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STATISTICAL RESOLUTION LIMIT OF THE UNIFORM LINEAR COCENTRED ORTHOGONAL LOOP AND DIPOLE ARRAY
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Among the family of polarization sensitive crossed-dipole arrays, we can find the so-called Cocentred Orthogonal Loop and Dipole Uniform and Linear Array (COLD-ULA). In this paper, we derive the Statistical Resolution Limit (SRL) characterizing the minimal separation, in terms of the direction of arrivals, to resolve two closely spaced sources. Toward this end, nonmatrix closed form expressions of the deterministic Cramér-Rao Bound (CRB) are derived and thus, the SRL is deduced by a proper change of variable formula. Finally, concluding remarks and a comparison between the SRL of the COLD-ULA and the ULA are given. Particularly, it has been shown that, in the case of orthogonal sources, the SRL for the COLD-ULA is equal to the SRL for the ULA, meaning that it is not a function of polarization parameters. Furthermore, thanks to the derived SRL, it has been shown that generally the SRL of the COLD-ULA is smaller than the one for the ULA.

on the resolvability of closely polarized sources. In this paper we feel this lack. More precisely, the concept of Statistical Resolution Limit (SRL) is used to overcome this problematical point.

The SRL, defined as the minimal separation, in terms of the parameter of interest, to resolve two closely spaced sources, is a challenging problem and essential tool to quantify estimator performance. One can find in the literature three main concepts/approaches to define/derive the SRL: i) the first is based on the concept of mean null spectrum and is relevant to a specific high-resolution algorithm: the Cox criterion [START_REF] Cox | Resolving power and sensitivity to mismatch of optimum array processors[END_REF] is one of the commonly used criterion in this class. Let us consider that two signals are parameterized by ω 1 and ω 2 , the Cox criterion [START_REF] Cox | Resolving power and sensitivity to mismatch of optimum array processors[END_REF] states that these sources are resolved, w.r.t. a given high-resolution algorithm, if the mean null spectrum at each DOAs ω 1 and ω 2 is lower than the mean of the null spectrum at the midpoint ω1+ω2 2 . Twenty years later, Sharman and Durrani proposed the following criterion [START_REF] Sharman | Resolving power of signal subspace methods for nite data lengths[END_REF] two sources are resolved if the second derivative of the mean of the null spectrum at the midpoint ω1+ω2 2 is negative. ii) the second approach is based on detection theory: this approach is based on the statistical decision theory (binary hypothesis testing). Depending on the separation between the parameters of interest (e.g., ω 1 and ω 2 ) one has to decide if one or two sources are present. Since this approach is based on detection theory, the SRL is given versus the probability of false alarm, P f a and/or the probability of detection P d . In this way, Sharman and Milanfar [START_REF] Shahram | On the resolvability of sinusoids with nearby frequencies in the presence of noise[END_REF] considered the problem of distinguishing whether the observed real signals contains one or two frequencies at a given SNR using the Generalized Likelihood Ratio Test (GLRT) under constraints on P f a and P d . On the other hand Liu and Nehorai [START_REF] Liu | Statistical angular resolution limit for point sources[END_REF] used the asymptotic equivalence of the GLRT to characterize the angular SRL. The authors derived the minimum angular separation which allows to resolve two sources knowing the direction of one of them at a given P f a and P d . Recently, Amar and Weiss [START_REF] Amar | Fundamental limitations on the resolution of deterministic signals[END_REF] used the Bayesian approach to determine the SRL of complex sinusoids with nearby frequencies.

iii) the third approach is based on the estimation accuracy concept, more precisely, on the Cramer-Rao Bound (CRB). In fact, since the CRB expresses the ultimate estimation accuracy of any unbiased estimator, consequently, it could be used to define/obtain the SRL. In this context, one can distinguishes between two main criteria: 1) the first one was introduced by Lee in [START_REF] Lee | The Cramér-Rao bound on frequency estimates of signals closely spaced in frequency[END_REF] and states that two signals are resolvable, w.r.t. ω 1 and ω 2 , if the maximum standard deviation is less than twice the difference between ω 1 and ω 2 . Since the CRB is a tight bound (under certain conditions), then the standard deviation, σ ω1 and σ ω2 , of an unbiased estimator can be approximated by CRB(ω 1 ) and CRB(ω 2 ), respectively. Consequently, the SRL is defined in the Lee criterion sense as 2max CRB(ω 1 ), CRB(ω 2 ) (for some applications of these criteria one can see [START_REF] Lee | The Cramér-Rao bound on frequency estimates of signals closely spaced in frequency[END_REF]- [START_REF] Dilaveroglu | Nonmatrix Cramér-Rao bound expressions for high-resolution frequency estimators[END_REF] and references therein.)

