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Barankin-type Lower Bound on Multiple

Change-point Estimation

Patricio S. La RosaSudent Member, |EEE, Alexandre RenauxMember, |EEE, Carlos H.
Muravchik, Senior Member, IEEE, and Arye NehoraFellow, |IEEE

Abstract

We compute lower bounds on the mean-square error of multipdsnge-point estimation. In this
context, the parameters are discrete and the Cramér-Rawlh® not applicable. Consequently, we focus
on computing the Barankin bound (BB), the greatest lowemboon the covariance of any unbiased
estimator, which is still valid for discrete parameters.particular, we compute the multi-parameter
version of the Hammersley-Chapman-Robbins, which is amamatype lower bound. We first give the
structure of the so-called Barankin information matrix NBland derive a simplified form of the BB.
We show that the particular case of two change points is foreddal to finding the inverse of this
matrix. Several closed-form expressions of the elemenBlldfare given for changes in the parameters
of Gaussian and Poisson distributions. The computatiom®fB requires finding the supremum of a
finite set of positive definite matrices with respect to tuewner partial ordering. Though, each matrix
in this set of candidates is a lower bound on the covariandebmaf the estimator, the existence of a
unique supremumuv.r.t. to this set, i.e., the tightest bound, might not be guaraht&e overcome this
problem, we compute a suitable minimal-upper bound to thisgé/en by the matrix associated with
the Lowner-John Ellipsoid of the set of hyper-ellipsoidsasated to the set of candidate lower-bound
matrices. Finally, we present some numerical examples rtgpaoe the proposed approximated BB with

the performance achieved by the maximum likelihood estimat
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. INTRODUCTION

Estimation of changes in time series is an important andecésearch area with several applications,
for example, fault detection, medical imaging, genetiag] @conometrics. The literature is abundant
concerning estimation algorithms for change-point ediiona(see e.g., [1]-[3]). However, less work has
been done concerning the ultimate performance of suchitdgws in terms of mean-square error (MSE).
Indeed, if an estimator is available, the evaluation of gsfgrmance depends on knowing whether it is
optimal or if further improvement is still possible. Noteathsome other criteria of performance in the
context of sequential detection of a change-point are abvi@lin the literature, seeg., [4], [5] and
references therein.

The classic way to analyze the performance of an estimatdernms of MSE is to compute the
well-known Cramér-Rao bound (CRB) [6]. Unfortunatelyy fdiscrete time-measurement models the
change-point location parameter is discrete; therefoeeGQRB, which is a function of the derivative of
the likelihood of the observations w.r.t. the parameteys)at defined.

Several authors have proposed solutions to this probleseels, in the change-point estimation frame-
work, the CRB has already been studied using approxima(ees,e.g., [7]-[12]). Depending on the
particular parametrization of the data likelihood, two mahallenges have been addressed concerning
the CRB computation on the change-point time index: (i) tiexréte nature of the aforementioned
parameter and (ii) the regularity conditions of the likelitd of the observation. The former implies
that the parameter does not have a defined derivative becdutsediscrete nature [10], and the latter
implies that the likelihood of the observations has to be @imddetails are given in [6] and [13]),
which is not the case for signal parameters with sudden @wanp overcome the discrete nature of
the change-point time index, a continuous parametrizdtias been proposed (sexg., [12], [14]). To
satisfy the regularity conditions of the data likelihookle tstep-like function, which represents a change
in parameter, is generally approximated by another functiith smooth propertiese(g., the so-called
sigmoidal function introduced in [9] and [12] or a Heavisifimction filtered by a Gaussian filter, as
in [7]). This new function depends on parameters that havgetadjusted, and it tends to the step-like
function when the appropriate values of these parameterasad. The main problem that appears when
using this technique is that the CRB tends to zero when theoappate function tends to the step-like
function [8], [12].

Moreover, it is noteworthy that these previous works conicgy change-point estimation were always

done in the framework of a single change point. To the bestiokaowledge, performance bounds have
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never been derived in the multiple change-point contexe Ttter is important in off-line estimation
of change points where batch-data are available, for exanplbiomedical applications, such as DNA
sequence segmentation [15], rat EEG segmentation (se€lfigjpter 2), and uterine MMG contraction
detection [16], and in signal segmentation in general sgcspaech segmentation [17], astronomical data
analysis [18].

In this paper, we analyze the Barankin bound (BB) [19] for tiplé change-point estimation in the
context of an independent vector sequence. The Barankindb@uthe greatest lower bound for any
unbiased estimator. Moreover, in contrast to the CRB, itsimaation is not limited by the discrete
nature of the parameter and the regularity assumptions etikélihood of the observations [13], [20].
However, the BB requires the use of parameters called teéstspd hese test points choice is left to the
user, and, in order to obtain the bebse( the tightest) bound, a nonlinear maximization over these t
points has to be performed. This explains why this bound isigoh less used and known than the CRB,
nevertheless, the BB is often a practical bound for realistienarios, seeg. [21].

To the best of our knowledge, minimal bounds other than th& GRve been proposed in the context
of change-point estimation only in the foundational comioation of Ferrari and Tourneret [22]. A
simplified and practical version of the BB one test point per parameter), the so-called Hammersley-
Chapman-Robbins (HCR) bound, [20], [23], is studied in thaper. As in the previous works on the
CRB, only one change point is considered.

In this paper we extend the results presented in [22] to tke oamultiple change points. We consider
the multi-parameter HCR bound and we show that the so-c@k@nkin information matrix (BIM),
which has to be inverted, has an interesting structurz, @ block diagonal matrix structure). We show
that the estimation of one change point is corrupted by itghfmring change points and we give the
details of the computation for the two change-point casés Tase facilitates the derivation of a closed-
form expression for the inverse of the BIM. Note that it is gibke to find tighter bounds by using more
test-points per parameter, however, such approach doedloat for obtaining closed-form expressions
of the BIM and its inverse as derived here. We also discust@rxistence of the supremum of the finite
set formed by all possible BB solutions and, following iddasn [24] and from convex optimization,
we compute a suitable minimal-upper bound to this candidetevith respect to the Loewner cone, the
set of semipositive definite matrices. In particular, wevshbat its computation is given by the matrix
associated with the Lowner-John Ellipsoid of the candidsge which is the minimum-volume hyper-
ellipsoid covering the set of hyper-ellipsoids associdtedach matrix in the candidate set. We apply the

bounds to the case of changes in the parameters of Gaussido@ason observations. We finally present
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numerical examples for comparing our bound to the perfoomathieved by the maximum likelihood
estimator (MLE).

The notational convention adopted in this paper is as falatalic indicates a scalar quantity, as in
A; lowercase boldface indicates a vector quantity, as; inppercase boldface indicates a matrix quantity,
as in A. The matrix transpose is indicated by a superscrigts in A”. The m'"-row andn*-column
element of the matribA is denoted by{A],,,,. The identity matrix of sizeV x N is denotedly. We
define by1y/«n the matrix such thafl], = 1,Vm =1...M andVn = 1...N, andD (a) is a
diagonal matrix formed by the elements of the row veetofhe trace operator is defined s {.}. The
determinant of a matrix is denoted lhy and cardinality when applying to a sé&t’ denotes the vector
space of symmetrie x n matrices and the subsets of nonnegative definite matrickpasitive definite
matrices are denoted [/} andS" ,, respectively. The notatioA = B means that forA, B € S,

A — B € S, also known ad oewner partial ordering of symmetric matrices [25], [26]. The absolute
value is denoted bybs(.). The indicator function of a sef is denoted by/s(.). The expectation operator
is denoted byE [.]. The observation and parameter spaces are denoted, resjyetly (2 and ©.

The remainder of this paper is organized as follows: In $acti, we present the signal model, the
assumptions, and we introduce the general structure far&ar bound for the signal model parameters.
The computation and analysis of the Barankin bound for thengb-point localization parameters are
provided in Section Ill. In Section IV, we analyze the caséshlmnges in the parameters of Gaussian
and Poisson distributions. To illustrate our results, $ations are presented in Section V. Finally, in

Section VI we conclude this work.

