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I. INTRODUCTION

Energy harvesting network (EHN) is a promising green communication technology that has various benefits such as unlimited power, does not require batteries replacement or cables connections and reducing CO2 emissions [START_REF] Sixing | Optimal Cooperation Strategy in Cognitive Radio Systems with Energy Harvesting[END_REF], [START_REF] Alfaqawi | Survey On Energy Harvesting Cognitive Radio Network[END_REF]. Recently, several research works on EHN have been proposed where the energy harvesting node processes it's task locally, i.e. local computing-EHN (LC-EHN), such as [START_REF] Sixing | Optimal Cooperation Strategy in Cognitive Radio Systems with Energy Harvesting[END_REF], [START_REF] Park | Cognitive Radio Networks with Energy Harvesting[END_REF]- [START_REF] Xiaomei | Simultaneous information and power transfer for relay-assisted cognitive radio networks[END_REF] and the references therein. However, due to energy causality constraint, EHN is expected to switch into sleep mode faster when the energy harvester processes a computationally intensive task that requires high level of processing energy. This, in turn, will delay the processing of EHN's tasks until it operates in active mode again. Therefore, the main objective of this research is to prolong the active mode of energy harvesters by proposing a novel scheme that classifies EHN regions into two networks. The first one is local computing-EHN (LC-EHN) where the energy harvester processes the whole task locally. Meanwhile, the second is a novel proposed network that shares the computations of the energy harvester's tasks with other nodes wirelessly. This proposed network is referred to wireless distributed computing-EHN (WDC-EHN).

Various benefits could be gained due to employing WDC in conjunction with EHN. These benefits and challenges of applying WDC are discussed in detail in [START_REF] Datla | Wireless distributed computing: a survey of research challenges[END_REF]- [START_REF] Alfaqawi | Wireless Distributed Computing For Cyclostationary Feature Detection[END_REF]. One of the key benefits of the proposed WDC-EHN is reducing the consumed energy in processing of the energy harvester particularly when the required energy for processing is high. However, even though employing WDC concept with EHN might reduce the consumed energy in processing, WDC-EHN would still lose energy when transmitting the distributed tasks through the wireless channel. Furthermore, in WDC network, master-slave cluster is typically employed where the master node transmits a pilot message to slave nodes which, in turn, estimate the channel state information (CSI). Then, the slave nodes transmit feedback CSI to the master node. Feedback CSI is crucial in case of collaborating networks in order to maintain reliable communication. However, feedback CSI will cause a communication overhead at the master node as well as a roundtrip delay [START_REF] Adhikary | Multi-user MIMO with outdated CSI: Training, feedback and scheduling[END_REF]. For these specific reasons, partially observable Markov decision process (POMDP) has been utilized to enable the energy harvesting nodes to act under uncertain channel conditions. Herein, a system model for the proposed EHN has been described first. Then, POMDP framework has been utilized in order to automate the selection between LC-EHN and WDC-EHN as well as to nominate the best collaborating nodes in WDC-EHN that require less transmission energy. By modelling Rayleigh fading channel as finite state Markov chain (FSMC), herein, POMDP acts under imperfect CSI to obtain a policy that prolongs the duration of EHN's active mode. In order to prolong the duration of the active mode, a reward is assigned to each operational region of EHN, i.e. sleeping, LC-EHN and WDC-EHN. Due to the high level of POMDP's computational complexity, POMDP model is transferred and solved as a belief MDP.

The rest of this research paper is presented as follows, Section II. highlights the related research works. Section III. compares between the conventional EHN and the proposed EHN system models. Section IV. formulates the proposed novel EHN as POMDP problem. Section V. verifies and analyses the proposed EHN algorithm. Conclusion and future work are drawn in Section VI.

II. RELATED WORK

In [START_REF] Zou | Optimal Radio Frequency Energy Harvesting with Limited Energy Arrival Knowledge[END_REF], POMDP framework was employed in order to prolong the lifetime of EHN by deciding when the energy harvester turns into active mode to harvest energy and when to turn into sleep mode to save the stored energy. Furthermore, a threshold-base optimal policy has been found to maximize the saved energy. Meanwhile, in [START_REF] Gong | Maximizing Rewards in Wireless Networks with Energy and Timing Constraints for Periodic Data Streams[END_REF], the transmission of the most valuable information was maximized by adapting the data rate and data size under delay and energy constraints. The proposed algorithm, in [START_REF] Gong | Maximizing Rewards in Wireless Networks with Energy and Timing Constraints for Periodic Data Streams[END_REF], was considered as reward maximization problem that was investigated in case of AWGN without considering any channel fading model.

