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Abstract—In this paper, we seek to address the data
gathering in the continually growing Wireless Sensor
Networks (WSNs) with the intention to save the nodes’
energy. In order to address usual WSN problems, such
as data losses, collisions and re-transmissions, a twofold
data compression pattern is proposed. We consider that a
restricted number of sensor nodes are selected to be active
and represent the whole network, while the rest of nodes
remain idle and do not participate at all in the data sensing
and transmission. Furthermore, the set of active nodes’
readings is efficiently reduced, in each time slot, according
to the cluster scheduling. Relying on the existing Matrix
Completion (MC) techniques, the sink node is unable to
recover the entire data matrix due to the existence of
completely empty rows that correspond to the inactive
nodes, which can be considered as absent nodes for a very
long period, or nodes that do not exist at all. Thereby, we
propose a complementary interpolation technique, based
on a minimization problem that benefits from sensor nodes
inter-correlation, to guarantee the reconstruction of all the
empty rows, despite their large number. The simulations
confirm the efficiency of the proposed approach and show
that it outperforms the existing one by up to 70.101% of
Normalized Mean Absolute Error on all missed elements,
when the number of active nodes is of about 10% of the
total number of sensor nodes.

I. INTRODUCTION

During the last decades, the Internet of Things (IoT)
has emerged as a new business paradigm composed of
billions of devices that can communicate with each other.
Thus, it has gained much attention in both the industry
and the scientific community. Yet, the integration of
the IoT into the fifth generation cellular systems (5G)
and their evolution still represent a formidable technical
challenge due to the large number of sensor nodes and
generated data. However, this is a burdensome task since
the wireless resources as well as sensors’ capabilities
are limited. A motivating proposal, Compressive Sensing
(CS), has been proposed to reduce the number of active
agents at a given time slot, while remaining capable to
recover the missing data [1]. Generally, Wireless Sensor

Networks (WSNs) consist of a large set of sensor nodes
that are self-organising and geographically distributed
across the network area. In most cases, these devices
operate in an unattended mode. Then, they are unable
to renew their batteries. Therefore, energy efficiency is
of prime importance in these networks. Indeed, reducing
the number of transmitting sensors, using methods such
as CS, is not only useful to avoide the collisions but
also crucial for sensors who need to sleep to prolong
their lifetimes. Over the past years, a plenty of works
has managed the data gathering problems in wireless
networks by the integration of the CS technique, which
made attractive progress in the network energy con-
sumption [1]-[4]. Recently, it has been proven that the
integration of Matrix Completion (MC), as an extension
of CS, has significantly enhanced WSNs’ performances.
Since MC treats the data in its matrix form, it can fully
capture the signal correlation in both time and space,
and hence achieves a good interpolation quality with
a higher compression ratio (fewer delivered readings)
[4]. Therefrom, many researches about data gathering
schemes based on MC theory have been introduced
[4]-[9].

In some applications, especially the densely deployed
WSNs, nodes that are monitoring the same geographic
region can be arranged into cluster to enhance the
network management. Moreover, the sampled data is in
general highly correlated between nodes that belong to
the same cluster. Indeed, gathering raw data from all
cluster nodes becomes wasteful for the energy and thus
inefficient. Therefore, in this paper, we suppose that only
a sub-set of nodes will be selected from each cluster
to be the representative of the whole network. These
active sensor nodes send their readings to the sink under
a sampling ratio guaranteed by the MC theory, while the
rest of sensor nodes remain silent and do not contribute
in the data sensing and transmission operations. By



