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ON MODULAR SIGNS OF HALF INTEGRAL WEIGHTS

BIN CHEN, JIE WU & YICHAO ZHANG

Abstract. In this paper, we consider the first negative eigenvalue of eigenforms of half-
integral weight k + 1/2 and obtain an almost type bound.

1. Introduction

Let k > 3 be an integer and denote by Sk+1/2 = Sk+1/2(4) the space of cusp forms of
half-integral weight k + 1

2
on the congruence subgroup Γ0(4). Let S+

k+1/2 be Kohnen’s plus

space in Sk+1/2 and S
+,∗
k+1/2 be a basis of Hecke eigenforms of S+

k+1/2. For f ∈ S
+,∗
k+1/2, let

af(n) be its n-th Fourier coefficient. For a positive square-free integer t with af(t) 6= 0,

set a∗f (n
2) = af(t)

−1af(tn
2)n−k+ 1

2 , which is independent of t by Shimura’s theory [14]. See
Section 2 for some basics on half-integral weight modular forms.

In this paper, we will investigate sign changes of the sequence {a∗f (n2)}n>1. This problem
has received much attention [10, 7, 9, 11, 2, 4]. In particular, denoting by nf the smallest
integer n such that

(1.1) a∗f (n
2) < 0.

Recently Chen and Wu [2] proved, by developing the method of [8], that for each f ∈ S
+,∗
k+1/2,

we have
nf ≪ k9/10

uniformly for all k > 3, where the implied constant is absolute. The aim of this paper is to
improve this bound on average. Our result is as follows.

Theorem 1. Let ν > 1 be an integer and let P be a set of prime numbers of positive density

in the following sense:

(1.2)
∑

z<p62z
p∈P

1

p
>

δ

log z
(z > z0)

for some constants δ > 0 and z0 > 0. Then there are two positive constants C and c such

that for any {εp}p∈P ⊂ {−1, 1}P, the number of the Hecke eigenforms f ∈ S
+,∗
k+1/2 satisfying

the condition

(1.3) εpa
∗
f (p

2ν) > 0 for C log k < p 6 2C log k

is bound by

(1.4) ≪ k exp(−c(log k)/ log2 k),

where the implied constant are absolute and log2 := log log.
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For f ∈ S
+,∗
k+1/2, denote by n∗

f the smallest prime number p such that

(1.5) a∗f (p
2) < 0.

We have trivially

nf 6 n∗
f

for all f ∈ S
+,∗
k+1/2. Setting P = P (set of all prime numbers), εp = 1 for all p ∈ P and ν = 1

in Theorem 1, we immediately obtain the following result.

Corollary 1. There is an absolute positive constant c such that

n∗
f ≪ log k

for all f ∈ S
+,∗
k+1/2, except for f in an exceptional set with

≪ k exp(−c(log k)/ log2 k)

elements, where the implied constants are absolute.

In the opposite direction, we have the following result.

Theorem 2. There are two absolute positive constants c1 and c2 such that
∣

∣

{

f ∈ S
+,∗
k+1/2 : n∗

f > c1
√

(log k) log2 k
}
∣

∣ ≫ k exp
(

− c2
√

(log k)/ log2 k
)

,

provided that k is large enough. Here the implied constant is absolute.

Our approach is rather flexible. In view of the half-integral weight newform theory [6, 13],
our results could be further generalized to the case of S+,∗

k+1/2(4N,χ), where k > 3 is an

integer, N > 1 is square free, χ is a quadratic character of Dirichlet and S
+,∗
k+1/2(4N,χ)

is the set of all eigenforms in S+
k+1/2(4N,χ) — Kohnen’s plus subspace of cusp forms of

half-integral weight k + 1/2 for Γ0(4N) with character χ.

2. Shimura correspondence

In this section, we cover briefly Shimura’s theory on half-integral weight modular forms
and the Shimura correspondence. Throughout let k > 3 be an integer and denote by P the
set of prime numbers.