In this research, Rayleigh faded channel has been considered and represented as FSMC. This model of Rayleigh fading has been described in [START_REF] Zhang | Finite-state Markov model for Rayleigh fading channels[END_REF]. FSMC Rayleigh fading model has been employed in [START_REF] Babich | Relay selection schemes relying on adaptive modulation and imperfect channel knowledge for cooperative networks[END_REF] with POMDP framework in order to propose relay selection algorithms that mitigate the performance degradation due to imperfect CSI knowledge. On the other hand, the same channel model is utilized in [START_REF] Zhang | Study of Multi-Armed Bandits for Energy Conservation in Cognitive Radio Sensor Networks[END_REF] that proposes an online heuristic evaluation post-decision state for packet transmission in point to point communication model.

Even though a FSMC Rayleigh fading channel has been employed in [START_REF] Zhang | Study of Multi-Armed Bandits for Energy Conservation in Cognitive Radio Sensor Networks[END_REF], the CSI is considered as priori knowledge.

Therefore, the problem of packet transmission has been modeled as constraint Markov process decision (CMDP).

Similarly, in [START_REF] Hoang | Cross-layer adaptive transmission with incomplete system state information[END_REF], given imperfect CSI by considering Rayleigh fading channel as FSMC, the problem of maximizing the transmission throughput has been formulated as POMDP.

In [START_REF] Hoang | Cross-layer adaptive transmission with incomplete system state information[END_REF], buffer and channel adaptive transmission scheme was proposed where the system state is composed of the number of packets in the buffer and channel state. However, in [START_REF] Hoang | Cross-layer adaptive transmission with incomplete system state information[END_REF], obtaining an optimal policy for the possible observations and belief channel states has been described as impossible due to the required infinite time and memory. Therefore, assumptions have been considered in order to approximate POMDP's optimal policy. Obtaining an optimal policy of the proposed EHN, herein, is found to require infinite time and memory because the number of states is higher than the states number in [START_REF] Hoang | Cross-layer adaptive transmission with incomplete system state information[END_REF]. The high level of POMDP's computational complexity was highlighted in [START_REF] Pack Kaelbling | Planning and acting in partially observable stochastic domains[END_REF]- [START_REF] Habachi | Online Learning Based Congestion Control for Adaptive Multimedia Transmission[END_REF].

III.

SYSTEM MODEL

This section, firstly, differentiates between the conventional model of EHN and the proposed WDC-EHN scheme. Then, the channel model among the collaborating nodes in WDC-EHN is described.

A. The Conventional Energy Harvesting Network Scheme.

Typically, EHN considers only LC-EHN scheme. This scheme is composed of an energy harvesting node that harvests energy from ambient sources and then stores the harvested energy in battery. The stored energy 𝑒 𝑠𝑡 ∈ 𝑬 𝒔𝒕 will be utilized later, by the node, in processing the node's tasks. Fig. 1 presents LC-EHN scheme that consists of one node, i.e. 𝑁 1 , where 𝑁 1 is assumed that does not supplied by a fix power source and equipped by an energy harvester. At each time slot 𝑡 , the harvested energy 𝑒 𝑡 ℎ ∈ 𝑬 𝒉 will be stored in battery of limited capacity 𝐶.

The harvested energy of node 𝑁 1 is assumed as Bernoulli process with probability mass function (PMF) as follows [START_REF] Sungsoo | Energy-efficient opportunistic spectrum access in cognitive radio networks with energy harvesting[END_REF],

𝑝(𝑒 𝑡 ℎ ) = { 1 -𝑝 ℎ , 𝑒 𝑡 ℎ = 0. 𝑝 ℎ , 𝑒 𝑡 ℎ = 𝑒 ℎ . (1) 
On the other hand, the stored energy 𝑒 𝑡 𝑠𝑡 , at slot time 𝑡, can be computed as given,

𝑒 𝑡 𝑠𝑡 = 𝑒 𝑡-1 𝑠𝑡 -𝑒 𝑡-1 𝑐 + 𝑒 𝑡-1 ℎ (2) 
where 𝑒 𝑡 𝑐 is the consumed energy in case of either LC-EHN or WDC-EHN.

At the beginning of each time slot 𝑡, the conventional EHN operates in two modes, i.e. sleep mode and active mode. Typically, in active mode, 𝑁 1 considers only LC-EHN where 𝑒 𝑡 𝑐 will be consumed in processing the task locally as follows,

𝑒 𝑡 𝑝 (𝑓) = 𝑃 𝑝 (𝑓) • 𝑇 𝑝 (𝑓) (3) 𝑃 𝑝 (𝑓) = 𝑎𝑓 3 + 𝑏𝑓 2 + 𝑐𝑓 + 𝑑 (4) 
where 𝑒 𝑡 𝑝 ∈ 𝑬 𝒑 represents the required energy for processing the task 𝑤 𝑡 ∈ 𝑾 and 𝑾 is the set of tasks. 𝑇 𝑝 is the required processing time at clock frequency 𝑓 . 𝑃 𝑝 is the consumed power in processing 𝑤 𝑡 . 𝑎, 𝑏, 𝑐 and 𝑑 are all positive and dependent on the processor specifications [START_REF] Datla | Wireless distributed computing in cognitive radio networks[END_REF].

