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We consider minimizers of the energy

in a two-dimensional domain Ω, with weak anchoring potential

This functional was previously derived as a thin-film limit of the Landau-de Gennes energy, assuming weak anchoring on the boundary favoring a nematic director lying along a cone of fixed aperture, centered at the normal vector to the boundary.

In the regime where s [α 2 + (π -α) 2 ] < π 2 /2, any limiting map u * : Ω → S 1 has only boundary vortices, where its phase jumps by either 2α (light boojums) or 2(π -α) (heavy boojums).

Our main result is the fine-scale description of the light boojums.

Introduction

In this paper, we consider minimizers of the following two-dimensional variational functional of Ginzburg-Landau type:

E ε (u) := Ω 1 2 |∇u| 2 + 1 4ε 2 (|u| 2 -1) 2 dx + 1 2ε s ∂Ω W (u, g) ds. ( . )
Here,

. Ω ⊂ R 2 is a smooth bounded domain, supposed for simplicity simply connected.

. u : Ω → R 2 C belongs to the energy space H 1 (Ω; C).

. W (u, g) is of the form W (u, g) := 1 2 (|u| 2 -1) 2 + ( u, g -cos α) 2 , ( . ) with g : ∂Ω → S 1 is smooth, α ∈ (0, π/2) and , the scalar product in R 2 .

. 0 < s ≤ 1 is a parameter indicating the strength of the "anchoring term" W (u, g). This problem was derived in [ ] as a thin-film limit of the Landau-de Gennes (Q-tensorial) model of nematic liquid crystals. Assuming the physical sample occupies a very thin cylinder over a planar domain Ω ⊂ R 2 , and restricting to Q-tensors with a fixed eigenvalue in the vertical direction, Golovaty, Montero, & Sternberg [ ] proved that the three-dimensional Landau-de Gennes energy Gamma converges to a two-dimensional Ginzburg-Landau functional. While the connection between nematics and the Ginzburg-Landau energy has been well established, the allure of ( . ) arises from the boundary condition imposed on minimizers, via energy penalization (or "weak anchoring", in the parlance of liquid crystals). Instead of imposing a Dirichlet condition on the Q-tensor which forces the nematic director to align with the normal vector to the boundary, we may instead assume that it is energetically favorable for the director to lie along a cone of prescribed aperture to the normal. This may be modeled at the Landau-de Gennes level via a Rapini-Papoular surface energy [ ], which in the thin-film limit appears as the boundary integral present in E ε . The given function g : ∂Ω → S 1 , which may be chosen arbitrarily in the mathematical analysis of minimizers of E ε , in the physical derivation of the model is given by the square g = ν 2 of the complex representation of the outward unit normal vector ν = ν 1 + ıν 2 to ∂Ω. As W (u, g) ≥ 0, with equality precisely when u = g e ±ıα , energy minimization favors u's which lie, on ∂Ω, in the cone of aperture α around the vector g, and we expect to have u ge ±ıα on ∂Ω "most of the time".

The asymptotic analysis of the energy of minimizers of E ε was undertaken in [ ]. Using the bad discs construction as in [ , ], adapted to problems with boundary penalization (see also [ , ]), the authors derived a uniform upper bound on the energy of the minimizers u ε in the complement of a finite number of small discs containing the defects. It follows from this preliminary analysis that any weak limit u * of u ε is smooth away from a finite defect set S, and satisfies |u * | = 1 in Ω \ S and u * = ge ±ıα on ∂Ω \ S.

The novelty of this problem is that there are four classes of defects ζ ∈ S which might occur. As in the Dirichlet problem for Ginzburg-Landau, one may observe interior vortices, of integer degree. For boundary defects, there are three possibilities. First, u * may jump from u * = ge +ıα to u * = ge -ıα (or from ge -ıα to ge +ıα ) across a defect ζ ∈ ∂Ω, by following the shortest path on S 1 , of length 2α. This type of defect is termed a "light boojum" ( . )

Here and in what follows, we set, for any open set G ⊂ Ω,

E ε (u; G) := G 1 2 |∇u| 2 + 1 4ε 2 (|u| 2 -1) 2 dx + 1 2ε s ∂Ω∩G W (u, g) ds.
The second class of boundary defect are "heavy boojums", for which u * jumps from u * = ge -ıα to u * = ge +ıα by following the longer route on S 1 , of length 2(π -α). The energy cost of such a defect is estimated by

E ε (u ε ; A r,R (ζ)) ≥ 2π 1 - α π 2 ln R r + O(1). ( . )
By topological considerations, such heavy (or even heavier) boundary defects have to exist when the boundary datum g has non zero winding number (degree).

The third possibility is that of a boundary vortex for which the phase of u * jumps by an integer multiple of 2π. However it is easily shown that one of these vortices are more costly than a pair of boojums, one light and one heavy, and so these defects are never present in energy minimizers.

Define, for each α ∈ (0, π/2),

C α := α π 2 + 1 - α π 2 < 1.
The value of s C α governs the nature of defects: there are only interior defects when s C α > 1/2 and only boundary defects when s C α < 1/2. In particular, we have the following

Theorem . [ , Theorem . (b)] Assume s C α < 1/2 and D := deg(g, ∂Ω) > 0. Let u ε minimize E ε in H 1 (Ω; C). Then E ε (u ε ) = 2π s C α D | ln ε| + O(1), ( . ) and there exist a subsequence ε = ε n → 0 and 2D points ζ 1 , . . . , ζ 2D ∈ ∂Ω, ordered along the boundary curve, such that:

. For every 0 < σ < 1 8 min i =j |ζ i -ζ j |, there exists K σ such that ) .

E ε u ε ; Ω \ j B σ (ζ j ) ≤ K σ . ( . 
u ε u * weakly in H 1 loc (Ω \ {ζ 1 , . . . , ζ 2D }), where u * ∈ C 1 (Ω \ {ζ 1 , . . . , ζ 2D }; S 1 ) is a harmonic map satisfying W (u * , g) = 0 on ∂Ω \ {ζ 1 , . . . , ζ 2D }.
. Each ζ 2j-1 is a light boojum jumping from ge +ıα to ge -ıα , and each ζ 2j is a heavy boojum jumping from ge -ıα to ge +ıα .

In particular, we may write u * = e ıϕ * , where the phase ϕ * is smooth in Ω \ {ζ 1 , . . . , ζ 2D }, and its restriction to ∂Ω\{ζ 1 , . . . , ζ 2D } has jump discontinuities of amplitude 2α at light boojums and 2(π -α) at heavy boojums.

Remark .

A word about degree of g and the jumps at the boojums. We choose on ∂Ω the positive, conterclockwise, orientation. The degree and the jumps are considered with respect to this orientation. At a light boojum ζ, the limit of u * |∂Ω on the le t of ζ (with respect to the positive orientation) is g(ζ)e +ıα ; on its right, g(ζ)e -ıα . As we will see in the proof of Lemma , on small arcs C R (ζ) ∩ Ω, ϕ * essentially increases, linearly in the polar angle, from θ 0 -α + o(1) to θ 0 + α + o(1), for an appropriate constant θ 0 = θ 0 (ζ) such that e ıθ 0 = g(ζ). Similarly, at a heavy boojum, the limits of u * |∂Ω are respectively g(ζ)e -ıα on the le t of ζ and g(ζ)e +ıα on the right of ζ, and the phase ϕ * essentially increases on small arcs C R (ζ) ∩ Ω, linearly, from θ 0 + α + o(1) to θ 0 + 2π -α + o(1). This monotonicity is determined by our assumption deg g > 0. If deg g < 0, then the phase decreases on small arcs, and the side limits are reversed. If deg g = 0, then there are no boojums at all.

A natural question concerning the boojums is to describe the local behavior of minimizers u ε in a neighborhood of each defect. From the analysis in [ ], the natural scale of boundary defects seems to be ε s , determined by the strength of the penalization appearing with the boundary energy term. (Intuitively, the scale of a defect is the smallest scale at which one sees, a ter blowup, non constant functions.) This suggests that boundary defects are significantly larger than interior vortices, which (as always) have characteristic length ε. The goal of this paper is to confirm this intuition, via a fine-scale asymptotic analysis near a singularity. More specifically, our main result identifies the profile of u ε in a suitable O(ε s ) blowup limit around a light boojum. As we will show in Theorem below, to each choice of the aperture α ∈ (0, π/2) corresponds a unique non constant profile function, which satisfies an elliptic boundary value problem in the half-plane.

To state the result, we first describe the blowup procedure. For any y ∈ Ω and r > 0 we denote ω r (y) := B r (y) ∩ Ω, ( . ) so that, for small r, we have ω r (y) = B r (y) ∩ Ω. Since ∂Ω is smooth, there exists r 0 > 0 such that, for every point y ∈ ∂Ω, there exist a smooth di feomorphism

Ψ = Ψ y : ω r 0 (y) → B + 1 (0) := {z = (z 1 , z 2 ) ∈ B 1 (0); z 2 ≥ 0}
( . ) and a rotation R = R y such that:

. Ψ(y) = 0.

. DΨ(y) = R.

. Ψ is orientation preserving, and thus Rτ = (1, 0), Rν = (0, -1), where τ is the unit tangent to ∂Ω at y for the direct orientation on ∂Ω (respectively ν is the unit outward normal at y to Ω).

. DΨ(z) -R ≤ C|z -y|, ∀ z ∈ ω r (y), uniformly in y.
Using Ψ, we may blowup a map u : Ω → C around a point y ∈ ∂Ω at a scale λ 1 by setting

(u) y,λ (z) := u Ψ -1 (λz) , ∀ z ∈ B + 1/λ (0) := {z = (z 1 , z 2 ) ∈ B 1/λ (0); z 2 ≥ 0}.
( . ) We may now state our main result.