[I. PROBLEM FORMULATION
A. Observation model

We consider the general caseNfindependent vector observatioKs= [x1, xa, ..., xy| € RMXN

which can be obtained, for example, by a multiple sensoresysind are modeled as follows:

X; ~ P1 (XZ';’I’]l) for ¢ = 1,...,t1,

X; ~ P2 (XZ';’I’]Q) fori=t1+1,..., 19,
1)

Xi ~ Pg+1 (xi;an) fori=t,+1,...,N,
where M is the size of the sample vectoe.d., the number of sensorsy, is the number of change-

points, andp; is a probability density function (or mass function for diste random variables) with
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parametersy; € RL. In other words,x; ~ p; (xsm;) for i = t;_1 + 1, ..., t;, with j =1, ...,

q + 1,where we defingy = 0 andt,.; = N. Note that if M = 1, the problem is reduced to the
estimation of changes in a time series. We assume that @apiity density functiong; belong to a
common distribution. The unknown parameters of interesttle change-point locatio$,, t2,...,t,}
with {t, e N—{0}, k=1,..., ¢}, 1<t <ta<---<t;<N,andqg < N — 2. The observations
between two consecutive change points are assumed to mnatst Consequently, the x 1 vector of
unknown true parameters for this modetltis- [t1, t2, ..., tq]T.

The observation model (1) is useful in signal processingeisg examples were already mentioned in
the Introduction. Note that, since we focus on the chandetjgstimation, we assume that the parameters
n; are known. The resulting bound will still be useful if thesargmeters are unknown, but overly
optimistic. Moreover, the complexity of the bound derieatincreases for unknown; and therefore we

do not consider this case in this work.

B. Barankin Bound

The P-order BB of a vecto, € R, denoted byBB p (08¢, H,« p), is given as follows (see [27]-[30]

for more details):

~

Cov(0) = BBp(0y, Hyxp) = Hyup(® — 1pxp) "H] p, (2)

whereCov(é) is the covariance matrix of an unbiased estimatof the parameter vectd,. The matrix
H=1[0, -6y, ..., 8p— 0] is a function of the seff,, ..., 6p}, so-called “test points”, left to the
user's choice. We definh; = 6; — 8, such that the matri¥l ¢ R9*” becomesH = [hy, ..., hp].
Moreover, note thab, + h; < ©. In the following, for simplicity, we use the term “test pdirfor the

vectorsh;. Finally, ® is aR”*" matrix whose elementib];,; are given by:
(@] = E[L(X, 8, hy) L(X, 89, hy)], 3)

where L(X, 8y, h;) is defined by,

L(X,800,h;) = %, (4)

where p(X; ¢) is the likelihood of the observations with parameter vegtorNote that the matrix
® — 1p,p is sometimes referred to as the Barankin information mdBiM) [31].
As already stated, test points choice is left to the usecesamy set of test points BB p(6,) satisfies

the inequality (2). Thus, the tightest BB, denotedBI(0,), is given as follows:

BB(6p) = lim sup BBp(6g,H,p) = CRB(6)), (5)
P—|O| (n,,.. hp}
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where |©] is the cardinality of the se® formed by all possible parameter values, &BRB(6,) is the
CRB of 8y, which, assuming that it exists, is smaller than BB(6,) in the Loewner ordering sense.
The computation oBB(6y) is costly, since the limit o usually implies that a large, possibly infinite,
number of test points needs to be considered, a nonlineaimizaation over the test points has to be
performed, and the inverse of the BIM has to be computed.

Concerning the BB for the parameter vectly = t,

©| depends on the number of sampl¥sand

change pointg as follows:

N—q N—q+1 N-1

o= > o X wena-n=(V) ©

ti=1to=t;+1  t,_1=tq o+1

Note that|®| — oo, as(N — ¢) — oo and for N finite then|©] is finite. In practice, the number of test
points and the particular structure of matkkis usually chosen based on the analytical and computational
complexity associated to it, which lead to approximatedizgrs of the BB. In the latter case it would be
useful to have some knowledge on how different Barankin boapproximations compare among each
otherw.r.t. Loewner partial ordering. In the following proposition we provide with a general gdide
for this purpose:

Lemmal: Let A € S, B € S with rank(B) = m < ¢, Ay > XAy > --- > \,;, > 0 and
Am+1 = --- = Ay = 0 the roots of the characteristic equati@ — AA| = 0. If \; <1, thenA >~ B
otherwiseA andB are not mutually comparable.

Proof: See Appendix A [ |
If rank (Hyxp) = q then BBp(8y,Hyxp) € S, since (® — ™! e S% . by construction, and if
rank (Hyxp) < ¢thenBBp(0y, Hyy p/) € S%.. The Lemma can now be used with = BBp(0y, Hyx p)
and B = BBp: (69, Hx p/) providedrank (Hyxp) = ¢ > rank (ﬁqxp/>. Note thatrank (ﬁqxp/>
< ¢ implies that the number of test-poini¥ < ¢, therefore, a matrix bOUﬂBBp/(eo,ﬁqxp/) cannot
be larger,w.r.t. Loewner partial ordering, than any matrix bound given by a test-point matkik, . p
consisting of P = ¢ independent test-point vectors. Consequently, in theoiallg we will use an
approximate version of the BB that allows us to derive effitiecomputed closed-form expressions for
the BIM and its inverse in the context of our multiple chanpgénat estimation problem. In particular, we

will compute the multi-parameter HCR bound [27] with thesd@al assumption of one test point per

paramete(P =gq),i.e.,h; =10, ..., o ..., O]T. Then, H is a diagonal matrix given by,
H=[h;, ..., hy]=D(a) ()
where the vectorx = [aq, ..., aq]T corresponds to the set of test points associated to the psresn
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t = [t1, t2, ..., t,]" . Note thata; # 0 is defined such thatj + «; ranges over all possible values of
tj,forj=1,...,q. Thus,a; e {ZN[t;—1 —t; +1, tj31 —t; — 1] — {0}}. Let S C Z be a set formed
by all possible values ofv. The setS is finite given thatt,; is finite.

The matrix,® — 1,+,, corresponds to the BIM for change-point locatiansienoted here byBIMVy.
The approximated BBBB;,_ ,, is then obtained from

BB;,= sup BB,(t,H, )= sup D(a) BIM;'D(a)". (8)
[h,....h,] acs

By construction, the finite sef’ := {BB,(t,D («)), a € S} is a subset of the partially ordered set
(S?, <) with partial order <” given by theLoewner ordering [25], [26]. This partial order is not a lattice
ordering,i.e., each finite subset &#¢ may not be closed under least-upper (infimum) and greatesirl|
bounds (supremum) [26]. In other words, the notion of a uaigupremum or an infimum &' might
not exist with respect to the Loewner ordering. The suprerdogs not exist if there is no upper bound
to the set, or if the set of upper bounds does not have a leseel. If the supremum exists, it does not
need to be defined in the set, but if it belongs to it, then ihis greatest eleménin the set. Note that
a set with respect to the partially order $6t, =) may have several maxinfaand minimal elements
without having a greatest and least element in the set, cégely. If the set has a greatest or least
element then it is the unique maximal or minimal element dddfore it is the supremum or infimum
of the set. Here, we will approach the computation of the eaquim by computing a suitable minimal
element of the set of upper bounds@f namely, a minimal-upper bourid, € S, such thatB, = C
and which is minimal in the sense that there is not smallerrimajl =< B, such thatB; = C. From
Eq. (2),Cov(§) belongs to set of upper bounds Gftherefore if the set of upper bounds has a unique
minimal element, i.e., a least element, th@nv(@) >~ B,. However, if the set of upper bounds has
several minimal elements then in general we can expectmmazt(a) = By, or thatCov(@) and B,
are not mutually comparable.

Having a closed form forBIM;1 makes the task of computinB, much less computationally
demanding than having to inveBRIM; for everya € S. In the following section, we will first derive
the elements oBIM; and obtain closed-form expressions BIM, '. Then, we will introduce the

approach for computing the minimal-upper bouBgl.

1B, € Cis the greatest element 6f w.rt. (S, <) if B; = Y forall Y € C. If the greatest element exists it is an upper-bound

of C' contained in it. The least element 6f is defined similarly considerin®; < Y.

