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Barankin-type Lower Bound on Multiple

Change-point Estimation
Patricio S. La Rosa,Student Member, IEEE, Alexandre Renaux,Member, IEEE, Carlos H.

Muravchik, Senior Member, IEEE, and Arye NehoraiFellow, IEEE

Abstract

We compute lower bounds on the mean-square error of multiplechange-point estimation. In this

context, the parameters are discrete and the Cramér-Rao bound is not applicable. Consequently, we focus

on computing the Barankin bound (BB), the greatest lower bound on the covariance of any unbiased

estimator, which is still valid for discrete parameters. Inparticular, we compute the multi-parameter

version of the Hammersley-Chapman-Robbins, which is a Barankin-type lower bound. We first give the

structure of the so-called Barankin information matrix (BIM) and derive a simplified form of the BB.

We show that the particular case of two change points is fundamental to finding the inverse of this

matrix. Several closed-form expressions of the elements ofBIM are given for changes in the parameters

of Gaussian and Poisson distributions. The computation of the BB requires finding the supremum of a

finite set of positive definite matrices with respect to theLoewner partial ordering. Though, each matrix

in this set of candidates is a lower bound on the covariance matrix of the estimator, the existence of a

unique supremumw.r.t. to this set, i.e., the tightest bound, might not be guaranteed. To overcome this

problem, we compute a suitable minimal-upper bound to this set given by the matrix associated with

the Lowner-John Ellipsoid of the set of hyper-ellipsoids associated to the set of candidate lower-bound

matrices. Finally, we present some numerical examples to compare the proposed approximated BB with

the performance achieved by the maximum likelihood estimator.
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I. INTRODUCTION

Estimation of changes in time series is an important and active research area with several applications,

for example, fault detection, medical imaging, genetics, and econometrics. The literature is abundant

concerning estimation algorithms for change-point estimation (see,e.g., [1]–[3]). However, less work has

been done concerning the ultimate performance of such algorithms in terms of mean-square error (MSE).

Indeed, if an estimator is available, the evaluation of its performance depends on knowing whether it is

optimal or if further improvement is still possible. Note that some other criteria of performance in the

context of sequential detection of a change-point are available in the literature, see,e.g., [4], [5] and

references therein.

The classic way to analyze the performance of an estimator interms of MSE is to compute the

well-known Cramér-Rao bound (CRB) [6]. Unfortunately, for discrete time-measurement models the

change-point location parameter is discrete; therefore the CRB, which is a function of the derivative of

the likelihood of the observations w.r.t. the parameters, is not defined.

Several authors have proposed solutions to this problem. Indeed, in the change-point estimation frame-

work, the CRB has already been studied using approximations(see,e.g., [7]–[12]). Depending on the

particular parametrization of the data likelihood, two main challenges have been addressed concerning

the CRB computation on the change-point time index: (i) the discrete nature of the aforementioned

parameter and (ii) the regularity conditions of the likelihood of the observation. The former implies

that the parameter does not have a defined derivative becauseof its discrete nature [10], and the latter

implies that the likelihood of the observations has to be smooth (details are given in [6] and [13]),

which is not the case for signal parameters with sudden changes. To overcome the discrete nature of

the change-point time index, a continuous parametrizationhas been proposed (see,e.g., [12], [14]). To

satisfy the regularity conditions of the data likelihood, the step-like function, which represents a change

in parameter, is generally approximated by another function with smooth properties (e.g., the so-called

sigmoidal function introduced in [9] and [12] or a Heavisidefunction filtered by a Gaussian filter, as

in [7]). This new function depends on parameters that have tobe adjusted, and it tends to the step-like

function when the appropriate values of these parameters are used. The main problem that appears when

using this technique is that the CRB tends to zero when the approximate function tends to the step-like

function [8], [12].

Moreover, it is noteworthy that these previous works concerning change-point estimation were always

done in the framework of a single change point. To the best of our knowledge, performance bounds have
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never been derived in the multiple change-point context. The latter is important in off-line estimation

of change points where batch-data are available, for example, in biomedical applications, such as DNA

sequence segmentation [15], rat EEG segmentation (see [3],Chapter 2), and uterine MMG contraction

detection [16], and in signal segmentation in general such as speech segmentation [17], astronomical data

analysis [18].

In this paper, we analyze the Barankin bound (BB) [19] for multiple change-point estimation in the

context of an independent vector sequence. The Barankin bound is the greatest lower bound for any

unbiased estimator. Moreover, in contrast to the CRB, its computation is not limited by the discrete

nature of the parameter and the regularity assumptions on the likelihood of the observations [13], [20].

However, the BB requires the use of parameters called test points. These test points choice is left to the

user, and, in order to obtain the best (i.e., the tightest) bound, a nonlinear maximization over these test

points has to be performed. This explains why this bound is somuch less used and known than the CRB,

nevertheless, the BB is often a practical bound for realistic scenarios, seee.g. [21].

To the best of our knowledge, minimal bounds other than the CRB have been proposed in the context

of change-point estimation only in the foundational communication of Ferrari and Tourneret [22]. A

simplified and practical version of the BB (i.e. one test point per parameter), the so-called Hammersley-

Chapman-Robbins (HCR) bound, [20], [23], is studied in thatpaper. As in the previous works on the

CRB, only one change point is considered.

In this paper we extend the results presented in [22] to the case of multiple change points. We consider

the multi-parameter HCR bound and we show that the so-calledBarankin information matrix (BIM),

which has to be inverted, has an interesting structure (viz., a block diagonal matrix structure). We show

that the estimation of one change point is corrupted by its neighboring change points and we give the

details of the computation for the two change-point case. This case facilitates the derivation of a closed-

form expression for the inverse of the BIM. Note that it is possible to find tighter bounds by using more

test-points per parameter, however, such approach does notallow for obtaining closed-form expressions

of the BIM and its inverse as derived here. We also discuss on the existence of the supremum of the finite

set formed by all possible BB solutions and, following ideasfrom [24] and from convex optimization,

we compute a suitable minimal-upper bound to this candidateset with respect to the Loewner cone, the

set of semipositive definite matrices. In particular, we show that its computation is given by the matrix

associated with the Lowner-John Ellipsoid of the candidateset, which is the minimum-volume hyper-

ellipsoid covering the set of hyper-ellipsoids associatedto each matrix in the candidate set. We apply the

bounds to the case of changes in the parameters of Gaussian and Poisson observations. We finally present
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numerical examples for comparing our bound to the performance achieved by the maximum likelihood

estimator (MLE).

The notational convention adopted in this paper is as follows: italic indicates a scalar quantity, as in

A; lowercase boldface indicates a vector quantity, as ina; uppercase boldface indicates a matrix quantity,

as inA. The matrix transpose is indicated by a superscriptT as inAT . The mth-row andnth-column

element of the matrixA is denoted by[A]mn. The identity matrix of sizeN × N is denotedIN . We

define by1M×N the matrix such that[1]mn = 1, ∀m = 1 . . . M and ∀n = 1 . . . N , and D (a) is a

diagonal matrix formed by the elements of the row vectora. The trace operator is defined asTr {.}. The

determinant of a matrix is denoted by|.| and cardinality when applying to a set.S
n denotes the vector

space of symmetricn×n matrices and the subsets of nonnegative definite matrices and positive definite

matrices are denoted bySn
+ and S

n
++, respectively. The notationA � B means that forA, B ∈ S

n,

A − B ∈ S
n
+, also known asLoewner partial ordering of symmetric matrices [25], [26]. The absolute

value is denoted byabs(.). The indicator function of a setS is denoted byIS(.). The expectation operator

is denoted byE [.]. The observation and parameter spaces are denoted, respectively, by Ω andΘ.

The remainder of this paper is organized as follows: In Section II, we present the signal model, the

assumptions, and we introduce the general structure for Barankin bound for the signal model parameters.

The computation and analysis of the Barankin bound for the change-point localization parameters are

provided in Section III. In Section IV, we analyze the cases of changes in the parameters of Gaussian

and Poisson distributions. To illustrate our results, simulations are presented in Section V. Finally, in

Section VI we conclude this work.

II. PROBLEM FORMULATION

A. Observation model

We consider the general case ofN independent vector observationsX = [x1, x2, . . . , xN ] ∈ R
M×N ,

which can be obtained, for example, by a multiple sensor system and are modeled as follows:




xi ∼ p1 (xi;η1) for i = 1, . . . , t1,

xi ∼ p2 (xi;η2) for i = t1 + 1, . . . , t2,
...

xi ∼ pq+1

(
xi;ηq+1

)
for i = tq + 1, . . . , N,

(1)

whereM is the size of the sample vector (e.g., the number of sensors),q is the number of change-

points, andpj is a probability density function (or mass function for discrete random variables) with
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parametersηj ∈ R
L. In other words,xi ∼ pj

(
xi;ηj

)
for i = tj−1 + 1, . . . , tj, with j = 1, . . . ,

q + 1,where we definet0 = 0 and tq+1 = N . Note that if M = 1, the problem is reduced to the

estimation of changes in a time series. We assume that all probability density functionspj belong to a

common distribution. The unknown parameters of interest are the change-point locations{t1, t2, . . . , tq}
with {tk ∈ N − {0} , k = 1, . . . , q}, 1 < t1 < t2 < · · · < tq < N , andq < N − 2. The observations

between two consecutive change points are assumed to be stationary. Consequently, theq × 1 vector of

unknown true parameters for this model ist = [t1, t2, . . . , tq]
T .

