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Output-feedback formation tracking of second-order multi-agent
systems with asynchronous variable sampled data

Syed Ali Ajwad1, Emmanuel Moulay2, Michael Defoort3, Tomas Ménard4, Patrick Coirault1

Abstract— This paper deals with the problem of time-varying
formation tracking for second-order multi-agent systems under
directed topology, where the follower states form a desired
formation while tracking the state of the leader. It is considered
that each agent, including the leader, has second-order dynam-
ics and can only transmit its position to its neighbors. The
velocities and inputs are not exchanged between neighboring
agents. In this work, it should be mentioned that contrary to
many existing schemes, asynchronous and aperiodic sampling
is considered. For each agent, an observer is proposed to
estimate its state and the state of its neighbors from the
available local asynchronous and aperiodic sampled position
data. Using these estimates, a time-varying formation tracking
protocol is developed. The stability of the closed-loop system
which combines the continuous-discrete time observer and the
formation tracking controller is analysed using an appropriate
Lyapunov function. The effectiveness of the proposed output-
feedback controller is illustrated for various formations through
simulation results.

Index Terms— Formation tracking, directed topology, time-
varying formation, sampled-data control, asynchronous sam-
pling, continuous-discrete time observer.

I. INTRODUCTION

Multi-Agent Systems (MAS) have gained much attention
in the last decades due to their application in a vast range of
areas such as exploration, defence and rescue to name a few.
MAS have also attracted the attention of researchers because
of the theoretical challenges that arise in their control and
coordination. Mostly, such challenges crop up while control-
ling the MAS in the absence of any centralized coordination
mechanism. Distributed control, based on locally available
information, provides much better performance for MAS in
terms of scalability, efficiency and reliability.

Formation control has been one of the most attrac-
tive/appealing topics within the domain of MAS. It has a
broad potential of applications in various areas like surveil-
lance, heavy payload transportation, telecommunication re-
lay, cooperative localization and environmental monitoring
[1]. For the formation tracking problem, the followers have to
form a desired geometric shape which could be time-varying
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while the whole formation tracks the trajectory generated by
a leader (virtual or not).

Different formation control algorithms have been proposed
and can be generally categorized as virtual structure method,
leader-follower approach and behaviour based approach [2],
[3]. Furthermore, many results have been proposed to derive
consensus algorithms for MAS which provide distributed
cooperation among the agents to reach some common state
using only local information interactions [4], [5], [6]. Con-
sensus protocols can be applied to achieve formation tracking
by choosing appropriate states on which the consensus is
reached. Such a control technique is considered more reliable
and robust as compared to other approaches especially in the
case of failure of some agents [7]. Furthermore, in [8], it
has been shown that the earlier mentioned approaches can
be incorporated in the consensus based ones.

In [9], a consensus protocol has been proposed to solve the
finite-time formation tracking problem, with stationary and
moving formations. A distributed formation control law for
second-order multi-agent systems has been discussed in [10].
Although there exist many approaches to solve the formation
tracking problem, only a few works consider the time-
varying formation tracking problem. In [11], a formation
control algorithm has been proposed for second-order MAS
with directed topology and time varying delays. In [12], the
case of time-invariant and time-varying finite-time formation
tracking problem has been studied. Other examples of time-
varying formation protocols can been found in [13], [14],
[15].

In the above discussed works, it is generally assumed that
each agent’s information state is continuously available to
its neighbors. However, in practice, continuous measurement
and transmission of the whole state is a difficult and costly
procedure. Furthermore, due to the digital nature of the on-
board equipment, each agent only receives asynchronous
and aperiodic sampled position data from its neighbors.
Among the different methods to reduce the microprocessor
and network loads while guaranteeing the desired control
objectives, event-triggered control (ETC) schemes, (where
sensors send information to the controller when specific
events occur), have been widely studied [16]. This technique
involves sensors sending information to the controller when
only specific events occur. However, most of these schemes
require that each agent’s information state is continuously
available to its neighbors. Recently, the conditions of con-
tinuous state availability are relaxed in [17], [18] whereas
the agents’ states are measurable. This condition has been
relaxed in [19] where an appropriate triggering function has



been designed to update the output.
In the current paper, the objective is not to design

