
HAL Id: hal-02508529
https://hal.science/hal-02508529

Submitted on 14 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast amortized multi-point evaluation
Joris van der Hoeven, Grégoire Lecerf

To cite this version:
Joris van der Hoeven, Grégoire Lecerf. Fast amortized multi-point evaluation. Journal of Complexity,
In press, �10.1016/j.jco.2021.101574�. �hal-02508529�

https://hal.science/hal-02508529
https://hal.archives-ouvertes.fr

Fast amortized multi-point evaluation∗†

JORIS VAN DER HOEVENabc, GRÉGOIRE LECERFbd

a. CNRS (UMI 3069, PIMS)
Department of Mathematics

Simon Fraser University
8888 University Drive

Burnaby, British Columbia
V5A 1S6, Canada

b. CNRS, École polytechnique, Institut Polytechnique de Paris
Laboratoire d'informatique de l'École polytechnique (LIX, UMR 7161)

1, rue Honoré d'Estienne d'Orves
Bâtiment Alan Turing, CS35003

91120 Palaiseau, France
c. Email: vdhoeven@lix.polytechnique.fr
d. Email: lecerf@lix.polytechnique.fr

Preliminary version of March 14, 2020

The efficient evaluation of multivariate polynomials at many points is an important
operation for polynomial system solving. Kedlaya and Umans have recently devised
a theoretically efficient algorithm for this task when the coefficients are integers or
when they lie in a finite field. In this paper, we assume that the set of points where
we need to evaluate is fixed and “sufficiently generic”. Under these restrictions, we
present a quasi-optimal algorithm for multi-point evaluation over general fields. We
also present a quasi-optimal algorithm for the opposite interpolation task.

1. INTRODUCTION
Let 𝕂 be an effective field, so that we have algorithms for the field operations. Given
a polynomial P∈𝕂[x1, . . . ,xn] and a tuple 𝜶=(𝛼1, . . . , 𝛼d)∈(𝕂n)d of points, the computa-
tion of P(𝜶)=(P(𝛼1), . . . ,P(𝛼d))∈𝕂d is called the problem of multi-point evaluation. The
converse problem is called interpolation and takes a candidate support of P as input.

This problem naturally relates to several areas of applied algebra, including polyno-
mial system solving, since we may use it to verify whether all points in a given set are
solutions to a system of polynomial equations. In [16], it has even be shown that efficient
algorithms for multi-point evaluation lead to efficient algorithms for polynomial system
solving. As an other more specific application, bivariate polynomial evaluation inter-
venes in computing generator matrices of geometric error correcting codes [20].

An important particular case of interpolation concerns polynomials with prescribed
supports and that vanish at a given set of points. This happens in list decoding algo-
rithms for Reed–Solomon error correcting codes; see recent complexity bounds in [7].
In the bivariate case, this task also occurs in the Brill–Noether strategy for computing
Riemann–Roch spaces; see recent advances in [2]. Further applications can be found
in [24].

∗. This paper is part of a project that has received funding from the French “Agence de l'innovation de défense”.
†. This article has been written using GNU TEXMACS [18].

1

1.1. Related work
In the univariate case when n=1, it is well known that one may use so-called “remainder
trees” to compute multi-point evaluations in quasi-optimal time [3, 9, 23]. More pre-
cisely, if M(d) stands for the cost to multiply two univariate polynomials of degree <d
(in terms of the number of field operations in 𝕂), then the multi-point evaluation of a
polynomial of degree <d at d points can be computed in time O(M(d) log d). A sim-
ilar complexity bound holds for the opposite operation of interpolation. The constants
hidden in the latter “O” have been studied in [5]. Recently, and under suitable technical
assumptions, it has been shown that the cost of univariate multi-point evaluation (and
interpolation) drops to O(M(d)log d/log log d) if the set of evaluation points is fixed [13].
In this case, we do not count the cost of certain precomputations that only depend on the
evaluation points and not on the polynomials to evaluate. We may also speak about the
“amortized cost” of multi-point evaluation.

In the multivariate case when n⩾2, no quasi-optimal algorithms are currently known
for multi-point evaluation. From a theoretical point of view, the best bit-complexity
bounds are due to Kedlaya and Umans, in the special cases when the coefficients of our
polynomials are modular integers or when they lie in a finite field [19]. They also related
the problem to other important operations such as modular composition and power pro-
jection. Their results have recently been refined in [17]. Over general fields and for n=2,
the best known bound is O(degx1 P(degx2 P)1.667); due to Nüsken and Ziegler [26].

The multivariate interpolation problem turns out to be more intricate than evaluation,
and fewer efficient algorithms are known. Using naive linear algebra, one may design
polynomial time algorithms, but with costs that are higher than quadratic in d. To our
knowledge no interpolation method has been designed in the vein of the Kedlaya–Umans
evaluation algorithms. Several methods are surveyed in [10] for instance, but, here, we
will focus on symbolic approaches and their asymptotical complexity bounds.

Concerning the computation of polynomials that vanish at a given set of points, with
suitable constraints on the supports, early methods can be found in [1, 22, 24]: Gröbner
bases of the ideal made of these polynomials are obtained with cost at least cubic in d.
After a generic change of coordinates the lexicographic basis satisfies the “shape lemma”
and it can be computed in softly linear time by means of univariate interpolations. In
other words, our set of points is the solution set of a system 𝜒(x1)=0 and xi=vi(x1) for
i=2,...,n, where deg𝜒=d and deg vi<d. From 𝜒 and the vi, a Gröbner basis for any other
monomial ordering can be recovered with Õ(d𝜔) field operations thanks to the algorithm
designed in [8].

In the bivariate case, with generic coordinates, from the latter univariate parame-
trization, and given 𝛿1⩽d, we may compute a basis of the 𝕂[x1]-module of polynomials
of degree <𝛿1 in x2 that vanish at 𝛼1, . . . , 𝛼d. Indeed this reduces to computing a basis of
the kernel of the map

𝕂[x1][x2]<𝛿1 → 𝕂[x1]/(𝜒(x1))
a0(x1)+ ⋅ ⋅ ⋅ +a𝛿1−1(x1)x2

𝛿1−1 ↦ a0(x1)+ ⋅ ⋅ ⋅ +a𝛿1−1(x1)v2(x1)𝛿1−1.

This kernel is a free 𝕂[X1]-module of rank 𝛿1. The basis in Popov form can be computed
with Õ(𝛿1𝜔−1 d) operations in 𝕂; this complexity bound is due to Neiger [25]. Taking
𝛿1≍ d� , the latter cost rewrites Õ(d(𝜔+1)/2). The bivariate interpolation problem can be
solved with the same kind of complexity bound by means of linear algebra algorithms
that exploit displacement ranks [4].

2 FAST AMORTIZED MULTI-POINT EVALUATION

In a more general setting, one may consider evaluation at “multisets of points” in
the sense that values of polynomials and of certain of its derivatives are involved. The
converse problem is usually called Hermite interpolation, so values for the polynomial
and its derivative are prescribed. We will not address these extended problems in the
present paper.