B. The Proposed Scheme for Wireless Distributed

Computing-Energy Harvesting Network.

The proposed EHN operates also in two modes, i.e. sleep and active modes, however in active mode EHN might operates as LC-EHN or WDC-EHN. To the best of our knowledge, the concept of WDC-EHN is proposed for the first time in this research. In [START_REF] Datla | Wireless distributed computing: a survey of research challenges[END_REF]- [START_REF] Alfaqawi | Wireless Distributed Computing For Cyclostationary Feature Detection[END_REF], master-slave cluster were employed for collaboration in WDC network. However, the master node in the proposed scheme is assumed to be equipped with energy harvester. Fig. 2 shows the communication scheme, denoted by 𝑮 , of WDC-EHN. The vertices of 𝑮 represents the master-slave nodes where the master node is 𝑁 1 , the slave or cooperating nodes are 𝑵 𝒈 = {𝑁 2 , 𝑁 3 , … , 𝑁 𝑚 } and 𝑚 is the number of slave nodes. 𝐼 𝑙𝑗 represents the wireless links between the cooperating nodes 𝑁 𝑙 and 𝑁 𝑗 .

The wireless link 𝐼 𝑙𝑗 is considered as Rayleigh fading channel where the received instantaneous SNR 𝛾 is distributed exponentially as follows [START_REF] Zhang | Finite-state Markov model for Rayleigh fading channels[END_REF],

𝑝 𝛾 (𝛾) = 𝛾 𝛾 0 2 𝑒 - 𝛾 𝛾 0 , 𝛾 ≥ 0 (5)
where 𝛾 0 2 is the average SNR. In [START_REF] Zhang | Finite-state Markov model for Rayleigh fading channels[END_REF], 𝛾 was represented as FSMC and assigned into 𝐾 + 1 non-overlapping thresholds {𝛤 𝑘 } 𝑘=0 𝐾+1 where 𝑘 represents the state of 𝛾, 𝛤 0 = 0 and 𝛤 𝐾+1 = ∞. Consider the boundaries of {𝛤 𝑘 } 𝑘=0 𝐾+1 are given, the transition probabilities from current state 𝑘 to an adjacent state 𝑘 + 1 or 𝑘 -1 can be computed as follows [START_REF] Zhang | Finite-state Markov model for Rayleigh fading channels[END_REF],

𝑃 𝑘,𝑘+1 ≈ 𝑁(𝛤 𝑘+1 )𝜏 𝜋 𝑘 , 𝑘 = 0,1, … . , 𝐾 -1 (6) 
𝑃 𝑘,𝑘-1 ≈ 𝑁(𝛤 𝑘 )𝜏 𝜋 𝑘 , 𝑘 = 1, … . , 𝐾 (7) 
where 𝜏 is the packet time period, 𝜋 𝑘 is the steady state probability and can be computed as follows,

𝜋 𝑘 = ∫ 𝑝 𝛾 (𝛾)𝑑𝛾 𝛤 𝑘+1 𝛤 𝑘 = 𝑒 - 𝛤 𝑘 𝛾 0 -𝑒 - 𝛤 𝑘+1 𝛾 0 (8) 
𝑁(𝛤 𝑘 ) represents the level crossing rate of the received SNR and can be estimated as follows,

𝑁(𝛤 𝑘 ) = √ 2𝜋𝛤 𝑘 𝛾 0 𝑓 𝑚 𝑒 - 𝛤 𝑘 𝛾 0 (9) 
where 𝑓 𝑚 is the maximum Doppler frequency. Meanwhile, 𝑃 𝑘,𝑘 = 1 -𝑃 𝑘,𝑘-1 -𝑃 𝑘,𝑘+1 and 𝑃 𝐾+1,𝐾+2 = 𝑃 0,-1 = 0 [START_REF] Zhang | Finite-state Markov model for Rayleigh fading channels[END_REF].

In case of WDC-EHN, 𝑁 1 segments the task 𝑤 𝑡 , first, into subtasks 𝑤 𝑗 , where 2 ≤ 𝑗 ≤ 𝑚 . Then, each subtask will be transmitted to a corresponding slave node and consumes 𝑒 𝑡 𝑐 energy unit in transmission as follows [START_REF] Pandana | Near-optimal reinforcement learning framework for energy-aware sensor communications[END_REF],

𝑒 𝑡 𝑇 = 𝑤 𝑗 • 𝜌𝜎 2 𝛾𝐵𝐴 𝑡 (10) 
where 𝑒 𝑡 𝑇 ∈ 𝑬 𝑻 represents the required energy to transmit 𝑤 𝑗 bits wirelessly to the cooperating nodes. 𝜌 is the targeted signal to interference ratio (SIR), 𝜎 2 is the variance of thermal noise, 𝐵 is the channel bandwidth and 𝐴 𝑡 is the attenuation factor.