The observation model (1) is useful in signal processing; several examples were already mentioned in

the Introduction. Note that, since we focus on the change-point estimation, we assume that the parameters

ηj are known. The resulting bound will still be useful if these parameters are unknown, but overly

optimistic. Moreover, the complexity of the bound derivation increases for unknownηj and therefore we

do not consider this case in this work.

B. Barankin Bound

TheP -order BB of a vectorθ0 ∈ R
q, denoted byBBP (θ0,Hq×P ), is given as follows (see [27]–[30]

for more details):

Cov(θ̂) � BBP (θ0,Hq×P ) = Hq×P (Φ − 1P×P )−1HT
q×P , (2)

whereCov(θ̂) is the covariance matrix of an unbiased estimatorθ̂ of the parameter vectorθ0. The matrix

H = [θ1 − θ0, . . . , θP − θ0] is a function of the set{θ1, . . . , θP}, so-called “test points”, left to the

user’s choice. We definehi = θi − θ0 such that the matrixH ∈ R
q×P becomesH = [h1, . . . , hP ].

Moreover, note thatθ0 + hj ∈ Θ. In the following, for simplicity, we use the term “test point” for the

vectorshi. Finally, Φ is a R
P×P matrix whose elements[Φ]kl are given by:

[Φ]kl = E[L(X,θ0,hk)L(X,θ0,hl)], (3)

whereL(X,θ0,hj) is defined by,

L(X,θ0,hj) =
p(X;θ0 + hj)

p(X;θ0)
, (4)

where p(X;ϕ) is the likelihood of the observations with parameter vectorϕ. Note that the matrix

Φ − 1P×P is sometimes referred to as the Barankin information matrix(BIM) [31].

As already stated, test points choice is left to the user, since any set of test points inBBP (θ0) satisfies

the inequality (2). Thus, the tightest BB, denoted byBB(θ0), is given as follows:

BB(θ0) = lim
P−→|Θ|

sup
{h1,...,hP }

BBP (θ0,Hq×P ) � CRB(θ0), (5)
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where|Θ| is the cardinality of the setΘ formed by all possible parameter values, andCRB(θ0) is the

CRB of θ0, which, assuming that it exists, is smaller than theBB(θ0) in the Loewner ordering sense.

The computation ofBB(θ0) is costly, since the limit onP usually implies that a large, possibly infinite,

number of test points needs to be considered, a nonlinear maximization over the test points has to be

performed, and the inverse of the BIM has to be computed.

Concerning the BB for the parameter vectorθ0 = t, |Θ| depends on the number of samplesN and

change pointsq as follows:

|Θ| =

N−q∑

t1=1

N−q+1∑

t2=t1+1

· · ·
N−1∑

tq−1=tq−2+1

(N − tq−1 − 1) =

(
N − 1

q

)
. (6)

Note that|Θ| → ∞, as(N − q) → ∞ and forN finite then|Θ| is finite. In practice, the number of test

points and the particular structure of matrixH is usually chosen based on the analytical and computational

complexity associated to it, which lead to approximated versions of the BB. In the latter case it would be

useful to have some knowledge on how different Barankin bound approximations compare among each

other w.r.t. Loewner partial ordering. In the following proposition we provide with a general guideline

for this purpose:

Lemma 1: Let A ∈ S
q
++, B ∈ S

q
+ with rank (B) = m < q, λ1 ≥ λ2 ≥ · · · ≥ λm > 0 and

λm+1 = · · · = λq = 0 the roots of the characteristic equation|B− λA| = 0. If λ1 ≤ 1, thenA ≻ B

otherwiseA andB are not mutually comparable.

Proof: See Appendix A

If rank (Hq×P ) = q then BBP (θ0,Hq×P ) ∈ S
q
++ since (Φ − 1)−1 ∈ S

q
++ by construction, and if

rank (Hq×P ′) < q thenBBP (θ0,Hq×P ′) ∈ S
q
+. The Lemma can now be used withA = BBP (θ0,Hq×P )

and B = BBP ′(θ0, H̃q×P ′) provided rank (Hq×P ) = q > rank
(
H̃q×P ′

)
. Note thatrank

(
H̃q×P ′

)

< q implies that the number of test-pointsP ′ < q, therefore, a matrix boundBBP ′(θ0, H̃q×P ′) cannot

be larger,w.r.t. Loewner partial ordering, than any matrix bound given by a test-point matrixHq×P

consisting ofP = q independent test-point vectors. Consequently, in the following we will use an

approximate version of the BB that allows us to derive efficiently computed closed-form expressions for

the BIM and its inverse in the context of our multiple change-point estimation problem. In particular, we

will compute the multi-parameter HCR bound [27] with the classical assumption of one test point per

parameter(P = q) , i.e., hj = [0, . . . , αj, . . . , 0]T . Then, H is a diagonal matrix given by,

H = [h1, . . . , hq] = D (α) (7)

where the vectorα = [α1, . . . , αq]
T corresponds to the set of test points associated to the parameters
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t = [t1, t2, . . . , tq]
T . Note thatαj 6= 0 is defined such thattj + αj ranges over all possible values of

tj, for j = 1, . . . , q. Thus,αj ∈ {Z ∩ [tj−1 − tj + 1, tj+1 − tj − 1]− {0}}. Let S ⊂ Z
q be a set formed

by all possible values ofα. The setS is finite given thattq+1 is finite.

The matrix,Φ− 1q×q, corresponds to the BIM for change-point locationst, denoted here byBIMt.

The approximated BB,BBt, q, is then obtained from

BBt, q = sup
[h1,...,hq]

BBq(t,Hq×q) = sup
α∈ S

D (α) BIM−1
t

D (α)T . (8)

By construction, the finite setC := {BBq(t,D (α)), α ∈ S} is a subset of the partially ordered set

(Sq,�) with partial order ”�” given by theLoewner ordering [25], [26]. This partial order is not a lattice

ordering,i.e., each finite subset ofSq may not be closed under least-upper (infimum) and greatest-lower

bounds (supremum) [26]. In other words, the notion of a unique supremum or an infimum ofC might

not exist with respect to the Loewner ordering. The supremumdoes not exist if there is no upper bound

to the set, or if the set of upper bounds does not have a least element. If the supremum exists, it does not

need to be defined in the set, but if it belongs to it, then it is the greatest element1 in the set. Note that

a set with respect to the partially order set(Sq,�) may have several maximal2 and minimal elements

without having a greatest and least element in the set, respectively. If the set has a greatest or least

element then it is the unique maximal or minimal element and therefore it is the supremum or infimum

of the set. Here, we will approach the computation of the supremum by computing a suitable minimal

element of the set of upper bounds ofC, namely, a minimal-upper boundBq ∈ S
q
++ such thatBq � C

and which is minimal in the sense that there is not smaller matrix B′
q � Bq such thatB′

q � C. From

Eq. (2),Cov(θ̂) belongs to set of upper bounds ofC therefore if the set of upper bounds has a unique

minimal element, i.e., a least element, thenCov(θ̂) � Bq. However, if the set of upper bounds has

several minimal elements then in general we can expect thatCov(θ̂) � Bq, or thatCov(θ̂) andBq

are not mutually comparable.

Having a closed form forBIM−1
t

makes the task of computingBq much less computationally

demanding than having to invertBIMt for everyα ∈ S. In the following section, we will first derive

the elements ofBIMt and obtain closed-form expressions forBIM−1
t

. Then, we will introduce the

approach for computing the minimal-upper boundBq.

1Bi ∈ C is the greatest element ofC w.r.t. (Sq,�) if Bi � Y for all Y ∈ C. If the greatest element exists it is an upper-bound

of C contained in it. The least element ofC is defined similarly consideringBi � Y.

2Bi ∈ C is a maximal element ofC w.r.t. (Sq,�) if there is notY ∈ C such thatY � Bi and is a minimal element if

there is notY ∈ C such thatBi � Y.
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III. B ARANKIN BOUND TYPE FOR MULTIPLE CHANGE-POINT ESTIMATION

To compute the BB for the change point localization parameters, we first need to computeBIMt,

which depends on the matrixΦ. From Equations (3) and (4), the elements of[Φ]kl, for k, l = 1, . . . , q

are given by

[Φ]kl =

∫

Ω

p (X; t + hk) p (X; t + hl)

p (X; t)
dX, (9)

wherep (X; t) is given by

p (X; t) =
t1
Π

i=1
p1(xi;η1) · · ·

tk

Π
i=tk−1+1

pk(xi;ηk) · · ·
N
Π

i=tq+1
pq+1(xi;ηq+1), (10)

andp (X; t + hk) is given by

p (X; t + hk) =
t1
Π

i=1
p1(xi;η1) · · ·

tk+αk

Π
i=tk−1+1

pk(xi;ηk) · · ·
N
Π

i=tq+1
pq+1(xi;ηq+1), (11)

and wherep (X; t + hl) is same as Equation (11) (k = l).

In order to study and to simplifyΦ, we will analyze its diagonal and non-diagonal elements separately.