1.2. Our contributions
In this paper, we turn our attention to the amortized cost of multivariate multi-point
evaluation. Given a “sufficiently generic” tuple 𝜶 of evaluation points, we first construct
a suitable “evaluation tree” that is similar to the remainder trees from the univariate case.
After this precomputation, we next show how to evaluate polynomials at 𝜶 in quasi-
optimal time. For instance, for a fixed dimension n, a sufficiently large base field 𝕂,
and a polynomial P of partial degrees degxi P< dn� for i=1, . . . ,n, we show how to com-
pute P(𝜶) in time O(M(d) log3 d). We also show how to do the opposite operation of
interpolation with a similar complexity. It can be shown that the “constant factors” in
the big-Oh hide a factorial dependence in n.

Our algorithms rely on suitable genericity hypotheses that ensure the existence of
Gröbner bases of a specific shape for the vanishing ideal I𝜶 at the evaluation points. This
will be detailed in section 3. Another key ingredient is an algorithm from [14] for the
relaxed reduction of polynomials with respect to such Gröbner bases or more general
sets of polynomials. In this paper, all reductions will be done with respect to so-called
“axial bases”, which provide sufficiently good approximations of the actual Gröbner
bases of I𝜶. This will be detailed in section 4.

Having an efficient algorithm for reducing polynomials with respect to I𝜶, we may
use it as a generalization of Euclidean division. In sections 5 and 6, this allows us to gen-
eralize the remainder tree technique to higher dimensions, and establish our complexity
bounds for amortized multi-point evaluation and interpolation. It is also noteworthy that
the necessary precomputations can be done using linear algebra in time O(d𝜔), where
𝜔>2 is a feasible exponent for matrix multiplication.

When comparing our new amortized bound O(M(d) log3 d)with the traditional bound
O(M(d) log d) in the univariate case, we note that we lose a factor log2 d. This is due to
the fact that we rely on relaxed computations for our polynomial reductions. With a bit
of work, a factor log d might be removed by exploiting the fact that our polynomials are
not really sparse, so that we may take SM(s)=O(M(s)) in the proof of Theorem 6 (under
our assumption that n is fixed and with the notation SM defined in [14]). It is plausible
that the second logarithmic factor can be further reduced using techniques from [12]
or a clever Newton iteration.

Our genericity assumptions can also be weakened significantly: with the notations
from section 4, it is essentially sufficient to assume that |ℜd|=O(d). Another interesting
question is whether the cost O(d𝜔) of the precomputations can be lowered. Under addi-
tional genericity assumptions, this is indeed possible when n=2: using the probabilistic
algorithm of type Las Vegas from [4], the precomputations take an expected number of
O(d(𝜔+1)/2+o(1)) field operations.

2. PRELIMINARIES

For complexity analyses, we will only consider algebraic complexity models (such as
computation trees). In other words we will simply count numbers of arithmetic opera-
tions and zero-tests in 𝕂.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 3

Throughout this paper, we assume 𝜔 to be a feasible exponent for matrix multipli-
cation with 𝜔>2. This means that two n×n matrices in 𝕂n×n can be multiplied in time
O(n𝜔). Le Gall has shown in [21] that one may take 𝜔<2.373.

We denote by M(d) the time that is needed to compute a product P Q of two poly-
nomials P, Q ∈𝕂[x] of degree <d. We make the usual assumption that M(d)/d is
non-decreasing as a function of d. It is also convenient to assume that M(kd)=O(kM(d))
for k=O(log d). Using a variant of Schönhage–Strassen's algorithm [6, 28, 29], it is well
known that M(d)=O(d log d log log d). If we restrict our attention to fields 𝕂 of pos-
itive characteristic, then we may take M(d)=O�d log d4log

∗n� [11].
In order to use the extended multivariate reduction algorithms from [14], sparse poly-

nomial arithmetic is needed. A sparse representation of a polynomial F in 𝕂[x1, . . . , xn]
is a data structure that stores the set of the non-zero terms of F. Each such term is a pair
made of a coefficient and a degree vector. In an algebraic complexity model the bit size
of the exponents counts for free, so the relevant size of such a polynomial is the car-
dinality of its support.

Consider two polynomials F and G of 𝕂[x1,...,xn] in sparse representation. An exten-
sive literature exists on the general problem of multiplying F and G; see [27] for a recent
survey. For the purposes of this paper, a superset 𝒮 for the support of FG will always be
known. Then we define SM(s) to be the cost to compute FG, where s is the maximum of
the sizes of such a superset 𝒮 and the supports of F and G. Under suitable assumptions,
the following proposition will allow us to take SM(s)=O(M(s) log s) in our multivariate
evaluation and interpolation algorithms.

PROPOSITION 1. Let 𝜋1, . . . , 𝜋n be positive integers and let 𝜃 in 𝕂 be of multiplicative order at
least 𝜋≔𝜋1 ⋅ ⋅ ⋅ 𝜋n.

i. The set 𝒫 made of the products 𝜃 e1𝜃 e2𝜋1 ⋅ ⋅ ⋅ 𝜃 en𝜋1⋅ ⋅ ⋅𝜋n−1 for (e1, . . . , en)∈∏i=1
n {0, . . . ,𝜋i−1}

can be computed using O(𝜋) operations in 𝕂.
ii. Let F and G be in 𝕂[x1,...,xn], in sparse representation, and let 𝒮 be a superset of the support

of FG. Assume that degxi(FG)<𝜋i for i=1, . . . ,n, and that 𝒫 has been precomputed. Then
the product FG can be computed using O(M(s) log s) operations in 𝕂, where s denotes the
maximum of the sizes of 𝒮 and the supports of F and G.

Proof. The first statement is straightforward. The second one is simply adapted from [15,
Proposition 6]. □

Computing an element of sufficiently large multiplicative order depends on the
ground field𝕂. In characteristic zero, any integer different from 0 and 1will do. For finite
fields 𝔽q of characteristic p>0, working in an algebraic extension 𝔽q𝜆 yields elements
of order up to q𝜆 − 1. In the context of Proposition 1, we may take 𝜆=O(log 𝜋/log q).
In infinite fields 𝕂 of positive charactersitic p>0, elements of arbitrarily large orders
exist, but they may be hard to access without prior knowledge. However, this is mostly
a theoretical problem: in practice, we usually either know a transcendental element of
infinite order or a way to construct arbitrarily large finite fields inside 𝕂.