an appropriate triggering function such that the formation
tracking problem is achieved, but to design an output-
feedback formation tracking controller. Motivated by [20]
where the consensus problem for second-order MAS with
arbitrary asynchronous and aperiodic sampling periods has
been investigated, an observer-based algorithm has been
proposed to solve the distributed formation tracking problem
of second-order MAS. Compared to the existing works,
the contributions are as follows. Firstly, this paper is a
first attempt to deal with time-varying formation tracking
problems under aperiodic and asynchronous sampling, where
the followers form a desired time-varying geometric shape
while the whole formation tracks the trajectory generated
by a leader. Secondly, a novel output-feedback controller is
proposed. Indeed, it is clear that the results in [20] cannot
be directly applied due to the presence of the position and
velocity offsets from the desired time-varying geometric
shape in the tracking errors. Lastly, a new stability proof
of the closed-loop system which combines the continuous-
discrete time observer and the formation tracking controller
is derived. Simulations have been carried out for different
scenarios (including time-invariant and time-varying forma-
tion tracking). The corresponding simulation results have
demonstrated the efficiency of the proposed scheme.

The rest of the paper is as follows. In section II, some pre-
liminaries are provided. Section III introduces the formation
tracking algorithm along with its stability analysis. Simula-
tion results are presented in section IV while a conclusion is
given in section V.

II. PRELIMINARIES ON GRAPH THEORY

The communication topology among the agents in a MAS
can be described by a directed graph. A directed graph G is
a pair (V, E), where V represents a finite nonempty set of
nodes and E ⊆ V × V is a set containing all the edges. An
edge is an ordered pair of distinct nodes. For a given edge
(i, j) in a directed graph, node j can receive information
from node i. Therefore, node j is called the child node
whereas i is the parent node. A sequence of edges in a
directed graph is known as a directed path. A graph has
a directed spanning tree if each node has at least one parent
node except for one node, which is called the root and has a
directed path to all other nodes in the graph. The adjacency
matrix A = (aij) ∈ RN×N of G with N nodes is defined by
aij = 1 if (j, i) ∈ E and aij = 0 otherwise. The Laplacian
matrix L ∈ RN×N is defined as lii =

∑
j 6=i aij , lij = −aij

for i 6= j.
In this paper, the communication connection between the

N followers is described by a directed graph G. This is more
suitable for various practical applications especially when
some agents are equipped with receivers only. Let the diag-
onal matrix B = diag(b1, b2, . . . , bN ) be the interconnection
relationship between the leader and the followers. If follower
i can receive information from the leader then bi = 1 and 0
otherwise. Communication graph including the followers as

well as the leader is denoted by Ḡ. Also

H = L+ B

Assumption 1: The pinning joint communication topology
Ḡ has a directed spanning tree.

The matrix H is a nonsingular M-matrix if and only if
Assumption 1 holds [21]. Furthermore, there exists a diago-
nal matrix Ω = diag(ω1, . . . , ωN ) such that HTΩ+ΩH > 0
[22]. Let us denote the smallest eigenvalue of HTΩ + ΩH
as ρ and maximum and minimum eigenvalues of Ω as ωmax

and ωmin respectively.

III. MAIN RESULTS

A. Problem statement

Consider a group of N followers labeled from 1 to N and
one leader labeled 0 (which could be virtual).

The followers have the following second-order dynamics:{
ṙi(t) = vi(t), i = 1, . . . , N

v̇i(t) = ui(t)
(1)

where ri, vi ∈ Rm represent respectively the position and
the velocity of the i-th agent and m ∈ N. The dynamics of
the leader is given by:{

ṙ0(t) = v0(t)

v̇0(t) = u0(t)
(2)

where r0, v0 ∈ Rm represent respectively the position and
the velocity of the leader and m ∈ N.

Assumption 2: The leader input u0(t) is bounded, that is,
there exists a constant δ0 ≥ 0 such that ‖u0(t)‖ ≤ δ0 for all
t ≥ 0.

In this paper, it is assumed that each agent only measures
its position ri (not its velocity vi nor its control input ui).
Furthermore, it is also considered that the agent position is
transmitted asynchronously with nonuniform sampling peri-
ods. The sampling instant at which the position information
is transmitted from agent j to agent i (if there is an edge (j, i)
between these two agents) is denoted by ti,jk where k ∈ N,
i = 1, . . . N and j = 0, . . . N . Each agent in the network has
different sampling instants which are completely independent
from all other agents.