Denote by H2k = H2k(1) and Sk+1/2 = Sk+1/2(4) the space of cusp forms of weight 2k
on the modular group SL2(Z) and that of cusp forms of weight k + 1

2
on the congruence

subgroup Γ0(4), respectively. For f ∈ H2k and f ∈ Sk+1/2, denote their Fourier expansions
at infinity by

(2.1) f(z) =
∑

n>1

af (n)e
2πinz, f(z) =

∑

n>1

af(n)e
2πinz.

Denote by S+
k+1/2 the subspace in Sk+1/2 of all forms f with af(n) = 0 for all n verifying

(−1)kn ≡ 2, 3 (mod4). This subspace is called Kohnen’s plus space (cf. [6]).
For each positive integer n, there is an Hermitian operator T2k(n), the n-th Hecke operator,

on H2k, and {T2k(n) : n > 1} has the structure of a commutative algebra, the Hecke algebra

on H2k. Consequently, there is a basis H∗
2k of common eigenfunctions to all of T2k(n) such

that T2k(n)f = af (n)f for each f ∈ H∗
2k. Elements of H∗

2k are called normalized Hecke

eigenforms in H2k.
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On the other hand, for each positive integer n, Shimura [14] introduced the n2-th Hecke
operator Tk+1/2(n

2) on Sk+1/2, and the Hecke algebra of all Hecke operators is again commu-
tative. Kohnen considered the restriction T+

k+1/2(n
2) of Tk+1/2(n

2) to his plus space S+
k+1/2,

and proved that T+
k+1/2(n

2) becomes an Hermitian operator. Therefore, there exists a basis

of common eigenfunctions to all operators T+
k+1/2(n

2) in S+
k+1/2. We fix such a basis and

denote it by S
+,∗
k+1/2. Note that the leading coefficient f is not af(1) in general, and normaliz-

ing the leading coefficient to be 1 may lose the algebraicity of the Fourier coefficients. As a
consequence, unlike the case of integral weight, there is no canonical choice for S+,∗

k+1/2, but

it causes no problems for our purpose.
Discovered by Shimura [14], there exist liftings from Hecke eigenforms of half-integral

weight to Hecke eigenforms of integral weight, the Shimura correspondence. Then Shintani
[15] introduced the method of theta lifting and established the correspondence in the opposite
direction, that is, from forms of integral weight to forms of half-integral weight. On S+

k+1/2,

Kohnen [5, Theorem 1] built an isomorphism between S+
k+1/2 and H2k as Hecke modules.

So in particular, as k → ∞,

(2.2) |S+,∗
k+1/2| = |H∗

2k| = 1
6
k +O(k1/2).

Now let us explain the Shimura correspondence explicitly. Fix a positive square-free integer
t and the Shimura correspondence St is defined as follows: For each f ∈ S+

k+1/2, ft := St(f)

has Fourier expansion at ∞

(2.3) ft(z) =
∑

n>1

aft(n)e
2πinz,

where

(2.4) aft(n) :=
∑

d|n
χt(d)d

k−1af

(

t
n2

d2

)

, χt(d) :=

(

(−1)kt

d

)

.

Here
( ·
·
)

denotes the Kronecker symbol, an extension of Jacobi’s symbol to all integers (see
[14], page 442). Then ft ∈ H2k. Furthermore, if f is a Hecke eigenform with eigenvalue ωp

for T+
k+1/2(p

2), then we may choose t with af(t) 6= 0, and St(f) becomes a Hecke eigenform in

H2k with leading coefficient af(t). Actually,

f(z) := af(t)
−1ft(z) ∈ H

∗
2k(2.5)

and the L-function L(s, f) =
∏

p∈P
(1−ωpp

−s + p2k−1−2s)−1. It follows that the construction
of f from f is independent of t, and f is called the Shimura lift of f. Extending linearly from
S

+,∗
k+1/2 to S+

k+1/2, we obtain the Shimura correspondence:

(2.6) ρ :
S+

k+1/2 → H2k

f 7→ f

and ρ gives an isomorphism between S+
k+1/2 and H2k (we shall use this fact many times).

