)]3:3+L,2 = 15

CSNR LN(N+1)(N+2)
1TL.

Proof: see Appendix A. �

b) Change of variables: even if the model (2) is widely used in array signal processing, its CRB relating

to ξ does not bring us physical information. Then, it is interesting to analyze the CRB regarding the bearing θ

and the range r which are the real physical parameters of the problem. From CCRB(ξ), one can easily obtain

CCRB(κ) by using a change of variables formula (see [19], p. 45): CCRB(κ) = ∂g(ξ)

∂ξT CCRB(ξ)∂g
T (ξ)
∂ξ ,

where κ = g(ξ) =
[
− arcsin

(
ωλ
2πd

)
πd2

λφ cos2
(
arcsin

(
ωλ
2πd

))
ψT αTσ2

]T
. Note that the function g(ξ) is

well-defined iff φ 6= 0 mod(π) which implies θ 6= π
2 mod(π). This condition is intuitive since it corresponds to

the ULA ambiguity situation. Then, if φ 6= 0 mod(π), the Jacobian matrix is given by ∂g(ξ)

∂ξT = bdiag (A, I2L+1) ,

where

A =
−λ

2πd cos(θ)

 1 0

−2r tan(θ) 2r2

d cos(θ)

 . (9)

Consequently, one obtains the following theorem:

Theorem 2: non matrix closed-form expressions of CCRB(κ) corresponding to the bearing, the range, the

amplitude and the shift phases relatively to the model (2) exist iff N ≥ 3 and θ 6= π
2 mod(π) and α(t) 6= 0, ∀t =

1 . . . L and they are given by

CCRB(θ) =
3λ2

2CSNR Ld2π2 cos2(θ)
(8N − 11)(2N − 1)
N(N2 − 1)(N2 − 4)

, (10)

CCRB(r) =
6r2λ2

CSNR Lπ2d4

15r2 + 30dr(N − 1) sin(θ) + d2(8N − 11)(2N − 1) sin2(θ)
N(N2 − 1)(N2 − 4) cos4(θ)

. (11)

Furthermore, the cross terms between θ and r are as follows: [CCRB(κ)]1,2 = [CCRB(κ)]2,1 =
−3λ2r

CSNR Lπ2d3
15r(N−1)+d(8N−11)(2N−1) sin(θ)

N(N2−1)(N2−4) cos3(θ) .
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B. The unconditional model

Let us consider now the unconditional model, i.e., when the signals are assumed to be Gaussian (with zero

mean and variance σ2
s ) independent of the noise. The unknown parameter vectors are ρ = [ω φ σ2

s σ2]T or

ϑ = [θ r σ2
s σ2]T depending if we are working on the electrical angles or on the physical parameters of

interest. We first focus on the derivation of UCRB(ρ). Under the unconditional model assumption, x(t)|ρ ∼

CN (0,R) ∀t = 1, . . . , L, where the covariance matrix R = σ2
sa(ω, φ)aH(ω, φ) + σ2IN . Consequently, the FIM

in (3) becomes [UFIM(ρ)]i,k = L tr
{
R−1 ∂R

∂[ρ]i
R−1 ∂R

∂[ρ]k

}
. The matrix expression of [UCRB(ρ)]1:2,1:2 can be

readily established (we omit the proof since it is obtained in the same way as in [13]) according to

[UCRB(ρ)]1:2,1:2 =
1

2USNR σ2
sL

(
<

{(
DHΠ⊥

a(ω,φ)D
)
�

(
J⊗ aH(ω, φ)R−1a(ω, φ)

)T})−1

, (12)

where USNR = σ2
s

σ2 denotes the unconditional SNR, J = 121T2 , D =
[
∂a(ω,φ)
∂ω

∂a(ω,φ)
∂φ

]
and Π⊥

a(ω,φ) =

IN − a(ω, φ)
(
aH(ω, φ)a(ω, φ)

)−1
aH(ω, φ). In the following we use (12) to derive non-matrix expressions of

UCRB(ρ).