A. Diagonal elements of Φ

Replacingk = l in (9) and using (11), we obtain the following expression:

[Φ]kk =

∫

Ω

t1
Π

i=1
p2
1(xi;η1) · · ·

tk+αk

Π
i=tk−1+1

p2
k(xi;ηk) · · ·

t1
Π

i=1
p1(xi;η1) · · ·

N
Π

i=tq+1
pq+1(xi;ηq+1)

· · ·
N
Π

i=tq+1
p2

q+1(xi;ηq+1)dX. (12)

This equation can be further simplified by considering the the casesαk > 0 and αk < 0, obtaining

the following expression (see Appendix B for details on its derivation):

[Φ]kk =





(∫
Ω

p2
k(x;ηk)

pk+1(x;ηk+1)
dx
)αk

, if αk > 0,
(∫

Ω

p2
k+1(x;ηk+1)

pk(x;ηk) dx
)−αk

, if αk < 0.
(13)

B. Non-diagonal elements of Φ

The computation of the off-diagonal elements ofΦ can be simplified by using the fact that the matrixΦ

is symmetric; therefore, we can focus on either the upper or lower triangular part ofΦ. In our derivations

below we consider the upper triangular part,i.e. k < l, then by using (9) and (11), we obtain the following

expression for the elements ofΦ :

[Φ]kl =

∫

Ω

t1
Π

i=1
p1(xi;η1) · · ·

tk+αk

Π
i=tk−1+1

pk(xi;ηk)

t1
Π

i=1
p1(xi;η1) · · · · · ·

N
Π

i=tq+1
pq+1(xi;ηq+1)

tk+1

Π
i=tk+αk+1

pk+1(xi;ηk+1) · · ·
N
Π

i=tq+1
pq+1(xi;ηq+1)

×
t1
Π

i=1
p1(xi;η1) · · ·

tl+αl

Π
i=tl−1+1

pl(xi;ηl) · · ·
N
Π

i=tq+1
pq+1(xi;ηq+1)dX. (14)
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Following the same idea as for the diagonal elements,[Φ]kl can be simplified by analyzing the four

possible combinations of test-point ranges, namely,




Case 1:αk > 0 andαl > 0,

Case 2:αk < 0 andαl < 0,

Case 3:αk < 0 andαl > 0,

Case 4:αk > 0 andαl < 0.

(15)

For the last case,i.e. αk > 0 and αl < 0, two subcases have to be analyzed: (i)tk + αk < tl + αl

and (ii) tk + αk > tl + αl. These two cases correspond to non-overlapping and overlapping test points,

respectively. Note that sincek < l, tk < tl and sinceαj ∈ {Z∩ [tj−1 − tj + 1, tj+1 − tj − 1]−{0}}, the

casetk + αk > tl + αl which corresponds to an overlapping between two test points, can appear only

when l = k + 1, or, in other words, when we are analyzing two neighboring change points. Then, for

Cases 1-3 and subcase (i), Equation (14) becomes (see Appendix C )

[Φ]kl = 1, for l > k (16)

and for subcase (ii), keeping in mind thatαk > 0 andαk+1 < 0, Equation (14) becomes

[Φ]kl =





(∫
Ω

pk(x;ηk)pk+2(x;ηk+2)

pk+1(x;ηk+1)
dx
)βk

, for l = k + 1,

1, for l > k + 1,
(17)

whereβk = (tk + αk) − (tk+1 + αk+1) .

Remark: This last result is fundamental because it proves the natural intuition that the estimation ofq

change points is not equivalent toq times the estimation of one change point. In other words, it means

that the estimation of one change point is perturbed by its two neighbors. We now summarize the previous

results.

C. Barankin information matrix Φ− 1q×q

Using Equations (13), (16), and (17), it is clear thatBIMt has at least a tri-diagonal structure:

BIMt =




A1 B1 0 · · · 0

B1 A2
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . Aq−1 Bq−1

0 · · · 0 Bq−1 Aq




, (18)
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where

Ak = [Φ]kk − 1, for k = 1, . . . , q (19)

=





(∫
Ω

p2
k(x;ηk)

pk+1(x;ηk+1)
dx
)αk − 1 if αk > 0,

(∫
Ω

p2
k+1(x;ηk+1)

pk(x;ηk) dx
)−αk − 1 if αk < 0,

and

Bk = [Φ]kk+1 − 1, for k = 1, . . . , q − 1 (20)

=





0, if βk < 0,
(∫

Ω

pk(x;ηk)pk+2(x;ηk+2)

pk+1(x;ηk+1)
dx
)βk − 1, if βk > 0.

In the case of one change-point estimation,BIMt is reduced to a scalarA1, and we re-obtain by

replacingα1 = α the result proposed by Ferrari and Tourneret (see Equations(5) and (6) in [22]):

A1 =





(∫
Ω

p2
1(x;η1)

p2(x;η2)
dx
)α

− 1 if α > 0,
(∫

Ω
p2
2(x;η2)

p1(x;η1)
dx
)−α

− 1 if α < 0.
(21)

Note also that the diagonal elements ofBIMt can be computed numerically in one step (i.e., ∀αk ≷ 0)

as follows:

Ak =

(∫

Ω

(
pk(x;ηk)

pk+1(x;ηk+1)

)ǫk

pk+1(x;ηk+1)dx

)abs(αk)

− 1, (22)

whereǫk = 1
2

(
3 αk

abs(αk) + 1
)

.

The next step of our analysis is to compute(BIMt)
−1. For a given set of test points, it is clear that

tk+αk > tk+1+αk+1 =⇒ tk+1+αk+1 < tk+2+αk+2, sinceαj ∈ {Z∩[tj−1−tj+1, tj+1−tj−1]−{0}}.

In other words,∀k, if Bk 6= 0, then Bk+1 = Bk−1 = 0; therefore,BIMt is block diagonal and the

maximum size of one block is2 × 2. Since the problem is reduced to finding, at worst, the inverse of

several2× 2 matrices with the same structure, we will have a straightforward inversion. In this section,

we detail the case of two change points, we give the generalization to two neighboring points and use

this to derive a closed-form expression for the inverse ofBIMt and thusBBq(t,D (α)).

1) The case of two change points: In this case we haveq = 2, t = [t1, t2]
T , andBBq(t,D (α))

becomes

BB2(t,D (α)) =


 α1 0

0 α2




 A1 B1

B1 A2



−1 
 α1 0

0 α2


 (23)

with

A1 =





(∫
Ω

p2
1(x;η1)

p2(x;η2)
dx
)α1 − 1 if α1 > 0,

(∫
Ω

p2
2(x;η2)

p1(x;η1)
dx
)−α1 − 1 if α1 < 0,

, A2 =





(∫
Ω

p2
2(x;η2)

p3(x;η3)
dx
)α2 − 1 if α2 > 0,

(∫
Ω

p2
3(x;η3)

p2(x;η2)
dx
)−α2 − 1 if α2 < 0,

(24)
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B1 =





0 if β1 < 0,
(∫

Ω
p1(x;η1)p3(x;η3)

p2(x;η2)
dx
)β1 − 1, if β1 > 0,

(25)

whereβ1 = (t1 + α1) − (t2 + α2) .

Consequently, depending on the given set of test points, thefollowing five combinations, corresponding,

respectively, to cases:1, 2, 3, 4 in (15), are possible forBB2(t,D (α)):







α2
1

∆
α1
112−1

0

0 α2
2

∆
α2
223−1


 ,




α2
1

∆
abs(α1)

221 −1
0

0 α2
2

∆
abs(α2)

332 −1


 ,




α2
1

∆
abs(α1)
221 −1

0

0 α2
2

∆
α2
223−1


 ,




α2
1

∆
α1
112−1

0

0 α2
2

∆
abs(α2)
332 −1


 ,

κ−1


 α2

1

(
∆

abs(α2)
332 − 1

)
α1α2

(
1 − ∆

β1

132

)

α1α2

(
1 − ∆

β1

132

)
α2

2 (∆α1

112 − 1)








(26)

where we define∆ijk =
∫
Ω

pi(x;ηi)pj(x;ηj)

pk(x;ηk) dx,andκ = (∆α1

112 − 1)
(
∆

abs(α2)
332 − 1

)
−
(
∆

β1

132 − 1
)2

.

2) Generalization to q change points: Note that for more change points the process is the same except

that the inversion has to be computed, because of the increase of possibilities. However, the matrix to

be inverted is block diagonal, with block of size1 × 1 or 2 × 2, as stated in the previous section. In

particular, depending on the values ofα, the elements of
[
BIM−1

t

]
kl

for 1 < k < q andl = {k, k + 1},

with BIMt, Ak, and Bk given by Equations (18), (19), and (20), respectively, andα0 = αq = 0 and

Bq = 0, have the following possible values:

If tk+1 + αk+1 < tk + αk, thenαk > 0, Bk 6= 0 andBk−1 = Bk+1 = 0, thus

[
BIM−1

t

]
kl

=





Ak+1

AkAk+1−B2
k
, for l = k,

− Bk

AkAk+1−B2
k
, for l = k + 1.

(27)

If tk + αk < tk−1 + αk−1, thenαk < 0, Bk−1 6= 0 andBk−2 = Bk = 0, thus

[
BIM−1

t

]
kl

=





Ak−1

AkAk−1−B2
k−1

, for l = k,

0, for l = k + 1.
(28)

If tk−1 + αk−1 < tk + αk < tk+1 + αk+1, thenBk−1 = Bk = 0, thus

[
BIM−1

t

]
kl

=





1
Ak

, for l = k,

0, for l = k + 1.
(29)

Therefore, the elements of
[
BIM−1

t

]
kl

for k, l = 1, . . . , q, which is a symmetric matrix, are given by

[
BIM−1

t

]
kl

=





Ak−1I[−∞,−1](αk)+Ak+1I[1,∞](αk)

Ak(Ak−1I[−∞,−1](αk)+Ak+1I[1,∞](αk))−(B2
k−1+B2

k)
, for l = k,

−Bk

AkAk+1−B2
k
, for l = k + 1,

0, for l > k + 1.

