Aboudramane Traore
email: pytha1999@gmail.com

BRANCHING ALGORITHM TO REDUCE AND SOLVE THE KNAPSACK PROBLEM IN POLYNOMIAL TIME

whether they are published or not. The documents may come

I. ABSTRACT:

This document is written in order to make available to experts and amateurs in theoretical mathematical and computer sciences my idea on the reduction of research intervals of the knapsack problem, which is a problem, cited among the 21 problems of Richard Karp This method is a branching algorithm, which is based on the results of the TOTAL WEIGHT / INITIAL WEIGHT ratio to determine the type of bag, therefore consequently considerably reducing its search interval according to the coefficient of this ratio, and by associating this reduction algorithm with different existing exact resolution methods, we solve the KP in polynomial time With this method, we only have four kinds of bags that I named  Perfect sack  Secondary sack  medium sack  Rare sack (personally this sack must not exists because it is very bad [object's weight is not proportional versus their profits]).

Moreover, all these bags have their search intervals, which I would specify before giving my prototype of the algorithm and deciding on the conjecture P VS NP

II. INTRODUCTION : a) INTRODUCTION OF KNAPSACK PROBLEM:

The knapsack problem or rucksack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items.

The problem often arises in resource allocation where there are financial constraints and is studied in fields such as combinatory, computer science, complexity theory, cryptography, applied mathematics, and daily fantasy sports.

The knapsack problem has been studied for more than a century, with early works dating as far back as 1897.[1] The name "knapsack problem" dates back to the early works of mathematician Tobias Dantzig (1884Dantzig (-1956),[2]),[2] and refers to the commonplace problem of packing the most valuable or useful items without overloading the luggage.

Knapsack example (same as DP) In addition, one of the ways to solve this problem would be to find a polynomial algorithm that solves an NP-complete problem. I would rely on that to give my opinion on P vs NP III. THE DIFFERENT RESEARCH INTERVALS: With a capacity almost equal to the total weight of objects, this bag has a large storage capacity, which reduces the list of possibilities. For this bag which is of the order of N-1 among N and therefore an exhaustive search of all the elements of this order gives in polynomial time the optimal combination hence its name of IDEAL BAG.

2) Secondary sack : The goal of this algorithm is to find a value, which is used to make comparisons. This method very quickly eliminates the combinations far from being optimal by searching directly for the parent combinations and finding a temporally maximum value, which will serve as a pivot for the comparison. Therefore, at once, the value of a combination exceeds this maximum value then we replace this maximum value by this lambda value until the end of the search interval then returns the combination of the maximum value.) While comparing the values of the different combinations with the pivot value and if it turns out that, a value is greater than the pivot value it is replaced by this value.

 Minimum value search

Using the combination of minimum weights indeed if by adding the objects, which have the smallest weights by order of magnitude while counting the number of associable variable we can predict the order of the maximum combination whose weights will not exceed the norm planned:

 sorting the table in increasing order of weights After all these reductions the search interval will be [var_min ; Var_max] Minimum maximum After these steps, we are free to apply the search method we want and here I will consider the most time-consuming (exhaustive search) for reasons of calculation on this interval 3) Medium sack :

𝑊𝐸𝐼𝐺𝐻𝑇 𝑡𝑜𝑡𝑎𝑙 𝑊𝐸𝐼𝐺𝐻𝑇 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑵 𝟐 with N 2 ≠ 2 then the good combination is among this interval [𝑵 𝟐 -𝟏 ; 𝑵 𝟐 + 𝟐]
This bag resembles the secondary bag except that its interval is reduced compared to that of the latter and to find the right combination we can use the reduction methods used for the secondary bag.

4) Rare sack:

𝑊𝐸𝐼𝐺𝐻𝑇 𝑡𝑜𝑡𝑎𝑙 𝑊𝐸𝐼𝐺𝐻𝑇 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 > 𝑵 𝟐 then the good combination is among this interval [𝑊𝐸𝐼𝐺𝐻𝑇 𝑡𝑜𝑡𝑎𝑙 2 * 𝑊𝐸𝐼𝐺𝐻𝑇 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ; N 2 -1]
These cases are present only when the total weight of the objects is much higher than that of the bag weight total≫weight initial. Personally, this bag cannot be considered as a case but as I had to see an example, I consider it as a particular case

 Pratical exemple

Maximum weight W=110

To find the optimal combination I will apply my algorithms Here we notice that the number of After all this the search interval will be reduced to [3,5] when I applied into the problem the exhaustive searching algorithm I found the optimal combination (value_opt = 159 [1,2,3,5,6]; weight_opt = 109)

VI. COMPLEXITY IN TIME :

This part is the most important since it will allow me to give my opinion on the problem P VS NP Here I consider that the research is done with the so-called exhaustive research technique so the time that I quote is possible time in the worst case.