B, ¢ C is a maximal element of’ wr.t. (S, <) if there is notY € C such thatY > B, and is a minimal element if
there is notY € C such thatB; >~ Y.
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[1l. BARANKIN BOUND TYPE FOR MULTIPLE CHANGE-POINT ESTIMATION

To compute the BB for the change point localization paramsetee first need to computBIMy,

which depends on the matrig. From Equations (3) and (4), the elements®f,,, for k, I =1,...,q

are given by
p(X;t+hy)p (X5t +hy)
], = / dX, 9
[ ]kl Q p(X;t) ( )
wherep (X; t) is given by
tl N
p(X;t) = Hpi(xism)--- tkH +1pk(xw77k) : _}T Par1(Xi3Mgp1), (10)
andp (X;t + hy) is given by
tl tk-‘r()ék N
p(X;t+hy) = illem(Xz’; M) i:tgﬂpk(xi; M) Z.:Fﬂqurl(Xi; Mgt1): (11)

and wherep (X;t + h;) is same as Equation (11} & ).

In order to study and to simplify, we will analyze its diagonal and non-diagonal elementsussply.

A. Diagonal elements of ®

Replacingk =1 in (9) and using (11), we obtain the following expression:

t1 9 tr+ang 9
iglpl(xi;m) e i:tl}:[1+lpk(xi§77k) e N
[(I,]kk = i N e i P+1pq+1(xl7 qu—i—l)dX (12)

Q . .. ..
il;llpl (xh 771) i:g—i-lpq—’_l(x“ T/q+1)
This equation can be further simplified by considering the ¢asesy, > 0 and ;. < 0, obtaining

the following expression (see Appendix B for details on isihtion):
Pi (X374 W
(/s P mﬂ)dx) L if g >0,

(Jo Bt )™ | if <0

Pk X"Ik

[®]rr = (13)

B. Non-diagonal elements of ®

The computation of the off-diagonal elementsdotan be simplified by using the fact that the maibix
is symmetric; therefore, we can focus on either the uppeowet triangular part of. In our derivations
below we consider the upper triangular pa#, k£ < [, then by using (9) and (11), we obtain the following

expression for the elements &f :

tl tk“l‘ak
,1:[1]91(Xi; ) i:tkl:[l-i-lpk(xi; M) ot N
(@], = T ¥ o T D (X6 M) tHHPqH(Xz,quH)
I R I ke
izlpl(xlvnl) i t+1pq+1(xu77q+1)
tl tl+al N
< Wpa(eism) - I piGism) o I po (%3140 )dX. (14)
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Following the same idea as for the diagonal elemed#$,, can be simplified by analyzing the four

possible combinations of test-point ranges, namely,

Case 1.y, > 0 anda; > 0,

Case 2., < 0 anda; < 0,
(15)
Case 3., < 0 anday > 0,

{ Case 4., > 0 ando; < 0.
For the last casd,e. o > 0 anda; < 0, two subcases have to be analyzed:tfit ar < t; + oy
and (ii) t; + ax > t; + ;. These two cases correspond to non-overlapping and opémntapest points,
respectively. Note that sinde< [, ¢, < ¢; and sincen; € {ZN[t;—1 —t;+1,t;41 —t; — 1] — {0}}, the
caset; + o > t; + «; which corresponds to an overlapping between two test podats appear only
wheni! = k + 1, or, in other words, when we are analyzing two neighboringnge points. Then, for

Cases 1-3 and subcase (i), Equation (14) becomes (see Append
(@], =1, forl >k (16)

and for subcase (i), keeping in mind that > 0 anday4+1 < 0, Equation (14) becomes

P (357, ) P2 (X571 0) k -
(@] = (o S dx) fori=k+1, (17)

1, fori>k+1,
where g, = (ty + ag) — (tg+1 + k1) -
Remark: This last result is fundamental because it proves the nanitation that the estimation of
change points is not equivalent ¢otimes the estimation of one change point. In other words,eamns
that the estimation of one change point is perturbed by itsrteighbors. We now summarize the previous

results.

C. Barankin information matrix ® — 1.,

Using Equations (13), (16), and (17), it is clear tiM; has at least a tri-diagonal structure:

A, B 0 .- 0 |
By A,
BIMy=| o . "-. - 0o |, (18)
Ay 1 By
0 0 By1 A,

July 18, 2010 DRAFT
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where
Ay, = [®],—1, fork=1,...,q (19)
_ (fQ p:fg Z:H)dx)ak —1 if ag, >0,
(Jo BerEtecd o) ™ — 1 if oy <0,
and
By = [®q—1, fork=1...,¢-1 (20)
0, if B, <0,

B .
(J, Pt ) ™ 1, if 3, > 0.
In the case of one change-point estimati®IM; is reduced to a scalaf;, and we re-obtain by

replacinga; = « the result proposed by Ferrari and Tourneret (see Equatiresnd (6) in [22]):

(Jo BEmax)" —1 if a >0,

Ay = Pl (21)
(fQ L) ) —~1 if a<o.
Note also that the diagonal elementsB¥M; can be computed numerically in one step.(Vay = 0)
as follows: bo(ane)
pe(xime)  \™ e
A = / (—) Pri1(xm dx) -1, (22)
g ( o \Pr+1(% Mp11) kel 1)

wheree;, = § <3abs(ak) + 1)

The next step of our analysis is to compl(lBIMt)‘l. For a given set of test points, it is clear that
tr+ag >t g1 = tepr g < tppotags, Sinceo; € {ZN[tj_1—t;+1,t;41—t;—1]—{0}}.
In other words,vk, if By # 0, then By,1 = Bi_1 = 0; therefore,BIM; is block diagonal and the
maximum size of one block i2 x 2. Since the problem is reduced to finding, at worst, the ireefs
several2 x 2 matrices with the same structure, we will have a straighthod inversion. In this section,
we detail the case of two change points, we give the genataliz to two neighboring points and use
this to derive a closed-form expression for the invers®®M; and thusBB,(t,D («)).

1) The case of two change points: In this case we have = 2, t = [t;, t5]” , and BB,(t,D (o))

becomes B
a0 A1 By a; 0
BB, (t, D (a)) = 23)
0 a By A 0 as
with
4 (fQ p?Ei Z;ﬁdX) -1 ifon >0, ) (fQ ijg Zzgdx) —1 if ag >0,
1= 2 ) 2 = —ae
(fQ ﬁi ngdx> -1 if g <0, (fQ Z:Ei Zzgdx) —1 ifay<0,

(24)
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0 if 5, <0,
Bl = - (X;’f]l )ps (X§"73) d 61 1 f (25)
(Jo Prbsmsbeml e ) ™ — 1, if By >0,
Whereﬁl = (tl + Oél) — (tg + 012) .
Consequently, depending on the given set of test pointgptlwsving five combinations, corresponding,

respectively, to cases; 2, 3, 4 in (15), are possible foBB,(t,D («)):

2 o? 2 2
a7y 0 - 1 O 4 0 a 0
—1 bs abs (o «
A?llz_l , Agzl(al)_l , Azsl( 1)_1 , Alll?_l ) ,
2 2
O 0102[2 O abs?o? ) O 04026g O abS?iz)
Ayzs—1 Aggy P -1 Ay3—1 Ao -1

1 af (Aggg(m) - 1) ajay (1 - A%g)
a1 <1 - A??b) a3 (AT}, — 1)
(26)
where we define;j;, = [, pii(x;:&’j;i’;m]‘)dx,andﬁ = (A%, — 1) (A§§§<a2> — 1) — (A%Q — 1)2
2) Generalization to g change points. Note that for more change points the process is the sametexcep
that the inversion has to be computed, because of the irci@fagossibilities. However, the matrix to
be inverted is block diagonal, with block of sidex 1 or 2 x 2, as stated in the previous section. In
particular, depending on the values®f the elements o[BIMt‘l]kl for1 <k <qandl ={k, k+1},
with BIMg, A, and By, given by Equations (18), (19), and (20), respectively, agd= o, = 0 and
B, = 0, have the following possible values:

If tpo1 + apa1 <t + ag, thenay, > 0, By # 0 and By = Biy1 = 0, thus

ik for [ =k
BIMC, =4 ’ (27)

By, _
—ALE foril= k+1.

If tp +ap <trp1+ag_1,thena, <0, B_1 #0andBy_o = B =0, thus
A
=l for | =k,
[BIM; ], = Mo P (28)
0, fori= k+1.

If tp_1 + ap_1 <t + ar < tgyr1 + agy1, thenBy_; = By =0, thus

L fori=kF,

[BIMt_l]kz = o (29)
0, fori= k+1.