Theorem . Let u ε be minimizers of E ε in H 1 (Ω; C) such that u ε → u * (possibly along a sequence ε = ε n → 0), and assume that ζ ∈ ∂Ω is a light boojum defect of u * . Then there exists y ε ∈ ∂Ω with y ε → ζ such that (with the notation in ( . ))

v ε := (u ε ) yε,ε s → g(ζ) v ( . )
locally uniformly on compact sets of R 2 + , where v := e ıψ , and ψ ∈ C ∞ (R 2 + ; R) is the unique (up to a horizontal translation) locally minimizing solution of

   ∆ψ = 0 in R 2 + ∂ψ ∂ν = sin ψ (cos ψ -cos α) on R ∂R 2 + ( . ) satisfying lim x 1 →±∞ ψ(x 1 , 0) = ∓α. ( . )
Here, "locally minimizing" means

R 2 + [|∇(ψ + ξ)| 2 -|∇ψ| 2 ] + R [(cos(ψ + ξ) -cos α) 2 -(cos ψ -cos α) 2 ] ≥ 0, ∀ ξ ∈ C ∞ c (R 2 + ).
( . )

Equivalently, ψ minimizes, with respect to its own boundary value, the "local energy", defined on bounded open sets U ⊂ R 2

+ by

E(ψ; U ) := 1 2 U [|∇ψ| 2 ] + 1 2 R∩U (cos ψ -cos α) 2 . ( . )
The uniqueness statement in Theorem is due to Cabré & Solà-Morales [ , Theorem . , Theorem . ]: the system ( . )-( . ) has, up to horizontal translations, exactly one locally minimizing solution.

The idea of the proof is the following. We first show that |u ε | is bounded away from zero in a neighborhood of a light boojum. In order to prove this, we rely on the minimality of u ε . More specifically, for light boojums ζ, the total oscillation of the phase around ζ is expected to be strictly less than π; this is verified along appropriate circular arcs in Lemma . The fact that u ε does not vanish in a neighborhood of ζ is then obtained by means of a projection of the image of u ε ; see Lemmas and .

Writing u ε = ρ ε e ıϕε , we derive uniform a priori estimates near the boundary for the rescaled maps u yε,ε s , the crucial estimate being ρ ε → 1 uniformly near ζ as ε → 0.

( . ) These estimates rely on a variant of Boyarskiȋ's regularity theorem for elliptic systems (see [ , , ] and Lemma ). They enable the passage to the limit a ter blowup. The limiting map is of the form e ıψ , with ψ as in ( . ). The existence of blowup points y ε such that ( . ) holds requires some work (see Lemma .) The proof of Theorem is then completed in Section .

Once the existence of a boundary "bad half-disc", of characteristic size ε s , as above, is proved, natural questions concern its uniqueness, and the possible existence of interior bad discs. It turns out that, at the characteristic scale ε s , there are no other bad half-discs, and no interior bad discs.

Theorem . Let u ε , ζ and y ε be as in Theorem .

. Let z ε ∈ ∂Ω be such that z ε → ζ and |z ε -y ε | ε s . Then there exists t ∈ {-1, +1} such that, up to a subsequence,

(u ε ) zε,ε s → g(ζ) e tıα uniformly on compacts of R 2 + .
Here and in what follows, B r (y) (respectively C r (y)) is the open disc (respectively circle) of center y and radius r.

. Let z ε ∈ Ω be such that z ε → ζ and dist (z ε , ∂Ω) ε s . Then there exists a constant ξ ∈ S 1 such that, up to a subsequence,

u ε (ε s (• -z ε )) : 1 ε s (Ω -z ε ) → C converges to ξ uniformly on compacts of R 2 .
(With more e fort, it is possible to improve the conclusion of item and obtain the convergence to a constant at scales λ ε , with ε s λ ε dist (z ε , ∂Ω) 1; however, we do not follow this route here.)

Corollary . Let u ε and ζ be as in Theorem . Consider a small fixed neighborhood V of ζ. For small ε, V contains exactly one bad disc, which is a boundary bad disc.

As was the case for Ginzburg-Landau with S 1 -valued Dirichlet conditions, one expects that Theorem gives the first term in an asymptotic expansion [ , ] of the energy near its minimum, revealing a renormalized energy which determines the locations of singularities. A recent result of Ignat & Kurzke [ ] proves such a lower bound expansion for a similar Ginzburg-Landau functional with boundary penalization, arising in thin film ferromagnetism. These authors work within the context of Γ-convergence and weak Jacobians, and their method applies more generally to families with bounded energy rather than minimizers, and with a more flexible relation between the boundary penalization and the length scale parameter ε. However, their work also assumes that the energy cost of boundary defects is of a much smaller scale than interior vortices, and hence it is complementary to our analysis. Moreover, our primary interest in this paper is in the fine structure of solutions in the neighborhood of a singularity.

Our methods are limited to the analysis of light boojums. We do not know what happens near a heavy boojum. As explained above, our proof relies heavily on a projection method (Lemma ), whose conclusion is that |u ε | is far away from zero near a boundary defect ζ, and whose proof requires that the phase turns by less than π around ζ; this is indeed the case when ζ is a light boojum. If we take for granted that |u ε | is far away from zero near ζ, then actually |u ε | → 1 uniformly near ζ (see ( . )) -this part of the proof does not see the di ference between light and heavy boojums. In a neighborhood of a heavy boojum, the phase turns by 2(π -α) > π, and hence our method of proof does not apply. Topologically, there is no need for u ε to vanish at a heavy boojum, and indeed the upper bound construction in [ ] is achieved with S 1 -valued maps for both species of boojums. However, numerical evidence in [ ] suggests that |u ε | may not tend to 1 uniformly near a heavy boojum, by contrast with the case of light boojums. If this is indeed the case, then, as explained above, u ε gets close to 0 near a heavy boojum, making life inside the heavy boojums of a di ferent nature...

Refining the convergence u ε → u *

In this section we re-examine some of the convergence arguments in [ ] to obtain a more precise description of u ε .

. Basic facts

First, we review some basic estimates and constructions related to minimizers. For fixed ε > 0, minimizers of E ε in H 1 (Ω; C) exist and satisfy the Euler-Lagrange equations

     -∆u + 1 ε 2 (|u| 2 -1)u = 0 in Ω ∂u ∂ν + 1 ε s (|u| 2 -1)u + [ u, g -cos α]g = 0 on ∂Ω . ( . )
We next recall some a priori bounds obtained in [ , Lemma . ] for minimizers of E ε and, more generally, for solutions of ( . ) satisfying the natural energy bound E ε (u ε ) ≤ K| ln ε|. For any 0 < s < 1, such u ε 's satisfy:

lim ε→0 u ε ∞ = 1, ( . ) ∃ C 1 > 0 such that |∇u ε (x)| ≤ C 1 ε , ∀ x ∈ Ω, ∀ 0 < ε < 1. ( . )
.

Refined bad discs construction

For 0 < ε 1, minimizers u ε will satisfy |u ε | 1 in Ω and W (u ε , g) 0 on ∂Ω, except for a finite number of "bad discs", which converge to the defects which are observed in the ε → 0 limit. Following the classical η-compactness techniques [ , ] for the Ginzburg-Landau functional, for any a ∈ (0, 1/2) one constructs a finite disjoint collection

{B j } j=1,...,Nε of open discs, whose number N ε ≤ N 0 (a, g, s, α) is uniformly bounded, satisfying x ∈ Ω; |u ε (x)| 2 < 1 -a √ 2 ∪ x ∈ ∂Ω; W (u ε (x), g(x)) > a 2 ⊂ Nε j=1 B j . ( . )
The "interior" bad discs, centered at points in Ω, have radius kε, for a constant k = k(a, g, Ω) > 0. The remaining, "boundary" bad discs, centered at points on ∂Ω, are larger, with radius kε s ; see [ , Lemma . ] for details.

By including the interior bad discs at distance ≈ ε from the boundary into (artificial) boundary bad discs, merging the interior bad discs at relative distance ≈ ε, respectively merging the boundary bad discs with the other (interior or boundary) bad discs at distance ≈ ε s and increasing the value of k, we may also assume that:

. The distance from an interior bad disc to the boundary is ε s . . The distance between any two interior bad discs is ε.

. The distance from a boundary bad disc to any other (interior or boundary) bad disc is ε s .

. Possibly up to a subsequence ε n → 0, the number of bad discs B j and their type for fixed j (interior or boundary) is the same for each ε. We now briefly revisit the construction in [ ] in order to define the topological invariants associated with the bad discs.

We first consider an interior bad disc B j = B kε (x ε j ), for which we set d j := deg(u ε , ∂B j ). Let us note that d j is invariant in the following sense. If r ≥ kε, B r (x ε j ) ⊂ Ω and B r (x ε j ) does not intersect any bad disc except B j , then d j = deg(u ε , ∂B r (x ε j )). By ( . ), d j is uniformly bounded, and thus, up to a subsequence, it does not depend on ε.