3. GRÖBNER BASES FOR GENERIC SETS OF POINTS

For variables 𝒙=(x1, . . . ,xn) and exponents 𝒊= (i1, . . . , in)∈ℕn, we define 𝒙 𝒊≔ x1
i1 ⋅ ⋅ ⋅ xn

in,
𝔐≔{𝒙 𝒊 : 𝒊∈ℕn}, and 𝕂[𝒙]≔𝕂[x1, . . . ,xn]. The monoid 𝔐 comes with a natural partial
ordering ⩽ that is defined by

𝒙 𝒊⩽𝒙 𝒋⇔ i1⩽ j1∧ ⋅ ⋅ ⋅ ∧ in⩽ jn.

4 FAST AMORTIZED MULTI-POINT EVALUATION

We also assume that we fixed a total admissible ordering ≼ on 𝔐 that extends ⩽ and
which turns 𝔐 into a totally ordered monoid. Given a polynomial

P= �
𝔪∈𝔐

P𝔪𝔪∈𝕂[x],

we call supp P≔{𝔪∈𝔐:P𝔪≠0} its support. If P≠0, then we define

𝔡P≔max
≼

supp f
to be the dominant monomial of P.

3.1. Polynomials that vanish on a finite set of points
Let 𝔉={𝔪1, . . . ,𝔪d} be a finite set of monomials. Given a polynomial P=c1𝔪1+⋅⋅⋅+cd𝔪d
and a finite tuple of points 𝜶=(𝛼1, . . . , 𝛼d)∈(𝕂n)d, we have

(((((((((((((((((
(((((((
(
(P(𝛼1)

⋅⋅⋅
P(𝛼d)))))))))))))))))

)))))))))
)

= (((((((((((((((((
(((((((
(
(𝔪1(𝛼1) ⋅ ⋅ ⋅ 𝔪d(𝛼1)

⋅⋅⋅ ⋅⋅⋅
𝔪1(𝛼d) ⋅ ⋅ ⋅ 𝔪d(𝛼d)))))))))))))))))

)))))))))
)
(((((((((((((((((
(((((((
(
(c1

⋅⋅⋅
cd))))))))))))))))
)))))))))
)
.

The set of tuples of points for which the matrix

M𝜶,𝔉 ≔ (((((((((((((((((
(((((((
(
(𝔪1(𝛼1) ⋅ ⋅ ⋅ 𝔪d(𝛼1)

⋅⋅⋅ ⋅⋅⋅
𝔪1(𝛼d) ⋅ ⋅ ⋅ 𝔪d(𝛼d)))))))))))))))))

)))))))))
)

is non-invertible forms a proper Zariski closed subset of (𝕂n)d. If 𝕂 is algebraically
closed, then its open complement is actually non-empty:

LEMMA 2. Assume that 𝕂 is algebraically closed. Then there exists a tuple of points 𝜶∈(𝕂n)d

for which M𝜶,𝔉 is invertible.

Proof. Let t=(t1, . . . , tn)∈𝕂n be a point such that 𝔪1(t), . . . ,𝔪d(t) are pairwise distinct;
such a point t exists since 𝕂 is algebraically closed. Now take 𝛼k=(t1k,..., tn

k) for k=1,...,d.
Then have

M𝜶,𝔉 = ((((((((((((((((((
(((((((((
(
(𝔪1(𝛼1) ⋅ ⋅ ⋅ 𝔪d(𝛼1)

⋅⋅⋅ ⋅⋅⋅
𝔪1(𝛼1)d ⋅ ⋅ ⋅ 𝔪d(𝛼1)d))))))))))))))))))

)))))))))
)
)
,

whence M𝜶,𝔉 is an invertible Vandermonde matrix. □

The lemma shows that M𝜶,𝔉 is invertible for a “generic” tuple of points 𝜶∈ (𝕂n)d.
Assume from now on that this is indeed the case and let us write I𝜶 for the ideal of poly-
nomials P∈𝕂[𝒙] such that P(𝛼1)= ⋅⋅⋅=P(𝛼d)=0. For any other monomial 𝔫∈𝔐∖𝔉 and
P=𝔫− (c1𝔪1+ ⋅ ⋅ ⋅ + cd𝔪d), we have

(((((((((((((((((
(((((((
(
(P(𝛼1)

⋅⋅⋅
P(𝛼d)))))))))))))))))

)))))))))
)

= (((((((((((((((((
(((((((
(
(𝔫(𝛼1)

⋅⋅⋅
𝔫(𝛼d)))))))))))))))))

)))))))))
)

−M𝜶,𝔉(((((((((((((((((
(((((((
(
(c1

⋅⋅⋅
cd))))))))))))))))
)))))))))
)
,

whence P∈ I𝜶 if and only if

(((((((((((((((((
(((((((
(
(c1

⋅⋅⋅
cd))))))))))))))))
)))))))))
)

= M𝜶,𝔉
−1

(((((((((((((((((
(((((((
(
(𝔫(𝛼1)

⋅⋅⋅
𝔫(𝛼d)))))))))))))))))

)))))))))
)
. (1)

This shows that 𝔪1+ I𝜶, . . . , 𝔪d+ I𝜶 form a basis for the quotient algebra 𝕂[𝒙]/I𝜶 and it
provides us with a formula to express 𝔫+ I𝜶 in terms of these basis elements.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 5

3.2. Gröbner bases
Let 1=𝔪1≺𝔪2≺𝔪3≺ ⋅ ⋅ ⋅ be such that 𝔐d≔{𝔪1, . . . ,𝔪d} is the set of d smallest elements
of 𝔐 for each d∈ℕ and with respect to the total ordering ≼. We define 𝔊d to be the set
of smallest elements of the complement 𝔐∖𝔐d for ⩽. By Dickson's lemma, this set is
finite and it forms an antichain for ⩽. Let 𝜶∈(𝕂n)d be a generic tuple of points in the
sense that M𝜶,𝔐d is invertible.

PROPOSITION 3. For each 𝔫∈𝔊d, let
G𝜶,𝔫 = 𝔫− (c1𝔪1+ ⋅ ⋅ ⋅ + cd𝔪d), (2)

where c1,...,cd satisfy (1) for 𝔉=𝔐d. Then 𝑮𝜶≔{G𝜶,𝔫 :𝔫∈𝔊d} forms the reduced Gröbner basis
of I𝜶 with respect to ≼.

Proof. Let 𝔇⊆𝔐 be the set of dominant monomials of non-zero elements of I𝜶. Given
i∈{1, . . . , d}, we have 𝔪i ∉𝔇: otherwise, P=𝔪i + ci−1𝔪i−1+ ⋅ ⋅ ⋅ + c1𝔪1∈ IΑ for certain
c1, . . . ,ci−1∈𝕂, which is impossible since M𝜶,𝔐d is invertible. Conversely, (1) implies that
𝔫∈𝔇 for all 𝔫∈𝔐∖𝔐d, whence 𝔇=𝔐∖𝔐d.