IV. THE PROPOSED ENERGY HARVESTING NETWORK

Considering 𝑁 1 is the agent, the novel EHN can be formulated as POMDP tuples < 𝑆, 𝐴, 𝑂, 𝑇, 𝑍, 𝑅, 𝜆, 𝑏 > as follows,

A. POMDP States of The Novel EHN

Consider the amount of stored energy of the agent 𝑁 1 is 𝑒 1 𝑠𝑡 ∈ 𝑬 𝟏 𝒔𝒕 and the required amount of energy for processing the task 𝑤 𝑡 by using LC-EHN is 𝑒 𝑝 ∈ 𝑬 𝒑 . On the other hand, based on [START_REF] Adhikary | Multi-user MIMO with outdated CSI: Training, feedback and scheduling[END_REF], for constant channel bandwidth, the required energy to transmit 𝑤 𝑗 , from 𝑁 1 to 𝑁 𝑗 , wirelessly is 𝑒 1𝑗 𝑇 ∈ 𝑬 𝑻 that is dependent on 𝛾 . Accordingly, when the state of 𝛾 is located in any interval [𝛤 𝑘 , 𝛤 𝑘+1 ), a corresponding (𝑒 1𝑗 𝑇 ) 𝑘 will be required to transmit 𝑤 𝑗 wirelessly, i.e. 𝑓: [𝛤 𝑘 , 𝛤 𝑘+1 ) → (𝑒 1𝑗 𝑇 ) 𝑘 . When 𝛾 transits to any adjacent interval, 𝑒 1𝑗 𝑇 will vary based on the corresponding state of 𝛾 . Therefore, for 𝑗 ∈ {2,3, … . , 𝑚} and 𝑘 ∈ {0,1, … . , 𝐾 + 1}, (𝑒 1𝑗 𝑇 ) 𝑘 = 𝑓(𝛤 𝑘 ) 𝑗 which represents the required energy to transmit 𝑤 𝑗 from 𝑁 1 to 𝑁 𝑗 at channel gain 𝛤 𝑘 . For the sake of simplicity, (𝑒 1𝑗 𝑇 ) 𝑘 and 𝑓(𝛤 𝑘 ) 𝑗 will be denoted as 𝑒 1𝑗 𝑇 and 𝑓(𝛤 𝑘 ). Accordingly, the set of states of 𝑁 1 is represented as follows,

𝑺 𝟏 = {𝑬 𝟏 𝒔𝒕 , 𝑬 𝒑 , 𝑬 𝑻 } ( 11 
)
where the battery capacity of 𝑁 1 is segmented into slots such that 𝑬 𝟏 𝒔𝒕 = {0,1,2, … . . , 𝐶} . Furthermore, the required energy for processing the task is quantized as 𝑬 𝒑 = {1,2, … . . , 𝐶} , where the maximum required energy for processing is assumed to be equal to 𝐶. Meanwhile, the corresponding set of required energy for transmission from 𝑁 1 to 𝑁 𝑗 is 𝑬 𝑻 = {𝑓(𝛤 0 ), 𝑓(𝛤 1 ), … , 𝑓(𝛤 𝐾+1 )} 𝑚 . Accordingly, the total number of 𝑁 1 's states is 𝜅 = |𝑺 𝟏 | = (𝐶 • (𝐶 + 1) • (𝐾 + 1) 𝑚 ).

For 𝑠 1 ∈ 𝑺 𝟏 where 𝑠 1 = (𝑒 1 𝑠𝑡 , 𝑒 𝑝 , 𝑒 12 𝑇 , … , 𝑒 1𝑚 𝑇 ), 𝑒 1 𝑠𝑡 and 𝑒 𝑝 are known to 𝑁 1 while, due to channel randomness, 𝑒 1𝑗 𝑇 is unknown. For this specific reason, the proposed EHN is considered as a POMDP where the current state at time 𝑡 is partially known. Therefore, 𝑁 1 formulates the uncertainty of the state by a statistical distribution that is referred to as belief function 𝒃. At time slot 𝑡, the belief vector over the state is defined as 𝒃 𝑺 𝟏 (𝑡) = {𝑏 𝑠 1 (𝑡), 𝑏 𝑠 2 (𝑡), … , 𝑏 𝑠 𝜅 (𝑡)} ∈ [0,1] 𝜅 .