(30)
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Since the matrixBBq(t,D (α))= D (α) BIM−1
t

D (α)T , then,[BBq(t,D (α))]kl for k, l = 1, . . . , q

is given as follows:

[BBq(t,D (α))]kl =





α2
k(Ak−1I[−∞,−1](αk)+Ak+1I[1,∞](αk))

Ak(Ak−1I[−∞,−1](αk)+Ak+1I[1,∞](αk))−(B2
k−1+B2

k)
, for l = k,

− αkαk+1Bk

AkAk+1−B2
k
, for l = k + 1,

0, for l > k + 1,

(31)

where [BBq(t,D (α))]kl = [BBq(t,D (α))]lk . If for a given set of test points there is no overlap

with the neighboring change-pointtk−1 and tk+1, then, Bk−1 = Bk = 0 in (31) and we obtain the

particular result[BBq(t,D (α))]kk = α2
k/Ak and [BBq(t,D (α))]kk+1 = [BBq(t,D (α))]k+1k = 0.

This is equivalent to the bound obtained using the same set oftest points and assuming one change-point

located in the time interval betweentk−1 andtk+1 with total numbers of time-samplesN = tk+1− tk−1.

D. Computation of the supremum

To obtain the tightest bound from the finite setC := {BBq(t,D (α)), α ∈ S} ⊂ S
q
++ we need to

compute the supremum ofC with respect to the partially order set(Sq,�) . The partial order is given by

the Loewner ordering which is defined via the cone of positivesemidefinite matrices [25], [26]. In general,

this problem is indeed very complex since it requires to lookfor α∗∈ S such thatBBq (t,D (α∗)) �
BBq (t,D (α)) for all α ∈ S . To the best of our knowledge, no formal approach for solvingthis

problem has been proposed in the technical literature of minimal bounds. For example, in [28], [32] the

choice of the test pointα has been guided by some physical considerations of the modelbeing studied.

Also, from an optimal design context [25], an approximationfor solving this problem is to compute the

matrix in C with the largest trace,BBtr. However, the fact thatTr {BBtr} > Tr {Bi} for Bi ∈ C, does

not imply thatBBtr ≻ Bi, only the converse statement is valid. In fact, only ifC has a greatest element,

i.e., the supremum of the set, then it is given by the matrix inC with the largest trace LetBj = supC,

with Bj ∈ C, then by definitionBj � Bi, for all Bi ∈ C with i 6= j. Let G = Bj − Bi, thusG ∈ S
q
+

andTr {G} > 0. Hence,Tr {Bj} > Tr {Bi} , for all Bi ∈ C with i 6= j, but as we discussed at the

end of Section II, the notion of a unique supremum or an infimumwith respect to the Loewner partial

ordering in the finite setC might not exist.

Here we address the computation of the supremum by finding a minimal-upper boundBq ∈ S
q
++ to

the setC such that,Bq � C and which is minimal in the sense that there is no smaller matrix B′
q � Bq

such thatB′
q � C. In [24], the authors implicitly introduced an algorithm forcomputing a minimal-upper

bound to a finite set of positive definite matrices and redefined this element as supremum of the set.
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Before discussing more details about it, we need to introduce the so-called penumbraP (M) of a matrix

M ∈ S
q as the setP (M) := {N ∈ S

q : N � M} [24], [25] and the following proposition:

Proposition 2: DefineM andN ∈ S
q, thenM � N iff P (N) ⊆ P (M) .

Proof: If P (N) ⊆ P (M), then N ∈ P (M) and then, by definition of penumbra,M � N. To

prove the other implication, we define a matrixG ∈ S
q such asN � G. Then if M � N we have that

by the transitivity property of the Loewner orderM � G, namely,M � N � G. Therefore, all the

matrix elements inP (N) are also inP (M), thus,P (N) ⊆ P (M).

The penumbraP (M) is seen as an inverted cone of vertexM characterizing all matrices that are

smaller thanM [24], [25]. The authors in [24], [25] redefined the supremum of a set of matrices as the

matrix associated to the vertex of the minimal penumbra covering the penumbras of all the matrices in

the set. The minimal-penumbra vertex is a minimal-upper bound to the set with respect to the partially

order set(Sq,�). In [24], the minimal-penumbra vertex is computed by associating with each matrixM

∈ S
q a ball in the subspaceSA = {A : Tr {A} = 0}, and the authors show that it is determined by

the smallest ball enclosing the set of balls associated to each matrix in the set. The latter algorithm is

implemented in an approximate manner, by solving instead the problem of finding the smallest enclosing

ball of a set of points which correspond to samples from the boundaries of each ball. The success of this

method to obtain a minimal-upper bound matrix depends on thesamples chosen. For example, in the

case of having two balls, it is easy to show that the smallest enclosing ball is tangent to each ball border

at the two farthest points from the set of points defined by theintersection of a line passing through

each ball center and each ball boundary. Therefore if the sampling procedure does not include this pair

of points, then the resulting ball does not enclose completely both balls and, thus, the resulting matrix

is not a minimal-upper bound. Moreover, when the dimension is larger than two, a simple analytical

computation shows that this algorithm fails to obtain a minimal-upper bound matrix for the set formed

by two diagonal matrices no comparable to each other according to Loewner order.

Here, instead, we propose a method for computing a suitableBq for any dimension. First, we show

that computingBq is equivalent to finding the minimum-volume hyper-ellipsoid covering the set of

hyper-ellipsoids associated to each matrix in the setC. And second, we show that this problem can

be written as a convex objective function with convex constraints which can be solved efficiently using

semidefinite programming. An hyper-ellipsoidε ⊂ R
q with non-empty interior and centered at the origin

can be represented by the setε (F) =
{
xTF−1x ≤ 1

}
, whereF ∈ S

q
++. Supposeε

(
F̃
)

is another

hyper-ellipsoid similarly represented wherẽF ∈ S
q
++. Then, the following statement holds:

July 18, 2010 DRAFT



DRAFT MANUSCRIPT SUBMITTED TOIEEE TRANSACTIONS ON SIGNAL PROCESSING 14

Lemma 3: F � F̃ iff ε (F) ⊇ ε
(
F̃
)

.

Proof: By the S-procedure [33], we have thatε
(
F̃
)
⊆ ε (F) if and only if there is aλ > 0 such

that 
 F−1 0

0 −1


 � λ


 F̃−1 0

0 −1


 ,

with equality whenλ = 1, implying the necessary conditioñF � F.

Given a finite set of hyper-ellipsoidsCε :=
{
ε (Fi) | Fi ∈ S

q
++, i = 1, . . . , R

}
, we can always find

a unique minimum volume hyper-ellipsoid,ε (Fjl), containing the setCε, i.e, containing allε (Fi) [33].

SinceCε is convex,ε (Fjl) is known as the Lowner-John ellipsoid ofCε [33] and, as we show in the

following statement,Fjl is a minimal-upper bound of the setCF := { Fi, i = 1, . . . , R} formed by all

the matrices associated to the hyper-ellipsoids inCε.

Theorem 4: The matrixFjl, associated to the Lowner-John ellipsoid of the setCε, is a minimal-upper

bound of the setCF w.r.t to the Loewner partial ordering.

Proof: We will demonstrate this by contradiction. FromLemma 3 we have thatF
jl
� Fi, i = 1,. . . ,

R. Assume that there exists a matrixFo /∈ CF such thatFjl � Fo � Fi , thereforeε (Fo) ⊇ ε (Fi),

for i = 1,. . . , R, and thusε (Fo) ⊇
P∪

i=1
ε (Fi). Given that the volume ofε (Fjl) is less than the volume

of ε (Fo), since it is the minimum volume hyper-ellipsoid enclosing all Fi, then |Fjl| ≤ |Fo|, but

by constructionFjl � Fo, thus |Fjl| ≥ |Fo| which is a contradiction. ThusFo = Fjl and Fjl is a

minimal-upper bound of the setCF .

Therefore, computing a minimal-upper bound matrixBq of the setC := {BBq(t,D (α)), α ∈ S} ⊂
S

q
++ is equivalent to finding the Lowner-John ellipsoid of the setof hyper-ellipsoids associated toC.

This is a particular case of a more general problem of computing the minimum volume hyper-ellipsoid

ε (B) =
{
xTB−1x+2

(
B−1/2 b

)T
x + bTb ≤ 1

}
which covers the union of a set of non centered

hyper-ellipsoids parameterized by the quadratic inequalities εi (Bi) =
{
xT B−1

i x+ 2bT
i x+ ci ≤ 0

}
for

i = 1, . . . ,m. This problem can be posed as follows [33]:

max
{B, b}

{
log
(
det
(
B1/2

))}
(32)

subject to :

τ1 ≥ 0, τ2 ≥ 0, . . . , τm ≥ 0,
 B−1 − τ iB

−1
i B−1/2 b − τ ibi

(
B−1/2 b− τ ibi

)T
bTb − 1 − τ ici


 � 0, i = 1, . . . ,m.