Therefore, the elements c@BIMt‘l]kl fork, 1 =1,...,q, which is a symmetric matrix, are given by
Ap_11_ oo, —1y(ar)+Art1111,00) (00) for | —
Ak(Ax 1T o, 1) (o) +Axt1 11,00 (ar))— (B2, +B2)’ L=k,
[BIM, '], = WBf—B,‘i’ forl= k+1, (30)
0, forl >k +1.
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Since the matrisBB,(t, D (a))= D () BIM; !D (a)”, then,[BB,(t, D ()], fork, 1=1,...,q

is given as follows:

QG (Ar—11— oo, — 1) (k) + Akt 111,001 (1)) _
A (Ar 1T oo, —1)(ar)+Ari1 00y (ar)— (B2, +B3) for I =k,
[BB,(t,D (av))];; = —%, for | =k + 1, (31)
0, forl>k+1,

where [BB,(t,D (a))],, = [BB,(t,D («))],,. . If for a given set of test points there is no overlap
with the neighboring change-point_; andt;,1, then,By_1 = B = 0 in (31) and we obtain the
particular resul{BB,(t, D (c))],, = aj/Ar and [BBy(t, D (a))],,.,; = [BBy(t,D ()], 1), = 0.
This is equivalent to the bound obtained using the same gesbpoints and assuming one change-point

located in the time interval betweep ; andt,; with total numbers of time-sample¥ = ¢; 1 —t;_1.

D. Computation of the supremum

To obtain the tightest bound from the finite s&t:= {BB,(t,D (0)), a € S} C S1, we need to
compute the supremum 6f with respect to the partially order sgi?, =) . The partial order is given by
the Loewner ordering which is defined via the cone of posiemidefinite matrices [25], [26]. In general,
this problem is indeed very complex since it requires to lémka*c S such thatBB,, (t,D (a*)) =
BB, (t,D (a)) for all o € S . To the best of our knowledge, no formal approach for soluinig
problem has been proposed in the technical literature ofnmainbounds. For example, in [28], [32] the
choice of the test pointv has been guided by some physical considerations of the nbedsd studied.
Also, from an optimal design context [25], an approximatfonsolving this problem is to compute the
matrix in C' with the largest tracd3By,. However, the fact thaf'r {BBy,.} > T'r {B;} for B; € C, does
not imply thatBBy, > B;, only the converse statement is valid. In fact, onl¢’'ihas a greatest element,
i.e., the supremum of the set, then it is given by the matrig'iwith the largest trace LeB; = sup C,
with B; € C, then by definitionB; = B;, for all B; € C' with i # j. Let G = B; — B;, thusG ¢ Si
andTr{G} > 0. Hence,Tr {B;} > Tr{B;}, for all B; € C with ; # j, but as we discussed at the
end of Section II, the notion of a unique supremum or an infinwith respect to the Loewner patrtial
ordering in the finite se€’ might not exist.

Here we address the computation of the supremum by findingnamai-upper bound3, € %, to
the setC' such thatB, > C' and which is minimal in the sense that there is no smallerimBg =< B,
such thafB], = C. In [24], the authors implicitly introduced an algorithm foomputing a minimal-upper

bound to a finite set of positive definite matrices and reddfithés element as supremum of the set.
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Before discussing more details about it, we need to intredbe so-called penumbia (M) of a matrix
M € S? as the set? (M) := {N € S?: N < M} [24], [25] and the following proposition:

Proposition 2: DefineM andNN € S?, thenM = N iff P(N) C P(M).

Proof: If P(N) C P (M), thenN € P (M) and then, by definition of penumbrdI > N. To
prove the other implication, we define a matfik € S? such asN > G. Then if M > N we have that
by the transitivity property of the Loewner orddd > G, namely,M = N > G. Therefore, all the
matrix elements inP (N) are also inP (M), thus, P (N) C P (M). [

The penumbraP (M) is seen as an inverted cone of verfiek characterizing all matrices that are
smaller thanM [24], [25]. The authors in [24], [25] redefined the supremuia et of matrices as the
matrix associated to the vertex of the minimal penumbra iegahe penumbras of all the matrices in
the set. The minimal-penumbra vertex is a minimal-uppemio the set with respect to the partially
order set(S?, =). In [24], the minimal-penumbra vertex is computed by assiowy with each matrixVI
€ S? a ball in the subspacBs = {A : Tr {A} =0}, and the authors show that it is determined by
the smallest ball enclosing the set of balls associated ¢b ewtrix in the set. The latter algorithm is
implemented in an approximate manner, by solving insteagtbblem of finding the smallest enclosing
ball of a set of points which correspond to samples from thendaries of each ball. The success of this
method to obtain a minimal-upper bound matrix depends ons#émples chosen. For example, in the
case of having two balls, it is easy to show that the smalleslosing ball is tangent to each ball border
at the two farthest points from the set of points defined byititersection of a line passing through
each ball center and each ball boundary. Therefore if thepbagnprocedure does not include this pair
of points, then the resulting ball does not enclose comigldteth balls and, thus, the resulting matrix
is not a minimal-upper bound. Moreover, when the dimens®itaiger than two, a simple analytical
computation shows that this algorithm fails to obtain a miaFupper bound matrix for the set formed
by two diagonal matrices no comparable to each other acugitdi Loewner order.

Here, instead, we propose a method for computing a suif@pléor any dimension. First, we show
that computingB, is equivalent to finding the minimum-volume hyper-ellipgaiovering the set of
hyper-ellipsoids associated to each matrix in the GetAnd second, we show that this problem can
be written as a convex objective function with convex caaiats which can be solved efficiently using
semidefinite programming. An hyper-ellipsaid_ R? with non-empty interior and centered at the origin
can be represented by the seff) = {x’F~'x <1}, whereF € S%,. Suppose: (f‘) is another

hyper-ellipsoid similarly represented whelFee S% .. Then, the following statement holds:
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Lemma 3: F=Fiff ¢(F) D¢ (f‘)
Proof: By the S-procedure [33], we have tha(f) C ¢ (F) if and only if there is a\ > 0 such

that N
F~' 0 F~' 0
<A ,
0 -1 0 -1
with equality when\ = 1, implying the necessary conditidn < F. [ |
Given a finite set of hyper-ellipsoids. := {¢ (F;) | F; € S1,,i=1,..., R}, we can always find

a unique minimum volume hyper-ellipsoid(F;;), containing the set., i.e, containing alle (F;) [33].
Since C; is convex,e (Fj) is known as the Lowner-John ellipsoid 6t [33] and, as we show in the
following statementF;, is a minimal-upper bound of the sét := { F;, i =1,..., R} formed by all
the matrices associated to the hyper-ellipsoid€’in

Theorem 4. The matrixF;;, associated to the Lowner-John ellipsoid of the@stis a minimal-upper
bound of the seCr wir.t to the Loewner partial ordering.

Proof: We will demonstrate this by contradiction. Frdremma 3 we have thaf, = F;,i =1,...,

R. Assume that there exists a mati%, ¢ Cr such thatF; = F, > F; , thereforee (F,) D ¢ (F;),
fori =1,..., R, and thuss (F,) D _@15 (F;). Given that the volume of (F;)) is less than the volume
of ¢ (F,), since it is the minimuzr; volume hyper-ellipsoid enclosinly B;, then [F;| < |F,|, but
by constructionF; > F,, thus|F;| > |F,| which is a contradiction. Thu¥, = F; and Fy is a
minimal-upper bound of the séir. ]

Therefore, computing a minimal-upper bound maisix of the setC' := {BB,(t,D (o)), a € S} C
S%. is equivalent to finding the Lowner-John ellipsoid of the s&thyper-ellipsoids associated (.
This is a particular case of a more general problem of comgutie minimum volume hyper-ellipsoid
e(B) = {xTB_1x+2 (B2 1)  x+b™b < 1} which covers the union of a set of non centered

hyper-ellipsoids parameterized by the quadratic inetigali; (B;) = {x’B; 'x+ 2b!x+ ¢; < 0} for

i=1,...,m. This problem can be posed as follows [33]:
1/2
g {low (e (B7))} ©2)
subject to

7120, 7020,...,7, >0,
B! -7B; ! B2 b —1;b;
(B=2b—rb;)" blb—1-7ic

The objective function and the set of constrains are congexit can be solved efficiently using
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semidefinite programming. In particular, we solve this peabusingCvX, a package for specifying and
solving convex programs [34], [35], fdB, = BB,(t,D («;)) for a; € S, b, =b =0, and¢; = 1.
Therefore, the minimal-upper bourd, of the setC' is given by B,= B., whereB, is the optimal
solution of (32). Using the following statement, we can eveduce the number of constrains in the
above problem by considering only the €& C C formed by all the maximal elements 6f.