B. POMDP Actions of The Novel EHN

𝑨 represents the set of actions to be taken by 𝑁 1 . The set of actions 𝑨 = {𝑨 𝟏 , 𝑨 𝟐 } represents the modes of the novel proposed EHN where sleeping, LC-EHN and WDC-EHN are combined in one operational EHN as follows,

𝑨 𝟏 = {𝑎 𝑠𝑙𝑒𝑒𝑝𝑖𝑛𝑔 , 𝑎 𝐿𝐶-𝐸𝐻𝑁 } 𝑨 𝟐 = {𝑎 𝑊𝐷𝐶-𝐸𝐻𝑁 𝑥 } 𝑥=1 𝑧 (12)
At each time 𝑡 , 𝑁 1 chooses an action 𝑎(𝑡) ∈ 𝑨 to decide whether to turn into sleep mode or active mode. The action 𝑎(𝑡) = 𝑎 𝑠𝑙𝑒𝑒𝑝𝑖𝑛𝑔 represents sleep mode while 𝑎(𝑡) = 𝑎 𝐿𝐶-𝐸𝐻𝑁 is the action taken by 𝑁 1 to process the task locally. On the other hand, 𝑎(𝑡) ∈ 𝑨 𝟐 is an action of 𝑁 1 to operate as WDC network. In this case, 𝑁 1 nominates 𝑞 nodes to collaborate with such that 𝑵 𝒒 ⊂ 𝑵 𝒈 and 𝑞 ≤ 𝑚, segments the task into subtasks and transmits the subtasks wirelessly to the permutations of 𝑞 nominated nodes. For instance, when 𝑚 = 5 and 𝑞 = 2, the possible combinations of two nodes is 𝑵 𝟐 = {{𝑁 2 , 𝑁 3 }, {𝑁 2 , 𝑁 4 }, … , {𝑁 5 , 𝑁 4 }} where each set is equivalent to an action 𝑎 𝑊𝐷𝐶-𝐸𝐻𝑁 𝑥 ∈ 𝑨 𝟐 . In this example, the number of WDC actions is equal to 𝐶 . Meanwhile, the total number of 𝑁 1 actions is |𝑨| = 2 + 𝑧.

C. POMDP Transition Probability of The Novel EHN

When 𝑁 1 takes an action 𝑎(𝑡) ∈ 𝑨 at current state 𝑺 𝟏 = 𝑺 𝟏 (𝑡) and belief 𝒃 𝑺 𝟏 (𝑡) , 𝑁 1 transits to a future state 𝑺 𝟏 ′ = 𝑺 𝟏 (𝑡 + 1) , receives an observation, immediate reward and update the belief as follows, 

𝒃
where 𝒃 𝑺 𝟏 (𝑡 + 1) ∈ [0,1] 𝜅 , 𝑍(𝑺 𝟏 ′ , 𝑎, 𝑜) is the observation probability, 𝑝(𝑜′|𝑎, 𝒃 𝑺 𝟏 (𝑡)) is a normalization factor and 𝑇(𝑺 𝟏 , 𝑎, 𝑺 𝟏 ′ ) represents the transition probability where 𝑇(𝑺 𝟏 , 𝑎, 𝑺 𝟏 ′ ) = 𝑝(𝑺 𝟏 ′ |𝑺 𝟏 , 𝑎) ∈ [0,1] 𝜅×𝜅 and can be computed as stated in (14).

Due to the certain knowledge of 𝑒 1 𝑠𝑡 and 𝑒 𝑝 , the transition among the different states in the proposed EHN depends only on the channel state and the harvesting probability. Considering the current state of the channel is 𝑘 and 𝑝(𝑒 𝑡 ℎ = 𝑒 ℎ ), 𝑇(𝑺 𝟏 , 𝑎, 𝑺 𝟏 ′ ) has two main transitions as follows 1) When 𝑎(𝑡) = 𝑎 𝐿𝐶-𝐸𝐻𝑁 or 𝑎(𝑡) = 𝑎 𝑠𝑙𝑒𝑒𝑝𝑖𝑛𝑔 , in this case 𝑁 1 will not receive an observation of the channel. Accordingly, each slave node 𝑁 𝑗 ∈ 𝑵 𝒈 has three possibilities for state transitions (𝑃 𝑘,𝑘+𝑖 • 𝑝 ℎ ) 1𝑗 to move from channel state 𝑘 to an adjacent state 𝑘 + 𝑖, where 𝑖 = {-1,0,1}. 2) When 𝑎(𝑡) = 𝑎 𝑊𝐷𝐶-𝐸𝐻𝑁 𝑥 , 𝑁 1 nominates the cooperating nodes 𝑵 𝒒 ⊂ 𝑵 𝒈 . Accordingly, 𝑁 1 receives an observation of the channel state of the nominated nodes 𝑵 𝒒 . In this case, 𝑁 1 knows the exact channel state of 𝑵 𝒒 and thus predicts the channel state for the nominated nodes as the multiplication of transfer from channel state 𝑘 to 𝑘 + 𝑖 . For each 𝑞 , every permutation set of 𝑵 𝒒 combines different nominated nodes but has the same number of elements. Therefore, the multiplication is considered over the element index 𝐼 in the set 𝑵 𝒒 . For instance, when 𝑚 = 5 and 𝑎 = 𝑎 𝑊𝐷𝐶-𝐸𝐻𝑁 2 , for any combination of two nodes, e.g. {𝑁 2 , 𝑁 4 } ⊂ 𝑵 𝟐 , 𝑇(𝑺 𝟏 , 𝑎, 𝑺 𝟏 ′ ) is the multiplication of the probability of the first nominated node, at 𝐼 = 1 , to be in channel state 𝑘 then move to 𝑘 + 𝑖 with the probability of the second nominated node, at 𝐼 = 2, to be in channel state 𝑘 then move to 𝑘 + 𝑖.