Note that ρ depends on the choice of S+,∗
k+1/2, but it will not matter. Finally, Kohnen [5]

proved that ρ is a finite linear combination of St’s.
According to [14, (1.18)], for a Hecke eigenform f of weight k + 1

2
and any square-free

positive integer t, the multiplicativity for its Fourier coefficients takes the form

(2.7) af(tm
2)af(tn

2) = af(t)af(tm
2n2) if (m,n) = 1.
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If we write

(2.8) a∗f (n
2) := af(t)

−1af(tn
2)n−(k−1/2)

and

(2.9) λf (n) := af(t)
−1aft(n)n

−(2k−1)/2,

then the classical Hecke relation and (2.7) imply that the arithmetic functions n 7→ λf (n)
and n 7→ a∗f (n

2) are multiplicative. With such notation, the formula (2.4) can be written as

(2.10) λf(n) =
∑

d|n

χt(d)√
d

a∗f

(

n2

d2

)

.

Since f ∈ H
∗
2k, λf(n) is real and satisfies the Deligne inequality

(2.11) |λf(n)| 6 τ(n)

for all integers n > 1, where τ(n) is the classical divisor function (see [3]). Let µ(n) be the
Möbius function. Applying the Möbius formula of inversion to (2.10), we can derive that

(2.12) a∗f (n
2) =

∑

d|n

µ(d)χt(d)√
d

λf

(

n

d

)

.

Thus a∗f (n
2) is also real and (2.11) implies that

(2.13) |a∗f (n2)| 6 τ(n2)

for all integers n > 1.
Shimura’s theory on modular forms of half-integral weight holds in general. To obtain

Kohnen’s isomorphism in general, one needs to develop a newform theory as Kohnen did in
[6] for the case of level 4N with N square-free.

3. Two large sieve inequalities

This section is devoted to present two large sieve inequalities on eigenvalues of modular
forms, which will be one of the key tools in the proof of Theorem 1. The first large inequality
is related to modular forms of integral weights, which is a particular case of [12, Theorem 1]
with N = 1.

Lemma 3.1. Let ν > 1 be a fixed integer and let {bp}p∈P be a sequence of real numbers

indexed by prime numbers such that |bp| 6 B for some constant B and for all prime numbers

p. Then we have

(1.5)
∑

f∈H∗

2k

∣

∣

∣

∣

∑

P<p6Q

bp
λf(p

ν)

p

∣

∣

∣

∣

2j

≪ν k

(

384B2ν2j

P logP

)j

+ k10/11

(

10BQν/10

logP

)2j

uniformly for

B > 0, j > 1, k > 3, 2 6 P < Q 6 2P.

The implied constant depends on ν only.

For modular forms of half-integral weights, we can prove the same large sieve inequality.
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Lemma 3.2. Let ν > 1 be a fixed integer and let {bp}p∈P be a sequence of real numbers

indexed by prime numbers such that |bp| 6 B for some constant B and for all prime numbers

p. Then we have

∑

f∈S+,∗
k+1/2

∣

∣

∣

∣

∑

P<p6Q

bp
a∗f (p

2ν)

p

∣

∣

∣

∣

2j

≪ν k

(

1536B2ν2j

P logP

)j

+ k10/11

(

20BQν/10

logP

)2j

uniformly for

B > 0, j > 1, k > 3, 2 6 P < Q 6 2P.

The implied constant depends no ν only.

Proof. Taking n = pν in (2.12) gives us

(3.1) a∗f (p
2ν) = λf(p

ν)− χt(p)√
p

λf(p
ν−1).