After my research, I will say that the complexity of KP is related to the bag, which we have to do but whatever the case the time it takes to find the right answer with this branching technique is less than O(N 7).

VII. CONCLUSION:

With a little hindsight we note that the NP-complete and NP-difficult combinatorial problems all have in common the fact that they have several constraints to respect. For their resolutions but whatever, their complexity by separating them according to a clear and clear logic we can solve them in polynomial time and for me instead of wanting to satisfy all these constraints at the same time it is better to go with the most obvious (affordable) constraint towards the most complicated. In my opinion, there is only that that we can solve these problems in polynomial time and so in the end I would say that P = NP. /.

 seem to be simple to calculate the relation total weight/ initial weight Some time we must round the result to the near integer. This estimation is fixed to 0practical cases, I base myself on the fact that the weight and the profits of the objects are proportional V. THE DIFFERENT BAGS AND THEIR SEARCH INTERVAL: combination is ∶ 𝑛𝑝 = 𝑁 -1)



 This problem is the most frequent case since with it the weight of objects and their value are so close that visibly there are several good answers. All the difficulties that we find in solving the knapsack problem is due to these kinds of bags due to their enormous research interval.  So to remedy this problem I have developed 3 reduction algorithms intended to reduce the limits of the search interval for these types of cases which respectively have the role of: • Finding the pivot value • Minimum value search • Maximum value search  Finding pivot values:

For

 Maximum value searchUsing the combination of the largest values By adding the objects having the largest values in the order of the table while respecting the weight constraint we can find the maximum value of the combinations of an order and therefore drop the idea of generating all the combinations of this order as follows:

 -2 = 0.01 → weighttotal / weightinitial≈2 the bag is of the secondary type so the optimal combination is element of the interval[2, 6] b) Looking for the pivot value of the variables with the first algorithm weight_pivot = 0; value_pivot = 0; var_pivot= 0; For i from 1 to 8 do If weight [i] + weight_pivot <= 110 Then value_Pivot = value_pivot + value [i]; Var_pivot = var + 1;End if; End for; Find the maximum number of associable variable in this bag according to the minimum weights (algorithm 2) sorting the table in increasing order of weights For j from 1 to 8 do Value = 0; weight_pivot = 0 and var_max = 0; while weight [j] + weight_pivot <= weight_initial Then var_max = var_max + 1 value = value [i] + value End while; end for At the end of this algorithm we find {weight_max = 89; value = 139; var_max = 5 d) Look for the number of associable minimum variables in this bag according to the profits (algorithm 3) Sorting the table in descending order of profits Weight_summer = 0; var_min = (wt / wi); max_value = 0; For i from 1 to 8 do While weight [i] + weight_summer <= initial weight { Var_min = var + 1; Value_max = value [i] + value_max; if Value_max <= value (calculated with the second algorithm) then var_min = var_min +1 At the end of this algorithm we get {value_max = 129; var_min = 3

 sorting the table in descending order of profits // find pivot value // // knowing that we have at least the coefficient of the admissible variable ratio in the bag //

	• BY KNOWING THE VALUE PIVOT AND COMBINATIONS PARENTS EXPLOIT ONE CAN SEARCH
	FOR OTHER COMBINATIONS STARTING BY item_pivot + 1 if it is lower than
	𝒘𝒆𝒊𝒈𝒉𝒕 𝒕𝒐𝒕𝒂𝒍 𝒘𝒆𝒊𝒈𝒉𝒕 𝒊𝒏𝒊𝒕𝒊𝒂𝒍 N-(
	weight_pivot=0;	value_pivot=0; item_pivot=0;
	For i de 1 to N do	
	If weight[i] + weight_max<= weight_initiale
	Then	
	value_Pivot=value_pivot+value[i] ;
	item_pivot=item_pivot+1 ;
	End if; End for;