D. POMDP Observations of The Novel EHN

The channel observation is crucial for 𝑁 1 in order to allocate the equivalent gain threshold 𝛤 𝑘 , 𝑒 1𝑗 𝑇 = 𝑓(𝛤 𝑘 ) and the possible transitions from 𝑺 𝟏 to 𝑺 𝟏 ′ . Given a current state 𝑺 𝟏 and an action 𝑎(𝑡) = 𝑎 𝑊𝐷𝐶-𝐸𝐻𝑁 𝑥 that leads to a future state 𝑺 𝟏 ′ . 𝑁 1 makes an observation 𝑜 ∈ 𝑶 as follows, 1-𝑁 1 transmits 𝑤 𝑗 to the nominated nodes 𝑵 𝒒 through the wireless channel. 

E. The Immediate Reward of the Proposed EHN For each action 𝑎 ∈ 𝑨, 𝑁 1 receives an immediate reward 𝑅: 𝑺 𝟏 × 𝑨 that is given by,

𝑅 𝑡 (𝑺 𝟏 , 𝑎) = { -𝛿 𝑠 + 𝑝 ℎ 𝑒 ℎ , 𝑎(𝑡) = 𝑎 𝑠𝑙𝑒𝑒𝑝𝑖𝑛𝑔 ; 𝑝(𝑒 𝑡 ℎ = 𝑒 ℎ ).
-𝑒 𝑝 + 𝑝 ℎ 𝑒 ℎ , 𝑎(𝑡) = 𝑎 𝐿𝐶-𝐸𝐻𝑁 ; 𝑝(𝑒 𝑡 ℎ = 𝑒 ℎ ).

-

∑ 𝛿 𝑞 𝑒 1𝐼 𝑇 𝑞 𝐼=1 + 𝑝 ℎ 𝑒 ℎ , 𝑎(𝑡) = 𝑎 𝑊𝐷𝐶-𝐸𝐻𝑁 𝑥 ; 𝑝(𝑒 𝑡 ℎ = 𝑒 ℎ ). (16) 
In case of 𝑎(𝑡) = 𝑎 𝐿𝐶-𝐸𝐻𝑁 , the immediate reward of 𝑁 1 is the dissipated energy in processing the task locally while, in case of 𝑎(𝑡) = 𝑎 𝑊𝐷𝐶-𝐸𝐻𝑁 𝑥 , 𝑅 𝑡 (𝑺 𝟏 , 𝑎) is the amount of consumed energy to transmit the subtasks wirelessly from 𝑁 1 to 𝑵 𝒒 . Herein, the task will be distributed uniformly. Therefore, for each 𝑁 𝑗 ∈ 𝑵 𝒒 , the number of bits 𝑤 𝑡 will be distributed equally among the nominated nodes such that 𝑤 𝑗 = 𝑤. In this case, 𝑒 1𝐼 𝑇 is the required amount of energy to transmit 𝑤 to each nominated node 𝑁 𝑗 ∈ 𝑵 𝒒 and can be computed using [START_REF] Adhikary | Multi-user MIMO with outdated CSI: Training, feedback and scheduling[END_REF]. On the other hand, 𝑎(𝑡) = 𝑎 𝑠𝑙𝑒𝑒𝑝𝑖𝑛𝑔 will not cause energy dissipation. Nevertheless, selecting 𝑎(𝑡) = 𝑎 𝑠𝑙𝑒𝑒𝑝𝑖𝑛𝑔 repeatedly would delay the processing of next task. Therefore, a penalty 𝛿 𝑠 is considered in case of sleeping mode in order to control the delay of processing next task. Meanwhile, 𝛿 𝑞 is a tuning penalty for each 𝑵 𝒒 , where 0 < 𝛿 𝑞 ≤ 1. For instance, when 𝑞 = 1, the proposed EHN will be as similar as to the collaboration models in cloud computing technology where the node transmits the task onto a cloud which is a central unit, such as in [START_REF] Liu | Gearing resource-poor mobile devices with powerful clouds: architectures, challenges, and applications[END_REF]. However, herein, the slave nodes has limited resources. Tuning 𝛿 𝑞 is a task scheduling problem which is out of this research scope.