However, one can note that the Lee criterion ignores the coupling between the parameters of interest. To take into account this effect, Smith [START_REF] Smith | Statistical resolution limits and the complexified Cramér Rao bound[END_REF] proposed the following criterion: two signals are resolvable, w.r. In [START_REF] Smith | Statistical resolution limits and the complexified Cramér Rao bound[END_REF], Smith derived the SRL for two closely spaced sources, each one modelled by one complex poles. In [START_REF] Delmas | Statistical resolution limits of DOA for discrete sources[END_REF],

Delmas and Abeida derived the SRL based on the Smith criterion for DOA of discrete sources under QPSK, BPSK and MSK source assumptions. More recently, Kusuma and Goyal [START_REF] Kusuma | On the accuracy and resolution of powersum-based sampling methods[END_REF] derived the SRL based on the Smith criterion in sampling estimation problems involving a powersum series. To the best of our knowledge, all works related to the SRL concern the case of non-polarized sources, no studies/results are available concerning the SRL for the polarized sources. The goal of this paper is to fill this lack.

More precisely, we consider the context of deriving the SRL for polarized sources in the Smith sense. This choice is motivated by the following arguments: (1) unlike the SRL based on the mean null spectrum, the SRL based on Smith criterion is not dependent on a certain high-resolution algorithm, (2) the Smith criterion takes into account the coupling between parameters (unlike the Lee criterion), and (3) it exists a relationship between the SRL based on the Smith criterion and the SRL based on detection theory [START_REF] Liu | Statistical angular resolution limit for point sources[END_REF] in the asymptotic case. Taking advantage from this relationship, the SRL based on detection theory is deduced and compared to the SRL based on the Smith criterion.

Consequently, in this paper we derive the minimum Direction-Of-Arrivals (DOA) separation between two polarized sources that allows a correct sources resolvability for the COLD-ULA in the Smith sense. As a by product, we propose a closed-form expression of the true (non-asymptotic) deterministic CRB.

The paper is organized as follows. We first begin by introducing the model and problem setup in Section I. Section II is devoted to the derivation of the deterministic CRB in closed-form expressions. In Section III, we deduce the SRL for polarized sources from the CRB derivation. Next, comparisons between the SRL of the COLD-ULA and the ULA are given in Section IV. Finally, concluding remarks are given in Section V.

II. MODEL SETUP

Consider a COLD-ULA of L COLD sensors (a COLD sensor is formed by a loop and a dipole) with interelement spacing d that receives a signal emitted by M radiating far-field and narrowband sources. Assuming that the array and the incident signals are coplanar [START_REF] Li | Efficient direction and polarization estimation with a COLD array[END_REF], i.e., the elevation is fixed to π 2 , the signal model observed on the -th COLD sensor at the t-th snapshot is given by [START_REF] Li | Efficient direction and polarization estimation with a COLD array[END_REF], [START_REF] Li | Angle and polarization estimation using esprit with a polarizationsensitive array[END_REF] 

x (t) =   xloop (t) x dipole (t)   = M m=1 α m (t)u m z m + v (t),
where

∈ [0 : L-1] and t ∈ [1 : N ].
Parameter N is the number of snapshots. z m = e iωm where ω m = 2π λ d sin(θ m ) is the spatial phase factor in which θ m and λ are the azimuth of the m-th source and the wavelength, respectively.

The time-varying source is given by1 α m (t) = a m e i(2πf0+φm(t)) in which a m is the non-zero real amplitude, φ m (t) is the time-varying modulating phase and f 0 denotes the carrier frequency of the incident wave. The additive thermal noise is denoted by

v (t) = v loop (t) v dipole (t)
T in which the random processes v loop (t) and v dipole (t) are an additive noise. The polarization state vector u m is given by

u m =   2iπA sl λ cos(ρ m ) -L sd sin(ρ m )e iψm  
, where ρ m ∈ [0, π/2] and ψ m ∈ [-π, π] are the polarization state parameters. From a modeling point of view, each dipole in the array is assumed to be a short dipole (w.r.t. the distance d) with the same length L sd and each loop is assumed to be a short loop (w.r.t. the distance d) with the same area A sl . Under these assumptions, the total output vector received by the COLD-ULA for the t-th snapshot can be written as follows

y(t) =      x 0 (t) . . . x L-1 (t)      = M m=1 A m (t)d m +      v 0 (t) . . . v L-1 (t)      , (1) 
where 

