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ABSTRACT

It is well known that in non-linear estimation problems the
ML estimator exhibits a threshold effect, i.e. a rapid de-
terioration of estimation accuracy below a certain SNR or
number of snapshots. This effect is caused by outliers and
is not captured by standard tools such as the Cramér-Rao
bound (CRB). The search of the SNR threshold value can
be achieved with the help of approximations of the Barankin
bound (BB) proposed by many authors. These approxima-
tions may result from linear or non-linear transformation (dis-
crete or integral) of the uniform unbiasedness constraint intro-
duced by Barankin. Additionally, the strong analogy between
derivations of deterministic bounds and Bayesian bounds of
the Weiss-Weinstein family has led us to propose a conjec-
tural bound which outperforms existing ones for SNR thresh-
old prediction.

Index Terms— Parameter estimation, mean-square-error bounds,
SNR threshold

1. INTRODUCTION

Minimal performance bounds allow for calculation of the best per-
formance that may be achieved, in the Mean Square Error (MSE)
sense, when estimating a set of model parameters from noisy obser-
vations. Historically the first MSE lower bound for deterministic pa-
rameters to be derived was the Cramér-Rao Bound (CRB) [4], which
has been the most widely used since. Its popularity is largely due to
its simplicity of calculation leading to closed-form expressions use-
ful for system analysis and design. Additionally, the CRB can be
achieved asymptotically (high SNR and/or large number of snap-
shots) by Maximum Likelihood Estimators (MLE), and last but not
least, it is the lowest bound on the MSE of unbiased estimators, since
it derives from a local formulation of unbiasedness in the vicinity of
the true parameters [2]. This initial characterization of locally un-
biased estimators has been improved first by Bhattacharyya’s works
[4] which refined the characterization of local unbiasedness, and sig-
nificantly generalized by Barankin works [1], who established the
general form of the greatest lower bound on MSE (BB) taking into
account a uniform unbiasedness definition (eq. (1)). Unfortunately
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the BB is the solution of an integral equation with a generally in-
computable analytic solution (eq. (8)).
Therefore, since then, numerous works detailed in [2][3] have been
devoted to deriving computable approximations of the BB and have
shown that the CRB and the BB can be regarded as key representa-
tives of two general classes of bounds, respectively the Small-Error
bounds and the Large-Error bounds. These works have also shown
that in non-linear estimation problems three distinct regions of op-
eration can be observed. In the asymptotic region, i.e. at a high
number of independent snapshots and/or at high SNR, the MSE is
small and, in many cases, close to the Small-Error bounds. In the a
priori performance region where the number of independent snap-
shots and/or the SNR are very low, the observations provide little
information and the MSE is close to that obtained from the prior
knowledge about the problem. Between these two extremes, there is
a transition region where MSE of MLEs usually deteriorates rapidly
with respect to existing MSE lower bounds (Large or Small) and ex-
hibits a threshold behaviour, which corresponds to a ”performance
breakdown” of the estimators due to the appearance of outliers.
Small-Error bounds are not able to handle the threshold phenomena,
whereas it is revealed by Large-Error bounds that can be used to
predict the threshold value. On the other hand, Large-Error bounds
suffer from their computational cost. Indeed, each BB approxima-
tion request the search of an optimum over a set of test points and
their tightness depends on the chosen set of test points.
And tightness is the matter, since a more accurate knowledge of the
BB allows a better prediction of the SNR threshold value.
Therefore, at least two strategies can be adopted.
The first one is the most consistent with deductive reasoning applied
to the unbiasedness paradigm. This strategy, fully mastered from
the mathematics and the meaning point of view, provides derivable
bounds and relies on the introduction a general class of possible
transformations (eq. (11)) of the uniform unbiasedness constraint
(eq. (1)), i.e. the mixture of integral linear and non-linear transfor-
mations, opening a wide variety of directions in the search of com-
putable tighter BB approximations.
The second one is partially consistent with deductive reasoning since
it may be based - see our example Section 3 - on analogies between
families of lower bounds without the support of a non-questionnable
derivation and interpretation. And yet, but nevertheless this strategy
may yield some conjectural bounds tightest than the existing and
well-estabished ones.