F. The Optimal Policy of the Proposed EHN

The optimal policy of POMDP is a set of actions to be taken at each corresponding belief vector that results in 𝑅 𝜋 𝑡 (𝒃 𝑺 𝟏 (𝑡)|𝒃 𝑺 𝟏 [START_REF] Sixing | Optimal Cooperation Strategy in Cognitive Radio Systems with Energy Harvesting[END_REF])] where 𝜆 is a geometric discount factor, 𝒃 𝑺 𝟏 [START_REF] Sixing | Optimal Cooperation Strategy in Cognitive Radio Systems with Energy Harvesting[END_REF] is an initial belief and 𝜋 is the policy. The policy could be stationary 𝜋 or non-stationary 𝜋 𝑡 . Herein, the required policy to maximize 𝐽 𝜆 𝜋 (𝒃 𝑺 𝟏 ) is a stationary policy because POMDP framework for the proposed EHN has a discrete state and action space, the proof results is presented in Theorems 8.10.9 and 8.10.7 of [START_REF] Putterman | Markov Decision Process Discrete Stochastic Dynamic Programming[END_REF].

Herein, POMDP framework of the proposed EHN is solved as belief MDP by mapping the states to actions, i.e. 𝜋: 𝑺 𝟏 → 𝑨. In order to find the optimal policy 𝜋 * that maximizes the saved energy by the energy harvester 𝑁 1 , the value iteration function 𝑉(𝑺 𝟏 ) of each policy has to be computed, first, as follows, 

𝑉
The optimal policy 𝜋 * is the policy that achieves maximum 𝑉(𝒃 𝑺 𝟏 ) and given by,

𝜋 * = argmax 𝜋⊂𝑨 𝑉 𝜋 (𝒃 𝑺 𝟏 ) (19) 
V.

NUMERICAL RESULTS

In order to verify the proposed EHN, the channel thresholds 𝛤 𝑘 were modelled as in [START_REF] Zhang | Finite-state Markov model for Rayleigh fading channels[END_REF]. The range of SNR is assigned to 11-states of FSMC when 𝑓 𝑚 = 8.7963 𝐻𝑧, transmission rate = 100 𝑘𝑏/𝑠 and modulation scheme is 𝜋/4 -DQPSK. The transmission parameters are assumed as in [START_REF] Pandana | Near-optimal reinforcement learning framework for energy-aware sensor communications[END_REF] where 𝜎 2 = 5 × 10 -15 , 𝐵 = 10𝑀𝐻𝑧 and 𝐴 𝑡 = 1.916 × 10 -14 . Due to the high number of states 𝜅, the proposed model for EHN can be solved offline [START_REF] Hoang | Cross-layer adaptive transmission with incomplete system state information[END_REF], [START_REF] Khodaian | Adaptive access and rate control of CSMA for energy, rate, and delay optimization[END_REF]. Herein, the complexity is reduced by assuming that, for each 𝑞, 𝑁 1 is considered to collaborate with the set of 𝑵 𝒒 that has the best channel state. Accordingly, 𝑧 is reduced into the number of cooperating nodes, i.e. 𝑧 = 𝑚.

The energy harvester's battery is segmented into 5-slots, 𝑤 𝑡 = 300 symbol, 𝛿 𝑠 = 0.4 , 𝛿 𝑞 = 1 and 𝜆 = 0.9 . The consumed energy of the proposed EHN is estimated, as shown in Fig. 3, for 𝑚 = 4, 600-stages and at various required values of energy to process each symbol of data, i.e. 𝑒 𝑝 . The proposed EHN is compared against the conventional EHN as shown in Fig. 4 at 𝑚 = 2 , 𝑚 = 4 and various values of 𝑒 𝑝 = [10 -7 , 10 -10 ] 𝐽/𝑠𝑦𝑚𝑏𝑜𝑙 . At low 𝑒 𝑝 values, e.g. 𝑒 𝑝 = 10 -10 𝐽/𝑠𝑦𝑚𝑏𝑜𝑙 to 10 -9 𝐽/𝑠𝑦𝑚𝑏𝑜𝑙 , the proposed EHN is found to consume energy as same as the conventional EHN where the tasks are executed locally. Meanwhile, with increasing 𝑒 𝑝 , the conventional EHN is found to consume more energy than the proposed EHN.