way of explanation, we propose a twofold compression
pattern. First, we suppose that a part of nodes does
not sense the environment at all. We can proceed as
if these inactive nodes are inexistent or absent for a
very long period. The second compression level is that,
at each time slot, only a sub-set of the active nodes,
called transmitting nodes, deliver their sensing data to the
sink. However, this atypical high-loss scenario leads to a
large number of empty rows in the received data matrix,
which totally disagrees with the MC fundamentals (a
row is called empty if and only if sensing data are
missing over all the time slots, which corresponds to an
inactive node). Indeed, since MC schemes are based on
the minimization of the matrix rank, they become useless
when there is any empty column or empty row in the
matrix [10]. In the state-of-art of MC-based approaches
for the WSNs, to the best of our knowledge, [11] is
the only paper who dealt with the case where there are
some missed rows by applying a spatial pre-interpolation
technique, which recovers data from neighboring nodes.
Nevertheless, as the number of empty rows (inactive
nodes) gets bigger, we face with absent nodes having
themselves absent neighbor nodes as well. Subsequently,
this framework becomes unable to recover the data
rows of these isolated nodes. Even though this method
is interesting, it seems not to be well suited for the
addressed scenario and fails to take into consideration the
existence of the isolated nodes (absent nodes whose all
neighbors are absent too). In fact, they basically focused
on the case of MC reconstruction with the existence of
successive missed or/and corrupted data, and treating a
considerable number of empty rows was out of the scope
of their work. In this context, we develop our approach,
which, firstly, schedules the compression pattern after
efficiently clustering the nodes and identifying the rep-
resentative ones. Secondly, it addresses the case of high
data loss ratios with a significant number of inactive
sensors (empty rows) using a sequence of three different
interpolation techniques.

The paper is organized as follows. The next section
provides a brief overview on the MC theory. Section
III introduces the system model. We present, in section
IV, how to efficiently identify the clusters as well as
the data sensing and transmission schedule. Section V
is dedicated to the reconstruction framework. Before
concluding the paper in section VII, we illustrate in
section VI the performance of the proposed approach.

II. OVERVIEW OF MATRIX COMPLETION

Recently, MC technique has emerged to benefit from
the signal low-rank feature in order to fill the missing
data using a limited number of matrix entries [12]. That
is, a partially unknown matrix M ∈ IRN×T of rank r �
min{N,T} can be entirely recovered, if a sub-set of
its entries Mij as well as their indices (i, j) ∈ Ω are

known by the receiver. The entry-wise partial observation
operator PΩ : IRN×T → IRN×T is defined as follows:

[PΩ(X)]ij =

{
Xij (i, j) ∈ Ω
0 otherwise. (1)

According to [12], if Ω holds enough information and
if M is a low rank matrix, we can recover the unknown
entries by solving the following rank minimization prob-
lem:

minimize rank(X) s.t PΩ(X) = PΩ(M). (2)

However, problem (2) is not convex, and algorithms
that can solve it are doubly exponential. Fortunately, the
nuclear norm ‖ X ‖∗ minimization problem, which is a
convex relaxation, can be solved. Indeed, it is used as
an alternative to the NP-hard rank minimization problem.
Hence, we have:

minimize ‖ X ‖∗ s.t PΩ(X) = PΩ(M). (3)

In the literature, several solvers for this type of systems
have been proposed. For example, the Singular Value
Thresholding (SVT), which optimizes an approximation
of (3) by adding a Frobenius-norm term to the objective
function [13]:

minimize τ ‖ X ‖∗ +
1

2
‖ X ‖2F

s.t PΩ(X) = PΩ(M).
(4)

Low rank matrix fitting (LMaFit) [14], Sparsity Regu-
larized SVD (SRSVD) and Sparsity Regularized Matrix
Factorization (SRMF) [5], among other schemes, have
used the matrix factorization method. Different from
(3), matrix factorization technique has been suggested
to replace (2) rather than the nuclear norm.

III. SYSTEM MODEL

Consider a WSN that consists of a set N =
{1, . . . , N} of N sensor nodes. Let X ∈ IRN×T denote
the data matrix that holds measurements gathered by
the set N during a sensing period of length T time
slots. Precisely, the entry xi,t of X represents the tth

data reading sensed by the ith node. The considered
scenario targets to estimate the full nodes’ readings, X ,
using a small sub-set Nrep = {1, . . . , Nrep � N} of
active nodes, referred to as representative nodes. It is
noteworthy that the number of active nodes is relatively
small compared to the number of the inactive ones.
Specifically, reducing the number Nrep generates a set of
absent nodes, which have also all their neighbors absent
as well. These nodes are denoted by isolated nodes (IS).