2. DERIVABLE LOWER BOUNDS

2.1. Linear transformations of the unbiasedness constraint

For the sake of simplicity we will focus on the estimation of a single
real function g (θ) of a single unknown real deterministic parameter
θ. In the following, unless otherwise stated, x denotes the random
observation vector of dimension M , Ω the observations space, and
p (x; θ) the probability density function (p.d.f.) of x depending on
θ ∈ Θ, where Θ denotes the parameter space. Let L2 (Ω) be the real
Hilbert space of square integrable functions over Ω.
In the search for a lower bound on the MSE of unbiased estimators,
two fundamental properties of the problem at hand, introduced by
Barankin [1], must be noticed. The first property is that the MSE

of a particular estimator ĝ
(
θ0

)
(x) ∈ L2 (Ω) of g

(
θ0

)
, where θ0

is a selected value of the parameter θ, is a norm associated with a
particular scalar product 〈 | 〉θ:
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The second property is that an unbiased estimator ĝ
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(x) of g (θ)

should be uniformly unbiased, i.e. for all possible values of the un-
known parameter θ ∈ Θ it must satisfy:
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where ν (x; θ) = p(x;θ)

p(x;θ0)
denotes the Likelihood Ratio (LR). As a

consequence, the locally-best (at θ0) unbiased estimator is the solu-
tion of a norm minimization under linear constraints
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{
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solution that can be obtained by using the norm minimization lemma

min
{
uHu under cH

k u = vk, 1 ≤ k ≤ K
}

= vHG−1v

uopt =
K∑

k=1

αkck, α = G−1v, Gn,k = cH
n ck

. (2)

Unfortunately, as shown hereinafter, if Θ contains a continuous
subset of R, then the norm minimization under a set of an infinite
number of linear constraints (1) leads to an integral equation (8)
with no analytical solution in general. Therefore, since the original
work of Barankin [1], many studies [2, and references therein][3]
have been dedicated to the derivation of “computable” lower bounds
approximating the MSE of the locally-best unbiased estimator (BB).
All these approximations derive from sets of discrete or integral
linear transform of the ”Barankin” constraint (1), and accordingly of
the LR, and can be obtained using the following simple rationale.
Let θN =
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θ1, . . . , θN

)T ∈ ΘN be a vector of N test points,
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Any unbiased estimator ĝ
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and with any subsequent linear transformation of (3). Therefore, any
given set of K (K ≤ N) independent linear transformations of (3):
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ĝ

(
θ0

)
(x)− g

(
θ0))hT
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hk ∈ RN , 1 ≤ k ≤ K, provides with a lower bound on the MSE
(2):
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)
, (5)

where G̃HK = HK

(
HT

KRνHK

)−1
HT

K , HK = [h1 . . . hK ]
and (Rν)n,m = Eθ0 [ν (x; θn) ν (x; θm)]. The BB is obtained by
taking the supremum of (5) over all the existing degrees of freedom(
N, θN , K,HK

)
. Moreover, for a given vector of test points θN ,

the lower bound (5) reaches its maximum iff the matrix HK is in-
vertible (K = N), which represents a bijective transformation of
the set of the N initial constraints (3):
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where IN is the identity matrix with dimension N . All known
bounds on the MSE deriving from the Barankin Bound is a partic-
ular implementation of (5), including the most general formalism
introduced lately in [3]. Indeed, the limit of (4) where N →∞ and
θN uniformly samples Θ leads to the linear integral constraint:
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= Γh (τ) , (6)

η (x, τ) =
∫
Θ

h (τ , θ) ν (x; θ) dθ, Γh (τ) =
∫
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h (τ , θ) ξ (θ) dθ,

where each hk =
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of samples of a parametric function h (τ , θ) , τ ∈ Λ ⊂ R, inte-
grable over Θ,∀τ ∈ Λ. Then, for any subset of K values of τ ,
{τk}1≤k≤K , the subset of the associated K linear integral con-
straints (6) leads to the following lower bound (2):
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where (Rη)k,k′ = Eθ0 [η (x, τk) η (x, τk′)] and (Γh)k = Γ (τk).
Therefore, when K → ∞ and the set {τk}1≤k≤K uniformly sam-
ples Λ, by setting 1

λ
= dτ = τk+1 − τk, β = a

λ
, the integral form

of the above lower bound appears straightforwardly:




MSEθ0

[
ĝ

(
θ0

)
lmvu

(x)
]

=
∫
Λ

Γh (τ) β (τ) dτ

ĝ
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Kh (τ , τ ′) = Eθ0 [η (x, τ) η (x, τ ′)]
=

∫∫
Θ

h (τ , θ) Rν (θ, θ′) h (τ ′, θ′) dθdθ′,

Rν (θ, θ′) = Eθ0

[
p(x;θ)

p(x;θ0)
p(x;θ′)
p(x;θ0)