The objective function and the set of constrains are convex,so it can be solved efficiently using
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semidefinite programming. In particular, we solve this problem usingCVX, a package for specifying and

solving convex programs [34], [35], forBi = BBq(t,D (αi)) for αi ∈ S , bi = b = 0, and ci = 1.

Therefore, the minimal-upper boundBq of the setC is given byBq= B∗, whereB∗ is the optimal

solution of (32). Using the following statement, we can evenreduce the number of constrains in the

above problem by considering only the setCm ⊆ C formed by all the maximal elements ofC.

Theorem 5: DefineCFm as the subset ofCF formed by all the maximal elements ofCF . Then, the

Lowner-John ellipsoidε (Fjl) of Cε is also the Lowner-John ellipsoid of the setCεm formed by the

hyper-ellipsoids associated to the matrices inCFm.

Proof: SinceCFm is formed by all the maximal elements ofCF , then forFi ∈ CFm and anyFj ∈
CFc = CF − CFm, we have thatFi � Fj . From Lemma 3, ε (Fi) ⊇ {ε (Fj) , for all Fj ∈ CFc} ,

which is true for allFi ∈ CFm, i.e., for all ε (Fi) ∈ Cεm, thusCεm ⊇ {ε (Fj) , for all Fj ∈ CFc} and

Cε = Cεm ∪ {ε (Fj) , for all Fj ∈ CFc} = Cεm. Therefore,ε (Fjl) is the Lowner-John ellipsoid for the

setCε andCεm.

Hence, using the above result we decrease the number of constraints in (32) by performing a pre-step

which identifies the setCm. Note that ifC has a greatest element, it is the unique maximal element ofC

and therefore it is the supremum of the set and its associatedhyper-ellipsoid is the Lowner-John ellipsoid

of the set of hyper-ellipsoids associated toC. Therefore, there is not need to solve problem (32). Our

algorithm searches and removes from the set of constraints the matrices whose hyper-ellipsoid is fully

enclosed by other hyper-ellipsoids. In particular, we evaluate in an iterative manner the membership to

Cm of all elements inC. We define a membership indicator vectoriCm
where [iCm

]i = ICm
(Fi) and

the algorithm begins assuming that all elements belongs toCm, namely,iCm
= 1R×1, whereR = |C| .

Then, all the values of the elements ofiCm
are evaluated using the following iterative procedure:

• Step 0: Initialize iCm
= 1R×1 and set indexesk = 1, l = 1.

• Step 1: Evaluate membership ofFk to Cm (if k > R, terminate the algorithm):

If ICm
(Fk) =





0, setk = k + 1 and restartStep 1,

1, setl = l + 1 and go toStep 2.
• Step 2: Evaluate membership ofFl to Cm (if l > R, setk = k + 1, l = 1, and go toStep 1):

If ICm
(Fl) =





0, set l = l + 1 and restartStep 2,

1, go to Step 3.
• Step 3: CompareFk versusFl w.r.t. the Loewner ordering:




if Fk � Fl, setICm
(Fl) = 0, l = l + 1, and go toStep 2,

if Fl � Fk, setICm
(Fk) = 0, k = k + 1, l = 1, and go toStep 1,

if not comparable, setICm
(Fl) = 1, l = l + 1, and go toStep 2.
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Finally, once the algorithm terminates, the setCm will be given by all elements such thatICm
(Fi) = 1.

To compareFk versusFl, w.r.t. to the Loewner ordering, we apply the determinant test [36]to the matrix,

G = Fk −Fl. This test evaluates the principal minors ofG and concludes on the matrix definiteness as

follows: (i) G is positive definite,i.e., Fk ≻ Fl, if and only if all its leading principal minors are strictly

positive and it is negative definite,i.e., Fl ≻ Fk, if its k-th order leading principal minor is< 0 for k odd

and> 0 for k even; (ii) G is positive semidefinite,i.e., Fk � Fl, if and only if all the principal minors

are non-negative and it is negative semidefinite,i.e., Fl � Fk, if all the k-th order principal minors are

≤ 0 for k odd and≥ 0 for k even; (iii) G is indefinite,i.e., Fk andFl are not comparable, if none

of the previous conditions are satisfied. Since all the matrices in the setC are block diagonal and the

maximum size of one block is2 × 2, then every matrixG is a symmetric tridiagonal matrix, which

leading principal minors{fG (r) , r = 1, . . . , q} can be computed iteratively as follows [37]:

fG (r) =





1, for r = 0,

[G]11 , for r = 1,

[G]r r fG (r − 1) −
(
[G]r r−1

)2
fG (r − 2) , for 2 < r < q.

Note that the determinant of the tridiagonal matrixG is given by|G| = fG (q), and since all the principal

minors of G are also tridiagonal matrices, then their values are computed efficiently using the above

expression.

Following the ideas of [24], the issue of having a unique supremum of a set positive definite matrices

can be overcome by redefining the supremum as the matrix associated to the Lowner-John Ellipsoid of

the set of hyperellipsoids associated to the maximal elements of the setC formed by the P-order BB

matrices. This matrixBq is unique in the sense that there is not other ellipsoid with minimal volume

covering the hyper-ellipsoids associated to the set of maximal element ofC. It also has the properties

of continuity, namely, it is positive definite. In the following section we will derive the elements of the

Barankin information matrix for changes in the parameters of Gaussian and Poisson distributions.

IV. CHANGE IN PARAMETERS OFGAUSSIAN AND POISSON DISTRIBUTIONS

In this section, we apply the proposed bound for two distributions generally encountered in signal

processing. We analyze these two cases in a very general way,which means that the results presented

here can be applied to a wide variety of estimation problems.Indeed, the parameters involved in the

Gaussian distribution (mean and covariance) and in the Poisson distribution are assumed to be a function

of the parametersηj which generally represent physical parameters of interestin signal processing.
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An example of change of parameters in a Gaussian distribution in the radar context is direction-of-

arrival (DOA) estimation. The varying cross-section fluctuations are modeled with a Swerling 0 model

[38], where the DOAs are hidden in the mean of the observations, leading for example to the so-called

conditional MLE [39]. On the other hand, when the emitted signals are modeled with a Swerling 1-

2, the DOAs are hidden in the covariance of the observations,leading, for example, to the so-called

unconditional MLE [40]. In the context of particle detection, the Poisson distribution is generally used

to model the particle counting process;i.e., the observations and the parameter involved in the Poisson

distribution become a function of the DOA [41].

A. Gaussian case

Let us assume that the vector of observationsxi ∈ R
M , for i = 1, . . . , N, is modeled asxi =

f(νj) + ni, where, f (·) is a vector of known functions,νj ∈ RF is a known parameter vector,ni

is a zero-mean Gaussian random vector with covariance matrix M
(
ϕj

)
, with M (·) is a symmetric

positive definite matrix of known functions, andϕj ∈ R
G is a known parameter vector. Thenηj =

[
νT

j , ϕT
j

]T
∈ R

L, with L = F + G, and xi are distributed asN
(
f(νj),M

(
ϕj

))
. Here we are

interested in deriving the elements of the Barankin information matrix for changes in the pdf parameters

of xi, i.e., mean and covariance matrix. First, we analyze the general case of piecewise changes of

mean and covariance. Second, we deduce the particular casesi) piecewise changes of mean and constant

covariance matrix,i.e., M
(
ϕj

)
= M (ϕ) = Σ; ii) piecewise changes of covariance and constant mean

vector,i.e., f(νj) = f(ν) = µ. Note that we restrict our analysis to the set of parameter vectors{νj} and
{
ϕj

}
such that the functions inf(νj) andM

(
ϕj

)
are injective. In other words, a change in the values

of νj changes the values off(νj), the mean of the distribution ofxi. Similarly a change in the values of

ϕj implies a change in values of the covariance matrixM
(
ϕj

)
. Below, we compute the elements of the

Barankin information matrixBIMt. Then, for each case, respectively, we derive closed-form expressions

for the elementsΦ−1q×q (see Appendix D for details on their derivation) which are different from zero,

namely, we evaluate[Φ]kk for αk > 0, αk < 0, and [Φ]kk+1for tk + αk > tk+1 + α.

1) Piecewise changes of mean and covariance matrix: For αk > 0, using Equation (13), we have that

[Φ]kk is given by

[Φ]kk =





(
|M(ϕk+1)|1/2|M−1

k |1/2

|M(ϕk)|

)αk

exp
{

αk

2 gT
k M−1

k gk − αk fT (νk) (M (ϕk))
−1

f(νk)
}

× exp
{

αk

2 fT (νk+1)
(
M
(
ϕk+1

))−1
f(νk+1)

}
, for Mk ∈ S

M
++,

∞, otherwise,

(33)
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whereMk =
(
2 (M (ϕk))

−1 −
(
M
(
ϕk+1

))−1
)

andgk = 2 (M (ϕk))
−1

f(νk)−
(
M
(
ϕk+1

))−1
f(νk+1).

For αk < 0, using Equation (13), we have that[Φ]kk is given by

[Φ]kk =





(
|M(ϕk)|1/2|M−1

k+1|1/2

|M(ϕk+1)|

)−αk

exp
{

−αk

2 gT
k+1M

−1
k+1gk+1 + αk fT (νk+1)

(
M
(
ϕk+1

))−1
f(νk+1)

}

× exp
{

−αk

2 fT (νk) (M (ϕk))
−1

f(νk)
}

, for Mk+1 ∈ S
M
++,

∞, otherwise,
(34)

whereMk+1 = 2
(
M
(
ϕk+1

))−1−(M (ϕk))
−1 andgk+1 = 2

(
M
(
ϕk+1

))−1
f(νk+1)−(M (ϕk))

−1
f(νk).