To figure out how would be the performance of the
proposed approach, we generate a synthetic signal that is
composed of different Gaussians, each of which presents
a portion of the whole controlled geographic area. Each
portion of the signal is correlated in time and space,
where the temporal correlation as well as the spatial



Fig. 1. An illustrative miniature WSN with the resulting
delivered data matrix M .

correlation parameters differ from one portion to another.
The performed signal model was inspired from [15],
which has introduced the solution of reproducing a signal
retaining the behavior of a given real world data by
adjusting the correlations’ parameters. The number of
the generated Gaussians as well as their distribution on
the field can be defined according to the kind of the
signal one wants to reproduce.
Figure 1 depicts an example of a WSN composed of
N = 16 nodes, among which Nrep = 6 nodes are chosen
to be active. The proposed reconstruction scheme aims
to fill all the missed entries that correspond to the non-
delivered readings.

IV. SAMPLING PATTERN

A. Clusters Detection

In this part, we investigate the partition of the de-
ployed sensor nodes into J clusters. The main reason
for clustering the network is to involve all the detected
clusters in the data sensing and transmission. Usually, in
conventional MC, the transmitting nodes are chosen ran-
domly during the T time slots. This kind of selection can
disregard nodes that belong to the small clusters, which
deteriorates the reconstruction process. If we make all
the clusters participate in the data sampling process, we
fortify the diversity in the sent data set. Thus, for each
time slot t, according to a given sampling ratio and using
the same percentage, a set of sensors is selected from
each cluster to constitute the sensing and transmission
schedule. To do so, in this subsection, we aim to partition
nodes into different clusters having different readings,
when in the same group nodes have similar readings,
i.e. we seek for minimizing the inter-cluster similarities

and maximizing the intra-cluster similarities. Such an
efficient grouping can be realized using the Normalized
Spectral Clustering (SPC) [16]. We propose to perform
the algorithm of Ng, Jordan and Weiss, whose steps are
detailed in [17].
We suppose that the whole network is organized as
follows: N =

⋃J
j=1 CLj and N =

∑J
j=1 clj , where

clj = |CLj |, CLj is the cluster j and clj is the number
of nodes that belong to CLj . To cluster the nodes, the
sink relies on their received readings1 and considers the
set of data vectors, χinit = {xTinit 1, x

T
init 2, . . . , x

T
initN}.

xinit i ∈ IR1×Tinit denotes a Tinit-dimensional data
points, containing the readings sent by node i during
the learning period. The SPC technique performs data
clustering and considers it as a graph partitioning prob-
lem. It transforms the set χinit into a weighted graph
G = (V,E) using a similarity matrix A ∈ IRN×N ,
where each vertex vi represents xinit i, and each edge
between two vertices vj and vi represents the similarity
aj,i ≥ 0. In this work, we opted for the Gaussian
kernel to measure the similarities between the data points
{xinit i} [17].

Commonly, identifying the number J of clusters in
an optimal way is the main concern of all the clustering
algorithms. In this work, we apply the eigengap heuristic
that determines J after finding a drop in the magnitude of
the Laplacian eigenvalues, {λ1, λ2, . . . , λN}, computed
according to the used SPC technique [16]. That is:

J = arg max
i

(λi+1 − λi). (5)

B. Sensing and Transmission Schedule

In this part, we illustrate how we take into consider-
ation the detected clusters in the representative sensor
node selection as well as in the transmission schedule.
In order to cover all the detected clusters, Nrep, the set
of the representative nodes, consists of the combination
of J sub-sets, (Nrepj )j=1,. . . ,J , where Nrepj includes
Nrepj

representative nodes randomly selected from clus-
ter CLj using the same shared percentage pctNrep. That
is:

Nrep =

J∑
j=1

Nrepj , where Nrepj = pctNrep%× clj .