]
=

∫
Ω

p(x;θ)p(x;θ′)
p(x;θ0)

dx,

which is exactly the main result introduced in [3] and is a general-
ization of the Kiefer Bound [4] (K = 2). Note that if h (τ , θ) =
δ (τ − θ) (limit case of HN = IN where N = K → ∞) then
Kh (τ , τ ′) = Rν (τ , τ ′) and (8) becomes the simplest expression
of the exact Barankin Bound [2, (10)]. As mentioned above, in
most practical cases, it is impossible to find either the limit of (7)
or an analytical solution of (8) to obtain an explicit form of the exact
Barankin Bound on the MSE, which somewhat limits its interest.



Nevertheless this formalism allows to use discrete (4) or integral (6)
linear transforms of the LR, possibly non-invertible, possibly opti-
mized for a set of p.d.f. (such as the Fourier transform in [3]) in
order to get a tight approximation of the BB.

2.2. Non-linear transformations of the unbiasedness constraint

Let us consider the set of estimation problems characterized by a
p.d.f. for which there exists a real valued function t such that:

t (p (x; θ)) = k (θ, t) p (x; γ (θ, t)) , k (θ, t) =
∫
Ω

t (p (x; θ)) dx

(9)
Then an unbiased estimator satisfying (1) satisfies as well [5],∀θ ∈
Θ:

Eθ0

[(
ĝ

(
θ0

)
(x)− g

(
θ0)) t (p (x; θ))

p
(
x; θ0

)
]

=

k (θ, t)
[
g (γ (θ, t))− g

(
θ0)] .

Moreover, if there exists a set of functions tθ satisfying (9), then we
can update the definition of ν (x; θ) and ξ (θ) in (6) according to:

ν (x;θ) =
tθ (p (x; θ))

p
(
x; θ0

) , ξ (θ) = k (θ, tθ)
[
g (γ (θ, tθ))− g

(
θ0)] ,

(10)
and all the results released in the previous Section still hold, the lin-
ear integral transformation becoming a mixture of linear and non-
linear integral transformations:

η (x, τ) =
∫
Θ

h (τ , θ) tθ(p(x;θ))

p(x;θ0)
dθ,

Γh (τ) =
∫
Θ

h (τ , θ) k (θ, tθ)
[
g (γ (θ, tθ))− g

(
θ0

)]
dθ.

(11)

At first sight, the proposed rationale does not seem appealing, since
a non-linear transformation of type (9) is unlikely to exist whatever
the form of the p.d.f., although the linear transformation of the LR
(6) is always possible. Fortunately, it is applicable to a subset of
M -dimensional complex circular Gaussian p.d.f.:

p (x; θ) = p (x;m (θ) ,C (θ)) =
e−(x−m(θ))HC(θ)−1(x−m(θ))

πM |C (θ)|
Indeed, the transformation tq (y) = yq can be applied to the
observation model resulting from a mixture of deterministic and
stochastic signals in presence of Gaussian interference [5]. In
this case m (θ) = m (ε), C (θ) = Ψ (ζ)CsΨ (ζ)H + Cn,

θ =
[
εT , ζT , vec (Cs)

T , vec (Cn)T
]T

.

3. CONJECTURAL LOWER BOUNDS

Although initially introduced by resorting to the covariance inequal-
ity, the Bayesian bounds of the Weiss-Weinstein family have been
lately revisited by authors in [6] who have shown that these bounds
are also solutions of a norm minimization under linear constraints
(see [6]§III.B) analogous to the one introduce in section 2. There-
fore any deterministic lower bounds have a corresponding Bayesian
bound: Cramér-Rao bound, Bhattacharyya bound, Hammersley-
Chapman-Robbins bound, .... Our idea is to argue from analogy
from the Bayesian bounds towards the deterministic bounds to ex-
plore new possible bounds. As an example, in the case of a single
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Fig. 1. Comparison of MSE lower bounds versus SNR
(M = 8, θ = 0)

unknown parameter θ - for sake of simplicity -, the Bayesian Weiss-
Weinstein bound is associated with the linear constraint:

∫∫
Θ,Ω

(
θ̂ (x)− θ

) [
p(x,θ+δ)q

p(x,θ)q − p(x,θ−δ)1−q

p(x,θ)1−q

]
p (x, θ) dxdθ

= −δ
∫∫
Θ,Ω

p(x,θ−δ)1−q

p(x,θ)1−q p (x, θ) dxdθ

where p (x, θ) = p (x | θ) p (θ) = p (x; θ) p (θ), q ∈ [0, 1].
The corresponding linear constraint for deterministic estimation is
(drawn from examples in [6]§III.B):