For tk + αk > tk+1 + αk+1, using Equation (17), we have that[Φ]kk+1is given as follows:

[Φ]kk+1 =





(
|M(ϕk+1)|1/2|M−1

k |1/2

|M(ϕk)|1/2|M(ϕk+2)|1/2

)βk

exp
{

βk

2 gT
k M

−1
k gT

k − βk

2 fT (νk) (M (ϕk))
−1

f(νk)
}

× exp
{
−βk

2 fT (νk+2)
(
M
(
ϕk+2

))−1
f(νk+2)+

βk

2 fT (νk+1)
(
M
(
ϕk+1

))−1
f(νk+1)

}
,

for M
−1
k ∈ S

M
++,

∞, otherwise,
(35)

whereMk = (M (ϕk))
−1 +

(
M
(
ϕk+2

))−1 −
(
M
(
ϕk+1

))−1
, and

gk = (M (ϕk))
−1

f(νk)+
(
M
(
ϕk+2

))−1
f(νk+2) −

(
M
(
ϕk+1

))−1
f(νk+1).

2) Piecewise changes of mean and constant covariance matrix: In this caseM
(
ϕj

)
= M (ϕ) = Σ,

ηj =
[
νT

j , ϕT
]T

, and [Φ]kl is given as follows:

Forαk > 0, using Equation (33) and replacingM (ϕk) andM
(
ϕk+1

)
by Σ, we have straightforwardly

for [Φ]kk:

[Φ]kk = exp
{

αk

(
f(νk) − f(νk+1)

)T
Σ−1

(
f(νk) − f(νk+1)

)}
. (36)

For αk < 0, using Equation (34),[Φ]kk is given as follows:

[Φ]kk = exp
{
−αk

(
f(νk+1) − f(νk)

)T
Σ−1

(
f(νk+1) − f(νk)

)}
. (37)

For tk + αk > tk+1 + αk+1, using Equation (35), then[Φ]kk+1is given as follows:

[Φ]kk+1 =

(
exp

{
βk

2

((
f(νk+1) − f(νk)

)
Σ

−1
(
f(νk+1) − f(νk)

)T

+
(
f(νk+2

) − f(νk+1
)
)
Σ

−1
(
f(νk+2

) − f(νk+1
)
)T

−
(
f(νk) − f(νk+2

)
)
Σ

−1
(
f(νk) − f(νk+2

)
)T)})

. (38)

3) Piecewise changes of covariance matrix and constant mean vector: In this casef(νj) = f(ν) = µ,

ηj =
[
νT , ϕT

j

]T
, and [Φ]kl is given as follows:
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For αk > 0 using Equation (33) and replacingf(νk) and f(νk+1) by µ, we have straightforwardly

for [Φ]kk:

[Φ]kk =





(
|M(ϕk+1)|1/2

|M(ϕk)||Mk|1/2

)αk

, for Mk ∈ S
M
++,

∞, otherwise,
(39)

whereMk = 2 (M (ϕk))
−1 −

(
M
(
ϕk+1

))−1
.

For αk < 0, using Equation (34),[Φ]kk is given as follows:

[Φ]kk =





(
|M(ϕk)|1/2

|M(ϕk+1)||Mk+1|1/2

)−αk

, for Mk+1 ∈ S
M
++,

∞, otherwise,
(40)

whereMk+1 = 2
(
M
(
ϕk+1

))−1 − (M (ϕk))
−1.

For tk + αk > tk+1 + αk+1, using Equation (35), then[Φ]kk+1is given as follows:

[Φ]kk+1 =





(
|M(ϕk+1)|1/2

|M(ϕk)|1/2|M(ϕk+2)|1/2|Mk|1/2

)βk

, for Mk ∈ S
M
++,

∞, otherwise,

(41)

whereMk = (M (ϕk))
−1 +

(
M
(
ϕk+2

))−1 −
(
M
(
ϕk+1

))−1
.

The elements of Barankin bound for each case are obtained by using Equation (31), recalling that

Ak = [Φ]kk − 1 andBk = [Φ]kk+1 − 1, from Equations (19) and (20), respectively.

B. Poisson case

Assume that the measurementsxi ∈ N+ {0} , for i = 1, . . . , N, are distributed as a Poisson distribution

with parameterf(ηj), wheref(·) is a known function andηj ∈ R
L is a known parameter vector. Similarly

to the Gaussian case, we restrict our analysis to the set of parameter vectors
{
ηj

}
such that the function

f(ηj) is injective. Therefore, we derive closed-form expressions for the elements of matrixΦ−1q×q for

piecewise changes of the parameterηj. Below, we evaluate[Φ]kk for αk > 0 andαk < 0, and [Φ]kk+1

for tk + αk > tk+1 + αk+1. Note that sincexi ∈ N we replace the integral operator by the summation

operator.

For αk > 0, [Φ]kk becomes

[Φ]kk = exp

{
αk

(
f(ηk+1)−f(ηk)

)2

f(ηk+1
)

}
, (42)

For αk < 0, [Φ]kk becomes

[Φ]kk = exp

{
−αk

(
f(ηk)−f(ηk+1)

)2

f(ηk)

}
. (43)

For tk + αk > tk+1 + αk+1, [Φ]kk+1 is given as follows:

[Φ]kk+1 = exp

{
βk

((
f(ηk+1)−f(ηk)

)2

2f(ηk+1
)

+

(
f(ηk+2)−f(ηk+1)

)2

2f(ηk+1
)

−

(
f(ηk)−f(ηk+2)

)2

2f(ηk+1
)

)}
. (44)
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Similarly, as in the Gaussian case, the elements of Barankinbound for each case are obtained by using

Equation (31) withAk = [Φ]kk − 1 andBk = [Φ]kk+1 − 1.

V. NUMERICAL EXAMPLES

In this section, as an illustration, we compare the MSE between the true values of the change-point

locations and their maximum likelihood estimations with our bounds. In particular, we first introduce the

MLE of change-point locations assuming the total number of changes is known. Then we analyze the

cases of multiple changes in (i) the mean of a Gaussian distribution with fixed variance, (ii) the variance

of a Gaussian assuming fixed mean, and (iii) the mean rate of Poisson distribution.

A. Maximum likelihood estimation

The MLE of t is the solution to the following problem:

t̂ML = arg max
t

q+1∑

i=1

ln pi(xti−1+1, . . . ,xti
;ηi), (45)

where t0 = 0 and tq+1 = N by definition. There is no known closed-form expression fort̂ML so it

has to be estimated via numerical computations. To solve this multidimensional optimization problem

efficiently we apply dynamic programming (DP), explained indetail in [42], for our context of change-

point estimation. The main advantage of the DP approach is that it does not need to evaluate all the

possible combinations of values fort in (45). In all our examples below we illustrate the average MSE

performance of the MLE for 1000 Monte Carlo experiments. We studied the performance as a function

of signal-to-noise ratio (SNR), which is defined accordingly in each example, and as a function of the

distance between change points. Here we choseq = 3 and the number of samplesN = 80. In each

example below, we sett2 = 40, t3 = 60, and we analyze two scenarios for change pointt1: In the first

one, we sett1 = 20 such that each segment has the same number of samples, and in the second scenario,

t1 ∈ [2, 38].

Note that the unbiasedness properties of the MLE has been studied in [43] for a single change-point

and for multiple change-points in [44]. The asymptotic results derived in [43] and [44] are applicable

only for the case of a Gaussian distribution with changes in the mean. However, in the case of having

a finite interval the MLE is expected to be biased independentof the distribution. On the other hand,

it seems reasonable to assume that for large SNR values the MLE is approximately for a subset of

the parameter space, i.e, subintervals, and specially for change-points located equidistant from their

neighboring change-points or the interval limits. For example, in all the examples below, the bias of the

MLE for t = [20 40 60] is approximately zero for all the SNR ranges considered in each scenario.
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Fig. 1. Performance analysis for estimating change-pointsof the mean in a Gaussian distribution: (a) Mean values as a function

of sample time for different SNR values; (b) Test points associated with the BB given by the minimal-upper bound ofC, BBsup,

as a function of SNR; (c) MSE of the change-point vector usingthe MLE of t and its Barankin bound given byBBsup, and

by the matrix with maximum trace inC, BBtr; (d) MSE of each change-point as a function of SNR using the MLE of t1, t2,

and t3 and their corresponding Barankin boundBBsup(ti), i = 1, . . . , 3; (e) MSE of change-point vector using the MLE of

t and its Barankin bound,BBsup(t), as a function of the distance betweent2 and t1 for SNR = −6 [dB]; (f) MSE of each

change-point and their respectiveBBsup as a function of the distance betweent2 and t1 for SNR =−6 [dB].