The case of a boundary bad disc B j = B kε s (x ε j ) is more involved. To such a disc, we associate two invariants, n j ∈ N and τ j ∈ {-1, 0, 1}, as follows. Assume that

x ε j → ζ ∈ ∂Ω. Locally on ∂Ω near ζ, write g = e ıγ , with smooth γ. Fix 0 < r < R such that B j ⊂ B r (x ε j )
and such that the closed annular region A r,R (x ε j ) is disjoint from any of the other bad discs. When R is su ficiently small, A r,R (x ε j ) is simply connected and ∂Ω ∩ A r,R (x ε j ) consists of two arcs, Γ ± r,R , with Γ + r,R "on the right" of x ε j with respect to the direct orientation of ∂Ω. By definition of bad discs and the choice of r and R, we have

|u ε | ≥ 1 - √ 2a > 0 in A r,R (x ε j ) and W (u ε , γ) < a 2 on Γ ± r,R . Thus we may write u ε = f e ıψ in A r,R (x ε j ), with f ≥ 0, f, ψ ∈ C 1 . Set ψ ± := ψ |Γ ± r,R
. Then, by [ , Lemma . ], for a su ficiently small, for each of the two boundary arcs Γ ± r,R , we may find integers ) this is equivalent to u ε ge ıt ± α on Γ ± r,R . If a is su ficiently small, then C α a < α/2, and then t ± and m ± in ( . ) are unique. We may then set n j := m + -m -∈ Z and τ j := (1/2) [t + -t -] ∈ {-1, 0, 1}; these integers describe the winding of the phase of u ε around a boundary bad disc centered at x ε j ∈ ∂Ω. It is not clear at this stage that the integers n j are uniformly bounded. However, the analysis in [ ] (see the proof of Theorem . there) shows that this is indeed the case, and thus we may assume that n j and τ j do not depend on ε.

t ± ∈ {-1, 1} and m ± ∈ Z such that ψ ± -γ -t ± α -2πm ± < C α a on Γ ± r,R ; ( . 
We now introduce the ad hoc notion of "essential" bad discs: these are either interior bad discs with d j = 0, or boundary bad discs with (τ j , n j ) = (0, 0). Lemma . Let g, D, u ε , u * , ζ 1 , . . . , ζ 2D be as in Theorem . Then . For every small σ > 0 and for every = 1, . . . , 2D, B σ (ζ ) ∩ Ω contains exactly one essential bad disc. . This bad disc is a boundary bad disc, of the form

B j = B kε s (x ε j ), with x ε j ∈ ∂Ω, x ε j → ζ . . If ζ is a light boojum, then τ j = -1 and n j = 0. . If ζ is a heavy boojum, then τ j = 1 and n j = 1.
In other words, the limiting defects ζ are "simple", in the sense that each one is the limit of a single essential bad disc, which carries the same topological type. Thus, one cannot have interior discs with nonzero degree colliding with ∂Ω as ε → 0, nor can one observe the merging of essential boundary defects in the limit. In particular, the bad disc in Corollary is an essential bad disc.

This phenomenon is not specific to our particular problem, and the above lemma can be adapted to similar situations where the number of bad discs is bounded and the upper bound on the energy matches the lower bound up to terms of order one.

Proof. The conclusion of the lemma essentially follows from the method of discs expansion and fusion in [ , ]. Such a procedure is followed in the proof of Lemma . of [ ]: the bad discs (centered at x ε j ∈ Ω) are expanded in time t ≥ 1, with radii R j (t), from a "seed size" R j (1), which is initially equal to the bad disc radius kε s (for boundary discs) or kε (for interior discs), by setting R j (t) := t 1/s kε for an interior bad disc tkε s for a boundary bad disc .

The expansion phase yields a lower bound, depending on t, for the energy of u ε in the union of the annuli A R j (1),R j (t) (x ε j ). This lower bound is obtained by applying the adapted analogues of the lower bounds ( . ), ( . ) around each bad disc B j (see [ , formula ( . )] for the precise lower bound). The (first step of this) process stops when either two expanded bad discs collide, or an expanded interior bad disc touches ∂Ω. By the assumption on the mutual position of the bad discs, the collision time t(ε) goes to ∞ as ε → 0.

At the end of this expansion phase, the lower bound for the energy is

E ε u ε ; j A R j (1),R j (t(ε)) (x ε j ) ≥ 2π n j -τ j α π 2 + π s d 2 j ln t(ε) -K ≥ 2π C α D ln t(ε) -K, ( . )
where the first sum on the right-hand side of ( . ) is over the boundary bad discs, and the second one over the interior bad discs (see [ , formula ( . )] for the first inequality in ( . ), and [ , Lemma . ] for the second one). Furthermore, by investigating the equality case in [ , proof of Theorem . ]), we find that the conclusion of ( . ) can be improved to

2π n j -τ j α π 2 + π s d 2 j ≥ 2π C α D, (see
E ε u ε ; j A R j (1),R j (t(ε)) (x ε j ) ≥ (2π C α D + δ) ln t(ε) -K, ( . )
for some constant δ > 0, unless there are exactly 2D essential discs, each on the boundary, satisfying itemsof the lemma. The next step is fusion (merging). This is explained in [ , proof of Lemma . ] when an expanded bad disc hits an expanded boundary bad disc. When an expanded interior bad disc B R j (t(ε)) (x ε j ) hits the boundary at some point y ε j . We then replace it by B 2R j (t(ε)) (y ε j ), that we treat in the next steps as a boundary bad disc. (The fusion of interior bad discs was already described in [ , ].)

Once the touching expanded bad discs are merged, we start a new expansion phase, then a fusion one, and so on; we end up with a single bad disc around each singularity. Assuming that Lemma does not hold, we may keep the extra term δ ln t(ε) during all steps and improve the conclusion of [ , Lemma . ] from

E ε u ε ; (B σ (ζ ) ∩ Ω) ≥ 2πC α D ln σ ε s -K σ , ( . ) 
to

E ε u ε ; (B σ (ζ ) ∩ Ω) ≥ 2πC α D ln σ ε s + δ ln t(ε) -K σ . ( . )
However, for small ε the lower bound ( . ) contradicts the global upper bound ( . ). This contradiction shows that itemshold and completes the proof of the lemma.

Remark . Using a similar argument, one may prove that the boundary vortices considered in [ ] satisfy the conclusion of [ , Theorem . ]. The final estimate in [ , proof of Theorem . ] seems too optimistic. However, a weaker estimate, in the spirit of the above lemma, su fices to derive that result.

. Variation of the phase

From the convergence stated in Theorem , along a sequence

ε = ε n → 0, we have u ε → u * weakly in H 1 loc (Ω \ {ζ 1 , . . . , ζ 2D }), where u * ∈ C 1 (Ω \ {ζ 1 , . . . , ζ 2D }; S 1
) is an S 1 -valued harmonic map in Ω, and, on ∂Ω, we have u * = ge ±ıα except at the defects ζ j , j = 1, . . . , 2D. In particular, we may write Away from fixed small neighborhoods of the boojums, we have, for small ε, |u ε | > 0, and thus we may write, locally (and actually globally), u ε = ρ ε e ıϕε , with

u * = e ıϕ * in Ω \ {ζ 1 , . . . , ζ 2D }), with ϕ * ∈ C 1 (Ω \ {ζ 1 , . . . , ζ 2D }).
ρ ε := |u ε | and ϕ ε ∈ C 1 . Lemma . Let ζ ∈ ∂Ω and let θ 0 ∈ R be such that g(ζ) = e ıθ 0 .
. For all su ficiently small σ > 0, there exists

R = R σ ∈ (σ/2, σ) such that, possibly along a further subsequence ε = ε n → 0, we have u ε → u * uniformly on C R (ζ) ∩ Ω. . Let ε = ε n → 0 be as in item .
For every δ > 0, there exist σ > 0 and ε > 0 such that, for σ < σ and ε < ε, we may write

u ε = ρ ε e ıϕε on C Rσ (ζ) ∩ Ω, with 1 2 |J(ζ)| -δ ≤ max C Rσ (ζ)∩Ω |ϕ ε -θ 0 -2kπ| ≤ 1 2 |J(ζ)| + δ, ( . )
for some appropriate integer k = k ε ∈ Z.

Proof. . Choose σ > 0 for which the annulus A σ/2,σ (ζ) does not contain any of the boojums ζ k , with k = 1, . . . , 2D. By the global bound ( . ) on the energy, Tonelli's theorem and Fatou's lemma, there exists

R = R σ ∈ (σ/2, σ) with lim sup ε→0 C R (ζ)∩Ω 1 2 |∇u ε | 2 + 1 4ε 2 (|u ε | 2 -1) 2 ds R ≤ lim sup ε→0 C R (ζ)∩Ω E ε (u ε ; A σ/2,σ (ζ)) σ/2 ≤ C σ ( . ) along a sequence ε = ε n → 0.
Hence, u ε is uniformly bounded in H 1 (C R (ζ) ∩ Ω) and thus, along a further subsequence, we have

u ε → u * uniformly on C R (ζ) ∩ Ω.
. In view of item , it su fices to prove that, with ϕ * as in ( . ), there exists some fixed integer k ∈ Z such that

lim R→0 max C R (ζ)∩Ω |ϕ * -2kπ -θ 0 | = 1 2 |J(ζ)|, ∀ ζ ∈ ∂Ω. ( . )
When ζ is not a defect, this is clear. Assume next that ζ is a defect. For the sake of concreteness, we consider the case of a light boojum; the case of heavy boojums is similar. With no loss of generality, we may assume that ζ = 0 and that the oriented unit tangent to ∂Ω at ζ = 0 is τ = (1, 0). Denote J := J(0) = -2α. Let Φ(r, θ) := (r cos θ, r sin θ). For su ficiently small σ, we have B σ (0) ∩ Ω = ω σ (0) = Φ ( ω σ (0)) , with ω σ (0) := {(r, θ); 0 < r < σ, θ -(r) < θ < θ + (r)} ; ( . ) here, θ ± (r) are di ferentiable and satisfy

θ -(r) = O(r), θ + (r) = π + O(r). ( . ) For 0 < r ≤ σ, θ -(r) ≤ θ ≤ θ + (r) and x := Φ(r, θ) ∈ ω σ (0) \ {0}, set h(x) := - J π θ + ϕ + * (0) and ψ := ϕ * -h. ( . )
We next note that ψ has the following properties.

ψ is harmonic in ω σ (0) and continuous in ω σ (0) \ {0}, ( . )

ψ restricted to [∂ω σ (0)] \ {0} has a continuous extension (still denoted ψ) to ∂ω σ (0), ( . ) and this extension satisfies ψ(0) = 0.

( . ) (Property ( . ) follows from the fact that, thanks to the definition ( . ), h makes the same jump across ζ = 0 as ϕ * .)