(6)
In (6), if pctNrep%× clj is not an integer, we round it
to the nearest integer greater than or equal to the value
of that element. Given the example of Figure 1, we can
note the existence of three clusters within the network.
We assume that pctNrep = 30. Hence, 30% of sensors
will be selected from each cluster to be active. That is to
say that we should select Nrep1

= 2 nodes from CL1,
Nrep2

= 1 node from CL2 and Nrep3
= 3 nodes from

1At the initialization, all the sensor nodes transmit their information
during a short learning period Tinit � T .



CL3. That is, in total we have Nrep = 6 representative
nodes.

Once the set Nrep of representative nodes is assigned,
the sink moves to the sensing and transmitting schedule
ΩM ∈ IRN×T , that is, ΩM(i,t) = 1 if xi,t will be
sensed and 0 otherwise. Thus, the incomplete received
data matrix M ∈ IRN×T can be expressed as a dot
product between X and ΩM .
The representative nodes do not send their raw data to
the sink. Instead, they trade on the data sensing and
transmission along the T time slots and deliver a part
of their readings, that is, m < Nrep rather than Nrep

readings per time slot. Therefrom, the sink assigns m
transmitting nodes for each time slot t by picking them
from the sub-set Nrep. As it has been previously stated,
in order to ensure the diversity in the transmitted data,
the m transmitting nodes are selected randomly, with the
same percentage pctm, that is, mj sensors from each
sub-set Nrepj . Likewise (6) we have:

m =

J∑
j=1

mj , where mj = pctm%×Nrepj . (7)

Let us focus again on the example of Figure 1, we
assume that pctm = 20. Hence, for each t, 20% of
nodes from each sub-set Nrepj

are randomly designated
to transmit their readings to the sink. Since the used
number N of this example is very small, we end with
mj = 1 transmitting node from each cluster, for each
time slot t. Note that without enforcing the involvement
of all the clusters in the data sensing and transmission
process, cluster 2 that contains only sensor 9, could be
totally ignored.

V. RECONSTRUCTION PATTERN

In this section, we focus on how to estimate the entire
data matrix X ∈ IRN×T based on the limited amount of
received readings. Isolating (N −Nrep) inactive sensor
nodes from the sampling schedule entails the existence
of (N − Nrep) totally empty rows in the received data
matrix M , which impedes the MC technique and makes
it completely unable to recover the original matrix. Thus,
the use of other complementary interpolation techniques
becomes needful. In this context, we develop a structured
MC-based reconstruction algorithm that is able to ensure
the recovery of the entire data matrix X .

Stage 1: Obviously, it is not possible to directly apply
the MC method with the existence of the empty rows.
Thus, firstly, we remove these rows from M . We denote
the resultant matrix as MMC ∈ IRNrep×T that contains
the partially received readings of the active sensor nodes.
We carry on with the same removal from ΩM to get
ΩMC ∈ IRNrep×T . Then, using (4) or any other method
proposed for the MC resolution, we fill the missed
entries of MMC that correspond to the non-delivered
readings of the Nrep nodes. We denote X ′ ∈ IRNrep×T

as the MC based estimation data. Finally, we update
X ′ ∈ IRN×T by adding the (N − Nrep) empty rows
and placing them in their proper corresponding locations
of M . It is noteworthy that the MC, as the first step in
the reconstruction process, is an important part since the
performance of the subsequent interpolation techniques
depends on the recovery accuracy of the MC.