B. Changes in the mean of a Gaussian distribution

We consider the scenario of time series with 3 change points in the mean values of a Gaussian

distribution with common variance. We recall the closed-form expressions obtained for computing[Φ]kk,

namely, Equations (36) and (37), and define the SNR for thekth change point as

SNRk=
(
f(νk+1) − f(νk)

)T
Σ−1

(
f(νk+1) − f(νk)

)
, (46)
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wheref(νk) ∈ R
M is the mean vector of thekth segment andΣ ∈ R

M×M is the common covariance

matrix. In our example,M = 1 and, without loss of generality, we choosef(νk) = νk andΣ = σ2 = 1,

thus ηk =
[
νT

k , 1
]T

. Here, we setν1 = 1 and ν2, ν3, and ν4 are set such thatSNR1 = SNR2 =

SNR3 = SNR. In particular,νk = νk−1 + (−1)k
√

σ2SNR for k = 2, 3, 4. Figure 1(a) illustrates the

mean values as a function of sample time for different SNR values. In Figure 1(c), we illustrate the MSE

performance of the MLE for the change-point vector and the BB, as a function of SNR. In particular,

MSEknown is the MSE performance of the MLE for the change-point vectorassuming knowledge of

the means and variance, MSEunknown is the MSE performance of MLE for a more realistic case when

no knowledge of the distribution parameter are available,BBsup is given by the minimal-upper bound

matrix Bq of the setC computed using the algorithm presented in Section III.D, and BBtr is the matrix

in C that has the maximum trace. We illustrate the trace ofBBsup andBBtr since we are comparing the

MSE performance for the change-point vector estimates. Note that, in view of the discussion presented in

Section III.D, we computeBBtr only in this example to show thatBBtr does not necessarily coincide

with supremum of the set unlessBBsup ∈ C. In this particular scenario, we found thatBBsup belongs

to the setC for SNR values equal and larger than2 dB. Therefore, we have optimal test points{α∗
1, α∗

2,

α∗
3} associated to the matrixBBsup defining the Lowner-John Ellipsoid , which are presented in Figure

1(b). For SNR values above2 dB no change point is overlapped, therefore, each bound depends only

on its corresponding diagonal element[Φ]ii, which is equivalent to the resulting analysis of considering

one change point located att = 20 assumingN = 40. Moreover, it is important to mention that in this

example,[Φ]ii is symmetric with respect toαi and since all segments have the same length, then, both

αi and −αi are optimal solutions for the bound onti. In Figure 1(b) we only illustrate one optimal

solution. When the SNR> 2 dB we found the setC has several maximal elements that are not mutually

comparable thus,BBsup /∈ C and does not show up in Figure 1(b). Finally, it can be seen that the test

point approaches the true change point values as SNR increases; i.e., α2 tends to -1 as SNR increases.

In Figure 1(d), we illustrate the MSEknown andBBsup for change-pointti, i = 1, 2, 3 as a function of

SNR. It is noteworthy to mention that we did not illustrate the performance for higher SNR range in this

example, since we found that for SNR values larger than10 dB the bound tends quickly to zero. On the

other hand, computing MSE values in these examples for larger SNR requires a large number of Monte

Carlo simulations since the higher the SNR, the smaller the probability to have an error. For example, a

single realization with an error of only 1 unit in one of the change-points, among 1000 realizations in

the Monte Carlo simulation, amounts to an MSE of -30dB. Similar observations hold for the example

on changes in the mean rate of a Poisson distribution.
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We also analyze the MSE performance as a function of the distance between change points for a fixed

SNR value. In Figure 1(e), for SNR= −6 dB, we illustrate the diagonal elements ofBBsup and the

MSE of the MLE for the change-point vectort, assuming knowledge of the distribution parameters, as

a function of the distance between change pointt1 and t2. In Figure 1(f) we illustrate the BB and the

MSE of the MLE for each change-point. We observe that the MSE of the MLE for t1 and t2 increases

as the distance between change pointt1 andt2 decreases. Similarly, their respective BB predict the same

behavior for distances betweent1 and t2 equal and larger than10 time-units, however, for distances

smaller than10 time-units their respective bounds decrease to the same value as for distances larger

than 22 time-units. This bound behavior is expected to take place asour Barankin-type lower bound

approximation considers only one change-point per parameter. Therefore, in our problem the test-point

values are lower and upper bounded by the adjacent change-point parameters, which does not allow for

evaluating errors, in estimating each change-point, beyond these limits. Thus, as the change-points get

closer the test-point domains become limited and the bound cannot take into account estimated errors

given by estimates oft1 which are larger than the true value oft2, and estimated errors given by estimates

of t2 which are lower than the true value oft1.

C. Changes in the variance of a Gaussian distribution

We consider the same scenarios as above, but with a time series with three change points in the

variance of a Gaussian distribution and a common mean. We recall the closed-form expressions obtained

for computing [Φ]kk, namely, Equations (39) and (40), and define SNR for thekth change point as

SNRk =
|M(ϕk+1)|
|M(ϕk)| , where M (ϕk) ∈ R

M×M is the covariance matrix of thekth segment. In our

example,M = 1, and, without loss of generality, we chooseM (ϕk) = ϕk and the mean equal to zero

since the BIM does not depend on the mean, thusηk = [0, ϕk]
T . Here, we setϕ1 = 1, and variances

ϕ2, ϕ3, and ϕ4 are set such thatSNR1 = SNR2 = SNR3 = SNR. In practice,ϕk = ϕk−1SNR.

In Figure 2(a), we illustrate sigma-parameter values as a function of sample time for different SNR

values. In Figure 2(c), we illustrate the MSE performance ofthe MLE for change-point vector as a

function of SNR and its respective Barankin bound,BBsup. In particular, we illustrate the MSEunknown

and MSEknown of t for SNR ranging from1 to 30 dB. In Figure 2(d) we focus on the SNR ranging

between1 to 10 dB, and we illustrate the MSE for change-point estimate oft1, t2, and t3 using MLE

and their respective bounds given by the diagonal elements of BBsup. In this scenarioBBsup belongs

to setC for SNR values larger than4 dB, and the MSE of the MLE approaches slowly the BB as the

SNR increases. In this example, the BB is the same for all change-points for SNR values above 2 dB,
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and for all the SNR range illustrated, the maximum difference between the BB and both the MSEknown

and MSEunknown is approximately 7 dB and 17 dB, respectively.Note that for SNR values lower than2

dB theBBsup is greater than the MSE of the MLE, which is due to the fact thatthe Barankin bound

derivation does not take into account the set of admissible values of the estimator. In our example, the

MLE computation restricts the search to the range between 1 and N , and thus the MLE variance has

an upper limit, which the BB computation does not consider. Moreover, note that BB assumes that the

estimator is unbiased at the test-points, in addition to theparameter of interest, and since for low SNR

values the optimal test-points tend to go to the extreme of the intervals associated to each change-point

respectively, then the comparison against the BB tends to beinappropriate.Also, we illustrate in Figure

2(b), the optimal test points[α∗
1, α∗

2, α∗
3]

T associated to the matrixBBsup. It can be seen that for all

the SNR range there are no overlaps between test points and, as in the previous example, all test points

approach to 1 or -1, namely, they are close to the true change-point values as SNR increases. Therefore,

for large SNR values[BBsup]kk =
√

2 SNRk−1
SNRk

, which tends to0 asSNRk → ∞.

In Figures 2(e) and (f), for SNR= 4 dB, we illustrate the BB and the MSE of the MLE fort1, t2, and

t3, assuming knowledge of the distribution parameters, as a function of the distance between change point

t1 and t2. The BB for all the change-points remains the same for distances between change-pointst1

andt2 above10 units. The BB fort1 increases as the distance between change-pointst1 andt2 increases

from zero to 10 units. As in the previous example, the bound inthis range is overly optimistic since the

test-point domains become limited.

D. Changes in the mean rate of a Poisson distribution

Now we consider a time series with three change points in the mean rate of a Poisson distribution.

Similarly as in the previous examples, we recall the closed-form expressions for[Φ]kk, i.e., Equations

(42) and (43). Then we define SNR for thekth change point detector asSNRk =
(f(ηk)−f(ηk+1))

2

f(η
k
)2

,where

f (ηk) is the mean rate of thekth segment. Here, without loss of generality, we setf (ηk) = ηk. The mean

rate is setη1 = 1 and the mean ratesη2, η3, and,η4 are set such thatSNR1 = SNR2 = SNR3 = SNR.