In view of the following facts that
∣

∣

∣

∣

χt(p)
λf(p

ν−1)√
p

∣

∣

∣

∣

6
ν√
p

and (|a|+ |b|)m 6 (2|a|)m + (2|b|)m

and of the Chebyshev estimate
∑

p6x 1 6 10x/ log x (x > 2), we can derive that
∣

∣

∣

∣

∑

P<p6Q

bp
a∗f (p

2ν)

p

∣

∣

∣

∣

2j

6

(
∣

∣

∣

∣

∑

P<p6Q

bp
λf(p

ν)

p

∣

∣

∣

∣

+

∣

∣

∣

∣

∑

P<p6Q

bpχt(p)
λf(p

ν−1)

p3/2

∣

∣

∣

∣

)2j

6 22j
∣

∣

∣

∣

∑

P<p6Q

bp
λf(p

ν)

p

∣

∣

∣

∣

2j

+

(

20Bν√
P logP

)2j

.

Since the Shimura correspondence (2.6) is a bijection between S
+,∗
k+1/2 and H∗

2k, we can write

∑

f∈S+,∗
k+1/2

∣

∣

∣

∣

∑

P<p6Q

bp
a∗f (p

2ν)

p

∣

∣

∣

∣

2j

6 4j
∑

f∈H∗

2k

∣

∣

∣

∣

∑

P<p6Q

bp
λf(p

ν)

p

∣

∣

∣

∣

2j

+ k

(

20Bν√
P logP

)2j

.

Now by applying Lemma 3.1, we have

∑

f∈S+,∗
k+1/2

∣

∣

∣

∣

∑

P<p6Q

bp
a∗f (p

2ν)

p

∣

∣

∣

∣

2j

≪ν k

(

1536B2ν2j

P logP

)j

+ k10/11

(

20BQν/10

logP

)2j

+ k

(

20Bν√
P logP

)2j

uniformly for B > 0, j > 1, k > 3 and 2 6 P < Q 6 2P . This implies the required
inequality since the third term on the right-hand side can be absorbed by the first one. �

4. Proof of Theorem 1

Define
S

+,∗
k+1/2(P ) :=

{

f ∈ S
+,∗
k+1/2 : εpa

∗
f (p

2ν) > 0 for p ∈ (P, 2P ] ∩ P
}

.

It suffices to prove that there are two positive constants C = C(ν,P) and c = c(ν,P) such
that

(4.1)
∣

∣S
+,∗
k+1/2(P )

∣

∣ ≪ν k exp(−c(log k)/ log2 k)

uniformly for k > k0 and C log k 6 P 6 (log k)10 for some sufficiently large number k0 =
k0(ν,P).



6 BIN CHEN, JIE WU & YICHAO ZHANG

For 1 6 µ 6 ν, define

S
+,∗, µ
k+1/2(P ) :=

{

f ∈ S
+,∗
k+1/2 :

∣

∣

∣

∣

∑

p∈(P,2P ]∩P

λf(p
2µ)

p

∣

∣

∣

∣

>
δ

4ν logP

}

.

Take

ν = 2µ, Q = 2P and bp =

{

1 if p ∈ P

0 otherwise

in Lemma 3.2. Then we get

(

δ

4ν logP

)2j
∣

∣S
+,∗, µ
k+1/2(P )

∣

∣ 6
∑

f∈S+,∗
k+1/2

∣

∣

∣

∣

∑

P<p62P

bp
λf(p

2µ)

p

∣

∣

∣

∣

2j

≪ k

(

1536µ2j

P logP

)j

+ k10/11

(

10(2P )µ/5

logP

)2j

.

Hence,

(4.2)
∣

∣S
+,∗, µ
k+1/2(P )

∣

∣ ≪ k

(

3456ν4j logP

δ2P

)j

+ k10/11P νj,

provided P > 200.
Let

bp =

{

εp if p ∈ P,

0 otherwise.