Now it is well known that 𝔇 is a finite segment of 𝔐 for ⩽ and that each minimal
element 𝔫 corresponds to exactly one polynomial R𝔫 in the reduced Gröbner basis with
dominant monomial 𝔡R𝔫=𝔫. Now such a reduced polynomial is by definition of the form
R𝔫=𝔫+Δ with suppΔ⊆𝔐∖𝔇=𝔐d. But (2) shows how to compute the unique polyno-
mial R𝔫=G𝜶,𝔫 of that form. □

Example 4. Let ≼ be a graded ordering for n⩾2. For any d⩾n+1, we have 𝔪1=1 and
𝔪i+1=xi for i=1, . . . ,n. The (i+1)-th column of M𝜶,𝔉 contains the i-th coordinates of the
points of 𝜶. If these columns are not linearly independent then M𝜶,𝔉 is not invertible.
If A is any n× n invertible matrix over 𝕂, and if A(𝜶) denotes A 𝛼1, . . . ,A 𝛼d then the
columns from 2 to n+1 of MA(𝜶),𝔉 are linearly dependent, so MA(𝜶),𝔉 is not invertible.
This example illustrates that the genericity of a tuple of points 𝜶∈(𝕂n)d cannot be nec-
essarily recovered after a linear change of the coordinates.

4. RELAXED REDUCTION WITH RESPECT TO AXIAL BASES
Let 𝔐={𝒙 𝒊 : 𝒊∈ℕn} be as in the previous section, with a total admissible ordering ≼, and
let 𝜶∈(ℝn)d be a generic tuple of points. We need a way to efficiently reduce polyno-
mials P∈𝕂[𝒙] with respect to the Gröbner basis 𝑮𝜶. Since the entire Gröbner basis can
be voluminous to store, we will only reduce with respect to a special subset 𝑨𝜶 of “axial”
basis elements. This also requires us to work with respect to a weighted total degree
ordering ≼.

4.1. Axial bases
For i=1, . . . ,d, we define

𝛿d,i ≔ min{k∈ℕ:xi
k∉𝔐d},

so that 𝑮𝜶 contains a unique element A𝜶,i≔G𝜶,𝔞i with dominant monomial 𝔞i≔xi
𝛿d,i. We

define 𝑨𝜶≔{A𝜶,i : i=1, . . . ,n} to be the axial basis of 𝑨𝜶. Although this set is not a “basis”
of I𝜶, it forms a sufficiently good approximation of 𝑮𝜶 for the purposes of this paper. We
define

ℜd ≔ {𝒙 𝒊 : i1<𝛿d,1∧ ⋅ ⋅ ⋅ ∧ in<𝛿d,n}
to be the set of monomials that are not divisible by any of the monomials 𝔞1, . . . , 𝔞n. We
also define Redd to be the 𝕂-vector spaced spanned by the elements of ℜd.

6 FAST AMORTIZED MULTI-POINT EVALUATION

4.2. Weighted total degree orderings
In all what follows, we assume that the ordering is graded by a weighted total degree.
This means that there exist positive real weights w1, . . . ,wn>0 such that for all 𝒙 𝒊, 𝒙 𝒋∈𝔐,
we have

𝒘⋅𝒊<𝒘⋅ 𝒋 ⟹ 𝒙 𝒊≺𝒙 𝒋.
Here 𝒘=(w1, . . . ,wn) and “⋅” stands for the dot product: 𝒘⋅𝒊=w1 i1+ ⋅ ⋅ ⋅ +wn in. Let

s ≔ max {𝒘⋅ 𝒊 : 𝒙 𝒊∈𝔐d}.
Then

{𝒙 𝒊 :𝒘⋅ 𝒊< s}⊆/ 𝔐d⊆{𝒙 𝒊 :𝒘⋅ 𝒊⩽ s}.

Geometrically speaking, the exponents 𝒊 with 𝒙 𝒊∈𝔐d correspond to lattice points inside
or on the boundary of the simplex with vertices (0,...,0), (s/w1,0,...,0), (0,s/w2,0,...,0), ...,
(0, . . . , 0, s/wn). For fixed n and large d (whence s), it follows that

d ∼ sn

n!w1 ⋅ ⋅ ⋅wn

𝛿d,i ∼ s
wi

∼
n!w1 ⋅ ⋅ ⋅wnn�

wi
(i=1, . . . ,n)

|ℜd| ∼
sn

w1 ⋅ ⋅ ⋅wn
∼ n!d,

where |ℜd| stands for the cardinality of ℜd. In the remainder of this paper, we assume
that n and w1, . . . ,wn have been fixed once and for all. Our asymptotic complexity esti-
mates hold for large d and under this assumption.

Remark 5. If w1= ⋅ ⋅ ⋅ =wn=1, then one may take ≼ to be the usual graded reverse lex-
icographic ordering. In that case, the 𝛿d,i are of the same order of magnitude and ℜd is
approximately a hypercube. Considering general weights gives us more flexibility in the
choice of ≼ and allows us to deal with more general hyperrectangular supports.

4.3. Relaxed reduction
Given a polynomial P∈𝕂[𝒙], an extended reduction of P with respect to A𝜶,1, . . . ,A𝜶,n is
a relation

P = Q1A𝜶,1+ ⋅ ⋅ ⋅ +Qn A𝜶,n+R, (3)
with Q1, . . . ,Qn∈𝕂[𝒙] and R∈Redd. Extended reductions are computed by reducing P
with respect to A𝜶,i as long as there exists an index i for which 𝔡A𝜶,i divides 𝔡P. There are
many ways to compute extended reductions of P depending on the way we chose the
index i in case of multiple options. If we always privilege the lowest possible index i, then
the process is deterministic and we call (3) “the” extended reduction of P with respect
to 𝑨𝜶. In that case, we define P rem 𝑨𝜶≔R and call it the remainder of P with respect
to 𝑨𝜶. Using relaxed evaluation, this remainder can be computed efficiently:

THEOREM 6. Let 𝜋1⩾𝛿d,1, . . . ,𝜋n⩾𝛿d,n be integers, let 𝜋≔𝜋1 ⋅ ⋅ ⋅ 𝜋n, and let P∈𝕂[𝒙] be such
that degxi P<𝜋i for i=1, . . . ,n. Then an extended reduction (3) can be computed in time

O(M(𝜋) log2𝜋),

whenever an element of multiplicative order ⩾(n+1)!𝜋 is given in 𝕂.

Proof. Without loss of generality, we may assume that

w1𝜋1⩽ ⋅ ⋅ ⋅ ⩽wn𝜋n.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 7

We use the reduction algorithm from [14] with the reduction strategy that always reduces
with respect to the axial element A𝜶,k for which k is minimal. Then we claim that the
supports of the successive reductions of P are all contained in the set

𝔖≔{𝒙 𝒊 :∀j∈{1, . . . ,n},w1 i1+ ⋅ ⋅ ⋅ +wj ij<w1𝜋1+ ⋅ ⋅ ⋅ +wj𝜋j+wj 𝛿d, j}.