A m (t) = I L ⊗ (α m (t)u m ) is of size (2L) × L in

III. DETERMINISTIC CRAM ÉR-RAO BOUND DERIVATION

In the remaining of the paper, we will use the following assumptions:

A1. The noise is assumed to be a complex circular white Gaussian random noise with zero-mean and unknown variance σ 2 .

A2. The noise is assumed to be both temporally and spatially uncorrelated.

A3. The sources are assumed to be known and deterministic (c.f., [START_REF] Li | Maximum likelihood angle estimation for signals with known waveforms[END_REF]- [START_REF] Cedervall | Efficient maximum likelihood DOA estimation for signals with known waveforms in presence of multipath[END_REF] and/or in data aided case [START_REF] Renaux | Weiss-Weinstein bound for data aided carrier estimation[END_REF]). The unknown parameters vector is then given by ξ = [ω 1 ω 2 σ 2 ] T in which ω i = 2π λ d sin(θ i ). A4. Furthermore, from a modeling point of view, we can assume, without loss of generality, that L sd = 2πA sl λ = 1.

Using A1. and A2. the joint probability density function of the observations χ = y T (1) . . . y T (N ) T given ξ can be written as follows p( χ| ξ) =

1 π 2N L det(R) e -(χ-µ) H R -1 (χ-µ) , where R = σ 2 I 2N L and µ = 2 m=1      A m (1)d m . . . A m (N )d m     
.

Let E ( ξξ)( ξξ) T be the covariance matrix of an unbiased estimate of ξ, denoted by ξ. The covariance inequality principle states that under quite general/weak conditions MSE(

[ ξ] i ) = E [ ξ] i -[ξ] i 2 ≥ CRB([ξ] i ),
where CRB([ξ] i ) = [FIM -1 (ξ)] i,i in which FIM(ξ) denotes the Fisher Information Matrix regarding to the vector parameter ξ.

Since we are working with a Gaussian observation model (assumption A.1), the i th , j th element of the FIM for the parameter vector ξ can be written as [START_REF] Stoica | Spectral Analysis of Signals[END_REF] [

FIM(ξ)] i,j = N L σ 4 ∂σ 2 ∂ [ξ] i ∂σ 2 ∂ [ξ] j + 2 σ 2 ∂µ H ∂ [ξ] i ∂µ ∂ [ξ] j , February 4, 2010 DRAFT
where (i, j) ∈ [1, 2, 3] 2 , [z] i and {z} denote the i th element of z and the real part of z, respectively. Then, the FIM for the proposed model is block-diagonal

FIM(ξ) = 2 σ 2   F 0 0 N L 2σ 2   , (2) 
where

[F] m,p = ∂µ H ∂ω m ∂µ ∂ω p = N r N u H m u p d H m D 2 d p + K mp , (m, p) ∈ [1, 2] 2 , ( 3 
)
in which D = diag{0, . . . , L -1}, r N = 1 N N t=1 α * 1 (t)α 2 (t)
and

K mp = ∂u H m ∂ω m ∂u p ∂ω p d H m d p -iu H m ∂u p ∂ω p d H m Dd p + i ∂u m ∂ω m u H p d H m Dd p .
Using the fact that the polarization state vector of a COLD array is not a function of the direction parameter 2 , thus ∂u m /∂ω m = 0, consequently K mp = 0 and (3) becomes

[F] mp = N r N u H m u p d H m D 2 d p . Furthermore, as ||u m || 2 = 1, one obtains [F] 1,1 = N a 2 1 α, [F] 2,2 = N a 2 2 α and [F] 1,2 = [F] 2,1 = N r N u H 1 u 2 η where α = 1 6 (L -1)L(2L -1), u H 1 u 2 = cos(ρ 1 ) cos(ρ 2 ) + sin(ρ 1 ) sin(ρ 2 )e i(ψ2-ψ1) and η = L-1 =0 2 e -i(ω1-ω2) = L-1 =0 2 e -isgn(ω1-ω2)δ (COLD) ω ,
where we have δ