Stage 2: After filling the random missed readings,
remain the (N −Nrep) fully empty rows corresponding
to the inactive nodes. In this stage, we carried on with the
spatial pre-interpolation method of [11], which estimates
the data of an empty row using the available data of
the neighboring nodes. They used an N × N binary
symmetric matrix Y , where both rows and columns
denote nodes. The sink assigns 1 to Y (i, j) if it finds
that node i and node j are 1-hop neighbors. However,
according to the signals nature that we consider, and to
avoid untrustworthy data recovery, we assume that even
though two nodes are geographically close to each other,
if they don’t belong to the same cluster, they are not
considered as neighbors.

As stated before, the number Nrep of the representa-
tive nodes is very small compared the total number N ,
which means that the (N −Nrep) inactive nodes repre-
sent the preponderant portion of the network. Thereby,
there are several IS nodes in the network (having all
their neighbors absent). Using the stated topology ma-
trix Y , this interpolation technique can reconstruct data
only for the absent nodes, whose neighbors belong to
Nrep. We assume that the network distribution contains
NIs isolated nodes. Hence, the resulting data matrix
X ′′ ∈ IRN×T , obtained following this stage, still holds
NIs empty rows to be estimated.
For the detailed steps of the above interpolation tech-
nique, the reader may refer to [11].

Stage 3: Since the pre-interpolation method is lim-
ited to estimate only a part of the total empty rows
(absent nodes), we resort to a complementary spatial
interpolation to recover the remaining part of the empty
rows (isolated nodes). Taking advantage of the spatial
dependency among the sensors, we fill the remaining
empty rows by minimizing the following problem:

minimize (fac1×‖X̂−X ′′‖2F +fac2×‖S×X̂‖2F ), (8)

where S ∈ IRN×N represents the spatial constraint
matrix, fac1 and fac2 are two tuning parameters and
X̂ ∈ IRN×T is the final interpolated data matrix. The
resolution of this minimization problem can be easily
achieved using the semidefinite programming. To solve
(8) and get X̂ , we opted for the CVX package [18],
which is implemented in Matlab, as an advanced convex
programming solver. In (8), the matrix S reflects our
knowledge about the spatial structure inherent in the
data, as it is computed based on the data matrix Xinit =
[xTinit 1, x

T
init 2, . . . , x

T
initN ]T ∈ IRN×Tinit , correspond-

ing to the learning period. The matrix S expresses the



Fig. 2. NMAEtot for the proposed technique and for
the benchmark.

inter-nodes’ readings similarities. As a distance function,
we used the Euclidean distance, computed in the nodes
data domain, in order to model the similarity between
the rows of Xinit. Below are the steps to obtain S:

1-We start with an all-zeros matrix S.
2-For each row i of the learning data matrix Xinit, we

search for the set j′i of indexes containing the K closest
rows to i, that is, j′i = {jk 6= i | k = 1, ...,K}.

3-Assuming that the row i can be estimated using the
linear combination of the rows of set j′i, we perform
the linear regression to get the weight vector W =
[w1, . . . , wK ] ∈ IR1×K through the following equation:

W = Xinit(i, :)Xinit(j
′
i, :)

T [Xinit(j
′
i, :)Xinit(j

′
i, :)

T ]−1.
(9)

4-Finally, we attribute−wk to S(i, jk) and 1 to S(i, i).
Once the above steps have been achieved for all rows

i, we get the matrix S, with which we recover X̂ .
Now, remains the last adjustment to perform, which

is the scaling of the parameters, fac1 and fac2 of
(8). These tuning parameters are introduced in order to
make a tradeoff between a close fit to the estimated
values of X ′′ and the intention of approximating the
NIs remaining empty rows. By running a large number
of simulations, we found that adjusting these parameters
nicely improves the reconstruction performance, and the
founded values of fac1 and fac2 are independent of the
size of the matrix (N and T ) as well as the Gaussians’
values composing the synthetic signal.

Focusing once again on the example of Figure 1. The
dotted lines refer to the neighborhood relation between
the nodes. As we can note, the nodes {5, 8, 10, 11, 14}
are each linked at least to a representative node. Thus,
their data readings can be easily estimated using the
spatial pre-interpolation technique of stage 2. Whereas,
the nodes {2, 3, 4, 7, 15} are considered as isolated from
the network. Thus, their readings are recovered thanks
to the minimization (8) of stage 3.