∫
Ω

(
θ̂0 (x)− θ0

) [
p(x;θ0+δ)q

p(x;θ0)q − p(x;θ0−δ)1−q

p(x;θ0)1−q

]
p

(
x; θ0

)
dx

=− δ
∫
Ω

p(x;θ0−δ)1−q

p(x;θ0)1−q p
(
x; θ0

)
dx

(12)
leading to the deterministic Weiss-Weinstein bound (WWB):

MSEθ0

[
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]
≥ sup

q,δ


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δ2Eθ0

[
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]2

Eθ0

[(
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p(x;θ0)q − p(x;θ0−δ)1−q

p(x;θ0)1−q

)2
]





(13)
The WWB (13) is a bound for estimators satisfying (12). The con-
jecture is that unbiased estimators satisfy (12) as well. It is true
where q = 0 or q = 1 since then (12) amounts to the Hammersley-
Chapman-Robbins constraint. Unfortunately so far, we have not
been able to prove that (12) derives from the mixture of integral lin-
ear and non-linear transformations of the unbiasedness constraint.
And yet, but nevertheless simulations performed for the single tone
threshold analysis clearly shows that the WWB (13) is a very tight
bound for unbiased estimators; at least in this application case.
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4. CONCLUSION: SINGLE TONE THRESHOLD
ANALYSIS

A reference problem in threshold analysis is the estimation of a sin-
gle tone θ ∈ ]−0.5, 0.5[ for a deterministic observation model:

x = aψ
(
θ0

)
+ n, ψ(θ) =

[
1, ..., ej(M−1)2πθ

]T

p (x; θ) = e−‖x−aψ(θ)‖2

πM

(14)

where a2 is the known SNR (a > 0) and n is a complex circu-
lar Gaussian noise, with zero mean and a known covariance matrix
Cn = I. In the simulations:
• δ ∈ ]0, 0.5[, θ̂ML = max

θ

{
Re

[
ψ(θ)Hx

]}
.

• the HCRB [2] is the simplest approximation of the BB (5) based
on 2 test-points θ2 =

(
θ0, θ0 + δ

)T + supremum on δ,
• the MSB [2] is the simplest approximation of the BB based on 3
test-points θ3 =

(
θ0, θ0 + δ, θ0 − δ

)T + supremum on δ,
• the NLMSB [5] is the nonlinear generalisation (10) of the MSB
based on 3 test-points + supremum on δ and q ∈ ]0.5, 2[,
• the CGQLB [2] is the generalization of the CRB based on 3 test-
points θ3 =

(
θ0, θ0 + δ, θ0 − δ

)T + supremum on δ,
• the TTB [3] is the combination of CRB

(
θ0

)
and of (5) where

N = 1024, K = 32 and HK is an ad hoc submatrix of FFT matrix
of dimension N .

All these lower bounds are displayed on figure (1) and compared
with the MSE of the MLE estimator (5× 105 trials) for M = 8 and
θ0 = 0. The first occurrence of the CGQLB is obtained for δ lying
on a discretization of ]−0.5, 0.5[ with a step of 1/1024. The second
one is obtained for a step of 1/ (1024 ∗ 128). The purpose of the
2 cases is to show that it is generally difficult to compare tightness
of bounds which are based on subsets of constraints that are not in-
cluded one in each other. For each bound, tightness may depend on
specific optimization parameters.
Additionally, the tightness of CGQLB and TTB (or any existing
bound) could be improved by updating their associated linear con-
straints with the non-linear transformation (10) as we did for the
MSB, which is a topic for future work.
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Finally, a much more impartial criterion could be the computation
time (and possibly the memory load).
Nevertheless, all these bounds seem to provide a still too coarse
prediction of the SNR threshold value (underestimated by at least
5 dB), an imperfection mostly compensated by the WWB (13) as
shown on figure (2). This figure clearly shows that the WWB is not
only a lower bound for unbiased estimators whatever the value of M
(also checked for M = 2, 64, 128), but it is an extremely tight lower
bounds, far tighter that all the existing ones.
Moreover, the deterministic WWB seems to share the same property
as its Bayesian analogue one, i.e. to be nearly the tightest for q = 0.5
as shown on figure (3). Under that form, the WWB is as simple to
implement as the HCRB.
Such a simple and tight bound really deserves to be derived!
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