(COLD) ω = |ω 1 -ω 2 | and sgn(z) = z
|z| for z = 0. To simplify the derivations and without loss of generality, we choose ω 1 > ω 2 in the following. Consequently, the inverse of the FIM is given by

F -1 = 1 N det{F}   a 2 2 α -r N u H 1 u 2 η -r N u H 1 u 2 η a 2 1 α   , (4) 
where det{F} = a 2 1 a 2 2 α 2 -2 r N u H 1 u 2 η . Finally, replacing (2) and (4) in CRB(ξ) = FIM -1 (ξ), the CRBs are given by

CRB(ω 1 ) = [F -1 ] 1,1 = σ 2 2N a 2 2 α a 2 1 a 2 2 α 2 -2 {r N u H 1 u 2 η} , (5) 
CRB(ω 2 ) = [F -1 ] 2,2 = σ 2 2N a 2 1 α a 2 1 a 2 2 α 2 -2 {r N u H 1 u 2 η} , (6) 
CRB(ω 1 , ω 2 ) = [F -1 ] 1,2 = - σ 2 2N {r N u H 1 u 2 η} a 2 1 a 2 2 α 2 -2 {r N u H 1 u 2 η} . (7) 
In the next section, we will use the derived CRBs ( 5), ( 6) and ( 7) to derive the SRL for the proposed model. 2 Remark that this is not the case for standard crossed-dipole antenna. This nice property of the COLD array allows to considerably simplify the analysis of the SRL.
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IV. STATISTICAL RESOLUTION LIMIT

To resolve two sources, Smith [START_REF] Smith | Statistical resolution limits and the complexified Cramér Rao bound[END_REF] proposed the following criterion: Two sources are resolvable if standard deviation of source separation ≤ source separation Consequently, Smith defined the SRL as the source separation at which the equality in the above inequality is achieved, in other words, he defined the SRL as the source separation that is equal to its own CRB's square root.

A. Statistical resolution limit for a COLD-ULA

Let ξ denote the parameter vector [δ

(COLD) ω σ 2 ] T where δ (COLD) ω
is the SRL. Then, from CRB(ξ), one can deduce CRB( ξ) by using the change of variable formula

CRB( ξ) = ∂ ξ ∂ξ T CRB(ξ) ∂ ξT ∂ξ , (8) 
where the Jacobian matrix is

∂ ξ ∂ξ T =   sgn(ω 1 -ω 2 ) -sgn(ω 1 -ω 2 ) 0 0 0 1   .
Note that sgn(ω 1 -ω 2 ) = 1 since we have assumed ω 1 > ω 2 . Consequently, considering the (1, 1)-th term in expression ( 8), we have

CRB(δ (COLD) ω ) = CRB(ω 1 ) + CRB(ω 2 ) -2CRB(ω 1 , ω 2 ). (9) 
Finally, the SRL 3 is defined as the minimal separation δ (COLD) ω which resolves the following implicit equation:

δ (COLD) ω = CRB(δ (COLD) ω ) ⇐⇒ f (δ (COLD) ω ) = c, (10) 
where f (δ

(COLD) ω ) = 2N σ 2 def {F} δ (COLD) ω 2 + 2CRB(ω 1 , ω 2 )
, and where c = a 2 1 + a 2 2 α which is not a function of the SRL.

1) The orthogonal sources case: In case of orthogonal sources we have r N = 0. This implies that the FIM is diagonal leading to decoupled parameters of interest. So, as f (δ [START_REF] Amar | Fundamental limitations on the resolution of deterministic signals[END_REF], the SRL, denoted by

(COLD) ω = 0) in
δ (COLD-O) ω
, is given by δ

(COLD-O) ω = σ √ 2N α (a 2 1 +a 2 2 ) a 2 1 a 2 2 .
For orthogonal sources, it can be readily checked that the SRL is not a function of the polarization parameters. So, the use of the COLD array cannot improve the resolvability of the sources in this scenario. For equipowered sources (a 1 = a 2 = a) and for a large number of sensors (L 1), the SRL can be approximated by

δ (COLD-O) ω ≈ √ 6 N 1/2 SNR 1/2 L 3/2 ,
where SNR = a 2 /σ 2 . Note that the SRL is proportional to the square root of the number of snapshots, to the square root of the SNR and to L √ L. Furthermore, also note that, the SRL obtained here is, qualitatively, consistent with the SRL derived in [START_REF] Amar | Fundamental limitations on the resolution of deterministic signals[END_REF], [START_REF] Delmas | Statistical resolution limits of DOA for discrete sources[END_REF] in the case of a classical ULA array.