Assumption 3: There exists a maximum sampling period
τM > 0 such that 0 < ti,jk+1 − ti,jk < τM , for all k ∈ N,
i = 1, . . . N and j = 0, . . . N .

The desired time-varying geometric shape that the follow-
ers have to form is defined by f(t) = [f1(t)T , . . . , fN (t)T ]T ,
where the formation vector fi(t) = [fi,r(t)

T , fi,v(t)
T ]T for

follower i ∈ {1, . . . , N} satisfies

ḟi,r(t) = fi,v(t) (3)

fi,r(t), fi,v(t) ∈ Rm corresponds to the position and velocity
offset, respectively. It is worth noting that fi(t) does not
represent global formation coordinates but relative offset
vectors with respect to the leader.

Figure 1 illustrates the notation of formation vector. In
this example, the desired geometric shape is a square around



the leader labeled 0, in an xy−plane i.e. m = 2. The
corresponding formation vectors are f1 = [1, 1, 0, 0]T , f2 =
[1,−1, 0, 0]T , f3 = [−1, 1, 0, 0]T and f4 = [−1,−1, 0, 0]T .
Since it is a time invariant formation, the corresponding
velocity offset components in the formation vectors are zero.
Figure 1 provides a graphical representation of the desired
formation in the leader frame (x0, y0).
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Fig. 1. Example of square geometric shape.

Assumption 4: It is considered that each agent already has
the knowledge of the formation geometry f(t).

Remark 1: The information of formation geometry is pro-
vided beforehand to the followers and is not shared during
the tracking process.

Definition 1: The formation tracking problem is said to
be practically solved if there exists ε̄ > 0 such that

lim sup
t→+∞

‖(xi(t)− fi(t)− x0(t))‖ ≤ ε̄ (4)

where xi(t) = [ri(t)
T , vi(t)

T ]T and x0(t) =
[r0(t)T , v0(t)T ]T .

The objective of this paper is to design the protocol ui(t),
i ∈ {1, . . . , N} such that the MAS (1)-(2) achieves the
practical time-varying formation specified in Definition 1
using asynchronous and aperiodic sampled position data.

B. Output-feedback formation tracking controller

Here, a time-varying formation tracking controller is de-
signed and analyzed. First, for each follower, a continuous-
discrete time observer is proposed to estimate its state and the
state of its neighbors from the available local asynchronous
and aperiodic sampled position data. Using these estimates,
an output-feedback formation tracking protocol is developed.

Similarly to [20], for each follower i ∈ {1, . . . , N}, the
following continuous-discrete time observer is used:

˙̂ri,j(t) = v̂i,j(t)− 2θe−2θ(t−t
i,j
k )
(
r̂i,j(t

i,j
k )− rj(ti,jk )

)
(5)

˙̂vi,j(t) = ḟj,v(t)− θ2e−2θ(t−t
i,j
k )
(
r̂i,j(t

i,j
k )− rj(ti,jk )

)
(6)

where j = 0, 1, . . . , N , t ∈
[
ti,jk , t

i,j
k+1

)
, k ∈ N and θ > 0 is

the observer tuning parameter. Moreover, ḟ0,v = 0 as leader
does not have any offset. Using the available local asyn-
chronous and aperiodic sampled position data, this observer

guarantees the estimation of the state of agent j by agent i.
r̂i,j and v̂i,j are the estimated position and speed of the agent
j by the agent i. The initial conditions r̂i,j(0), v̂i,j(0) ∈ Rm
of the observers can be chosen arbitrarily.

Using these estimates, for each follower i ∈ {1, . . . , N},
the formation tracking algorithm is proposed as

ui(t) = ḟi,v(t) (7)

−c̄λ2
N∑
j=1

aij [r̂i,i(t)− fi,r(t)− r̂i,j(t) + fj,r(t)]

−c̄2λ
N∑
j=1

aij [v̂i,i(t)− fi,v(t)− v̂i,j(t) + fj,v(t)]

−c̄λ2bi [r̂i,i(t)− fi,r(t)− r̂i,0(t)]

−c̄2λbi [v̂i,i(t)− fi,v(t)− v̂i,0(t)]

where c̄ > 0 is the coupling strength and λ > 0 is the
controller tuning parameter.