From the definition of S+,∗
k+1/2(P ), (2.13) and Lemma 3.2, we deduce that

(4.3)

∑

f∈S+,∗
k+1/2

(P )

∣

∣

∣

∣

∑

p∈(P,2P ]∩P

a∗f (p
2ν)2

p

∣

∣

∣

∣

2j

6 (2ν + 1)
∑

f∈S+,∗
k+1/2

∣

∣

∣

∣

∑

P<p62P

bp
a∗f (p

2ν)

p

∣

∣

∣

∣

2j

≪ν k

(

1536ν2j

P logP

)j

+ k10/11

(

20Qν/10

logP

)2j

≪ν k

(

1536ν2j

P logP

)j

+ k10/11P νj/2.

In view of (2.10), the Deligne inequality and the Hecke relation, it follows that

a∗f (tp
2ν)2 > 1 + λf(p

2) + · · ·+ λf(p
2ν)− 4ν2/

√
p.

The left-hand side of (4.3) is

>
∑

f∈S+,∗
k+1/2

(P )\∪ν
µ=1

S
+∗, µ
k+1/2

(P )

(

∑

P<p62P
p∈P

1

p
−

∑

16µ6ν

∣

∣

∣

∣

∑

P<p62P

λf(p
2µ)

p

∣

∣

∣

∣

− 4ν2

√
P logP

)2j

>
∑

f∈S+,∗
k+1/2

(P )\∪ν
µ=1

S
+∗, µ
k+1/2

(P )

(

∑

P<p62P
p∈P

1

p
− δ

4 logP
− 4ν2

√
P logP

)2j

.
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Using the hypothesis (1.2), we infer that

∑

P<p62P
p∈P

1

p
− δ

4 logP
− 4ν2

√
P logP

>
δ

logP
− δ

4 logP
− δ

4 logP

=
δ

2 logP
,

provided P > 256ν4δ−2.
Combining these estimates with (4.3), we conclude that

∣

∣S
+,∗
k+1/2(P ) \ ∪ν

µ=1S
+∗, µ
k+1/2(P )

∣

∣ ≪ν k

(

1536ν2j logP

δ2P

)j

+ k10/11P νj.

Together with (4.2), it implies

(4.4)
∣

∣S
+,∗
k+1/2(P )

∣

∣ ≪ k

(

3456ν4j logP

δ2P

)j

+ k10/11P νj

uniformly for

j > 1, 2 | k > 3, C log k 6 P 6 (log k)10.

Take

j =

[

δ∗
log k

logP

]

where δ∗ = δ2/(10(ν + 1))4. We can ensure j > 1 once k0 is chosen to be suitably large. A
simple computation gives that

(

3456ν4j logP

δ2P

)j

≪ exp(−c(log k)/ log2 k)

for some positive constant c = c(ν,P) and P νj ≪ k1/1000, provided that k0 is large enough.
Inserting them into (4.4), we get (4.1) and complete the proof. �

5. Proof of Theorem 2

Since the proof of Theorem 2 is rather similar to that of [8, Theorem 4], we shall only
point out the differences.

It is well known that the Chebychev functions Xn, n > 0, defined by

(5.1) Xn(θ) :=
sin((n+ 1)θ)

sin θ
(θ ∈ [0, π])

form an orthonormal basis of L2([0, π], µST). Hence, for any integer ω > 1, the functions of
the type

(θ1, . . . , θω) 7→
∏

16j6ω

Xnj
(θj)

for nj > 0, form an orthonormal basis of L2([0, π]ω, µ⊗ω
ST ).

For any f ∈ H∗
2k and prime p, the Deligne inequality (2.11) implies that there is a real

number θf (p) ∈ [0, π] such that

(5.2) λf(p) = 2 cos θf (p).
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Lemma 5.1. Let k ∈ N, s ∈ N and z > 2 be a real number. For any prime p 6 z, let

Yp(θ) :=
∑

06j6s

ŷp(j)Xj(θ)

be a “polynomial” of degree 6 s expressed in the basis of Chebychev functions on [0, π]. Then
we have

∑

f∈H∗

2k

ωf

∏

p6z

Yp(θf (p)) =
∏

p6z

ŷp(0) +O
(

Cπ(z)Dszk−5/6
)

,

where ‖f‖2 is the Petersson norm of f ,

ωf := (4π)−(k−1)Γ(k − 1)‖f‖−2, C := max
p,j

|ŷp(j)|,

and D > 1 and the implied constant is absolute.