3 From ( 9), one should note that the SRL using Smith's criterion [START_REF] Smith | Statistical resolution limits and the complexified Cramér Rao bound[END_REF] takes into account the coupling between the parameters of interest unlike Lee's criterion [START_REF] Lee | The Cramér-Rao bound on frequency estimates of signals closely spaced in frequency[END_REF].
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2) The non-orthogonal sources case: Considering the first-order Taylor expansion of the functional η, in δ (COLD) ω = 0, one obtains, for δ 9) for non-orthogonal sources (r N = 0) becomes, for δ

(COLD) ω L 1, η ≈ L-1 =0 2 1 + iδ (COLD) ω = α + iβδ (COLD) ω , where β = L-1 =0 3 = 1 4 (L -1) 2 L 2 . Expression (
(COLD) ω L 1, δ (COLD) ω 2 1 = σ 2 2N A + 2B -2δ (COLD) ω B C 2 -(B -δ (COLD) ω B) 2 , ( 11 
)
where 11) is in fact the resolution of a fourth-order polynom given by 2N Bx

A = (a 2 1 + a 2 2 )α, B = α {r N u H 1 u 2 }, B = β {r N u H 1 u 2 }, and C = a 1 a 2 α. Expression (
4 + 4N B Bx 3 + 2N (B 2 -C 2 )x 2 -2σ 2 Bx + σ 2 (A + 2B) = 0, where x = δ (COLD) ω
. Unfortunately, this leads to intractable solutions for the SRL. By assuming that x4 and x 3 can be neglected for a sufficiently small x, then the new polynomial equation is

2N (B 2 -C 2 )x 2 -(2σ 2 B)x + σ 2 (A + 2B) = 0.
The discriminant is given by ∆ = 4σ 4 B2 + 8σ 2 N (C 2 -B 2 )(A + 2B). By assuming that the noise variance 4 is low, then the discriminant becomes ∆ ≈ 8σ 2 N (C 2 -B 2 )(A + 2B) by discarding the term in O(σ 4 ). We have

∆ ≥ 0 if in particular C 2 ≥ B 2 and A ≥ -2B. The first condition is equivalent to N ≥ κ where κ = { N t=1 e i(φ2(t)-φ1(t)) u H 1 u 2 } and the second one corresponds to N a 2 1 +a 2 2 2a1a2 ≥ -κ. Consequently, N ≥ |κ| =⇒ ∆ ≥ 0, (12) 
where |.| denotes the absolute value of a real number or the modulus of a complex number. Since | {xy}| ≤ {xy} 2 + {xy} 2 = |xy| ≤ |x| |y|, then, for a fixed t, one has

{e i(φ2(t)-φ1(t)) u H 1 u 2 } ≤ e j(φ2(t)-φ1(t)) u H 1 u 2 ≤ 1.
Thus,

{ N t=1 e i(φ2(t)-φ1(t)) u H 1 u 2 } ≤ N t=1 {e i(φ2(t)-φ1(t)) u H 1 u 2 } ≤ N.
Consequently, |κ| ≤ N and from [START_REF]The Cramér-Rao bound on frequency estimates of signals closely spaced in frequency (unconditional case)[END_REF] one deduces that ∆ ≥ 0. Among the two possible solutions, we discard the negative one leading to

δ (COLD) ω ≈ - √ ∆ 4N (B 2 -C 2 ) = σ √ 2N α (a 2 1 + a 2 2 ) + 2 {r N u H 1 u 2 } a 2 1 a 2 2 -2 {r N u H 1 u 2 } , (13) 
where we have discarded the term in O(σ 2 ) at the numerator since

√ ∆ ∼ O(σ).
We notice that the SRL depends on the state vector parameter. 