Remark 2: From Definition 1, the tracking error can be
defined as ei = xi − fi(t) − x0 for i ∈ {1, . . . , N}. It
should be noted that due to the presence of the offset fi,
the controller (7) is different from the one given in [20].
Therefore, it makes the proof of the closed-loop stability
which combines the continuous-discrete time observer and
the formation tracking controller relatively complicated.

Theorem 1: Assuming that Assumptions 1–4 are satisfied.
There exist constants %̄ > 0 and ε ∈ (0, 1) such that if the
observer and controller gains verify

θ ≤ %̄

τM
(8)

c̄ ≥ ωmax

ρ
(9)

λ = εθ (10)

red such that λθ > 1, then the time-varying formation
tracking problem is solved in the sense of Definition 1 using
the output-feedback controller (5)-(7).

Proof: Let us provide a sketch of proof for Theorem 1
inspired from [20]. The agent dynamics can be re-written as{

ẋi = Axi +Bui i = 0, . . . , N

ri = Cxi

with A =

(
0m Im
0m 0m

)
, B =

(
0m
Im

)
and C =

(
Im 0m

)
.

Denoting x̂i,j = (r̂Ti,j , v̂
T
i,j)

T , the observer (5)-(6) can be
written as

˙̂xi,j(t) =Ax̂i,j(t)

−θ∆−1θ Koe
−2θ(t−κi,j(t))(r̂i,j(κi,j(t))− rj(κi,j(t)))

for i = 1, . . . , N and j = 0, . . . , N and where κi,j(t) =

max
{
ti,jk | t

i,j
k ≤ t, k ∈ N

}
is the last instant when the

position of agent j has been received by agent i, ∆θ =(
Im 0m
0m

1
θ Im

)
, Ko =

[
2Im Im

]T
. Similarly, the formation

dynamics can be written as

ḟi = Afi +Bḟi,v



Denoting the estimation error x̃i,j = x̂i,j−xj for j = 0 . . . N
and i = 1 . . . N , the input ui can be written as

ui = −c̄KcΓλ

N∑
k=1

Hikek − c̄KcΓλ

N∑
k=1

Hikx̃i,k

+bic̄K
cΓλx̃i,0 +Bḟi,v(t)

with Kc =
(
Im 2Im

)
and Γλ =

(
λ2Im 0m
0m λIm

)
. There-

fore, the formation tracking error dynamics is

ėi = Aei +Bui −Bu0 −Bḟi,v

while the estimation error dynamics is

˙̃xi,j(t) = (A− θ∆−1θ KoC)x̃i,j(t)

−θ∆−1θ Kozi,j(t)−Buj(t) +Bḟj,v(t)

where zi,j(t) =
[
e−2θ(t−κi,j(t))Cx̃i,j(κi,j(t))− Cx̃i,j(t)

]
.

Similarly to [20], and using ηc = [ET1 . . . E
T
N ]T ,

ηoi = [(X̃i,1)T . . . (X̃i,N )T ]T , i = 1, . . . , N and ηo0 =
[X̃1,0 . . . X̃N,0] with Ei = Γλei and X̃i,j = ∆θx̃i,j , the
following Lyapunov functions are selected:

Vc(η
c) = (ηc)T [Ω⊗Q]ηc (11)

Vo(X̃i,j) = (X̃i,j)
TP (X̃i,j) (12)

V̄o(X̃i,j) =

N∑
i=1

N∑
j=0

sijVo(X̃i,j) (13)

where sij = 1 if agent i receives information from agent j
and 0 otherwise for i = 1, . . . , N , j = 0, . . . , N , P (resp.
Q) is the symmetric positive definite matrix solution of the
equation P +ATP +PA = CTC (resp. Q+QA+ATQ =
QBBTQ).

Using these Lyapunov functions, based on conditions (8)–
(10), one can show that

N∑
i=1

‖ei(t)‖ ≤ αe−
λ
γ t +

βδ0
λ
, ∀t ≥ 0 (14)

where α, β, γ > 0 and δ0 is the upper bound of the leader
input. Furthermore, β does not depend on θ, λ, c̄, τM and
the initial conditions of the agents and observers. Details are
omitted due to lack of space.