Indeed, let 𝒙𝒆∈𝔖, let k be minimal such that xk
𝛿d,k divides 𝒙𝒆, and consider a monimial 𝒙𝒄

in the support of T ≔ xk
−𝛿d,k 𝒙𝒆 A𝜶,k. It suffices to show that 𝒙𝒄∈𝔖. Let 𝒆′ be such that

𝒙𝒆′=xk
−𝛿d,k𝒙𝒆. For j=1, . . . ,k−1, the relations 𝒙𝒆′ | 𝒙𝒄 and 𝒙𝒄−𝒆′≺xj

𝛿d, j imply

w1(c1− e1)+ ⋅ ⋅ ⋅ +wj (cj − ej) = w1(c1− e1′)+ ⋅ ⋅ ⋅ +wj (cj − ej′)
⩽ w1(c1− e1′)+ ⋅ ⋅ ⋅ +wn(cn − en′) < wj 𝛿d, j.

Now e1<𝛿d,1⩽𝜋1, . . . , ek−1<𝛿d,k−1⩽𝜋k−1, whence
w1c1+ ⋅ ⋅ ⋅ +wj cj<w1 e1+ ⋅ ⋅ ⋅ +wj ej+wj 𝛿d, j<w1𝜋1+ ⋅ ⋅ ⋅ +wj𝜋j+wj 𝛿d, j.

For j=k, . . . ,n, we directly have
w1c1+ ⋅ ⋅ ⋅ +wj cj⩽w1 e1+ ⋅ ⋅ ⋅ +wj ej<w1𝜋1+ ⋅ ⋅ ⋅ +wj𝜋j+wj 𝛿d, j.

Having shown our claim, we next observe that wk ek< k wk𝜋k+wk 𝛿d,k for all 𝒙𝒆∈𝔖 and
k=1, . . . ,n, whence ek<(k+1)𝜋k and e1 ⋅ ⋅ ⋅ en<(n+1)!𝜋. In particular, the size of the
support of the Qi A𝜶,i and R in the extended reduction (3) is bounded by (n+1)!𝜋. The
theorem now becomes a consequence of [14, Theorem 4] and Proposition 1, by taking
SM(s)≔O(M(s) log s). □

Remark 7. If 𝕂 is the finite field 𝔽q and if q−1<(n+1)!𝜋, then we can apply Theorem 6
over an algebraic extension 𝔽q𝜆 of degree

𝜆≔⌈log ((n+1)!𝜋)/log q⌉.

Constructing this extension can be done using Õ(𝜋√) operations in 𝕂 by [30, The-
orem 3.2]. The primitive root of 𝔽q𝜆

× can be obtained in negligible expected time using
a probabilistic algorithm of Las Vegas type. Then the complexity bound in Theorem 6
becomes

O((((((((((((((M(𝜋) log
3𝜋

log q)))))))))))))).

5. MULTI-POINT EVALUATION

The fast algorithms for multi-point evaluation of univariate polynomials make use of
the technique of remainder trees [3, 9, 23]. For instance, the remainder tree for four points
𝛼1, 𝛼2, 𝛼3, 𝛼4∈𝕂 is the labeled binary tree given by

(x−𝛼1)(x−𝛼2)(x−𝛼3)(x−𝛼4)

(x−𝛼1)(x−𝛼2)

x−𝛼1 x−𝛼2

(x−𝛼3)(x−𝛼4)

x−𝛼3 x−𝛼4

(4)

Given a polynomial P∈𝕂[x] to evaluate at these four points, we compute the remain-
ders of P with respect to each of the polynomials at the nodes, in a top-down fashion. For
instance, the value at 𝛼1 is obtained as

P(𝛼1)=((P rem (x−𝛼1)(x−𝛼2)(x−𝛼3)(x−𝛼4)) rem (x−𝛼1)(x−𝛼2)) rem (x−𝛼1).

8 FAST AMORTIZED MULTI-POINT EVALUATION

Using Theorem 6, we may use a similar technique for multivariate polynomials and points
𝛼1,𝛼2,𝛼3,𝛼4∈𝕂n: we replace each polynomial (x−𝛼i)⋅⋅⋅(x−𝛼j) by the axial basis𝑨(𝛼i, . . . ,𝛼j):

𝑨(𝛼1,𝛼2,𝛼3,𝛼4)

𝑨(𝛼1,𝛼2)

𝑨(𝛼1) 𝑨(𝛼2)

𝑨(𝛼3,𝛼4)

𝑨(𝛼3) 𝑨(𝛼4)

(5)

We may then compute the evaluation of P at 𝛼1 using

P(𝛼1)=((P rem𝑨(𝛼1,𝛼2,𝛼3,𝛼4)) rem𝑨(𝛼1,𝛼2)) rem𝑨(𝛼1).

We will call (5) an evaluation tree.

5.1. Evaluation trees and multi-point evaluation
In order to specify our general algorithms for multi-point evaluation and the computa-
tion of evaluation trees, it is convenient to introduce a few more notations. Given a vector
𝒗=(v1, . . . ,vd), we will write

𝒗⊲ ≔ (v1, . . . ,v⌊d/2⌋),
𝒗⊳ ≔ (v⌊d/2⌋+1, . . . ,vd),

where ⌊a⌋ represents the largest integer smaller or equal to a. The least integer larger or
equal to a is written ⌈a⌉.

Given vectors 𝒖=(u1, . . . ,uc) and 𝒗=(v1, . . . ,vd), we also write

𝒖⋈𝒗 ≔ (u1, . . . ,uc,v1, . . . ,vd)

for their concatenation. Given 𝜶∈(𝕂n)d, we may use the following recursive algorithm
to compute the evaluation tree for 𝜶:

Algorithm EvalTree(𝜶)
Input: a vector of points 𝜶∈(𝕂n)d.
Output: an evaluation tree for 𝜶.
Compute the axial basis 𝑨𝜶 for I𝜶.
If d=1, then return a leaf, labeled by 𝑨𝜶.
Let T⊲≔EvalTree(𝜶⊲) and T⊳≔EvalTree(𝜶⊳).
Return the tree with root labeled by 𝑨𝛼 and children T⊲, T⊳.

We regard the computation of an evaluation tree as a precomputation. Given an eval-
uation tree T for 𝜶, we may efficiently evaluate polynomials P∈𝕂[𝒙] at all points 𝛼1,...,𝛼d
using the following algorithm:

Algorithm Eval(P,T)
Input: a polynomial P∈𝕂[𝒙] and an evaluation tree T for 𝜶∈(𝕂n)d.
Output: the vector P(𝜶)=(P(𝛼1), . . . ,P(𝛼d)).
Let 𝑨𝜶 be the axial basis attached to the root of T.
Let R≔P rem𝑨𝜶.
If d=1, then return (R).
Let T⊲ and T⊳ be the two children of the root of T.
Return Eval(R,T⊲)⋈Eval(R,T⊳).