We will see below that, under the assumptions ( . )-( .), ψ has a removable singularity at the origin, i.e., ψ can be extended as a continuous function to ω σ (0). Assuming this, we conclude the proof of item as follows. On the one hand, since e ıϕ + * (0) = g(0)e -ıα (see Theorem ), there exists some k ∈ Z such that ϕ + * (0) = θ 0 + 2kπ -α, and therefore (again, by Theorem ) ϕ - * (0) = θ 0 + 2kπ + α. We next observe that h is increasing in θ for fixed r, and, by ( . ), ( . ) and the (granted) continuity of ψ, the restriction of h to C R (ζ) ∩ Ω takes values in an interval of the form

[ϕ + * (0) + o(1), ϕ - * (0) + o(1)] = [θ 0 + 2kπ -α + o(1), θ 0 + 2kπ + α + o(1)] = θ 0 + 2kπ + 1 2 J + o(1), θ 0 + 2kπ - 1 2 J + o(1) as R → 0.
This implies ( . ) and thus (via item ) ( . ). It remains to show that the function ψ above is continuous at the boundary point ζ = 0. First, we observe that, by Corollary . of [ ], there exists a constant c 0 = c 0 (g, α, Ω) such that for, all fixed r, 0 < r < σ, we have the upper bound

1 2 Ar,σ(0) |∇u * | 2 ≤ lim inf ε→0 E ε (u ε ; A r,σ (0)) ≤ lim inf ε→0 E ε (u ε ; Ω \ ∪ j B r (ζ j )) ≤ 2πsC α ln 1 r + c 0 . ( . )
Note that, by ( . ), ( . ) and the fact that |∇θ| = 1/r, the function ψ satisfies an upper bound of the same form,

Ar,σ(0) |∇ψ| 2 ≤ c 2 ln 1 r + c 1 , ( . ) 
with constants c 1 , c 2 which are independent of r ∈ (0, σ). Consider a conformal bi-Lipschitz transformation Ξ : Ω → Ξ(Ω), which maps the origin into itself, Ω into a region contained in the upper half plane, and straightens the boundary near the origin. With no loss of generality, we may assume that

Ξ(∂Ω ∩ B σ (0)) ⊂ R × {0} R. Choose r 1 > 0 such that B + r 1 (0) := B r 1 (0) ∩ {Im z > 0} ⊂ Ξ(ω σ (0)).
Since Ξ is bi-Lipschitz, there exists a constant c < 1, independent of r < r 1 , such that

Ξ -1 (B + r 1 (0) \ B + r (0)) ⊂ A cr,σ (0) ⊂ ω σ (0). ( . )
For z ∈ Ξ ω σ (0) \ {0}, define v(z) := ψ(Ξ -1 (z)). Using ( . )-( . ), ( . ) and the conformal invariance of the Dirichlet integral, we find that v is harmonic in B + r 1 (0) and continuous in B + r 1 (0) \ {0};

( . )

v restricted to [∂B + r 1 (0)
] \ {0} has a continuous extension to ∂B + r 1 (0); ( . )

B + r 1 \B + r |∇v| 2 ≤ c 2 ln 1 r + c 3 , ( . )
with c 3 independent of r.

In order to complete the proof of the lemma, it su fices to show that, under the assumptions ( . )-( . ), v has an extension continuous up to the origin. By ( . ), there exists a sequence {ρ j } such that 0 < ρ j < r 1 , ∀ j, ρ j → 0 and .) is easily obtained, via ( . ), by arguing by contradiction.) By ( . ) and Cauchy-Schwarz, the oscillation

Cρ j (0)∩{Im z≥0} |∇v| 2 ≤ 2c 2 ρ j , ∀ j. ( . ) ((
osc of v on C ρ j (0) ∩ {Im z ≥ 0} satisfies osc (v, C ρ j (0) ∩ {Im z ≥ 0}) ≤ Cρ j (0)∩{Im z≥0} |∇v| ≤ (πρ j ) 1/2 Cρ j (0)∩{Im z≥0} |∇v| 2 1/2 ≤ (2πc 2 ) 1/2 . ( . )
Combining ( . ) with the fact that v is uniformly bounded at the endpoints of C ρ j (0) ∩ {Im z ≥ 0}, we find that v is uniformly bounded on C ρ j (0) ∩ {Im z ≥ 0}. The maximum principle applied to v in B + r 1 (0)\B ρ j (0) implies that v is bounded in the closure of this set, with bounds independent of j. Letting j → ∞, we find that v is bounded in B + r 1 (0) \ {0}. Next, let v be the continuous function on ∂B + r 1 (0) which agrees with v outside the origin, and let w be the harmonic extension of v to B + r 1 (0) (so that w is continuous up to the boundary). In order to conclude, it su fices to prove that V := v -w vanishes everywhere in B + r 1 (0) \ {0}. In turn, the equality V = 0 is a consequence of the following straightforward properties of V :

V is harmonic in B + r 1 (0) and continuous and bounded in B + r 1 (0) \ {0}, ( . )

V vanishes everywhere on ∂B + r 1 (0) \ {0}.

( . ) Indeed, let δ > 0 and set

V δ (x) := V (x) -δ ln |x| r 1 , ∀ x ∈ B + r 1 (0) \ {0}. By ( . )-( . ), V δ is harmonic in B + r 1 (0) and continuous in B + r 1 (0) \ {0}, lim x→0 V δ (x) = ∞ and V δ ≥ 0 on ∂B + r 1 (0) \ {0}.
By the maximum (or rather minimum) principle, we have V δ ≥ 0 in B + r 1 (0) \ {0}. By letting δ → 0, we find that V ≥ 0. Similarly, by considering

x → V (x) + δ ln |x| r 1 , ∀ x ∈ B + r 1 (0) \ {0}, ∀ δ > 0,
we find that V ≤ 0 in B + r 1 (0) \ {0}, whence the conclusion V = 0 in B + r 1 (0) \ {0}. The proof of Lemma is complete.

Remark . The argument used to establish item proves a property of u * near the defects which is common in the Ginzburg-Landau theory. More specifically, assume e.g. that ζ is a light boojum. Assume moreover that the unit tangent vector to ∂Ω at ζ is (1, 0). Then the proof of Lemma implies that, near ζ, we may write

u * = e ı[-J π θ-α] e ı(θ 0 +ψ) = x -ζ |x -ζ| 2α π e -ıα e ı ψ ,
where θ is the polar angle as in ( . ) and ψ is harmonic in ω σ (ζ) and continuous in ω σ (ζ), with ψ(ζ) = θ 0 . This is the analogue of the canonical harmonic map in [ ]. While we have only stated an estimate on the oscillation of the phase ϕ ε on circular arcs around a defect, in fact we have shown that the minimizer u ε closely resembles (up to a constant multiplicative factor) e ıh , which interpolates the phase linearly around the jump.

Blowup analysis

In this section, we derive the sharp estimates needed to justify the blowup at scale ε s near a light boojum ζ.

. Localizing the image of u ε near a light boojum

Our first task in the proof of Theorem will be to show that u ε is bounded away from zero in a neighborhood of ζ. This is achieved by constructing, in Lemma , a convenient projection Π which reduces the energy inside ω R (ζ), for some convenient small R. We start with a preliminary remark.

Lemma . Let Ω ⊂ R m , U ⊂ R n , Π : U → R k be an L-Lipschitz function and u ∈ H 1 loc (Ω, U ). Then Π • u ∈ H 1 loc (Ω, R k ) and |∇(Π • u)| ≤ L |∇u| a.e. in Ω.
( . )

Proof. We extend Π to an L-Lipschitz function on R n , still denoted Π. We are then in position to smooth both u and Π (without increasing the Lipschitz constant of Π) and thus it su fices to prove ( . ) when both u and Π are smooth. In this case, we have, with (e j ) the canonical basis of R m ,

|∇u(x)| 2 = m j=1 |∂ j u(x)| 2 = lim h→0 m j=1 |u(x + he j ) -u(x)| 2 h 2 ,
and similarly for Π • u. We find that

|∇(Π • u)(x)| 2 = lim h→0 m j=1 |(Π • u)(x + he j ) -(Π • u)(x)| 2 h 2 ≤ L 2 lim h→0 m j=1 |u(x + he j ) -u(x)| 2 h 2 = L 2 |∇u(x)| 2 . Lemma . Consider α, β, γ, δ > 0 such that α + δ < β < γ < π 2 , ( . ) cos γ + sin δ ≤ cos α. ( . ) Let S 1 δ := {e ıϕ ; |ϕ| ≤ δ}. ( . ) For 0 < λ < 1, set U = U λ := {z ∈ C; |z| ≤ 1 + λ}, V = V λ,β := {ρ e ıθ ; 1 -λ ≤ ρ ≤ 1 + λ, |θ| ≤ β}, ( . ) W = W λ,γ := {z = ρe ıθ ∈ U ; Re z ≥ cos γ, |θ| ≤ γ} ⊂ {z ∈ C; |z| ≥ cos γ}. ( . )
Here and in what follows, Lipschitz constants are calculated with respect to the standard Euclidean norms.

Then, for su ficiently small λ (depending on α, β, γ and δ), there exists a function Π : U → W such that: .), for small λ and for z in the respective domain of definition for each map Π j , j = 1, 2, 3. Then clearly Π := Π 3 • Π 2 • Π 1 has all the required properties.

Π is 1-Lipschitz, ( . ) Π = Id on V, ( . ) ( w, Π(z) -cos α) 2 ≤ ( w, z -cos α) 2 , ∀ z ∈ U, w ∈ S 1 δ , ( . ) (1 -|Π(z)| 2 ) 2 ≤ (1 -|z| 2 ) 2 , ∀ z ∈ U. ( . ) Proof. Set U 1 := {z ∈ U ; Re z ≥ 0}, U 2 := {ρe ıθ ; 0 ≤ ρ ≤ 1 + λ, |θ| ≤ γ} ⊂ U 1 . We will construct Π 1 : U → U 1 , Π 2 : U 1 → U 2 , Π 3 : U 2 → W satisfying ( . )-(
Step . Construction and properties of Π 1 . We let Π 1 (x+ıy) :=

x + ıy, if x ≥ 0

-x + ıy, if x < 0 . Clearly, Π 1 : U → U 1
satisfies ( . ), ( . ) and ( . ). We claim that ( . ) holds for Π 1 provided

(1 + λ) sin δ ≤ cos α ( . ) (which, for small λ, follows from ( . )).