B. Comparison with literature results

There exists some literature results on the SRL in the case of non-polarized far field sources [START_REF] Shahram | On the resolvability of sinusoids with nearby frequencies in the presence of noise[END_REF], [START_REF] Amar | Fundamental limitations on the resolution of deterministic signals[END_REF]- [START_REF] Smith | Statistical resolution limits and the complexified Cramér Rao bound[END_REF]. In general, the extension to the polarized far field source case can be difficult and may require a deepest study which is beyond the scope of this paper. However, the Liu and Nehorai work [START_REF] Liu | Statistical angular resolution limit for point sources[END_REF] can be extended to the polarized far field source case. Consequently, using the detection theory and the same method as in [START_REF] Liu | Statistical angular resolution limit for point sources[END_REF], the asymptotic SRL based on detection theory is given (proof: see appendix A) as the solution of

δ detection = ρ CRB(δ detection ), (14) 
where the so-called translator factor, ρ, is determined numerically, for a given probability of detection P d and a

given probability of false alarm P f a , as the solution of Q -1

χ 2 2 (ρ) (P d ) = Q -1 χ 2 2 (P f a ) in which Q -1 χ 2 2
(.) and Q -1 χ 2 2 (ρ) (.) denote the inverse of the right tail probability of the central chi-squared pdf χ 2 2 and the noncentral chi-squared pdf χ 2 2 (ρ), respectively (c.f., Fig. 1).

Remark 1:

The test hypothesis used to derive (14) (c.f., appendix A) is a binary one-sided test and the MLE used is an unconstrained estimator, thus, one can deduce that the GLRT, used to derive the asymptotic SRL, is [START_REF] Kay | Fundamentals of Statistical Signal Processing : Detection Theory[END_REF]: . The derivations are not reported here since they are similar to the ones presented for the COLD array. However, it is surprizing to note that the SRL for the ULA array with multiple snapshots has not been fully investigated in the current state of art.

A. Comparison in the orthogonal sources case

In the case where the sources are orthogonal (i.e., r N = 0), one obtains (after calculus) δ

(ULA-O) ω = δ (COLD-O) ω
meaning that the COLD-ULA and the classical ULA have the same resolvability capacity.

B. Comparison in the non-orthogonal sources case

In the case where the sources are non-orthogonal, we have (after calculus)

δ (ULA) ω ≈ σ √ 2N α (a 2 1 + a 2 2 ) + 2 {r N } a 2 1 a 2 2 -2 {r N } . (15) 
Thus, from ( 13) and ( 15), one can check that

δ (COLD) ω ≤ δ (ULA) ω iff {r N } ≥ {r N u H 1 u 2 }. (16) 
As 

{r N u H 1 u 2 } = {r N } {u H 1 u 2 } -{r N } {u H 1 u 2 } and {u H 1 u 2 } ≤ 1, condition ( 
T G (y) = LnL G (y) > H1 ς = Lnς ( 19 
)
Deriving and analysing the SRL from [START_REF] Li | Computationally efficient angle estimation for signals with known waveforms[END_REF] seems to be hard and even intractable in some cases (due especially to the derivation of δdetection ). Consequently, in the following we consider the asymptotic case. In [START_REF] Kay | Fundamentals of Statistical Signal Processing : Detection Theory[END_REF] it was proven that, for a large number of snapshots, the statistic T G (y) in ( 19) is equivalent to

T G (y) ∼      χ 2 2 under H 0 χ 2 2 (ρ ) under H 1 ( 20 
)
where χ 2 2 and χ 2 2 (ρ ) denote the central chi-square and the noncentral chi-square pdf with degree of freedom equal to two (one should note that in the case of real data, the degree of freedom becomes equal to one.) The noncentral parameter ρ is given by (see e.g., [START_REF] Kay | Fundamentals of Statistical Signal Processing : Detection Theory[END_REF])

ρ = δdetection CRB( δdetection ) -1 δdetection (21) 
since we consider the asymptotic case, thus (21) becomes δ 2 detection = ρ CRB(δ detection ), consequently, δ detection = ρ CRB(δ detection ) where √ ρ = ρ represent the so-called translation factor [START_REF] Liu | Statistical angular resolution limit for point sources[END_REF] which is determined thanks to the probability of detection P d and the probability of false alarm P f a as follows P f a = Q χ 2 2 (ς) and P d = Q χ 2 2 (ρ 2 ) (ς) where Q χ 2 2 (.) and Q χ 2 2 (ρ 2 ) (.) denote the right tail probability of χ 2 2 and χ 2 2 (ρ 2 ), respectively. Which conclude the proof.

  which the operator ⊗ stands for the Kronecker product. The steering vector is defined by d m = 1 e iωm . . . e i(L-1)ωm T . Since the problem addressed herein is to derive the SRL based on the CRB for the proposed model, we first start by deriving the CRB for (1) in the case of M = 2 known sources.