1) Analytical inversion:

Theorem 3: non-matrix expressions of UCRB(ρ) corresponding to the electrical angles are, well-defined iff

N ≥ 3, and are given by:

UCRB(ω) =
(

1 +
1

USNR N

)
6(2N − 1)(8N − 11)

USNR L(N2 − 1)N(N2 − 4)
, (13)

UCRB(φ) =
(

1 +
1

USNR N

)
90

USNR L(N2 − 1)N(N2 − 4)
. (14)

Furthermore the cross terms are given by [UCRB(ρ)]1,2 = [UCRB(ρ)]2,1 =

−
(
1 + 1

USNR N

)
90

USNR LN(N2−4)(N+1)
.

Proof: see Appendix B. �

2) Change of variables: using the same change of variables formula as for theorem 2 one can easily prove

Theorem 4: non matrix closed-form expressions of UCRB(ϑ) corresponding to the range and bearing for a
single narrow-band near-field source are well-defined iff N ≥ 3 and θ 6= π

2 mod(π) and they are expressed as
follows

UCRB(θ) =

„
1 +

1

USNR N

«
3λ2

2USNR Ld2π2 cos2(θ)

(8N − 11)(2N − 1)

N(N2 − 1)(N2 − 4)
, (15)

UCRB(r) =

„
1 +

1

USNR N

«
6r2λ2

USNR Lπ2d4

15r2 + 30dr(N − 1) sin(θ) + d2(8N − 11)(2N − 1) sin2(θ)

N2(N2 − 1)(N2 − 4) cos4(θ)
. (16)

Furthermore, the cross terms between θ and r are given by: [UCRB(ϑ)]1,2 = [UCRB(ϑ)]2,1 =

−
(
1 + 1

USNR N

)
3λ2r

USNR Lπ2d3
15r(N−1)+d(8N−11)(2N−1) sin(θ)

N(N2−1)(N2−4) cos3(θ) .

IV. ANALYSIS OF THE CRB

The goal of this Section is to validate and analyze the proposed closed-form expressions. The behaviors of the

CRB are detailed with respect to physical parameters of the problem.
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Fig. 1. CRB(θ) vs. σ2 for r = 1.25m: a) CCRB(θ), b) UCRB(θ).

Fig. 2. CRB(r) vs. σ2 for (θ, r) = (30o, 1.25m) for different values of f0 = 600, 900, 1800, 3000[MHz]: a) CCRB(r), b) UCRB(r).

A. Conditional and unconditional CRB’s behavior

The scenario used in these simulations is an ULA of N = 6 sensors spaced by d = 0.125m. The number of

snapshots is equal to L = 100 and the location of the source is set as r = 1.25m (which belongs to the Fresnel

region according to (1) for f0 ∈ [600, 1200] MHz). In Fig. 1 and Fig. 2, we compare the CRBs, obtained from

(10), (11), (15) and (16) to the computed CRBs (i.e., computed numerically by inverting the FIM of (3)). For these

simulations, the signal source is a sample of a complex random Gaussian process with variance σ2
s = 10. The

variance of the noise varies from 0.1 to 1. These figures validate our analytic expressions. Moreover, Fig. 3 shows

the dependence of the CCRB(r) and UCRB(r) w.r.t. the carrier frequency f0 and suggests that higher is the carrier

frequency, lower is the bound. Furthermore, from the closed-form expressions given in (10), (11), (15) and (16),

we notice that

• UCRB and CCRB are phase-invariant.

• CCRB(θ) and UCRB(θ) are just bearing-dependent as in the far-field scenario w.r.t. O(1/ cos2(θ)). It means

that the ULA in the near-field case is not isotropic.
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• For large N and fixed inter-spacing sensor, CCRB(θ) and UCRB(θ) in the near-field case tend to the asymptotic

CRBs in the far-field case which are given by 3λ2

SNR2d2π2 cos2(θ)N3 . This is consistent with the intuition since,

due to the Fresnel constraint, large N implies large range, which corresponds to the far-field scenario.

• CCRB(r) and UCRB(r) are bearing-dependent and range-dependent. For r proportional to d, the dependence

w.r.t. the range is O(r2), meaning that nearer is the source better is the range estimation (keeping in mind the

Fresnel constraints).

• The dependence of the range w.r.t. the bearing is O(1/ cos4(θ)). For θ close to π/2 (i.e., close to the ambiguity

situation), we observe that CCRB(r) and UCRB(r) go to infinity but faster than CCRB(θ) and UCRB(θ),

respectively (cf. Fig 1).