Let z > 2 be a parameter to be determined later and L ≡ 3 (mod 4) be a positive integer.
According to [1, Theorem 7] with the choice of parameters N = π(z) (the number of primes
p 6 z) and un = 0, vn = 1

4
for all n 6 π(z), we can get two explicit trigonometric polynomials

on [0, 1]π(z), denoted AL(x), BL(x), such that

(5.3) AL(θ/π)−BL(θ/π) 6
∏

p6z

1[0,π
4
](θp)

for all θ := (θp)p6z ∈ [0, π]π(z), where 1[0,π
4
](t) is the characteristic function of [0, π

4
] ⊂ [0, π]

(since (vn−un)(L+1) = 1
4
(L+1) is a positive integer, we are in the situation Φu,v ∈ BN(L)

of loc. cit.). Moreover, AL(θ/π) is a product of polynomials over each variable, and BL(θ/π)
is a sum of π(z) such products.

In view of (5.2) and (3.1) with ν = 1, we have the following implicit relations

θf (p) ∈ [0, 1
4
π] ⇔ λf(p) >

√
2 ⇒ a∗f (p

2) > 0.

Combining these with (5.3), we can write, with the notation θf = (θf (p))p6z,

(5.4)

∑

f∈S+,∗
k+1/2

af(p
2)>0 for p6z

ωf >
∑

f∈H∗

2k

λf (p)>
√
2 for p6z

ωf

>
∑

f∈H∗

2k

ωf

∏

p6z

1[0,π
4
](θf(p))

>
∑

f∈H∗

2k

ωf

(

AL(θf/π)− BL(θf/π)
)

.

The next lemma is an analogue of [8, Lemma 3.2].

Lemma 5.2. With notation as above, we have:

(a) For any ε ∈ (0, 1
4
), there exist constants c > 0 and L0 > 1 such that the contribution

∆ of the constant terms of the Chebychev expansions of AL(θ/π) and BL(θ/π) satisfies

∆ > (1
4
− ε)π(z),

if L ≡ 3 (mod 4) is the smallest integer > max{cπ(z), L0}.
(b) All the coefficients in the expansion in terms of Chebychev functions of the factors in

AL(θ/π) or in the terms of BL(θ/π) are bounded by 1.
(c) The degrees, in terms of Chebychev functions, of the factors of AL(θ/π) and of the

terms of BL(θ/π), are 6 2L.
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Take L as in Lemma 5.2(a) (we can obviously assume L > L0, since otherwise z is
bounded). Since AL(θ/π) is a product of polynomials over each variable and BL(θ/π) is a
sum of ω such products, we can now apply Lemma 5.1 to the terms on the right-hand side
of (5.4). Noticing that Lemma 5.2(b) implies C 6 1, we have

(5.5)

∑

f∈S+,∗
k+1/2

af(p
2)>0 for p6z

ωf >
∑

f∈H∗

2k

ωf

(

AL(θf/π)−BL(θf/π)
)

= ∆+O(Dzπ(z)k−5/6).

Fixing ε ∈ (0, 1
8
), taking z = c1

√

(log k) log2 k and using Lemma 5.2, we have

∆ +O(Dzπ(z)k−5/6) > (1
4
− ε)π(z) +O(Dzπ(z)k−5/6)

≫ exp
(

− (c2/2)
√

log k)/ log2 k
)

.

Combining it with (5.5) and noticing that af(p
2) > 0 for p 6 z implies n∗

f > z, we find that

∑

f∈S+,∗
k+1/2

n∗

f
>c1

√
(log k) log2 k

ωf ≫ exp
(

− (c2/2)
√

log k)/ log2 k
)

.

Now the required result follows from this inequality thanks to the well-known bounds ωf ≪
(log k)/k.
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