In order to, further, investigate the performance of the proposed EHN, the policy is found for each belief vector at 𝜆 = 0.016, 𝛿 𝑠 = 3.4733 × 10 -4 and 𝛿 𝑞 = 1 2+0.1𝑞

as well as at three SNR's ranges 𝛾 =] -13,2], 𝛾 =]2,7] and 𝛾 =]10,15]. Each set of 𝛾 is assigned to 4-states of channel gains. As presented in Table I, at some belief vectors, 𝑎(𝑡) = 𝑎 𝑊𝐷𝐶-𝐸𝐻𝑁 𝑞 is found as the best action to maximize the expected long-term reward. Meanwhile, with increasing the values of SNR range, the total number of 𝑎 𝑊𝐷𝐶-𝐸𝐻𝑁 𝑞 , i.e. 𝑧, is slightly increasing. In order to evaluate the policies in Table I the consumed energy in case of the proposed EHN is estimated. Fig. 5 presents the consumed energy in case of the proposed EHN at distinct SNR ranges. The expected long-term reward is computed for 600-stages in case of the proposed EHN for each policy in Table I. The proposed EHN is found to save more energy when the wireless channel among the collaborating nodes has high SNR values.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

A novel EHN that combines LC-EHN and WDC-EHN is proposed by employing POMDP framework. The proposed EHN is found to outperform the conventional EHN in terms of the consumed energy. Therefore, the proposed EHN is found to prolong the active mode of energy harvesters. This research introduces various challenges and open issues. Herein, a policy is found to prolong the active mode of the energy harvester while obtaining the optimal policy that maximizes the active mode will be part of future work. Furthermore, the workload distribution is a task scheduling problem that distributed, herein, uniformly. Therefore, proposing a novel task scheduling algorithm that considers the proposed EHN states and the amount of stored energy in each cooperating node is an open issue for future work.
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 2 𝑵 𝒒 process the task and estimate 𝛾 1𝑗 . 3-𝑵 𝒒 transmit the result of the task and feedback 𝛾 1𝑗 to 𝑁 1 . The received 𝛾 1𝑗 represents the observation of 𝑁 1 . The observation probability 𝑍(𝑺 𝟏 ′ , 𝑎, 𝑜) = 𝑝(𝑜|𝑺 𝟏 ′ , 𝑎) is represented as follows, 𝑍(𝑺 𝟏 ′ , 𝑎, 𝑜) = 𝑝(𝑜 = 𝜃|𝑺 𝟏 ′ 0; 𝑎(𝑡) = 𝑎 𝐿𝐶-𝐸𝐻𝑁 𝑜𝑟 𝑎(𝑡) = 𝑎 𝑠𝑙𝑒𝑒𝑝𝑖𝑛𝑔 ; 𝜃 = 𝑜 𝛾 1𝑗 . 1, 𝑎(𝑡) = 𝑎 𝑊𝐷𝐶-𝐸𝐻𝑁 𝑥 ; 𝜃 = 𝑜 𝛾 1𝑗 . 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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 3 Fig.3. The consumed energy of the proposed EHN at 𝑚 = 4.
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 4 Fig.4. The consumed energy of the proposed and conventional EHN at 𝑚 = 2 and 4.
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 5 Fig.5. The consumed energy of the proposed EHN at various SNR ranges.

  Then, 𝑉 𝜋 (𝒃 𝑺 𝟏 ) is computed for each belief vector as follows, 𝑉 𝜋 (𝒃 𝑺 𝟏 ) = ∑ 𝒃 𝑺 𝟏 𝑉 𝜋 (𝑺 𝟏 )

	𝜋 (𝑺 𝟏 ) =			
	𝜆 ∑ 𝑅(𝑺 𝟏 , 𝑎(𝜋)) + 𝑇(𝑺 𝟏 , 𝑎(𝜋), 𝑺 𝟏 ′ ) ∑ 𝑺 𝟏 ′ ∈𝑺	𝑜 𝑖 ∈𝑂	𝑍(𝑺 𝟏 ′ , 𝑎(𝜋), 𝑜)𝑉 𝑜(𝜋) (𝑺 𝟏 ′ )	(17)
	𝑺 𝟏 ∈𝑺		

TABLE I .

 I THE SELECTION OF EACH ACTION The

number of times each action is selected

  

	Action index	1	2	3	4	5	6
	Action	𝒂 𝒔𝒍𝒆𝒆𝒑𝒊𝒏𝒈	𝒂 𝑳𝑪	𝒂 𝑾𝑫𝑪-𝑬𝑯𝑵 𝟏	𝒂 𝑾𝑫𝑪-𝑬𝑯𝑵 𝟐	𝒂 𝑾𝑫𝑪-𝑬𝑯𝑵 𝟑	𝒂 𝑾𝑫𝑪-𝑬𝑯𝑵 𝟒
	𝛾 =] -13,2].	18	418	22	15	117	6
	𝛾 =]2,7].	25	412	13	13	119	18
	𝛾 =]10,15].	14	420	17	12	118	
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