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 9

5.2. Complexity analysis
The algorithms EvalTree and Eval actually work for arbitrary point vectors 𝜶∈(𝕂n)d: it
suffices to use a general purpose algorithm to compute Gröbner bases for the ideals I𝜶,
from which we can then extract the required axial bases. We say that 𝜶 is hereditarily
generic if M(𝛼i, . . . ,𝛼j),𝔐j+1−i is invertible for all 1⩽ i⩽ j⩽d. In that case, each of the required
axial bases during recursive calls can be computed using Proposition 3.

THEOREM 8. The algorithms EvalTree and Eval are correct. Let P∈𝕂[𝒙] with degxi P<𝜋i
and 𝜋i⩾𝛿d,i for i=1,...,n, and 𝜋≔𝜋1 ⋅⋅⋅𝜋n. If 𝜶 is hereditarily generic, then the running times
of EvalTree and Eval are respectively bounded by

TEvalTree(d) = O(d𝜔)
TEval(d,𝜋1, . . . ,𝜋n) = O(M(d) log3 d+M(𝜋) log2𝜋),

whenever an element of multiplicative order ⩾(n+1)!𝜋 is given in 𝕂.

Proof. By induction on d, the algorithms EvalTree and Eval are clearly correct. Using
Proposition 3 and linear algebra, we see that the computation of 𝑨𝜶 in the first step of
EvalTree can be done in time C d𝜔, for some constant C. The running time EvalTree
therefore satisfies

TEvalTree(1) ⩽ C
TEvalTree(d) ⩽ Cd𝜔+TEvalTree(⌊d/2⌋)+TEvalTree(⌈d/2⌉), d⩾2.

By induction on d, this yields TEvalTree(d)⩽ T̄EvalTree(d), where

T̄EvalTree(1) = C
T̄EvalTree(d) = Cd𝜔+ T̄EvalTree(⌊d/2⌋)+ T̄EvalTree(⌈d/2⌉), d⩾2.

Again using induction on d, we also note that T̄EvalTree is increasing. It follows that
T̄EvalTree(d)⩽ T̄EvalTree(d̄) for d̄=2⌈logd/log2⌉⩽2d. Unrolling the equation

T̄EvalTree(1) = C
T̄EvalTree(d̄) = Cd̄𝜔+2 T̄EvalTree(d̄/2), d̄⩾2,

we find
T̄EvalTree(d̄)⩽Cd̄𝜔+2C� d̄

2�
𝜔
+4C� d̄

4�
𝜔
+ ⋅ ⋅ ⋅ = C

1−21−𝜔 d̄𝜔=O(d𝜔).

As to the running time TEval of Eval, we recall that |ℜd| ∼n!d, whence |ℜd| ⩽K d for
some constant K that depends on n. Theorem 6 also implies the existence of a constant C
such that

TEval(d,𝜋1, . . . ,𝜋n) ⩽ CM(𝜋) log2𝜋+TEval(d, 𝛿d,1, . . . , 𝛿d,n)
TEval(1,1, . . . , 1) ⩽ CM(K)

TEval(d, 𝛿d,1, . . . , 𝛿d,n) ⩽ CM(Kd) log2(Kd)+TEval(⌊d/2⌋, 𝛿d,1, . . . , 𝛿d,n)
+TEval(⌈d/2⌉, 𝛿d,1, . . . , 𝛿d,n), d⩾2.

Modulo a further increase of C, the first and third relation may be combined such as to
replace the third relation by

TEval(d, 𝛿d,1, . . . , 𝛿d,n) ⩽ CM(Kd) log2(Kd)+TEval(⌊d/2⌋, 𝛿⌊d/2⌋,1, . . . , 𝛿⌊d/2⌋,n)
+TEval(⌈d/2⌉, 𝛿⌈d/2⌉,1, . . . , 𝛿⌈d/2⌉,n), d⩾2.

10 FAST AMORTIZED MULTI-POINT EVALUATION

By unrolling the latter inequality in a similar way as above for powers of two, we obtain
T̄Eval(d̄, 𝛿d,1, . . . , 𝛿d,n)⩽CM(Kd̄) (log(Kd̄)+1)3, while using our assumption that M(d)/d
is non-decreasing. □

Remark 9. If n=2 and the first coordinates of the evaluation points are pairwise distinct,
then precomputations can be handled more efficiently as follows. The annihilating poly-
nomial takes O(M(d) log d) operations in 𝕂, using the formula

𝜒(x1)≔�
i=1

d

(x1−𝛼i,1).

With a similar cost we can also interpolate the polynomial v2(x1) of degree <d satisfying
𝛼i,2=v2(𝛼i,1) for i=1, . . . ,d.

Setting 𝜈j≔max(degx1𝔪i :degx2𝔪i= j, i=1, . . . ,n)+1 for j=0, . . . , 𝛿d,2−1, we note that
𝜈0+⋅⋅⋅+𝜈𝛿d,2−1=d. Determining the coordinates of 𝔫∈𝔐∖𝔉 in the basis 𝔉 of the quotient
ring of I𝜶 reduces to computing polynomials g0, . . . , g𝛿d,2−1 in 𝕂[x1] of respective degree
less than 𝜈0, . . . , 𝜈𝛿d,2−1 and a scalar c∈𝕂 such that

g0(x1)+ g1v2(x1)+ ⋅ ⋅ ⋅ + g𝛿d,2−1(x1)v2(x1)𝛿d,2−1+ c𝔫(x1,v2(x1))=0mod 𝜒(x1).

Assuming that |𝕂|⩾ 2 d2, a non-trivial solution can be computed in expected time
O(𝛿d,2

𝜔−1M(d) log2 d) = Õ(d(𝜔+1)/2) using the probabilistic algorithm of Las Vegas type
underlying [4, Corollary 1]. Since M𝜶,𝔉 is invertible, the value found for c cannot be zero,
and we obtain the solution of (1) in this way.

6. INTERPOLATION

In the univariate case, the technique of remainder trees can also be used to efficiently
reconstruct a polynomial P∈𝕂[x] from its values at d distinct points 𝛼1, . . . ,𝛼d. This basi-
cally amounts to reversing the evaluation process, while using the Chinese remainder
theorem to reconstruct P rem (A⊲ A⊳) from P rem A⊲ and P rem A⊳ for coprime poly-
nomials A⊲ and A⊳. For such reconstructions using the Chinese remainder theorem,
it is useful to precompute the “cofactors” C⊲, C⊳∈𝕂[x] with C⊲ A⊲ rem A⊳= 1,
C⊳A⊳ remA⊲=1, degC⊲<degA⊳, and degC⊳<degA⊲, after which

P rem (A⊲A⊳)=((P remA⊳)C⊲A⊲+(P remA⊲)C⊳A⊳) rem (A⊲A⊳).