• For a sufficient number of sensors, CCRB(θ), UCRB(θ), CCRB(r) and the UCRB(r) are O(1/N3).

• For λ proportional to d, CCRB(θ) and UCRB(θ) are independent of the carrier frequency f0. This is not the

case for CCRB(r) and UCRB(r). Furthermore, note that higher is the carrier frequency, better is the estimation

of the range (cf. Fig. 3).

• Note that the expressions of [CCRB(κ)]1,2, [CCRB(κ)]2,1, [UCRB(ϑ)]1,2 and [UCRB(ϑ)]2,1 show that

the physical parameters of interest are strongly coupled since [CCRB(κ)]1,2 and [UCRB(ϑ)]1,2 are O(1/N3)

as CCRB(θ), CCRB(r), UCRB(θ) and UCRB(r).

• Finally, since UCRB(ω) is O( 1
N3 ) and UCRB(φ) is O( 1

N5 ), thus, for a sufficient number of sensors the

estimation of the so-called second electrical angle φ is more accurate than estimating the first electrical angle ω.

B. Analytical and numerical comparison between the CCRB and the UCRB

Since the conditional model does not make any assumptions on the source, we can chose the phase and the

amplitude of the source as samples of a random process. In this case, we can study an analytical and numerical

comparison between the conditional and the unconditional CRB. Furthermore, we assume that the two physical

quantities CSNR and USNR are equals to the same quantity denoted by SNR.

Fig. 3. CRB(r) vs. f0 for σ2 = 0.5 and different values of θ = 10o, 30o, 50o: a) CCRB(r), b) UCRB(r).
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Fig. 4. CRBs vs. the number of snaphots for N = 10: a) CCRB(θ) and UCRB(θ), b) CCRB(r) and UCRB(r).

Corollary 1: from (7) and (13), one obtains: UCRB(ω)

CCRB(ω)
=

(
1 + 1

SNR N

)
, and UCRB(φ)

CCRB(φ)
=

(
1 + 1

SNR N

)
. In

the same way, from (10) and (15), one obtains: UCRB(θ)

CCRB(θ)
=

(
1 + 1

SNR N

)
, and UCRB(r)

CCRB(r)
=

(
1 + 1

SNR N

)
, i.e.,

UCRB(ω) ≥ CCRB(ω), UCRB(φ) ≥ CCRB(φ) and UCRB(θ) ≥ CCRB(θ), UCRB(r) ≥ CCRB(r) (cf. Fig 4).

Note that, a similar result has been shown in the far-field case in [12].

Furthermore,

• For a fixed N : CCRB(θ) SNR→∞→ UCRB(θ), and CCRB(r) SNR→∞→ UCRB(r).

• For a fixed SNR: CCRB(θ) N→∞→ UCRB(θ) and CCRB(r) N→∞→ UCRB(r).

• And finally, for 1

SNR N
� 1: CCRB(θ) ≈ UCRB(θ) and CCRB(r) ≈ UCRB(r).

V. CONCLUSION

In this paper, the conditional and the unconditional Cramér-Rao bounds are derived in a closed-form expressions

for a single near-field time-varying narrowband source in terms of range and bearing. These expressions are given

in non-matrix forms which are important in order to avoid a costly Fisher information matrix numerical inversion.

Moreover these expressions provide useful information concerning the behavior of the bounds. In this way, the

proposed expressions have been analyzed with respect to the physical parameters of the problem. In particular,

we provided an explicit link between the conditional and the unconditional CRB and we shown that higher is the

carrier frequency and/or closer is the source from the array, better is the estimation of the range.

APPENDIX A

In this appendix we highlight the major steps leading to theorem 1. From (5) one has,

det {CFIM(ξ)} = det {Q} det {Y } = det
{
ΛFψψ

}
det {Fψψ} det {Y } , (17)
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where ΛFψψ denotes the Schur complement w.r.t. the matrix Fψψ . Assuming that α(t) 6= 0, ∀t = 1 . . . L, Fψψ is

invertible and the Schur complement is expressed as follows

ΛFψψ =

fωω fωφ

fφω fφφ

−
fωψ

fφψ

F−1
ψψ

[
fψω fψφ

]
= B − σ2

2N
W diag(α�α)−1W T , (18)

where B = CSNR LN(N − 1)

 (2N−1)
3

N(N−1)
2

N(N−1)
2

(2N−1)(3N2−3N−1)
15

 , and W = 1
σ2

 N(N − 1)
N(N−1)(2N−1)

3

 ⊗ (α� α)T .