Theorem 5: Define Cr,, as the subset of'r formed by all the maximal elements 6fr. Then, the
Lowner-John ellipsoict (Fj;) of C; is also the Lowner-John ellipsoid of the s€t,, formed by the
hyper-ellipsoids associated to the matrice<in,,.

Proof. SinceCF,, is formed by all the maximal elements 6%, then forF; € Cr,, and anyF;
Cre = Cp — Cpp, We have thatF; = F; . From Lemma 3, ¢ (F;) D {¢(F;), forall F; € Cp.} ,
which is true for allF; € Cpy,, i.e, for all e (F;) € C.y,, thusC,,, 2 {¢ (F;), for all F; € Cr.} and
C. = Cep, U{e (Fy), forall F; € Cp.} = C.py,. Thereforeg (Fy) is the Lowner-John ellipsoid for the
setC. andC,,,. [ |

Hence, using the above result we decrease the number ofraiotstin (32) by performing a pre-step
which identifies the set’,,. Note that ifC' has a greatest element, it is the unique maximal eleme@t of
and therefore it is the supremum of the set and its assodigieet-ellipsoid is the Lowner-John ellipsoid
of the set of hyper-ellipsoids associated(to Therefore, there is not need to solve problem (32). Our
algorithm searches and removes from the set of constrdieteniatrices whose hyper-ellipsoid is fully
enclosed by other hyper-ellipsoids. In particular, we eat# in an iterative manner the membership to
Cy, of all elements inC'. We define a membership indicator vecigr, wherelic, |, = Ic,, (F;) and
the algorithm begins assuming that all elements belongs,topnamely,ic, = 1«1, WhereR = |C]|.
Then, all the values of the elementsigf are evaluated using the following iterative procedure:

o Step O: Initialize i, = 1rx1 and set indexes =1, [ = 1.

« Sep 1: Evaluate membership @' to Cy, (if £ > R, terminate the algorithm):

0, setk = k + 1 and restarSep 1,
If I, (Fk) =
1, setl =1+ 1 and go toSep 2.
o Sep 2: Evaluate membership @ to Cy, (if [ > R, setk =k + 1,1 =1, and go toSep 1):
0, setl =1+ 1 and restarSep 2,
If I, (F)) = P

m

1, go to Sep 3.
o Step 3: CompareF;, versusF; wir.t. the Loewner ordering

if F, = F, setlo (F;)=0,l=10+1, and go toStep 2,
if ¥, = Fy, setle, (Fp)=0,k=k+1,1=1, and go toStep 1,
if not comparable, seti-_ (F;)=1,1=1[0+ 1, and go toStep 2.
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Finally, once the algorithm terminates, the &gt will be given by all elements such that (F;) = 1.
To compareF, versusF;, wr.t. to the Loewner ordering, we apply the determinant test {8&he matrix,
G = F;, — F;. This test evaluates the principal minors@fand concludes on the matrix definiteness as
follows: (i) G is positive definitej.e., F; >~ Fy, if and only if all its leading principal minors are strictly
positive and it is negative definitege., F; > Fy, if its k-th order leading principal minor is 0 for £ odd
and > 0 for k even; (ii) G is positive semidefinite,e., F; = F;, if and only if all the principal minors
are non-negative and it is negative semidefinie, F;, = Fy, if all the k-th order principal minors are
< 0 for k odd and> 0 for k even; (iii) G is indefinite,i.e., F, andF,; are not comparable, if none
of the previous conditions are satisfied. Since all the medrin the seC are block diagonal and the

maximum size of one block i x 2, then every matrixG is a symmetric tridiagonal matrix, which

leading principal minor{ fg (r), »=1,...,q} can be computed iteratively as follows [37]:
1, for r =0,
fa(r)= [G],,, forr =1,

Gl,, fa(r—1)—=(Gl,, ) fa(r—2),for2<r<gq.
Note that the determinant of the tridiagonal mataxs given by|G| = fc (¢), and since all the principal
minors of G are also tridiagonal matrices, then their values are coetpefficiently using the above
expression.

Following the ideas of [24], the issue of having a unique soprm of a set positive definite matrices
can be overcome by redefining the supremum as the matrix iassth¢o the Lowner-John Ellipsoid of
the set of hyperellipsoids associated to the maximal elésneinthe setC formed by the P-order BB
matrices. This matrixB, is unique in the sense that there is not other ellipsoid withimmal volume
covering the hyper-ellipsoids associated to the set of makelement ofC. It also has the properties
of continuity, namely, it is positive definite. In the follamg section we will derive the elements of the

Barankin information matrix for changes in the parametér&aussian and Poisson distributions.

IV. CHANGE IN PARAMETERS OFGAUSSIAN AND POISSON DISTRIBUTIONS

In this section, we apply the proposed bound for two distiims generally encountered in signal
processing. We analyze these two cases in a very generalwiégh means that the results presented
here can be applied to a wide variety of estimation probldmdeed, the parameters involved in the
Gaussian distribution (mean and covariance) and in thesBoidistribution are assumed to be a function

of the parameters); which generally represent physical parameters of inteirestignal processing.
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An example of change of parameters in a Gaussian distritbdtiothe radar context is direction-of-
arrival (DOA) estimation. The varying cross-section flattans are modeled with a Swerling O model
[38], where the DOAs are hidden in the mean of the observatimading for example to the so-called
conditional MLE [39]. On the other hand, when the emittednalg are modeled with a Swerling 1-

2, the DOAs are hidden in the covariance of the observati@asling, for example, to the so-called
unconditional MLE [40]. In the context of particle detectjahe Poisson distribution is generally used
to model the particle counting proces., the observations and the parameter involved in the Poisson

distribution become a function of the DOA [41].

A. Gaussian case

Let us assume that the vector of observatiapse R, for i = 1, ..., N, is modeled as; =
f(v;) +n;, where,f () is a vector of known functionsy; € RF is a known parameter vecton,
is a zero-mean Gaussian random vector with covariance ){TM(cpj), with M (-) is a symmetric
positive definite matrix of known functions, and; € R® is a known parameter vector. Thep =
[V?’ ‘PHT € RE, with L = F + G, and x; are distributed as\V’ (f(uj),M (cpj)>. Here we are
interested in deriving the elements of the Barankin infdfamamatrix for changes in the pdf parameters
of x;, i.e, mean and covariance matrix. First, we analyze the genas# of piecewise changes of
mean and covariance. Second, we deduce the particular itgBesewise changes of mean and constant
covariance matrixj.e., M (cpj) = M (p) = X; ii) piecewise changes of covariance and constant mean
vector,i.e, f(v;) = f(v) = p. Note that we restrict our analysis to the set of parametetove{v, } and
{;} such that the functions ifi(v;) andM (¢;) are injective. In other words, a change in the values
of v; changes the values (ﬁfuj), the mean of the distribution of;. Similarly a change in the values of
»; implies a change in values of the covariance meilrb(cpj) . Below, we compute the elements of the
Barankin information matribBIMy. Then, for each case, respectively, we derive closed-fompnessions
for the elements —1,,, (see Appendix D for details on their derivation) which artfedent from zero,
namely, we evaluaté®|y; for oy > 0, ay, < 0, and [®]gx1for tg + o > trp11 + a.