These cofactors are typically stored in an upgraded version of the remainder tree.
In our multivariate setting, a similar idea works, modulo some additional precau-

tions when computing the cofactors. The cofactors are most easily constructed via their
evaluations. Indeed, consider a tuple of points 𝜶∈(𝕂n)d with d⩾2 and its decomposition
𝜶=𝜶⊲⋈𝜶⊳. Then the first element A⊲≔A𝜶⊲,1 of the axial basis of I𝜶⊲ certainly vanishes
at 𝜶⊲ and we wish to let it play the same role as A⊲ above. The corresponding cofactor
C⊲ should satisfy (C⊲ A⊲)(𝜶⊳)= 1, so we may compute it through interpolation from
its evaluation A⊲(𝜶⊳)−1 at 𝜶⊳. However, this requires A⊲ not to vanish at any of the
entries of 𝜶⊳. Now the set of tuples of points 𝜶∈(𝕂n)d for which one of the entries of
A⊲(𝜶⊳) vanishes forms a Zariski closed subset of dimension nd−1; for a “generic” tuple
of points, both A⊲(𝜶⊳) and A⊳(𝜶⊲) (where A⊳≔A𝜶⊳,1) are therefore invertible. Given
P∈𝕂[𝒙], this allows us to reconstruct P rem𝑨𝜶 from P rem𝑨𝜶⊳ and P rem𝑨𝜶⊲ using

P rem𝑨𝜶=((P rem𝑨𝜶⊳)C⊲A⊲+(P rem𝑨𝜶⊲)C⊳A⊳) rem𝑨𝜶.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 11

More generally, we define 𝜶 to be super-generic if it is hereditarily generic and, for all
1⩽ i⩽ j⩽d and k∈{1, . . . ,n}∖{i, . . . , j}, we have A(𝛼i, . . . ,𝛼j),1(𝛼k)≠0.

6.1. Interpolation trees and interpolation
Let us now detail the interpolation algorithm that was summarized and explained above.
Similarly to the case of multi-point evaluation, it relies on the construction of an inter-
polation tree, which contains the required cofactors. Contrary to before, the construction
of this tree recursively involves interpolations (in order to reconstruct the cofactors from
their evaluations).

Algorithm IpolTree(T)
Input: an evaluation tree T for a super-generic vector 𝜶∈(𝕂n)d.
Output: an interpolation tree U for 𝜶.
If d=1, then return a leaf.
Let 𝑨𝜶 be the axial Gröbner basis attached to the root of T.
Recursively apply the algorithm to the children T⊲, T⊳ of T, yielding U⊲, U⊳.
Let A⊲, A⊳ be the first entries of the axial bases associated to the roots of T⊲, T⊳.
Compute E⊲≔Eval(A⊲,T⊳) and E⊳≔Eval(A⊳,T⊲).
Compute C⊲≔ Ipol(E⊲

−1,U⊳) and C⊳≔ Ipol(E⊳
−1,U⊲).

Return the tree with root labeled by (𝑨𝜶,C⊲,C⊳) and children U⊲, U⊳.

Algorithm Ipol(v,U)
Input: 𝒗∈𝕂d and the interpolation tree U for 𝜶∈(𝕂n)d.
Output: P∈Redd with P(𝜶)=𝒗.
If d=1, then return v1.
Let A⊲, A⊳ be the first entries of the axial bases associated to the roots of T⊲, T⊳.
Let U⊲, U⊳ be the children of U.
Let (𝑨𝜶,C⊲,C⊳) be the label of the root of U.
Let P⊲≔ Ipol(𝒗⊲,U⊲) and P⊳≔ Ipol(𝒗⊳,U⊳).
Return ((P⊳C⊲ rem𝑨𝜶⊳)A⊲+(P⊲C⊳ rem𝑨𝜶⊲)A⊳) rem𝑨𝜶.

6.2. Complexity analysis

THEOREM 10. The algorithms IpolTree and Ipol are correct. If 𝜶 is super generic, then the
running times of IpolTree and Ipol are respectively bounded by

TIpolTree(d) = O(M(d) log4 d)
TIpol(d) = O(M(d) log3 d),

whenever an element of multiplicative order ⩾(n+1)!2n𝛿 is given in 𝕂, where 𝛿≔𝛿d,1 ⋅ ⋅ ⋅ 𝛿d,n.

Proof. By induction on d, the algorithms IpolTree and Ipol are clearly correct. Let us
start with the complexity bound for Ipol. We have degxi(P⊳C⊲)<2𝛿d,i, degxi(P⊲C⊳)<
2 𝛿d,i, degxi((P⊳ C⊲ rem 𝑨𝜶⊳)A⊲)<2 𝛿d,i, and degxi((P⊲ C⊳ rem 𝑨𝜶⊲)A⊳), for i=1, . . . ,n,
where (2𝛿d,1) ⋅ ⋅ ⋅ (2𝛿d,n)=O(2n n!d)=O(d). Theorem 6 therefore implies the existence of
constants C and K with

TIpol(1) ⩽ CM(K)
TIpol(d) ⩽ CM(Kd) log2(Kd)+TIpol(⌊d/2⌋)+TIpol(⌈d/2⌉), d⩾2.

12 FAST AMORTIZED MULTI-POINT EVALUATION

By unrolling the latter inequality in a similar way as in the proof of Theorem 8 for powers
of two, we obtain T̄Ipol(d̄)⩽CM(K d̄) (log(K d̄)+ 1)3, while using our assumption that
M(d)/d non-decreasing.

As to the construction of the interpolation tree, Theorem 6, together with the bound
for TEval of Theorem 8, and TIpol imply the existence of other constants C and K with

TIpolTree(1) ⩽ CM(K)
TIpolTree(d) ⩽ CM(Kd) log3(Kd)+TIpolTree(⌊d/2⌋)+TIpolTree(⌈d/2⌉), d⩾2.

Unrolling the latter inequality yields T̄IpolTree(d̄)⩽CM(Kd̄)(log(Kd̄)+1)4. □

BIBLIOGRAPHY

[1] J. Abbott, A. Bigatti, M. Kreuzer, and L. Robbiano. Computing ideals of points. J. Symbolic Comput.,
30(4):341–356, 2000.

[2] S. Abelard, A. Couvreur, and G. Lecerf. Sub-quadratic time for Riemann–Roch spaces. The case
of smooth divisors over nodal plane projective curves. Technical Report, HAL, 2020. https://
hal.archives-ouvertes.fr/hal-02477371.

[3] A. Borodin and R. T. Moenck. Fast modular transforms. J. Comput. System Sci., 8:366–386, 1974.
[4] A. Bostan, C.-P. Jeannerod, and É. Schost. Solving structured linear systems with large displacement

rank. Theor. Comput. Sci., 407(1):155–181, 2008.
[5] A. Bostan, G. Lecerf, and É. Schost. Tellegen's principle into practice. In Proceedings of the 2003 Interna-

tional Symposium on Symbolic and Algebraic Computation, ISSAC '03, pages 37–44. New York, NY, USA,
2003. ACM.

[6] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta
Inform., 28:693–701, 1991.