Fig. 1 . 2 and Q χ 2 2

 122 Fig. 1. Illustration of the right tail probability Q χ 2 2 and Q χ 2 2 (ρ) for ρ = 3.

1 )Fig. 2 .

 12 Fig. 2. Comparison with literature results: (left) The translation factor ρ vs. the probability of detection P d for a fixed probability of false alarm P f a = 0.1. (right) The SRL vs. σ 2 for N = 100: the approximated SRL based on (13) is in good agreement with the exact SRL, which validate the closed-form expression given in[START_REF] Dilaveroglu | Nonmatrix Cramér-Rao bound expressions for high-resolution frequency estimators[END_REF]. Furthermore, one can notice that, for example, for P d = 0.37 and P f a = 0.1 the SRL based on the CRB (13) is almost equal to the SRL based on detection theory[START_REF] Liu | Statistical angular resolution limit for point sources[END_REF] derived in the asymptotic case. From the case P d = 0.49 and P f a = 0.3 or/and P d = 0.32 and P f a = 0.1, one can notice the influence of the translation factor ρ on the SRL.

  [START_REF] Kusuma | On the accuracy and resolution of powersum-based sampling methods[END_REF]) is satisfied for {r N } = 0 or/and {u H 1 u 2 } = 0. Consequently, we have δ C1. if the signals are real and positive, i.e., {r N } = 0 or with the same phase, i.e., φ 1 (t) = φ 2 (t), ∀t.Let us consider the following binary hypothesis test where H 0 and H 1 represent, the presence of one signal and the presence of two signals, respectively. Consequently, following the same line as in[START_REF] Liu | Statistical angular resolution limit for point sources[END_REF],one can formulate the hypothesis test, as a simple one-sided binary test hypothesis as follows: detection denotes the SRL based on detection theory such that δ detection = |ω 1 -ω 2 |. To derive the SRL based on the detection theory, we consider the GLRT[START_REF] Kay | Fundamentals of Statistical Signal Processing : Detection Theory[END_REF]:L G (y) = p(y| δdetection , σ1 , H 1 ) p(y|σ 0 , H 0 ) > H1 ς(18)where δdetection , σ1 and σ0 denote the Maximum Likelihood Estimate (MLE) of δ detection under under H 1 , the MLE of σ under H 1 and the MLE of σ 0 under H 0 , respectively, in which ς denotes the test threshold. From (18),

				
				  H 0 : δ detection = 0	(17)
				  H 1 : δ detection > 0
	where δ one obtains			
	(COLD) ω	< δ	(ULA) ω	for the following cases:
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Note that this source model is commonly used in many digital communication systems (see[START_REF] Li | Efficient direction and polarization estimation with a COLD array[END_REF] and references therein).February 4, 

DRAFT

Recall that the deterministic CRB is meaningless for large noise variance[START_REF] Renaux | On the high SNR conditional maximum-likelihood estimator full statistical characterization[END_REF]. February 4, 2010 DRAFT

This project is funded by region Île de France and Digeteo Research Park and Martin Haardt.

C2. if ψ

Besides C1., C2. and C3., in Fig. 3 we plot

versus the polarization state parameters ρ and ψ. Consequently, from (16

. Fig. 3 suggests that generally δ

only for a small region (which corresponds to the part of the plot that is under the horizontal plan). This means that generally, the SRL for the COLD-ULA is smaller than the one for the ULA.

VI. CONCLUSION

In this paper, we derived the deterministic CRB in a nonmatrix closed form expression for two polarized far-field time-varying narrowband known sources observed by a COLD-ULA. Taking advantage of these expressions, we deduced the SRL for the COLD-ULA which was compared to the SRL for the ULA. We noticed that, surprisingly, in the case where the sources are orthogonal, the SRL for the COLD-ULA is equal to the SRL for the ULA, meaning that it is not a function of polarization parameters. Furthermore, for non-orthogonal sources, we gave a sufficient and a necessary condition such that the SRL for the COLD-ULA is less than the SRL for the ULA. By analytical expressions and numerical simulations we shown that the SRL for the ULA is less than the SRL for the COLD-ULA only for few cases, meaning that generally the performance of the COLD-ULA is better than the performance of the ULA.

APPENDIX A
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