1) Piecewise changes of mean and covariance matrix: For ay > 0, using Equation (13), we have that

[®]xr IS given by

M(p,., 1/2 M;Zl 1/2\ %k o B _
(P ) o {5 eV e o €710 (M () 02

[®lek =9 xexp {%fT(Vk-H) (M (p511)) " f(qu)}, for My, € Sty 33)

oo, otherwise,
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whereMy. = (2(M (¢)) ™" = (M (¢.1)) ") andege = 2(M (9)) ™ £()~ (M (#141)) " £(0).
For o, < 0, using Equation (13), we have thgk|,. is given by

’M(‘Pk+l)‘
[®]kk = x exp {_Ta"fT(yk) (M (wk))—lf(yk)}, for My € SiL,

M(g, 1/2 Mfll 1/2\ —Qk Cay B 1
(Pl ) enn { Sl M s+ 0 700 (ML (1) 0,0))

oo, otherwise,
(34)

1 _ -1 —
whereMy1 =2 (M (¢11)) —(M () ' andger1 =2 (M (¢411)) " £(vq)—(M(0y) " £(vy).
For tx + ax > tr11 + ara1, USing Equation (17), we have thgk],..1is given as follows:

( M( 11 1/2|M1:1|1/2 B Ayl S _
(Do)l ML) o { T 6 - 17 () (M) 100}
k k+2
F() |

(@] i1 = X exp {—%fT(VkJrz) (M (‘Pk+2))_1 f(Vk+2)+%fT(Vk+1) (M (‘Pk+1))
for M, ' € SM,,

-1

oo, otherwise,
(35)

whereM;, = (M (¢,)) ™" + (M (¢110)) " — (M (¢421)) ", and
&= (M () £+ (M (9142)) " £ Wpi0) = (M (0441)) " £p)-
2) Piecewise changes of mean and constant covariance matrix: In this caseM (cpj) =M (p) =3,
n; = [uf cpT}T, and [®]; is given as follows:
For oy > 0, using Equation (33) and replacidd (¢, ) andM (cpk_H) by ¥, we have straightforwardly
for [®kx:
[®]1, = exp {ak (F(v,) — £wy)) =71 (E(wy) — f(uk+1))} . (36)

For ay; < 0, using Equation (34)®] is given as follows:

[@]kr = exp {—Oék (Fviy1) — f(”k))T = (E(Wppr) — f(”k))} . (37)
For tx + ag > tr11 + ars1, Using Equation (35), the®],.1is given as follows:
[@lkk+1 = (exp {% ((f(l/kJrl) — f(l/k)) >t (f(Vk+1) - f(Vk))T
+ (f(Vk+2) - f(”k+1)) »t (f(”k+2) - f(”k+1))T - (f(Vk) - f(Vk+2)) = (f(Vk) - f(Vk+2))T> }) . (38)

3) Piecewise changes of covariance matrix and constant mean vector: In this casef(v;) = f(v) = p,

=[] andf@) is g follows:
n;, = v, ¢; | ,and[®]y is given as follows:
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For o, > 0 using Equation (33) and replacirfgr,) andf(v, ;) by u, we have straightforwardly

for [®]x:
M o M
[q)]kk = <M(‘Pk)Mk|l/2 ’ for Mk S S++v (39)
oo, otherwise,
- -1
whereM. = 2 (M (¢y,)) t— (M (‘Pk+1))
For ay, < 0, using Equation (34),®] is given as follows:
M)l = - for M, € S¥
[q)]kk = <|M(‘Pk+1)||Mk+1|1/2> ’ k+1 . (40)
oo, otherwise,
—1 _
whereMy, 1 = 2 (M (¢k+1)) — (M(pp) 1
For t; + ax > txy1 + age1, Using Equation (35), the®|x.1is given as follows:
1/2 ﬁ
|M(<Pk+1)| ! > k for M v
/2|~ |1/2 s or M, € S*.,
[@lis1 = <M<sok>|”2|M<%>| i k€ Siy (41)

oo, otherwise,

whereM;, = (M (¢;,) ™" + (M (¢142)) = (M (¢141))
The elements of Barankin bound for each case are obtainedsibg Equation (31), recalling that

-1 -1

Ay = [®],, — 1 and By, = [®],, ., — 1, from Equations (19) and (20), respectively.
B. Poisson case

Assume that the measurements= N+ {0}, fori = 1,..., N, are distributed as a Poisson distribution
with parametegf(nj), wheref(-) is a known function angj; € R” is a known parameter vector. Similarly
to the Gaussian case, we restrict our analysis to the setrafrder vectors{nj} such that the function
f(nj) is injective. Therefore, we derive closed-form expressifum the elements of matri$ — 1,,, for
piecewise changes of the parameter Below, we evaluaté®];; for oz, > 0 anday < 0, and[® ]y 1

for tx + o > tr11 + ap1. Note that sincer; € N we replace the integral operator by the summation

operator.
For ay, > 0, [®]xr becomes ,
— ex QL (f(m+1)—f(77k))
[®]kk = exp { i) } , (42)
For o < 0, [®]xr becomes ,
B —Qk (f('rlk)_f(rlk+1))
[@]kr = exp { i) } . (43)
For ¢, + ag > tgi1 + agr1, [Pkt IS given as follows:
B (Fe)=Fm))” | (Fa)=F ) (Fm)=F (i)
[(I’]kkJrl - {ﬂk ( 2f(77k+1) N 2f(77k+1) 2f(77k+1) . “4)
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Similarly, as in the Gaussian case, the elements of Barasimd for each case are obtained by using

Equation (31) withA;, = [®],,. — 1 and By, = [®];, ., — L.

V. NUMERICAL EXAMPLES

In this section, as an illustration, we compare the MSE betwthe true values of the change-point
locations and their maximum likelihood estimations withr bounds. In particular, we first introduce the
MLE of change-point locations assuming the total numberlanges is known. Then we analyze the
cases of multiple changes in (i) the mean of a Gaussianluisoh with fixed variance, (ii) the variance

of a Gaussian assuming fixed mean, and (iii) the mean rate isf&todistribution.

A. Maximum likelihood estimation

The MLE of t is the solution to the following problem:
q+1

tuL = arg mtaXZ; Inp; (X, 41, Xt:3M;)s (45)
1=

wheret; = 0 andt,,1 = N by definition. There is no known closed-form expression figr so it
has to be estimated via numerical computations. To sol rthiltidimensional optimization problem
efficiently we apply dynamic programming (DP), explaineddetail in [42], for our context of change-
point estimation. The main advantage of the DP approachasithdoes not need to evaluate all the
possible combinations of values ferin (45). In all our examples below we illustrate the averagebM
performance of the MLE for 1000 Monte Carlo experiments. \Mglied the performance as a function
of signal-to-noise ratio (SNR), which is defined accordingl each example, and as a function of the
distance between change points. Here we chpse 3 and the number of samples = 80. In each
example below, we sét = 40, t3 = 60, and we analyze two scenarios for change peéintIn the first
one, we set; = 20 such that each segment has the same number of samples, &edsiecbnd scenario,
t1 € [2, 38].

Note that the unbiasedness properties of the MLE has bediedtin [43] for a single change-point
and for multiple change-points in [44]. The asymptotic tesderived in [43] and [44] are applicable
only for the case of a Gaussian distribution with changeh@&rmhean. However, in the case of having
a finite interval the MLE is expected to be biased independénhe distribution. On the other hand,
it seems reasonable to assume that for large SNR values tHe iMlapproximately for a subset of
the parameter space, i.e, subintervals, and specially Hange-points located equidistant from their
neighboring change-points or the interval limits. For egpéamin all the examples below, the bias of the

MLE for t = [20 40 60] is approximately zero for all the SNR ranges considered @¢hezenario.
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Fig. 1. Performance analysis for estimating change-paifiitee mean in a Gaussian distribution: (a) Mean values ascifin

of sample time for different SNR values; (b) Test points aigded with the BB given by the minimal-upper bound@f BB,

as a function of SNR; (c) MSE of the change-point vector ustrggMLE of t and its Barankin bound given BBBs,;,, and
by the matrix with maximum trace i, BB,; (d) MSE of each change-point as a function of SNR using the&EME ¢, ¢2,
andts and their corresponding Barankin bouBBg.p(t:), i = 1,...,3; (€) MSE of change-point vector using the MLE of
t and its Barankin boundBBs.(t), as a function of the distance betweenand¢; for SNR = —6 [dB]; (f) MSE of each
change-point and their respecti®B;,,, as a function of the distance betweegnand¢, for SNR =—6 [dB].