Indeed, we have to check ( . ) only for z = x+ıy ∈ U , with x ≤ 0. For such z and for w = w 1 +ıw 2 ∈ S 1 δ , we have

( w, -x + ıy -cos α) 2 -( w, x + ıy -cos α) 2 = -2w 1 x ≥0 [2w 2 y -2 cos α], ( . ) 
and thus ( . ) amounts to the following: Step . Construction and properties of Π 2 . If x+ıy ∈ U 1 , then we may write x+ıy = ρe ıθ , with 0 ≤ ρ ≤ 1+λ and -π/2 ≤ θ ≤ π/2. Set

[x + ıy ∈ U, x ≤ 0] =⇒ w 2 y ≤ cos α. ( 
Φ : [-π/2, π/2] → [-γ, γ], Φ(θ) :=      θ, if |θ| ≤ γ, γ, if γ < θ ≤ π/2, -γ, if -π/2 ≤ θ < -γ. We let Π 2 (ρe ıθ ) := ρe ıΦ(θ) , ∀ 0 ≤ ρ ≤ 1 + λ, ∀ -π/2/ ≤ θ ≤ π/2.
Clearly, Π 2 maps U 1 into U 2 and satisfies ( . ) (since γ > β, by ( . )) and ( . ). We check ( . ) (for Π 2 ). We actually claim that

ρe ıΦ(θ) -re ıΦ(ϕ) 2 ≤ ρe ıθ -re ıϕ 2 , ∀ r, ρ ≥ 0, |θ| ≤ π/2, |ϕ| ≤ π/2.
( . ) Indeed, with θ, ϕ as above, ( . ) amounts to cos(θ -ϕ) ≤ cos (Φ(θ) -Φ(ϕ)) .

( . ) Assuming, with no loss of generality, that θ ≥ ϕ, ( . ) follows from

0 ≤ Φ(θ) -Φ(ϕ) ≤ θ -ϕ ≤ π.
We next turn to the proof of ( . ) for Π 2 . We have to prove that, for small λ, we have

(ρ cos(Φ(θ)-ϕ)-cos α) 2 ≤ (ρ cos(θ -ϕ)-cos α) 2 , ∀ 0 ≤ ρ ≤ 1+λ, γ ≤ |θ| ≤ π/2, |ϕ| ≤ δ. ( . )
(Note that ( . ) becomes an equality when |θ| ≤ γ. We may thus assume that |θ| ≥ γ.)

Here and in what follows, , denotes the real scalar product of complex numbers.

With ρ, θ, ϕ as above, we have Φ(ϕ) = ϕ (since δ < γ, by ( . )), and thus

(ρ cos(Φ(θ) -ϕ) -cos α) 2 -(ρ cos(θ -ϕ) -cos α) 2 = ρ [cos(Φ(θ) -ϕ) -cos(θ -ϕ)] ≥0, by ( . ) × [ρ cos(Φ(θ) -ϕ) + ρ cos(θ -ϕ) -2 cos α].
Therefore, ( . ) will follow from

ρ cos(Φ(θ) -ϕ) + ρ cos(θ -ϕ) ≤ 2 cos α, ∀ 0 ≤ ρ ≤ 1 + λ, γ ≤ |θ| ≤ π/2, |ϕ| ≤ δ.
( . ) In turn, ( . ) is, via ( . ), a consequence of ρ cos(Φ(θ) -ϕ) + ρ cos(θ -ϕ) ≤ 2ρ cos(Φ(θ) -ϕ) ≤ 2(1 + λ) cos(γ -δ) < 2 cos α for small λ (by ( . )). In conclusion, Π 2 satisfies ( . )-( . ).

Step . Construction and properties of Π

3 . If x + ıy ∈ U 2 , we set Π 3 (x + ıy) := x + ıy, if x > cos γ cos γ + ıy, if x ≤ cos γ .
Then Π 3 is 1-Lipschitz, since it is the nearest point projection on the convex set W .

On the other hand, we note that

x + ıy ∈ V =⇒ x ≥ (1 -λ) cos β > cos γ for small λ (by ( . )), and thus ( . ) holds for small λ.

We check ( . ) for Π 3 . It su fices to consider x + ıy ∈ U 2 , with x ≤ cos γ. We write x + ıy = ρe ıθ , with 0 ≤ ρ ≤ 1 + λ and |θ| ≤ γ. Since x ≤ cos γ, we have ρ ≤ 1, and thus

|x + ıy| 2 = x 2 + y 2 ≤ |Π 3 (x + ıy)| 2 = cos 2 γ + ρ 2 sin 2 θ ≤ cos 2 γ + sin 2 γ = 1, ( . ) whence ( . ).
Finally, we check ( . ) for Π 3 . Again, it su fices to consider x + ıy ∈ U 2 , with x ≤ cos γ (and thus, by the above, |y| ≤ 1). Arguing as for ( . ), it su fices to have

w 1 (x + cos γ) + 2w 2 y ≤ 2 cos α, ∀ w = w 1 + ıw 2 ∈ S 1 δ .
( . ) In order to prove ( . ), we note that w 1 (x + cos γ) + 2w 2 y ≤ 2w 1 cos γ + 2|w 2 | ≤ 2 cos γ + 2 sin δ ≤ 2 cos α (by ( . )). The proof of Lemma is complete.

As a consequence of Lemma , a minimizer u ε of E ε which "lives" on the boundary of a domain D ⊂ Ω, "near" an arc of S 1 of length < π is far away from zero in all the domain. More precisely, we have the following result.

Lemma . Let α, β, γ and δ satisfy ( . )-( . ). Let λ > 0 be such that ( . )-( . ) hold.

Let D ⊂ Ω be a Lipschitz domain. Assume that: u = u ε is a minimizer of ( . ), ( . )

∂Ω ∩ D = ∅ and ∂D ∩ Ω = ∅, ( . ) 
D is simply connected, ( . )

g(∂Ω ∩ D) ⊂ {e ıθ ; |θ| ≤ δ}, ( . ) u(∂D ∩ Ω) ⊂ {ρ e ıθ ; 1 -λ ≤ ρ ≤ 1 + λ, |θ| ≤ β}.
( . ) Then, for su ficiently small ε, we have

u(D) ⊂ {ρe ıθ ; 0 ≤ ρ ≤ 1+λ, |θ| ≤ γ, ρ cos θ ≥ cos γ} ⊂ {ρe ıθ ; cos γ ≤ ρ ≤ 1+λ, |θ| ≤ γ}. ( . )
In particular, we may write u = ρe ıϕ in D, with

ρ ∈ H 1 (D) ∩ C(D), cos γ ≤ ρ ≤ 1 + λ, ( . ) ϕ ∈ H 1 (D) ∩ C(D), |ϕ| ≤ γ. ( . )
Proof. Recall that u is continuous, and even C 1 , in Ω; see ( . ). We consider, as a competitor in ( . ),

v := u, in Ω \ D Π • u, in D
, with Π as in the proof of Lemma . (The fact that v is a competitor follows from ( . ) and ( . ).) Write

Π 2 • Π 1 • u = f = f 1 + ıf 2 and Π 1 • u = h = h 1 + ıh 2 .
By Lemma , ( . )-( .) and the minimality of u ε , we have

|∇(Π • u)| = |∇(Π 3 • f )| = |∇f | = |∇(Π 2 • h)| = |∇h| = |∇(Π 1 • u)| = |∇u| a.e. in D ∩ Ω. ( . )
We claim that f 1 ≥ cos γ in D (and thus in D).

( . ) Indeed, consider the open set ω := {z ∈ D; f 1 (z) < cos γ}. A.e. in ω, we have

|∇(Π 3 • f )| 2 = |∇f 2 | 2 , while |∇f | 2 = |∇f 1 | 2 + |∇f 2 | 2
. We find that ∇f 1 = 0 a.e. in ω, which implies ∇[(cos γ -f 1 ) + ] = 0 a.e. in D. Since D is connected, we find that (cos γ -f 1 ) + is constant a.e. (and thus everywhere) in D, and therefore also constant in D. Since, on the other hand, (cos γ -f 1 ) + = 0 on the non empty set ∂Ω ∩ D (by ( . ) and ( .)), we find that f 1 ≥ cos γ in D, as claimed.

By ( . ) and ( .), for small ε we have cos γ ≤ |h| ≤ 1 + λ; thus, thanks to ( . ), we may write

h = ρe ıϕ in D, with ρ ∈ H 1 (D) ∩ C(D), cos γ ≤ ρ ≤ 1 + λ, ( . ) ϕ ∈ H 1 (D) ∩ C(D), -π/2 ≤ ϕ ≤ π/2.
( . ) By ( . ), and ( . ), we have

ϕ(∂D ∩ Ω) ⊂ [-β, β]. ( . ) We claim that ϕ(D) ⊂ [-γ, γ].
( . ) Indeed, we prove e.g. that ϕ ≤ γ in D. For this purpose, we consider the open set ω := {z ∈ D; ϕ(z) > γ}. A.e. in ω, we have

|∇h| 2 = |∇ρ| 2 + ρ 2 |∇ϕ| 2 and |∇f | 2 = |∇ρ| 2 .
( . ) By ( . ) and ( . ), we obtain ∇ϕ = 0 a.e. in ω. Combining this with ( . ), we obtain (as above) that (ϕ -γ) + = 0 in D. Similarly, we have (ϕ + γ) -= 0 in D, whence ( . ). By ( . ), ( . ) and ( . ), for small ε we have h(D) ⊂ W (with W as in ( . )), and thus u(D) ⊂ Z := (Π 1 ) -1 (W ).

( . ) Now Z has two connected components, one of which is W . Since u(D) is connected and, by ( . ) and ( . ), u(D) intersects W , we find that u(D) ⊂ W , i.e., ( . ) holds.

The proof of Lemma is complete.

. Uniform estimates at the ε s scale Lemma below improves the conclusion ρ ≥ cos γ to ρ → 1 locally uniformly. This, in turn, leads to a number of uniform estimates at the ε s scale.) This relies on the following variant of Boyarskiȋ's regularity result for elliptic systems in divergence form in the plane [ ], [ ], in the form presented in Meyers [ ].