Thus, by replacing (18) in (17) one obtains det {CFIM(ξ)} = 1
540

(
2N
σ2

)2L
N2(N2 − 4)(N − 1)2(N +

1)2 ‖α‖2
∏L
t=1 α

2(t). Consequently, det {CFIM(ξ)} 6= 0 iff N ≥ 3 and α(t) 6= 0 ∀t = 1 . . . L. Assuming

N ≥ 3 and α(t) 6= 0 ∀t = 1 . . . L, one has CFIM−1(ξ) = bdiag
(
Q−1,Y −1

)
where Y −1 = bdiag

(
σ2

2N IL, σ
4

NL

)
.

In order to derive Q−1, we use the Schur complement ΛFψψ given in (18). Thus [CCRB(ξ)]1:2,1:2 = Λ−1
Fψψ

.

Since the Schur complement ΛFψψ is a 2× 2 matrix, its inverse is easily derivable and leads to (7), (8). The other

terms are directly derived from the following calculation where

CCRB(ψ) =
σ2

2N
diag(α�α)−1

(
IL +

σ2

2N
W TΛ−1

Fψψ
W diag(α�α)−1

)
[CCRB(ξ)]1:2,3:L+2 =

(
[CCRB(ξ)]3:L+2,1:2

)H
=
−σ2

2N2
Λ−1

Fψψ
W diag(α�α)−1.

APPENDIX B

In this appendix, the dependence on (ω, φ) of a(ω, φ) is omitted for sake of simpliciy. Applying the matrix

inversion lemma [18] to R, one obtains: R−1 = 1
σ2

s

(
aaH + 1

USNR
IN

)−1

= USNR

σ2
s

(
IN − USNR aaH

1+USNR N

)
.

Thus, using the above equation one has

J⊗
(
σ2
sa
HR−1aσ2

s

)T
= σ2

sUSNR

(
N − USNR N2

1 + USNR N

)
J. (19)

On the other hand, the derivation of a w.r.t. ω and φ leads to

[D]i,k = j
(
(i− 1)δ(k − 1) + (i− 1)2δ(k − 2)

)
ej(ωn+φn2) ∀i = 1 . . . N and ∀k = 1, 2.

Consequently,

DHΠ⊥
a D = DHD− 1

N

(
aHD

)H (
aHD

)
=

 ∑N−1
n=0 n

2 − 1
N

(∑N−1
n=0 n

)2 ∑N−1
n=0 n

3 − 1
N

(∑N−1
n=0 n

) (∑N−1
n=0 n

2
)

∑N−1
n=0 n

3 − 1
N

(∑N−1
n=0 n

) (∑N−1
n=0 n

2
) ∑N−1

n=0 n
4 − 1

N

(∑N−1
n=0 n

2
)2

 .
Thus, using the above expression and (19) and after some simplifications, we obtain

<
{
σ4
s

(
DHΠ⊥

a D
)
�

(
J⊗ aHR−1a

)T}
=

U2
SNR LN(N2 − 4)
6USNR N + 6

 15
(N2−1)

15
(N+1)

15
(N+1)

(2N−1)(8N−11)
(N2−1)

 , (20)

which leads to,

det
{
σ4
s<

{(
DHΠ⊥

a D
)
�

(
J⊗ aHR−1a

)T}}
=

1
540

USNR

(
1 +

USNR
N

)
N2(N2 − 4)(N − 1)2(N + 1)2.
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Consequently, det
{
σ4
s<

{(
DHΠ⊥

a D
)
�

(
J⊗ aHR−1a

)T}}
6= 0 ⇔ N ≥ 3. Then, assuming that N ≥ 3 and

replacing (20) in (12) we obtain

[UCRB(ρ)]1:2,1:2 =
(

1 +
1

USNR N

)
6

USNR L(N2 − 4)

 (2N−1)(8N−11)
(N2−1) − 15

(N+1)

− 15
(N+1)

15
(N2−1)

 .
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