B. Changes in the mean of a Gaussian distribution

We consider the scenario of time series with 3 change pomtthé mean values of a Gaussian
distribution with common variance. We recall the closed¥@xpressions obtained for computifB] .,

namely, Equations (36) and (37), and define the SNR forkthechange point as

SNRy= (f(vyy,) — f(”k))T S (f(vgy) —f(vy) (46)
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wheref(v,) € RM is the mean vector of th&!" segment an® € RM*M s the common covariance
matrix. In our example) = 1 and, without loss of generality, we choog@v,,) = v, andX = o2 =1,
thusn, = [v], 1]T. Here, we sety; = 1 and vy, v3, and v, are set such tha§NR;y = SNRy =
SNRs = SNR. In particular,v, = v,_1 + (—1)" Vo2SNR for k = 2, 3, 4. Figure 1(a) illustrates the
mean values as a function of sample time for different SNRe&lIn Figure 1(c), we illustrate the MSE
performance of the MLE for the change-point vector and the B8a function of SNR. In particular,
MSEown IS the MSE performance of the MLE for the change-point veassuming knowledge of
the means and variance, Mk, .wn IS the MSE performance of MLE for a more realistic case when
no knowledge of the distribution parameter are availaBlBy,;, is given by the minimal-upper bound
matrix B, of the setC' computed using the algorithm presented in Section IIl.[2 BB, is the matrix
in C that has the maximum trace. We illustrate the tracB8,, and BB, since we are comparing the
MSE performance for the change-point vector estimatese Mwtt, in view of the discussion presented in
Section III.D, we computdBy, only in this example to show th@B;, does not necessarily coincide
with supremum of the set unle&By,, € C. In this particular scenario, we found thBB,,, belongs
to the set” for SNR values equal and larger thamB. Therefore, we have optimal test poidis;, o3,
a%} associated to the matriBBg,,, defining the Lowner-John Ellipsoid , which are presentedigufe
1(b). For SNR values above dB no change point is overlapped, therefore, each boundndespenly
on its corresponding diagonal eleméd);;, which is equivalent to the resulting analysis of considgrin
one change point located at= 20 assumingN = 40. Moreover, it is important to mention that in this
example,[®];; is symmetric with respect ta; and since all segments have the same length, then, both
a; and —q; are optimal solutions for the bound dn In Figure 1(b) we only illustrate one optimal
solution. When the SNR- 2 dB we found the se€’ has several maximal elements that are not mutually
comparable thusBBg,, ¢ C and does not show up in Figure 1(b). Finally, it can be seehtheatest
point approaches the true change point values as SNR ieséas «» tends to 1 as SNR increases.
In Figure 1(d), we illustrate the MSE,, andBBy,,, for change-point;, i = 1, 2,3 as a function of
SNR. It is noteworthy to mention that we did not illustrate fherformance for higher SNR range in this
example, since we found that for SNR values larger th&aB the bound tends quickly to zero. On the
other hand, computing MSE values in these examples fori&ddR requires a large number of Monte
Carlo simulations since the higher the SNR, the smaller théability to have an error. For example, a
single realization with an error of only 1 unit in one of theadlge-points, among 1000 realizations in
the Monte Carlo simulation, amounts to an MSE of -30dB. Simdbservations hold for the example

on changes in the mean rate of a Poisson distribution.
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We also analyze the MSE performance as a function of therdistbetween change points for a fixed
SNR value. In Figure 1(e), for SNR- —6 dB, we illustrate the diagonal elements BBy, and the
MSE of the MLE for the change-point vectér assuming knowledge of the distribution parameters, as
a function of the distance between change pojnandt,. In Figure 1(f) we illustrate the BB and the
MSE of the MLE for each change-point. We observe that the M&&th® MLE for t; andt, increases
as the distance between change pojraind, decreases. Similarly, their respective BB predict the same
behavior for distances between and ¢, equal and larger tham0 time-units, however, for distances
smaller thanl0 time-units their respective bounds decrease to the same \&d for distances larger
than 22 time-units. This bound behavior is expected to take placeusBarankin-type lower bound
approximation considers only one change-point per pamme&herefore, in our problem the test-point
values are lower and upper bounded by the adjacent charigegamameters, which does not allow for
evaluating errors, in estimating each change-point, beé\ybase limits. Thus, as the change-points get
closer the test-point domains become limited and the boamnhat take into account estimated errors
given by estimates af, which are larger than the true valuetef and estimated errors given by estimates

of t5 which are lower than the true value gf.

C. Changes in the variance of a Gaussian distribution

We consider the same scenarios as above, but with a times sgifle three change points in the
variance of a Gaussian distribution and a common mean. ¥l tee closed-form expressions obtained
for computing [®],,, namely, Equations (39) and (40), and define SNR for &He change point as
SNRy = %, where M (¢,,) € RM*M s the covariance matrix of thé*” segment. In our
example,M = 1, and, without loss of generality, we chooB& () = ¢, and the mean equal to zero
since the BIM does not depend on the mean, thus= [0, ¢,]". Here, we setp; = 1, and variances
g, 3, andy, are set such that NR; = SNRy = SNR3 = SNR. In practice,p, = ¢,_1SNR.

In Figure 2(a), we illustrate sigma-parameter values asration of sample time for different SNR
values. In Figure 2(c), we illustrate the MSE performancethef MLE for change-point vector as a
function of SNR and its respective Barankin bouBB..,,. In particular, we illustrate the MSExnown

and MSk,,, of t for SNR ranging froml to 30 dB. In Figure 2(d) we focus on the SNR ranging
betweenl to 10 dB, and we illustrate the MSE for change-point estimate;of,, andt; using MLE
and their respective bounds given by the diagonal elemdnBR),,;,. In this scenaridBBy,,, belongs

to setC for SNR values larger than dB, and the MSE of the MLE approaches slowly the BB as the

SNR increases. In this example, the BB is the same for all gdrguoints for SNR values above 2 dB,
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and for all the SNR range illustrated, the maximum diffeeebetween the BB and both the MSE.n
and MSE,xnown 1S @pproximately 7 dB and 17 dB, respectivéljote that for SNR values lower than
dB the BBy,,, is greater than the MSE of the MLE, which is due to the fact that Barankin bound
derivation does not take into account the set of admissillees of the estimator. In our example, the
MLE computation restricts the search to the range betweendlN\ and thus the MLE variance has
an upper limit, which the BB computation does not consideorédver, note that BB assumes that the
estimator is unbiased at the test-points, in addition topemeter of interest, and since for low SNR
values the optimal test-points tend to go to the extreme @firitervals associated to each change-point
respectively, then the comparison against the BB tends todppropriate Also, we illustrate in Figure
2(b), the optimal test pointgy;, o, ag]T associated to the matriBBy,;,. It can be seen that for all
the SNR range there are no overlaps between test points sl tlde previous example, all test points
approach to 1 or -1, namely, they are close to the true chpoge-values as SNR increases. Therefore,
for large SNR value$BBy,;),, = %, which tends td) asSNR;, — cc.

In Figures 2(e) and (f), for SNR- 4 dB, we illustrate the BB and the MSE of the MLE foy, ¢, and
t3, assuming knowledge of the distribution parameters, asetifin of the distance between change point
t; andty. The BB for all the change-points remains the same for dis®retween change-points
andt. abovel0 units. The BB fort; increases as the distance between change-pgimisdi, increases
from zero to 10 units. As in the previous example, the bounthis range is overly optimistic since the

test-point domains become limited.

D. Changes in the mean rate of a Poisson distribution

Now we consider a time series with three change points in teamrate of a Poisson distribution.
Similarly as in the previous examples, we recall the clo®edt expressions fof®]x, i.e., Equations
(42) and (43). Then we define SNR for th# change point detector &V R;, = %,where
f (n) is the mean rate of the’” segment. Here, without loss of generality, we ¢ét),.) = 71,.. The mean
rate is set); = 1 and the mean rates, n; and,n, are set such thasf NR; = SNRy = SNR3 = SNR.