Lemma . Let D be the unit disc. Let λ, M ∈ (0, ∞) be fixed.

Let A : D → M 2 (R) satisfy (A(x)ξ) • ξ ≥ λ|ξ| 2 , ∀ x ∈ D, ∀ ξ ∈ R 2 , ( . ) A(x) ≤ M, ∀ x ∈ D. ( . )
Here and in what follows, • denotes the standard scalar product in R 2 .

Then there exists some 2 < p ≤ 4 (depending only on λ and M ) such that the problem

div (A∇v) = 0 in D v = f ∈ H 1 (S 1 ) on S 1 ( . )
admits a (unique) solution v ∈ W 1,p (D), and in addition we have

∇v L p (D) ≤ C f L 2 (S 1 ) . ( . )
Proof. We have H 1 (S 1 ) → W 3/4,4 (S 1 ), and thus there exists w ∈ W 1,4 (D) such that w = f on S 1 and ∇w

L 4 (D) ≤ C f L 2 (S 1 ) . ( . ) Writing v = w + u, u then solves, div (A∇u) = div F in D u = 0 on S 1 , ( . ) 
with F := -A∇w satisfying (by ( . ) and ( . ))

F L 4 (D) ≤ C f L 2 (S 1 ) .
( . ) By [ , Theorem ], there exists some 2 < p ≤ 4 (depending only on λ and M ) such that ( . ) has a solution in W 1,p (D), satisfying the estimate

∇u L p (D) ≤ C F L p (D) .
( . ) The conclusion of the lemma follows from ( . ), ( . ) and ( . ).

Lemma . Let s ∈ (0, 1) and A ∈ (0, ∞). Consider y = y ε ∈ ∂Ω. Set r = r ε := Aε s , U = U ε := ω r (y) = B r (y) ∩ Ω, ω = ω ε := ω r/2 (y) = B r/2 (y) ∩ Ω. Assume that u = u ε is a critical point of E ε , satisfying 0 < C 1 ≤ |u| ≤ C 2 < ∞ in U, ( . ) u 
= |u|e ıϕ , where ϕ = ϕ ε ∈ H 1 (U ) ∩ C(U ) satisfies |ϕ| ≤ C 3 < ∞, ( . ) |∇u| ≤ C 4 ε for some C 4 < ∞, ( . 
)

1 ε 2 U (1 -|u| 2 ) 2 ≤ C 5 (| ln ε| + 1) for some C 5 < ∞. ( . )
Then, for su ficiently small ε, we have

∇ϕ L 2 (ω) ≤ C 6 < ∞, ( . ) ∇ϕ L p (ω) ≤ C 7 ε s(2/p-1)
, for some 2 < p ≤ 4 and C 7 < ∞, ( . )

|ϕ| C 0,1-2/p (ω) ≤ C 8 ε s(2/p-1) for some C 8 < ∞.
( . ) The above constants C 6 , C 7 , C 8 depend on C 1 , . . . , C 5 and A, but not on small ε. Moreover, |u| → 1 uniformly in ω as ε → 0.

( . )

Proof. Set Γ = Γ ε := ∂Ω ∩ U .
In what follows, C, C ,..., denote generic finite positive constants independent of (possibly small) ε, whose values may change in di ferent calculations.

If we let ρ = ρ ε := |u|, then ρ and ϕ satisfy div (ρ 2 ∇ϕ) = 0 in U, ( . )

-∆ρ = 1 ε 2 ρ(1 -ρ 2 ) -ρ|∇ϕ| 2 in U, ( . ) ∂ϕ ∂ν ≤ C ε s on Γ, ( . ) ∂ρ ∂ν ≤ C ε s on Γ ( . )
(for ( . ) and ( . ), we use ( . )).

Step . Proof of ( . ). Choose a cuto f function

ζ ∈ C ∞ (R 2 ; [0, 1]) such that ζ = 1 in V = V ε := B 3r/4 (y), ζ = 0 on ∂U \ Γ and |∇ζ| ≤ C ε s . ( . )
Multiplying ( . ) by ζ 2 ϕ, we obtain (via ( . ), ( . ), ( . ) and ( . ))

U ζ 2 ρ 2 |∇ϕ| 2 = Γ ζ 2 ρ 2 ϕ ∂ϕ ∂ν -2 U ζρ 2 ∇ϕ • ∇ζ ≤ C -2 U ζρ 2 ∇ϕ • ∇ζ ≤ C + 1 2 U ζ 2 ρ 2 |∇ϕ| 2 + 2 U ρ 2 |∇ζ| 2 ≤ C + 1 2 U ζ 2 ρ 2 |∇ϕ| 2 ,
and therefore

V ρ 2 |∇ϕ| 2 ≤ U ζ 2 ρ 2 |∇ϕ| 2 ≤ C. ( . )
Applying ( . ) once more, we obtain ( . ).

Step . Proof of ( . ) and ( . ). Consider some R = R ε ∈ (r, 3r/4) such that

C(y,R)∩Ω |∇ϕ| 2 ≤ C r ≤ C R ( . )
(the existence of such R follows from ( . )). We consider the "conjugate" ψ of ϕ, defined in U , up to a constant, by

∂ y ψ = ρ 2 ∂ x ϕ, ∂ x ψ = -ρ 2 ∂ y ϕ ( 
. ) (the existence, for small ε, of ψ, is a consequence of ( . ) and of the fact that U is simply connected).

In view of ( . ), ( . ) and ( . ), ψ satisfies

div 1 ρ 2 ∇ψ = 0 in U, ( . ) 
∂ψ ∂τ ≤ C ε s on Γ, ( . ) C(y,R)∩Ω |∇ψ| 2 ≤ C R . ( . ) Set W = W ε := ω R (y) = B R (y) ∩ Ω. ( . ) We consider a bi-Lipschitz homeomorphism Φ = Φ ε : W → D such that C R |x -y| ≤ |Φ(x) -Φ(y)| ≤ C R |x -y|, ∀ x, y ∈ W , with 0 < C ≤ C < ∞. ( . ) Set ξ(z) := ψ • Φ -1 (z), ∀ z ∈ D. Using ( . )-( . ), we find that ξ satisfies div (f ∇ξ) = 0 in D for some f = f ε such that ( . ) C ≤ f ≤ C , ( . ) S 1 |ξ | 2 ≤ C . ( . )
By ( . )-( . ) and Lemma , we find that for some 2 < p ≤ 4 we have .), ( . ) and ( . ), we find that

∇ξ L p (D) ≤ C. ( . ) Set µ := ϕ • Φ -1 . From (
∇µ L p (D) ≤ C.
( . ) By the Morrey embedding, we also have

|µ| C 0,1-2/p (D) ≤ C. ( . )
Combining ( . ) and ( . ) with ( . ), we obtain

∇ϕ L p (W ) ≤ Cε s(2/p-1) , ( . ) 
|ϕ| C 0,1-2/p (W ) ≤ Cε s(2/p-1) ; ( . ) in particular, ( . ) and ( . ) hold.

Step . Proof of ( . ). Let ζ be a cuto f function as above. We multiply ( . ) by ζ 2 (ρ -1) and find (using ( . ), ( . ) and ( . )) that

U ζ 2 |∇ρ| 2 + 1 ε 2 U ζ 2 ρ(1 + ρ)(1 -ρ) 2 = U ζ 2 ρ(1 -ρ)|∇ϕ| 2 -2 U ζ(1 -ρ)∇ρ • ∇ζ - Γ ζ 2 (1 -ρ) ∂ρ ∂ν ≤C -2 U ζ(1 -ρ)∇ρ • ∇ζ ≤C + 1 2 U ζ 2 |∇ρ| 2 + 2 U (1 -ρ) 2 |∇ζ| 2 ≤C + 1 2 U ζ 2 |∇ρ| 2 + C ε 2s U (1 -ρ) 2 ≤C + 1 2 U ζ 2 |∇ρ| 2 , ( . )
where in the last line we have used ( . ) and the assumption 0 < s < 1.

Combining this with( . ), we find that

U ζ 2 |∇ρ| 2 + 1 ε 2 U ζ 2 (1 -ρ) 2 ≤ C. ( . )
In particular, with W as in ( . ), we have

W |∇ρ| 2 + 1 ε 2 W (1 -ρ) 2 ≤ C. ( . 
)
If Φ is as in ( . ), then (by ( .

)) η = η ε := ρ • Φ -1 satisfies D |∇η| 2 + 1 ε 2(1-s) D (1 -η) 2 ≤ C , ( . ) 
and thus

η 1 in H 1 (D) as ε → 0, ( . ) S 1 |1 -η| → 0 as ε → 0. ( . )
Using ( . ), we obtain from ( . ) that

D |1 -η| q → 0 as ε → 0, ∀ 1 ≤ q < ∞. ( . )
Going back to ρ, ( . ) and ( . ) imply (via ( . ))

∂Ω∩B R (y) |1 -ρ| = o(ε s ) as ε → 0, ( . ) W |1 -ρ| q = o(ε 2s ) as ε → 0, ∀ 1 ≤ q < ∞. ( . ) Let λ ∈ C ∞ (R 2 ; [0, 1]) be a cuto f function such that λ = 1 in ω, λ = 0 in U \ W and |∇λ| ≤ C ε s . ( . )
Let 2 < p ≤ 4 be as in ( . ) and let q be the conjugate exponent of p/2. We multiply ( . ) by λ 2 (ρ -1) and obtain (by ( . )-( .) and ( . )):

U λ 2 |∇ρ| 2 + 1 ε 2 U λ 2 ρ(1 + ρ)(1 -ρ) 2 = U λ 2 ρ(1 -ρ)|∇ϕ| 2 -2 U λ(1 -ρ)∇ρ • ∇λ - Γ λ 2 (1 -ρ) ∂ρ ∂ν = U λ 2 ρ(1 -ρ)|∇ϕ| 2 -2 U λ(1 -ρ)∇ρ • ∇λ + o(1) ≤C W |1 -ρ| q 1/q W |∇ϕ| p 2/p -2 U λ(1 -ρ)∇ρ • ∇λ + o(1) =o(1) -2 U λ(1 -ρ)∇ρ • ∇λ ≤o(1) + 1 2 U λ 2 |∇ρ| 2 + 2 U (1 -ρ) 2 |∇λ| 2 ≤o(1) + 1 2 U λ 2 |∇ρ| 2 + C ε 2s W (1 -ρ) 2 ≤o(1) + 1 2 U λ 2 |∇ρ| 2 , as ε → 0. ( . )
Combining ( . ) with ( . ), we find that

1 ε 2 ω (1 -ρ) 2 → 0 as ε → 0. ( . )
On the other hand, by ( . ) we have

|∇ρ| ≤ C ε . ( . )
We thus obtain ( . ) from ( . ) and ( . ). The proof of Lemma is complete.