VI. NUMERICAL RESULTS

In this section, we compare the data recovery perfor-
mance of our proposed approach to that of a benchmark

one, which was implemented basically on what was pro-
posed in [11] and in line with our scenario requirements.
In fact, at the end of their paper, Xie et al. assumed in
[11] that there are few empty rows in M , that is, for
N = 196, only 14 rows was empty, namely 7% of N
(i.e. 93% of N of representative nodes). As we have
already mentioned at the beginning of this paper, dealing
with a large number of empty rows has not been the
main focus of their work. Thereby, their approach hasn’t
taken into consideration the existence of the IS in the
network. Yet, to the best of our knowledge, this is the
unique paper that has dealt with a similar scenario using
MC, and with which we can compare our approach. To
measure the recovery error, we opted for the following
metrics, where X and X̂ represent respectively the raw
data matrix before compression and the finally recovered
one:

1-NMAEtot: The Normalized Mean Absolute Error
on all missed elements:

NMAEtot =

∑
i,t:ΩM (i,t)=0 |X(i, t)− X̂(i, t)|∑

i,t:ΩM (i,t)=0 |X(i, t)|
. (10)

2-NMAEMC : The Normalized Mean Absolute Error
on the partially missed elements that correspond to the
non-delivered data readings of the Nrep representative
nodes, where Ωmc is the index set of the partially missed
elements found in the received data matrix M :

NMAEMC =

∑
i,t:(i,t)∈Ωmc

|X(i, t)− X̂(i, t)|∑
i,t:(i,t)∈Ωmc

|X(i, t)|
. (11)

3-NMAEER: The Normalized Mean Absolute Error
on the missed data of the totally empty rows that
correspond to the inactive nodes’ readings, where ΩER

is the index set of the (N −Nrep) empty rows found in
the received data matrix M :

NMAEER =

∑
i,t:i∈ΩER

|X(i, t)− X̂(i, t)|∑
i,t:i∈ΩER

|X(i, t)|
. (12)

4-CR: The Compression Ratio, where | Ω | presents
the number of received readings, whereas, (N × T )
presents the total number of elements in X:

CR =
N × T− | Ω |

N × T
. (13)

To evaluate the proposed approach under different
CRs, we vary pctNrep from 10 to 80, and for each given
pctNrep, we vary pctm from 10 to 80. It is evident that
the range of the values of CR depends on the value of
pctNrep. The higher pctNrep, the larger CR range can
be used. Note that we are mostly interested in the small
values of pctNrep and pctm, as we are treating a high
loss scenario.
For the network parameters, we consider that N = 50
sensor nodes are randomly deployed in a square obser-
vation area of size 100m × 100m, and we monitor the
WSN throughout T = 100 time slots.



Fig. 3. NMAEMC for the proposed technique and for the benchmark.

Fig. 4. NMAEER for the proposed technique and for the benchmark.

Fig. 5. Energy consumption for the proposed technique
and for the benchmark.

To begin, we implement a benchmark approach based
on what was proposed in [11]. The compression pattern
of this scheme consists in selecting the set Nrep of rep-
resentative nodes in a purely random way, which is the
same as randomly choosing the empty rows. Likewise,
for each time slot t, m sensor nodes are uniformly picked
from the set Nrep to transmit their data readings to the
sink. Here, neither the selection of the representative
nodes nor the selection of the transmitting ones takes
into consideration the detected clusters. Regarding the
reconstruction pattern, to obtain the final reconstructed
data matrix X̂ , this approach applies the MC resolution
then the spatial pre-interpolation. The temporal pre-
interpolation was omitted here as we don’t consider