In practice,n, = n,_; (1 + m) In Figure 3(a), we illustrate the mean-rate-values as atiom

of sample time for different SNR values. Figures 3(c) and iftlistrate the MSE,xnown and MSEown
performance for the change-point vector and each changesgej ¢», andts, respectively. In this case,
the MSE values as well as the bounds#qrts, andts are not the same for the same SNR values. In fact,
it can be seen that the MSE values fgrare lower than the MSE values foy, and these last are lower

than the MSE values for;. This difference in performance is due to the fact that in owaneple the
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Fig. 2. Performance analysis for estimating change-paifhtke variance in a Gaussian distribution: (a) Sigma-patanmvalues
as a function of sample time for different SNR values; (b)t pesnts associated with the BB given by the minimal-uppeurizb
of C', BBgup, as a function of SNR; (c) MSE of the change-point vector gishe MLE oft and its Barankin bound given by
BB.up; (d) MSE of each change-point as a function of SNR using th&eME ¢, 2, andts and their corresponding Barankin
boundBBsuy (t:), i = 1,...,3; () MSE of change-point vector using the MLE fand its Barankin boundBBs.(t), as a
function of the distance betweedn andt; for SNR =4 [dB]; (f) MSE of each change-point and their respectB®8., as a
function of the distance between and¢; for SNR =4 [dB].

difference between the means of contiguous segments ateeneaime, which is a direct consequence of
the definition used for SNR. In practice, for any SNR, theat#hces between the means for segments
[ts+1, N] and [t2 + 1, t3] is larger than the difference between the means for segnjent 1, ¢3] and
[t1+1, t2]. In Figure 3(b) we illustrate the test points associatetheomatrixBBg,;,. As in the previous
examples, the test points tend to the true change-poinesas SNR increases. Finally, in Figures 3(e)

and (f), we illustrate the MSE performance, assuming knoveamrates, as a function of the distance
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Fig. 3. Performance analysis for estimating change-paitse mean rate of a Poisson distribution distribution:N@an-rate-
values as a function of sample time for different SNR val(ey;Test points associated with the BB given by the mininmaber
bound ofC, BBy, as a function of SNR; (c) MSE of the change-point vector gisie MLE oft and its Barankin bound given
by BB..p; (d) MSE of each change-point as a function of SNR using th&Mtt,, t2, andts and their corresponding Barankin
boundBBsuy (t:), i = 1,...,3; () MSE of change-point vector using the MLE fand its Barankin boundBBg.(t), as a
function of the distance between andt¢; for SNR = —6 [dB]; (f) MSE of each change-point and their respectB®8.., as
a function of the distance between andt, for SNR = —6 [dB].

between change points for SNR —6 dB. The bounds for change-poitit andts is constant in all the
illustrated range, though, the MSE of the MLE farslightly varies ag; approaches,. As we discussed
in the previous examples, the bound feris overly optimistic for small distance betweénandt; due

to the constrained test-point domain.

July 18, 2010 DRAFT



DRAFT MANUSCRIPT SUBMITTED TOIEEE TRANSACTIONS ON SIGNAL PROCESSING 27

VI. CONCLUSIONS

We investigated a simplified version of the Barankin boundrasitiple change-point estimation. The
approximate Barankin information matrix was spelled, edivgy an interesting tri-diagonal structure,
meaning that the estimation of one change point is natupaEhyurbed by its two neighbors. Moreover,
the Barankin information matrix can be reduced to a bloclgalieal structure leading to closed-form
for the elements of its inverse. The main limitation posedtig HCR approximation is a reduced
search space for the BIM that leads tdoase Barankin bound. We also discussed the existence and
computation of the supremum with respect to the Loewneigantdering, on the finite set of candidate
BB solutions. To overcome this problem, we computed a slgtatinimal-upper bound to this set given
by the matrix associated with the Lowner-John Ellipsoidhef set of hyper-ellipsoids associated to each
maximal element of the set of candidate bound matrices. Tpmitant distributions in signal and image
processing were investigated, the Gaussian case and tb®Raiase, for which we obtained closed-form
expressions for all the elements of the Barankin infornmatiwatrix. Finally, we illustrated our analysis
by presenting various simulation results. In a future wavk, will analyze Barankin-type lower bounds

considering all distribution parameters in addition to theltiple change-point localizations.

APPENDIX

A. Proof of Lemma 1
Proof: We need to proof that for aff € R? with y # 0, y' (A —B)y > 0if A\; < 1. SinceA is
pd andB is psd, there exist a non-singular matfixsuch that
F'BF = diag(M,...,Am, Amr1s-..,0g) = A and
F'AF = 1
1 (F)'andy” (A - B)y = y© (FT) " (1 - A) (F)y.
1

Thus,B = (F7) " A (F)~' andA = (F7)

Let z = (F)_ly, becauseF is not singular(F)” "y = 0 for y = 0, therefore our problem is equiv-

alent to analyze the positiveness of= z (I-A)z, for z#0. Since A1 = -+ = A\, = 0,
m q

r=>Y(1-X\)z2+ > 22 Hence, if\; < 1, then(1—X;) >0, fori = 1,...,m thusr > 0
i=1 i=m-+1

and A = B. On the other hand, iA; > 1, we can always find & vector such that < 0 or » > 0,

thus A and B are not mutually comparable. |
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B. Computing diagonal elements of &

For oy, > 0, Equation (12) becomes

tr+ag
"ty ty Z:tl;[+1pk(‘rhnk) thg1 N
@]k = /Z,Elpl(ﬂ?i;m)"'i:tkHIHPk(xi;m) - o e (@) o I e (@i g4 )dX.
Q iigﬂpkﬂ(l’imkﬂ '

After some straightforward simplifications, we have that

g
b ta 2 (.. g 2 (-
[@]kk:/ knk%dﬁw...dwtwkzo Lm))dx) _

=t +1 Pk 11 (X3 Mgy y Pr1(X3 My

Q Q

Similar analysis can be applied to solve fof < 0.

C. Computing non-diagonal elements of ®

For aj, > 0 and«; > 0, Equation (14) becomes

tp+ay
i:tl;[ﬂp’“(x“"k) ty thtay trt1
(@], = /t”ak il;llpl(xi;nl)"i':tkljr[l pk+1(xi§77k+1)i:tk£[ak+1pk+1(xi§"7k+1)

Q@ I pryi(xs;
i:tk+lp + ( z’nk+1)

tlﬁal fVI dX
o i3 e i =1.
Z_:tl71+lpl(xz’ ”l)i:thrlqurl(x 77q+1)

The casesgay < 0, a; <0), (ax <0, oy > 0), andty + ax < t; + oy are solved using same approach
as above. For the overlapping case, itg.+ ax > t; + o4, is more difficult. Replacind = k£ + 1 and
keeping in mind thaty, > 0 anday, 1 < 0, Equation (14) becomes

(@]

_ / ﬁp (x5:7m1) bk P (X3 0y )PRt2(Xi5 Mygn) u
2 L - 1 i oo
kk+1 i=1 O g Faggr +1 Prr1(Xi; Mjegr) i=tg+1
Q

Br
_ / Pr (%51, )Prer2 (X5 Mg 1 0) dx
J Prt1(X3 Mpyr) '

where g, = (ty + ag) — (tg+1 + k1) -

Pa+1(Xi; 77q+1)dX

D. Computing the elements of & for changes in mean and covariance matrix of Gaussian distribution
T
In this casen; = [u?, <pﬂ , and the data likelihood is given as follows,
1 1 q+1 . tj T
S e M 2 () () |

(2m)N M/2 qli M () =t ot

J

For o, > 0, using Equation (13), we have thgk|. is given as follows:

_ M (e )\ LT _ T . E
[®@ler = ((Qﬂwz—w> (R/Mexp{—§ (xi kaz—2gkxz)}dxl)

xexp { = ST ()2 (M () £ )+ G v00) (M (040)) 7 0200 }
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whereMy= (2(M () ™" = (M (¢41)) ") andgi=2 (M ()" F()~ (M (9141)) " ().
The integral above has a finite value fof, positive definite (pd). Hence, and after some straightfodwa
algebraic derivations, we obtain the expression in (33g G&sev;, < 0 is obtained proceeding similarly
as above. Foty, + ay > tr11 + axy1, Uusing Equation (17), we have thgp],..is given as follows:

B Br
M (4 1/2 X ) B -
[‘I)]kk+1 _ e | ( k;;)’ 73 / exp ) (x?kai — 2g;‘§xi> dx
(2m) M ()] ‘M (ka+2)’

RM

X exp {—%fT(Vk) (M (‘Pk))il f(’/k) - %fT(ka) (M (‘Pk+2))71 f(’/k+2)+%fT(yk+l) (M (‘Pk+1)) ' f(ka)}

—1

whereM,, = (M (on))71+(M (‘Pk+2)) - (M (‘Pkﬂ))il ) andgk =M (‘Pk)y1 f(’/k)“' (M (‘Pk+2))71 f(l/k+2)—

(M (¢441)) " f(v,,,)- Hence, and after some straightforward algebraic derinatiove obtain the expres-

sion in (35).
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