For further use, we note the following "interior" version of Lemma .

Lemma . Let s ∈ (0, 1) and A ∈ (0, ∞). Set r = r ε := Aε s and consider some y = y ε ∈ Ω such that U = U ε := B r (y) ⊂ Ω. Let ω = ω ε := B r/2 (y).

Assume that u = u ε is a critical point of E ε , satisfying

0 < C 1 ≤ |u| ≤ C 2 < ∞ in U, ( . ) u = |u|e ıϕ , where ϕ = ϕ ε ∈ H 1 (U ) ∩ C(U ) satisfies |ϕ| ≤ C 3 < ∞, ( . ) |∇u| ≤ C 4 ε for some C 4 < ∞, ( . ) 1 ε 2 U (1 -|u| 2 ) 2 ≤ C 5 (| ln ε| + 1) for some C 5 < ∞. ( . )
Then, for su ficiently small ε, we have 1) , for some 2 < p ≤ 4 and C 7 < ∞, ( . ) 1) for some C 8 < ∞.

∇ϕ L 2 (ω) ≤ C 6 < ∞, ( . ) ∇ϕ L p (ω) ≤ C 7 ε s(2/p-
|ϕ| C 0,1-2/p (ω) ≤ C 8 ε s(2/p-
( . ) The above constants C 6 , C 7 , C 8 depend on C 1 , . . . , C 5 and A, but not on small ε.

Moreover,

|u| → 1 uniformly in ω as ε → 0. ( . )
The proof of Lemma is similar to the one of Lemma and is le t to the reader.

. First properties of the limit profiles

The results from the previous section allow us to pass to the limits at the ε s scale, either at the boundary (Lemma ), or inside Ω (Lemma ). We will perform a blow up analysis of critical points u ε of E ε satisfying, near a boundary point y ε , uniform bounds on the energy and the modulus. For simplicity of the statements, we assume that y ε → y ∈ ∂Ω as ε → 0, ( . ) the unit tangent vector to ∂Ω at y is (1, 0), ( . )

g(y) = 1. ( . )
Lemma . Assume ( . )-( . ). Consider constants

0 < A = A ε < ∞ such that lim ε→0+ A ε = ∞ and lim ε→0+ A ε ε s = 0. ( . )
Let r = r ε , U = U ε , Γ = Γ ε and u = u ε be as in Lemma (with variable A). Assume that ( . )-( . ) hold.

Set

R 2 + := {x = (x 1 , x 2 ) ∈ R 2 ; x 2 > 0}. Consider also a family of C 1 -di feomorphisms Φ = Φ ε : U ε → R 2 + ∩ B Aε (0) such that: Φ(y ε ) = 0, ( . ) Φ(Γ) = [-A, A] × {0} ∼ [-A, A], ( . 
)

DΦ = 1 ε s (1 + o(1))I 2 as ε → 0. ( . ) Set v(z) = v ε (z) := u • Φ -1 (z), ∀ z ∈ R 2 + ∩ B Aε (0). ( . )
Then, possibly up to a subsequence, v ε converges, locally uniformly on compacts of R 2 + and weakly in H 1 (Y ), for each bounded open set Y ⊂ R 2 + , to v = e ıψ , where

ψ ∈ C ∞ (R 2 + ; R) solves      ∆ψ = 0 in R 2 + ∂ψ ∂ν = sin ψ (cos ψ -cos α) on R × {0} ∼ R. ( . ) ( . )
If, in addition, u ε is a minimizer of E ε in U with respect with its own boundary conditions, i.e.,

E ε (u ε ) ≤ E ε (w), ∀ w ∈ H 1 (Ω) such that w = u ε on Ω \ U, ( 
. ) then ψ is a locally minimizing solution of ( . )-( . ), i.e.,

R 2 + [|∇(ψ +χ)| 2 -|∇ψ| 2 ]+ R [(cos(ψ +χ)-cos α) 2 -(cos ψ -cos α) 2 ] ≥ 0, ∀ χ ∈ C ∞ c (R 2 + ). ( . )
Proof. We write v ε = |v ε |e ıψε = η ε e ıψε . By ( . ), η ε → 1 uniformly on compacts of R 2 + . Set b := 1 -2/p, with p as in ( . )-( . ). By ( . ) and ( . ), ψ ε is bounded in C 0,b (K), for each compact K ⊂ R 2 + , and thus possibly up to a subsequence we have ψ ε → ψ uniformly on compacts, for some ψ such that ψ ∈ C 0,b (K), ∀ K. Moreover, by ( . ), ( . ) and the uniform bound of

ψ ε in C 0,b (K), ψ ε is bounded in H 1 (Y ), for each bounded open set Y ⊂ R 2 + .
Combining this with the uniform convergence of ψ ε to ψ on compacts, we find that ψ ε ψ in H 1 (Y ). Using, in addition, ( . ), ( . ) and ( . ), we deduce that v ε → v uniformly on compacts and weakly in H 1 (Y ), ∀ Y .

We next determine the equation satisfied by

ψ. Let χ ∈ C ∞ c (R 2 + ) and set χ ε (x) := χ • Φ ε (x), ∀ x ∈ U ε . Since ϕ = ϕ ε satisfies ( . ) and the boundary condition ∂ϕ ∂ν = 1 ε s e ıϕ , g - 1 ρ cos α (g 1 sin ϕ + g 2 cos ϕ) hε on Γ ε , ( . ) 
Existence of Φ follows from assumption ( . ), ( . ) and ( . ).

we have, for ε su ficiently small such that supp χ

ε ⊂ B Aε (0), U ρ 2 ε ∇ϕ ε • ∇χ ε = - Γε h ε χ ε . ( . )
Going back to R 2 + and using ( . ), ( . ), ( . ), ( . ) and the convergence of ψ ε to ψ weakly in H 1 (Y ) and uniformly on compacts, we find that

R 2 + ∇ψ • ∇χ = - R sin ψ(cos ψ -cos α)χ, ∀ χ ∈ C ∞ c (R 2 + ), ( . ) 
i.e., ψ satisfies ( . )-( . ). Finally, assume that u ε satisfies ( . ). Then, for small ε, we have

Uε ρ 2 ε [|∇(ϕ ε +χ ε )| 2 -|∇ϕ ε | 2 ]+ 1 ε s Γε [(ρ ε e ı(ϕε+χε) , g -cos α) 2 -(ρ ε e ıϕε , g -cos α) 2 ] ≥ 0. ( . )
Transferring ( . ) to R 2 + and arguing as above, we find that ( . ) holds. Similarly, we have the following "interior" blow up analysis result.

Lemma . Consider some

0 < A = A ε < ∞ such that lim ε→0+ A ε = ∞ and lim ε→0+ A ε ε s = 0. ( . )
Let r = r ε , U = U ε and u = u ε be as in Lemma (with variable A). Assume that ( . )-( . ) hold. Set

v(z) = v ε (z) := u z -y ε s = u ε z -y ε ε s , ∀ z ∈ R 2 such that |z| < A = A ε . ( . )
Then, possibly up to a subsequence, v ε converges, locally uniformly on compacts of R 2 and weakly in H

1 (Y ), for each bounded open set Y ⊂ R 2 , to a constant ξ ∈ S 1 .
Proof. Repeating the proof of Lemma (and using Lemma instead of Lemma ), we find that, up to a subsequence, v converges, in C loc and H 1 loc , to a map w ∈ H 1 loc (R 2 ; S 1 ). Write v ε = ρ ε e ıϕε . Using ( . ) and the conformal invariance of the Dirichlet integral, we find that w is of the form w = e ıψ , with ψ ∈ H 1 (R 2 ). On the other hand, ( . ) implies, a ter rescaling, applying ( . ), and passing to the weak limits, that ψ is harmonic. Now a harmonic function ψ in R 2 with finite Dirichlet integral is constant. Thus w is constant, whence the conclusion.

. Boundary limit profiles

In the proofs of Theorems and , we will be in position to apply Lemma , having at our disposal more information than the assumptions of Lemma . Under these better assumptions, it is possible to identify all the solutions of ( . ), ( . ), ( . ) which can arise as limits of v ε 's.

Lemma . We use the same notation as in Lemma . Assume ( . )-( .) and ( . )-( . ).

Assume, in addition, that the constant C 3 in ( . ) satisfies C 3 < π;

( . )

u = u ε is a minimizer of E ε in Ω. ( . ) Let ψ ∈ C ∞ (R 2 + ;
R) be such that, possibly up to a subsequence, we have v ε → e ıψ locally uniformly on compacts of R 2 + and weakly in H 1 (Y ), for each bounded open set Y ⊂ R 2 + . Then:

. Either ψ ≡ α.

. Or ψ ≡ -α.