the existence of empty columns in the observed data
matrix M . This is not the case with our scenario as, at
every time slot t, we ensure the transmission of m data
readings collected from different m locations. As we can
notice from the 3-D bar graph of Figure 2, our proposed
approach distinctly outperforms the benchmark one for
all the pctm values, and for different values of pctNrep.
We are able to go up to 90% of N of missing rows
(pctNrep = 10) with an attractive recovery performance,
NMAEtot of [0.14, 0.18]. Whereas, the benchmark ap-
proach yields an NMAEtot of [0.40, 0.56].
To evaluate separately the benefits of each building block
of the proposed approach, we have disassembled the
error ratios, and we have firstly measured, in Figure 3,
the NMAEMC with the variation of CR. Since the
benchmark approach proceeds regardless the existence
of the different clusters, it cannot provide an equitable
representation of the different regions composing the
whole network, and sensor nodes that belong to small
clusters can be totally ignored. Although both compared
approaches apply the same MC resolution method, the
NMAEMC of our approach is much lower than that
of the benchmark, especially for the high CR values.
This simulation shows how curiously interesting the
clusters consideration is. For example, we can reach an
improvement of 90.11% for (pctNrep = 10, pctm = 30)
(one passes from 0.091 to 0.009) and 82.069% for
(pctNrep = 30, pctm = 10) (one passes from 0.145
to 0.026).



For the convenience of comparison, Figure 4 highlights
the error ratios on the recovery of the fully missed
readings. Noticeably, we can detect a considerable gap
in terms of NMAEER between the curves of Figure
4. This difference across the entire ranges of CR,
comes from the non-recovered readings of the IS with
the benchmark approach. For example, we can reduce
the recovery error of the empty rows up to 69.18%
for (pctNrep = 10, pctm = 30) and 84.706% for
(pctNrep = 30, pctm = 10). This simulation shows that
the number NIs of IS is significant for the high CRs.
Therefore, adding a third interpolation technique, as
the proposed minimization (8), becomes deeply needed.
Otherwise, we are susceptible to end with a data matrix
X̂ , which is almost half built, even less.

Note that the proposed framework extremely mini-
mizes the overall network energy consumption since we
use a small set of active nodes for the data transmission.
Moreover, compared to the benchmark approach, the
proposed one can further improve the sensor nodes
lifetime. Indeed, for a given NMAEtot target of 0.02
and pctNrep = 60, we measure the energy consumption
during the T time slots for the both compared approaches
depending on the number of nodes N . We consider
that the energy consumption per emitted bit is Ebit =
230nJ/bit, and Epacket = Ebit × packetsize as the
energy consumption per emitted packet. A sensor reading
is of 16 bits, whereas the packet header size is fixed to
104 bits [2]. Figure 5 depicts the energy consumption for
the proposed framework as well as for the benchmark
one. It illustrates that our approach requires far less
sensor nodes’ readings, consequently much less energy
consumption, to reach the same recovery performance.
As a perspective, we can consider the residual energy of
sensors when selecting the representative nodes as well
as when assigning the sensing schedule. Accordingly,
even though the energy consumption will not be reduced,
the network lifetime can be extended.

VII. CONCLUSION

In this paper, we investigated how to tackle a chal-
lenging issue in the dense WSNs: how to isolate a
significant number of sensor nodes from the moni-
toring area and let them remain idle throughout the
whole sensing period. Then, relying on a MC-based
approach, the sink approximates the missed readings
using only the partially reported readings of the active
sensor nodes (representative nodes). It is noteworthy that
neatly identifying the clusters as well as the data sensing
and transmission schedule deeply impact the recovery
accuracy of the sensor nodes’ readings. Moreover, by
adding a minimization problem interpolation-based tech-
nique to the MC method, we succeeded to significantly
improve, in comparison with the state-of-the-art method,
the recovery of the inactive nodes’ data readings. The
simulation results confirm the efficiency of the proposed

approach and show that it outperforms the existing one
by up to 70.101% of NMAEtot, when the number of
active nodes is of about 10% of the total number of
sensor nodes.
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