Remark 3: The conditions (8)–(10) for the selection of the
controller and observer gains, obtained from Lyapunov anal-
ysis, are only sufficient. It is clear from inequality (14) that
the system achieves practical consensus where the tracking
error is gradually reduced and enters in a ball centered at
the origin. The radius of the ball depends on δ which means
that in case of static leader and time-invariant formation, the
tracking errors converge exponentially to zero. Furthermore,
the radius of the convergence ball of the tracking errors can
be reduced by increasing the controller gain λ. This will also
increase the speed of the controller dynamics.

IV. SIMULATION RESULTS

Let us consider a MAS consisting of one leader, labeled
0, and four followers, labeled 1, . . . , 4, described by (1)–
(2). The communication topology between agents is directed
and is shown in Fig. 2. The leader can send its position
information only to agent 1. One can also note that agent 4
can receive data from both agent 1 and agent 3. The

0

1

2

3

4

Fig. 2. Communication topology.

simulation results have been divided into two parts depending
on the desired geometric shape which is either time-invariant
or time-varying. Different cases for the leader trajectory have
also been considered. All the simulations are carried out for
2-dimensional space, i.e. m = 2. Therefore, position errors
are both considered in x−position, i.e. |(ri)x − (fi,r)x −
(r0)x| and in y−position, i.e. |(ri)y − (fi,r)y − (r0)y|.
Fig. 3 shows the sampling instants at which the position
information is transmitted between two agents. One can
note that the agent position is transmitted asynchronously
with nonuniform sampling periods. The maximum sampling
period τM in these simulations is 130ms. The observer and
controller parameters are chosen as, c̄ = 1 θ = 10 and
λ = 1.2.

Fig. 3. Sampling periods for data transmission among the agents.

A. Time-invariant formation
A square geometric shape is considered where four fol-

lowers track the leader while maintaining a constant square
shape around the leader. The formation vector is f1 =
[−1, 1, 0, 0]T , f2 = [1, 1, 0, 0]T , f3 = [1,−1, 0, 0]T and
f4 = [−1,−1, 0, 0]T .
Case 1: First, it is considered that the leader moves at a
constant speed, i.e. uo = [0, 0]T . The tracking result for



this case is shown in Fig. 4. Both x and y position errors
are depicted in Fig. 5. It is clear from these results that
the formation pattern is successfully obtained and all the
followers keep the formation while tracking the trajectory of
the leader. Moreover, exponential consensus is obtained.

Fig. 4. Time-invariant formation tracking with constant leader velocity

Fig. 5. Position error for constant leader velocity

Case 2: In this case, the leader moves with a constant
acceleration, i.e. u0 = [0.1, 0.05]T . The formation tracking
result for this case is illustrated in Fig. 6 while Fig. 7 shows
the position errors. Practical stability is achieved due to the
presence of u0 as explained in Remark 3.

B. Time-varying formation

The time-varying formation vector is

fi(t) =


10 cos(0.1t+ 2π(i− 1)/4)
10 sin(0.1t+ 2π(i− 1)/4)
− sin(0.1t+ 2π(i− 1)/4)
cos(0.1t+ 2π(i− 1)/4)


with i = 1, 2, 3, 4. If this formation is achieved, the followers
will turn in a circle around the leader. Two cases will be
considered.
Case 1: In this first case, the leader is static while the
followers turn in a circle around the leader. Fig. 8 shows
the time-varying formation tracking while Fig. 9 represents
the position error.

Fig. 6. Time-invariant formation tracking with leader input

Fig. 7. Position error with leader input

Fig. 8. Time-varying formation tracking with static leader

Case 2: In the second case, the leader has the input u0 =
[0.1, 0.05]T . Position trajectories and corresponding position
errors are illustrated in Fig. 10 and 11 respectively. Followers
not only maintain a circular formation shape but also track
the leader. If the leader moves with some constant accelera-
tion, only practical stability is achieved.

V. CONCLUSION

In this paper, the time-varying formation tracking problem
for second-order multi-agent systems under some commu-
nication constraints has been investigated. The considered
communication constraints are the non availability of ve-
locity (and acceleration) information and the transmission



Fig. 9. Position error for time-varying formation with static leader

Fig. 10. Time-varying formation tracking with leader input

Fig. 11. Position error for time-varying formation tracking with leader
input

of position data at asynchronously and irregular time in-
stants. The followers track the leader while maintaining a
desired geometric shape. It has been shown that the proposed
observer based algorithm provides an efficient formation
tracking in the presence of these communication constraints.
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