[7] M. F. I. Chowdhury, C. Jeannerod, V. Neiger, É. Schost, and G. Villard. Faster algorithms for multi-
variate interpolation with multiplicities and simultaneous polynomial approximations. IEEE Trans.
Inf. Theory, 61(5):2370–2387, 2015.

[8] J.-C. Faugère, P. Gaudry, L. Huot, and G. Renault. Sub-cubic change of ordering for Gröbner basis:
a probabilistic approach. In Proceedings of the 39th International Symposium on Symbolic and Algebraic
Computation, ISSAC '14, pages 170–177. New York, NY, USA, 2014. ACM.

[9] C. M. Fiduccia. Polynomial evaluation via the division algorithm: the fast Fourier transform revisited.
In Proceedings of the Fourth Annual ACM Symposium on Theory of Computing, STOC '72, pages 88–93.
New York, NY, USA, 1972. ACM.

[10] M. Gasca and T. Sauer. Polynomial interpolation in several variables. Adv. Comput. Math., 12(4):377,
2000.

[11] D. Harvey and J. van der Hoeven. Faster polynomial multiplication over finite fields using cyclotomic
coefficient rings. J. Complexity, 54:101404, 2019.

[12] J. van der Hoeven. Faster relaxed multiplication. In Proceedings of the 39th International Symposium on
Symbolic and Algebraic Computation, ISSAC '14, pages 405–412. New York, NY, USA, 2014. ACM.

[13] J. van der Hoeven. Faster Chinese remaindering. Technical Report, CNRS & École polytechnique,
2016. http://hal.archives-ouvertes.fr/hal-01403810.

[14] J. van der Hoeven. On the complexity of multivariate polynomial division. In I. S. Kotsireas and
E. Martínez-Moro, editors, Applications of Computer Algebra. Kalamata, Greece, July 20–23, 2015, volume
198 of Springer Proceedings in Mathematics & Statistics, pages 447–458. Cham, 2017. Springer Inter-
national Publishing.

[15] J. van der Hoeven and G. Lecerf. On the bit-complexity of sparse polynomial multiplication. J. Sym-
bolic Comput., 50:227–254, 2013.

[16] J. van der Hoeven and G. Lecerf. On the complexity exponent of polynomial system solving. Technical
Report, HAL, 2018. http://hal.archives-ouvertes.fr/hal-01848572.

[17] J. van der Hoeven and G. Lecerf. Fast multivariate multi-point evaluation revisited. J. Complexity,
56:101405, 2020.

[18] J. van der Hoeven et al. GNU TeXmacs. http://www.texmacs.org, 1998.
[19] K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular composition. SIAM J.Comput.,

40(6):1767–1802, 2011.

JORIS VAN DER HOEVEN, GRÉGOIRE LECERF 13

https://hal.archives-ouvertes.fr/hal-02477371
https://hal.archives-ouvertes.fr/hal-02477371
https://hal.archives-ouvertes.fr/hal-02477371
https://hal.archives-ouvertes.fr/hal-02477371
https://hal.archives-ouvertes.fr/hal-02477371
https://hal.archives-ouvertes.fr/hal-02477371
https://hal.archives-ouvertes.fr/hal-02477371
https://hal.archives-ouvertes.fr/hal-02477371
https://hal.archives-ouvertes.fr/hal-02477371
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01403810
http://hal.archives-ouvertes.fr/hal-01848572
http://hal.archives-ouvertes.fr/hal-01848572
http://hal.archives-ouvertes.fr/hal-01848572
http://hal.archives-ouvertes.fr/hal-01848572
http://hal.archives-ouvertes.fr/hal-01848572
http://hal.archives-ouvertes.fr/hal-01848572
http://hal.archives-ouvertes.fr/hal-01848572
http://hal.archives-ouvertes.fr/hal-01848572
http://hal.archives-ouvertes.fr/hal-01848572
http://www.texmacs.org
http://www.texmacs.org
http://www.texmacs.org

[20] D. Le Brigand and J.-J. Risler. Algorithme de Brill–Noether et codes de Goppa. Bulletin de la société
mathématique de France, 116(2):231–253, 1988.

[21] F. Le Gall. Powers of tensors and fast matrix multiplication. In K. Nabeshima, editor, Proceedings of
the 39th International Symposium on Symbolic and Algebraic Computation, ISSAC '14, pages 296–303. New
York, NY, USA, 2014. ACM.

[22] M. G. Marinari, H. M. Möller, and T. Mora. Gröbner bases of ideals defined by functionals with an
application to ideals of projective points. Appl. Algebra Eng. Commun. Comput., 4(2):103–145, 1993.

[23] R. T. Moenck and A. Borodin. Fast modular transforms via division. In 13th Annual Symposium on
Switching and Automata Theory, pages 90–96. USA, 1972. IEEE.

[24] H. M. Möller and B. Buchberger. The construction of multivariate polynomials with preassigned zeros.
In J. Calmet, editor, Computer Algebra. EUROCAM '82, European Computer Algebra Conference. Mar-
seille, France 5–7 April 1982, volume 144 of Lect. Notes Comput. Sci., pages 24–31. Berlin, Heidelberg,
1982. Springer Berlin Heidelberg.

[25] V. Neiger. Fast computation of shifted Popov forms of polynomial matrices via systems of modular
polynomial equations. In Proceedings of the ACM on International Symposium on Symbolic and Algebraic
Computation, ISSAC '16, pages 365–372. New York, NY, USA, 2016. ACM.

[26] M. Nüsken and M. Ziegler. Fast multipoint evaluation of bivariate polynomials. In S. Albers and
T. Radzik, editors, Algorithms – ESA 2004. 12th Annual European Symposium, Bergen, Norway, September
14-17, 2004, volume 3221 of Lect. Notes Comput. Sci., pages 544–555. Springer Berlin Heidelberg, 2004.

[27] D. S. Roche. What can (and can't) we do with sparse polynomials? In C. Arreche, editor, ISSAC '18:
Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation, pages 25–30.
ACM Press, 2018.

[28] A. Schönhage. Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Infor.,
7:395–398, 1977.

[29] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7:281–292, 1971.
[30] V. Shoup. New algorithms for finding irreducible polynomials over finite fields. Math. Comp.,

54(189):435–447, 1990.

14 FAST AMORTIZED MULTI-POINT EVALUATION

	1. Introduction
	1.1. Related work
	1.2. Our contributions

	2. Preliminaries
	3. Gröbner bases for generic sets of points
	3.1. Polynomials that vanish on a finite set of points
	3.2. Gröbner bases

	4. Relaxed reduction with respect to axial bases
	4.1. Axial bases
	4.2. Weighted total degree orderings
	4.3. Relaxed reduction

	5. Multi-point evaluation
	5.1. Evaluation trees and multi-point evaluation
	5.2. Complexity analysis

	6. Interpolation
	6.1. Interpolation trees and interpolation
	6.2. Complexity analysis

	Bibliography