In practice,ηk = ηk−1

(
1 +

√
SNR

)
. In Figure 3(a), we illustrate the mean-rate-values as a function

of sample time for different SNR values. Figures 3(c) and (d), illustrate the MSEunknown and MSEknown

performance for the change-point vector and each change points t1, t2, andt3, respectively. In this case,

the MSE values as well as the bounds fort1, t2, andt3 are not the same for the same SNR values. In fact,

it can be seen that the MSE values fort3 are lower than the MSE values fort2, and these last are lower

than the MSE values fort1. This difference in performance is due to the fact that in our example the
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Fig. 2. Performance analysis for estimating change-pointsof the variance in a Gaussian distribution: (a) Sigma-parameter values

as a function of sample time for different SNR values; (b) Test points associated with the BB given by the minimal-upper bound

of C, BBsup, as a function of SNR; (c) MSE of the change-point vector using the MLE of t and its Barankin bound given by

BBsup; (d) MSE of each change-point as a function of SNR using the MLE of t1, t2, andt3 and their corresponding Barankin

boundBBsup(ti), i = 1, . . . , 3; (e) MSE of change-point vector using the MLE oft and its Barankin bound,BBsup(t), as a

function of the distance betweent2 and t1 for SNR = 4 [dB]; (f) MSE of each change-point and their respectiveBBsup as a

function of the distance betweent2 and t1 for SNR = 4 [dB].

difference between the means of contiguous segments are notthe same, which is a direct consequence of

the definition used for SNR. In practice, for any SNR, the differences between the means for segments

[t3 + 1, N ] and [t2 + 1, t3] is larger than the difference between the means for segments [t2 + 1, t3] and

[t1 +1, t2]. In Figure 3(b) we illustrate the test points associated tothe matrixBBsup. As in the previous

examples, the test points tend to the true change-point values as SNR increases. Finally, in Figures 3(e)

and (f), we illustrate the MSE performance, assuming known mean rates, as a function of the distance
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Fig. 3. Performance analysis for estimating change-pointsin the mean rate of a Poisson distribution distribution: (a)Mean-rate-

values as a function of sample time for different SNR values;(b) Test points associated with the BB given by the minimal-upper

bound ofC, BBsup, as a function of SNR; (c) MSE of the change-point vector using the MLE oft and its Barankin bound given

by BBsup; (d) MSE of each change-point as a function of SNR using the MLE of t1, t2, andt3 and their corresponding Barankin

boundBBsup(ti), i = 1, . . . , 3; (e) MSE of change-point vector using the MLE oft and its Barankin bound,BBsup(t), as a

function of the distance betweent2 and t1 for SNR =−6 [dB]; (f) MSE of each change-point and their respectiveBBsup as

a function of the distance betweent2 and t1 for SNR =−6 [dB].

between change points for SNR= −6 dB. The bounds for change-pointt2 and t3 is constant in all the

illustrated range, though, the MSE of the MLE fort2 slightly varies ast1 approachest2. As we discussed

in the previous examples, the bound fort1 is overly optimistic for small distance betweent2 andt1 due

to the constrained test-point domain.
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VI. CONCLUSIONS

We investigated a simplified version of the Barankin bound onmultiple change-point estimation. The

approximate Barankin information matrix was spelled, revealing an interesting tri-diagonal structure,

meaning that the estimation of one change point is naturallyperturbed by its two neighbors. Moreover,

the Barankin information matrix can be reduced to a block diagonal structure leading to closed-form

for the elements of its inverse. The main limitation posed bythis HCR approximation is a reduced

search space for the BIM that leads to aloose Barankin bound. We also discussed the existence and

computation of the supremum with respect to the Loewner partial ordering, on the finite set of candidate

BB solutions. To overcome this problem, we computed a suitable minimal-upper bound to this set given

by the matrix associated with the Lowner-John Ellipsoid of the set of hyper-ellipsoids associated to each

maximal element of the set of candidate bound matrices. Two important distributions in signal and image

processing were investigated, the Gaussian case and the Poisson case, for which we obtained closed-form

expressions for all the elements of the Barankin information matrix. Finally, we illustrated our analysis

by presenting various simulation results. In a future work,we will analyze Barankin-type lower bounds

considering all distribution parameters in addition to themultiple change-point localizations.

APPENDIX

A. Proof of Lemma 1

Proof: We need to proof that for ally ∈ R
q with y 6= 0, yT (A − B)y > 0 if λ1 ≤ 1. SinceA is

pd andB is psd, there exist a non-singular matrixF such that

F
T
BF = diag (λ1, . . . , λm, λm+1, . . . , λq) = Λ and

F
T
AF = I

Thus,B =
(
FT
)−1

Λ (F)−1 andA =
(
FT
)−1

I (F)−1andyT (A− B)y = yT
(
FT
)−1

(I − Λ) (F)−1
y.

Let z = (F)−1
y, becauseF is not singular(F)−1

y = 0 for y = 0, therefore our problem is equiv-

alent to analyze the positiveness ofr = zT (I − Λ) z, for z 6= 0. Since λm+1 = · · · = λq = 0,

r =
m∑

i=1
(1 − λi) z2

i +
q∑

i=m+1
z2
i . Hence, if λ1 ≤ 1, then (1 − λi) ≥ 0, for i = 1, . . . ,m thus r > 0

and A ≻ B. On the other hand, ifλ1 > 1, we can always find az vector such thatr ≤ 0 or r > 0,

thusA andB are not mutually comparable.
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B. Computing diagonal elements of Φ

For αk > 0, Equation (12) becomes

[Φ]kk =

∫

Ω

t1
Π

i=1
p1(xi; η1) · · ·

tk

Π
i=tk−1+1

pk(xi; ηk)

tk+αk

Π
i=tk+1

p2
k(xi; ηk)

tk+αk

Π
i=tk+1

pk+1(xi; ηk+1)

tk+1

Π
i=tk+αk+1

pk+1(xi; ηk+1) · · ·
N

Π
i=tq+1

pq+1(xi; ηq+1)dX.

After some straightforward simplifications, we have that

[Φ]kk =

∫

Ω

tk+αk

Π
i=tk+1

p2
k(xi; ηk)

pk+1(xi; ηk+1)
dxtk+1 · · · dxtk+αk =



∫

Ω

p2
k(x; ηk)

pk+1(x; ηk+1)
dx




αk

.

Similar analysis can be applied to solve forαk < 0.

C. Computing non-diagonal elements of Φ

For αk > 0 andαl > 0, Equation (14) becomes

[Φ]kl =

∫

Ω

tk+αk

Π
i=tk+1

pk(xi; ηk)

tk+αk

Π
i=tk+1

pk+1(xi; ηk+1)

t1
Π

i=1
p1(xi; η1)· · ·

tk+αk

Π
i=tk+1

pk+1(xi; ηk+1)
tk+1

Π
i=tk+αk+1

pk+1(xi; ηk+1)

· · ·
tl+αl

Π
i=tl−1+1

pl(xi; ηl) · · ·
N

Π
i=tq+1

pq+1(xi; ηq+1)dX = 1.

The cases(αk < 0, αl < 0), (αk < 0, αl > 0), andtk + αk < tl + αl are solved using same approach

as above. For the overlapping case, i.e.,tk + αk > tl + αl, is more difficult. Replacingl = k + 1 and

keeping in mind thatαk > 0 andαk+1 < 0, Equation (14) becomes

[Φ]kk+1
=

∫

Ω

t1
Π

i=1
p1(xi; η1)

tk+αk

Π
i=tk+1+αk+1+1

pk(xi; ηk)pk+2(xi; ηk+2)

pk+1(xi; ηk+1)
· · ·

N

Π
i=tq+1

pq+1(xi; ηq+1)dX

=



∫

Ω

pk(x; ηk)pk+2(x; ηk+2)

pk+1(x; ηk+1)
dx




βk

,

whereβk = (tk + αk) − (tk+1 + αk+1) .

D. Computing the elements of Φ for changes in mean and covariance matrix of Gaussian distribution

In this caseηj =
[
νT

j , ϕT
j

]T
, and the data likelihood is given as follows,

p (X; t) =
1

(2π)N M/2
q+1

Π
j=1

∣∣M
(
ϕj

)∣∣(tj−tj−1)/2

×exp



−

1

2
Tr





q+1∑

j=1

M
(
ϕj

)
−1




tj∑

i=tj−1+1

(
xi − f(νj)

)(
xi − f(νj)

)T











 .

For αk > 0, using Equation (13), we have that[Φ]kk is given as follows:

[Φ]kk =

( ∣∣M
(
ϕk+1

)∣∣1/2

(2π)M/2 |M (ϕk)|

)αk



∫

RM

exp

{
−

1

2

(
x

T
i Mkxi − 2gT

k xi

)}
dxi





αk

× exp
{
−

αk

2
f

T (νk)2 (M (ϕk))−1
f(νk)+

αk

2
f

T (νk+1
)
(
M
(
ϕk+1

))
−1

f(νk+1
)
}

,
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whereMk=
(
2 (M (ϕk))

−1 −
(
M
(
ϕk+1

))−1
)

andgk= 2 (M (ϕk))
−1 f(νk)−

(
M
(
ϕk+1

))−1
f(νk+1).

The integral above has a finite value forMk positive definite (pd). Hence, and after some straightforward

algebraic derivations, we obtain the expression in (33). The caseαk < 0 is obtained proceeding similarly

as above. Fortk + αk > tk+1 + αk+1, using Equation (17), we have that[Φ]kk+1is given as follows:

[Φ]kk+1 =

( ∣∣M
(
ϕk+1

)∣∣1/2

(2π)M/2 |M (ϕk)|1/2
∣∣M

(
ϕk+2

)∣∣1/2

)βk


∫

RM

exp

{
−

1

2

(
x

T
i Mkxi − 2gT

k xi

)}
dx




βk

× exp

{
−

βk

2
f

T (νk) (M (ϕk))−1
f(νk) −

βk

2
f

T (νk+2
)
(
M
(
ϕk+2

))
−1

f(νk+2
)+

βk

2
f

T (νk+1
)
(
M
(
ϕk+1

))
−1

f(νk+1
)

}

whereMk = (M (ϕk))−1+
(
M
(
ϕk+2

))
−1

−
(
M
(
ϕk+1

))
−1

, andgk = (M (ϕk))−1
f(νk)+

(
M
(
ϕk+2

))
−1

f(νk+2
)−

(
M
(
ϕk+1

))
−1

f(νk+1
). Hence, and after some straightforward algebraic derivations, we obtain the expres-

sion in (35).
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