. Or ψ is (up to an isometry of R 2 + ) the unique (up to an isometry of R 2 + ) locally minimizing solution of

           ∆ψ = 0 in R 2 + ∂ψ ∂ν = sin ψ (cos ψ -cos α) on R × {0} ∼ R lim x→±∞ ψ(x) = ±α. ( . ) ( . ) ( . ) Proof.
Step . Identification of constant profiles. Assume that ψ is constant. Since we have |ψ| < π (by ( . )), we find, via ( . ), that either ψ ≡ α, ψ ≡ -α, or ψ ≡ 0. It remains to rule out the possibility that ψ ≡ 0. This is achieved by arguing by contradiction. If we write (as in the proof of Lemma ) u ε = ρ ε e ıϕε and v ε = η ε e ıψε , then (possibly up to a subsequence) ψ ε → 0 uniformly on compacts of R.

Set Γ ,ε := ∂Ω ∩ B ε s (y ε ), for every constant > 0. Going back to ϕ ε and using ( . )-( . ), we have ϕ ε → 0 uniformly on Γ ,ε , for every . Combining this with the fact that ρ ε → 1 uniformly on Γ ,ε (by ( . )), we find that

W (u ε , g) → (1 -cos α) 2 uniformly on Γ ,ε as ε → 0.
( . ) Fix now some 0 < a < 1-cos α and consider corresponding bad discs B j as in Section . , satisfying ( . ), of radii ≤ kε s and such that the mutual distance of two distinct boundary bad discs is ε s . Note that

W (u ε (x), g(x)) ≤ a 2 < (1 -cos α) 2 , ∀ ε, ∀ x ∈ ∂Ω \ j B j .
( . )

For fixed ≥ 2k and small ε, Γ ,ε is not contained in the union of the boundary bad discs, and thus, by ( . ), ( . ) cannot hold. This proves that any constant profile is either α, or -α.

Step . Asymptotic behavior of non constant profiles. Let ψ be a non constant limiting map. Then ψ is locally minimizing (Lemma ) and, by assumption, non constant, so that Possibly by considering -ψ instead of ψ, we may assume that γ -∞ < γ ∞ , ( . ) and then, in order to conclude, it su fices to prove that γ -∞ = -α and γ ∞ = α.

either ∂ψ ∂x 1 (x 1 , x 2 ) > 0, ∀ (x 1 , x 2 ) ∈ R 2 + , or ∂ψ ∂x 1 (x 1 , x 2 ) < 0, ∀ (x 1 , x 2 ) ∈ R 2 + ; ( 
( . ) Indeed, granted ( . ), ψ is a locally minimizing solution of ( . )-( . ) satisfying ( . ), and thus ψ is unique up to a translation in x 1 [ , Theorem . , Theorem . ]. Since we also allow replacing ψ by -ψ (exploiting the reflection symmetry in x 1 , [ , Theorem . ]), we find that ψ is unique up to an isometry of R 2 + .

In turn, ( . ) is proved as follows. Using |ψ| < π, ( . )-( . ) and standard elliptic estimates, we find that ψ is bounded in C 0,β (K) for every 0 < β < 1 and compact K ⊂ R 2 + .

( . ) Set now ψ h (x 1 , x 2 ) := ψ(x 1 + h, x 2 ), ∀ (x 1 , x 2 ) ∈ R 2 + , ∀ h ∈ R. Clearly, each ψ h is a locally minimizing solution of ( . )-( . ). By ( . ) and ( . ), there exist sequences h + j → ∞, h - j → -∞ and locally minimizing solutions ψ ±∞ of ( . )-( . ), satisfying ψ h ± j → ψ ±∞ locally uniformly on compacts of R 2 + , ( . )

ψ ±∞ (x 1 , 0) = γ ±∞ , ∀ x 1 ∈ R. ( . )
By ( . ) and [ , Theorem . ], we have ψ ±∞ ≡ γ ±∞ . As in Step , we have γ ±∞ ∈ {-α, 0, α}. In order to conclude, it su fices to rule out the possibility ψ ±∞ ≡ 0. Argue by contradiction and assume e.g. that ψ ∞ ≡ 0. Fix some small number δ and some large number . Then there exists some j such that |ψ h + j (x 1 , 0)| ≤ δ for |x 1 | ≤ . As in Step , by going back to ϕ ε and u ε we obtain a contradiction. The proof of Lemma is complete.

Proofs of Theorems and

We consider a sequence ε = ε n → 0 such that Theorem applies and we let ζ ∈ ∂Ω be a light boojum. With no loss of generality, we assume that ζ = 0, g(ζ) = 1 (and thus, in Lemma item , we may take θ 0 = 0) and the tangent at ζ is τ = (1, 0).

Our proof relies on Lemma used in conjunction with the blowup analysis in Section . Here we make the following observation concerning the subsequence ε = ε n → 0. In Theorem , it is necessary to extract a subseqence of ε n → 0 for which each of the bad disks converge to a particular choice of limiting defect sites {ζ j }. In order to obtain the conclusion of Lemma , it may be necessary to extract a further subsequence ε n → 0. However, as the conclusions of Theorem and Lemma do not depend on the particular subsequence, by a standard argument the conclusion of Theorem holds for the original sequence ε n → 0. This being noted, we work from now on with ε = ε n satisfying the conclusions of Lemma .

Step . Preliminary analysis of u ε near ζ. Consider some δ > 0 such that β := α + δ < π/2. ( . ) Let δ, γ satisfy ( . ) and ( . ). By taking σ > 0 su ficiently small, we may assume that ( . ) holds, and also that g(∂Ω ∩ B σ (0)) ⊂ S 1 δ .

( . ) Using ( . ), ( . ), Lemma item , the minimality of u and the smallness of σ, we find that the assumptions of Lemma are satisfied in D := B Rσ (0) ∩ Ω, and thus, for small ε, we have ( . ) and ( . ).

Step . Proof of Theorem item . By( . ), ( . ), ( . ) and ( . ), the assumptions ( . )-( . ) of Lemma are satisfied. We obtain Theorem item by invoking Lemma .

Step . Proof of Theorem . Write, in a small fixed neighborhood of ζ, u = ρe ıϕ , with ϕ ∈ C 1 and |ϕ| < 2α (see Step and ( . )). Consider the essential bad disc B kε s (w ε ) (with w ε ∈ ∂Ω) converging to ζ; see Lemma . By ( . ) and Lemma item , for su ficiently small a > 0 and small ε we have, with r := kε s , R := 2kε s , |ϕ -t + α -2πm + | < α on Γ + r,R , |ϕ -t -α -2πm + | < α on Γ - r,R , t ± ∈ {-1, 1}, t + -t -= -2, m + ∈ Z. Since, for small ε, |ϕ| < 2α and |ϕ| ≤ γ < π/2 (see Step ), this leaves only the possibility t ± = ∓1, m + = 0. It follows that ϕ < 0 on Γ + r,R , respectively ϕ > 0 on Γ + r,R .

( . ) We now let y = y ε ∈ ∂Ω ∩ B kε s (w ε ) be such that ϕ(y) = 0.

( . ) Using ( . ) and ( . ) in conjunction with Lemma and ( . ), we find that ( . )-( . ) hold.

Step . Proof of Theorem item . Let ρ, ϕ, y ε and w ε be as in the previous step. Consider any z = z ε ∈ ∂Ω such that z ε → ζ and |z ε -y ε | ε s . We know that, up to a subsequence, (u ε ) zε,ε s → e ıψ for some ψ as in Lemma . Argue by contradiction, assuming that ψ is nonconstant. By Lemma , there exists some x 0 ∈ R such that ψ(x 0 , 0) = 0, and thus (going back from ψ to u ε and using the local uniform convergence) there exists some z = z ε ∈ ∂Ω such that | z ε -z ε | ≤ Cε s and u ε ( z ε ) → 1. With no loss of generality, we may assume that z ε = z ε , and then ψ(0, 0) = 0.

We have W (u ε (z ε ), g(z ε )) → (1 -cos α) 2 and thus (provided we choose a su ficiently small a) there exists some boundary bad disc containing z ε . With no loss of generality, we may assume that the disc is centered at z ε . Since |z ε -w ε | ε s , for small ε this bad disc is not essential (see Lemma ), and in particular, with r := kε s , R := 2kε s , we have |ϕ -t + α -2πm + | < α on Γ + r,R , |ϕ -t + α -2πm + | < α on Γ - r,R , t + ∈ {-1, 1}, m + ∈ Z. Since |ϕ| ≤ γ < π/2, we find that m + = 0, and either t + = 1, and then ϕ > 0 on Γ + r,R ∪ Γ - r,R , or t + = -1, and then ϕ < 0 on Γ + r,R ∪ Γ - r,R . This implies that either ψ(x 1 , 0) ≥ 0 when k ≤ |x 1 | ≤ 2k, or ψ(x 1 , 0) ≤ 0 when k ≤ |x 1 | ≤ 2k. However, this contradicts ( . ) and the fact that ψ(0, 0) = 0.

The proofs of Theorems and are complete.

  in [ ]. Around ζ, minimizers u ε satisfy, in a fixed annulus A r,R (ζ) := [B R (ζ) \ B r (ζ)] ∩ Ω, the estimate E ε (u ε ; A r,R (ζ))

  ( . ) At any point ζ ∈ ∂Ω, we may define the jump of ϕ * at ζ by J(ζ) := ϕ + * (ζ) -ϕ - * (ζ), where ϕ ± * (ζ) := lim x→ζ ± x∈∂Ω ϕ * (x); ( . ) as discussed in Remark , the side limits are calculated with respect to the positive orientation on ∂Ω. If ζ is not a boojum, then we have J(ζ) = 0. By Theorem item , across a light boojum we have J(ζ) = -2α and thus |J(ζ)| < π, while J(ζ) = -2(π -α) and |J(ζ)| > π at a heavy boojum.

  . ) In turn, ( . ) follows from w 2 y ≤ |w 2 | |x + ıy| ≤ (1 + λ) sin δ ≤ cos α (by ( . )).

  . ) seeCabré & Solà-Morales [ , Theorem . ].Combining ( . ) with the bound |ψ| ≤ C 3 < π, we find that there exists γ ±∞ := limx 1 →±∞ ψ(x 1 , 0) ∈ (-π, π), and γ -∞ = γ ∞ .( . )
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