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ARTICLE

Dynamic CpG methylation delineates subregions
within super-enhancers selectively
decommissioned at the exit from naive
pluripotency
Emma Bell 1,6, Edward W. Curry1,6, Wout Megchelenbrink2,3,4,6, Luc Jouneau5, Vincent Brochard5,

Rute A. Tomaz 1, King Hang T. Mau1, Yaser Atlasi2, Roshni A. de Souza1, Hendrik Marks 2,

Hendrik G. Stunnenberg 2,3, Alice Jouneau5,7✉ & Véronique Azuara 1,7✉

Clusters of enhancers, referred as to super-enhancers (SEs), control the expression of cell

identity genes. The organisation of these clusters, and how they are remodelled upon

developmental transitions remain poorly understood. Here, we report the existence of two

types of enhancer units within SEs typified by distinctive CpG methylation dynamics in

embryonic stem cells (ESCs). We find that these units are either prone for decommissioning

or remain constitutively active in epiblast stem cells (EpiSCs), as further established in the

peri-implantation epiblast in vivo. Mechanistically, we show a pivotal role for ESRRB in reg-

ulating the activity of ESC-specific enhancer units and propose that the developmentally

regulated silencing of ESRRB triggers the selective inactivation of these units within SEs. Our

study provides insights into the molecular events that follow the loss of ESRRB binding, and

offers a mechanism by which the naive pluripotency transcriptional programme can be

partially reset upon embryo implantation.
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P luripotency, the ability to form all tissues in an adult
organism, is under the control of complex mechanisms that
enable cells to differentiate into the early somatic and germ

cell lineages. Embryonic stem cells (ESCs) and epiblast stem cells
(EpiSCs) are derived from mouse pre- and post-implantation
embryos, respectively, and represent the naive and primed state of
pluripotency1. Alongside the core transcription factors (TFs)
OCT4, SOX2 and NANOG (OSN), ESC identity is associated
with the expression of an additional cohort of naive pluripotency
factors, including ESRRB, KLF4, TBX3 and TFCP2L1. These
proteins are highly expressed in ESCs and downregulated as
primed pluripotency is established2. Conversely, OTX2, ZIC2 and
OCT6 factors were identified as major transcriptional regulators
of primed EpiSCs in the context of the continued expression of
OSN3–5.

Enhancers act as hubs of TF binding and promote gene
expression. Recent studies suggest that large regions with clus-
tered enhancer units, often described as super-enhancers (SEs),
regulate the expression of key cell identity genes6–8. Readily
demarcated by enhancer-specific histone marking and protein
binding at high density, SEs in ESCs preferentially recruit
numerous naive TFs, and are predicted to be decommissioned as
cells exit from naive pluripotency8. Given the shared expression
of a large panel of genes in ESCs and EpiSCs9,10, it remains
unclear how this is achieved. In particular, the fate of individual
enhancer units across SEs has not been investigated during the
transition from naive-to-primed pluripotency.

In this study, we identify molecular and functional differences
between enhancer units within SEs, revealing distinctive reg-
ulatory mechanisms. We find that enhancer units mapped in
ESCs divide into two types based on whether or not they continue
to function in EpiSCs, as further established in the post-
implantation epiblast in vivo. Mechanistically, we demonstrate
that ESC-specific enhancer units exhibit extensive cell-to-cell
CpG methylation heterogeneity and are most specifically marked
by ESRRB. As a result, these units are selectively destabilised at
the exit from naive pluripotency, as recapitulated upon ESRRB
depletion. Loss of ESRRB in ESCs promotes de novo methylation,
reduces mediator and RNA polymerase II (POL2) binding and
attenuates the expression of target genes and enhancer RNAs
(eRNAs) over disruption of chromatin interactions. In contrast,
ESRRB-independent units within SEs remain active and hypo-
methylated through steady binding of TFs and co-regulators in
ESCs and EpiSCs. These units promote the expression of a core
set of genes throughout the naive-to-primed transition, suggest-
ing a crucial role for the upholding of pluripotency upon embryo
implantation.

Results
Hypomethylation delineates active SE units. SEs were defined in
ESCs based on high-density binding of the mediator component
MED1 and deposition of H3K27ac histone marks over large
genomic regions in contrast to typical-enhancers (TEs)8. Addi-
tionally, we noticed that SEs and TEs show a significant difference
in GC content (Supplementary Fig. 1a). While the median CpG
density in TEs approximates the mouse genome average, SEs
present higher GC content and CpG density (Wilcoxon rank-sum
test, p < 2 × 10−16). Thus, we hypothesised that CpG methylation
might contribute to the structural organisation of SEs. To test this
idea, we used available bisulfite-sequencing (BS-seq) data col-
lected from ESCs grown in the presence of serum and leukemia
inhibitory factor (serum/LIF)11. We scored each CpG as methy-
lated (mCpG) or unmethylated along SEs mapped in ESCs and
other cell types8 using a Hidden Markov model (HMM; see
Methods section). As anticipated, high CpG methylation levels

were steadily detected at somatic (proB cell) SEs (Supplementary
Fig. 1b), in keeping with their inactive status in pluripotent cells.
In contrast, ESC SEs displayed a complex profile consisting of low
and intermediate levels of CpG methylation. Interestingly, ProB
cell SEs showed a similar low-to-intermediate profile in haema-
topoietic cells12 (Supplementary Fig. 1c), highlighting the close
relationship between CpG methylation and cell identity13,14.
Further inspection of individual ESC SEs identified discrete
unmethylated subregions in ESCs, which overlapped with
H3K27ac deposition and binding of pluripotency TFs and co-
regulators, as depicted for the Klf4-associated SE (Fig. 1a). By
computing protein binding (chromatin immunoprecipitation
sequencing (ChIP-seq)) and chromatin accessibility (ATAC-seq)
at unmethylated and methylated subregions across all SEs using
published datasets (Supplementary Data 1), we validated that
local hypomethylation demarcates active SE units in ESCs
(Fig. 1b).

To verify whether promoter–SE interactions preferentially
establish within unmethylated over methylated regions, we studied
the chromatin interactions between these subregions and
target gene promoters at high resolution in ESCs. For this, we
interrogated available (promoter) capture Hi–C libraries generated
using 4 bp recognition restriction enzymes15,16 and called
significant promoter–SE interactions with the CHICAGO pipe-
line17 (Fig. 1c; Supplementary Fig. 2 for additional examples).
Given the high correlation (R= 0.77) between the selected
datasets (Supplementary Fig. 3a, b), all significant promoter–SE
interactions identified from either Joshi et al.15 or Sahlen et al.16

studies (629 in total) were considered (Supplementary Data 2).
These included previously described SE-interacting promoters
using cohesin CHIA-PET18 and an alternative promoter capture
Hi–C based on a 6 bp recognition restriction enzyme19 (Supple-
mentary Fig. 3c, d), and were significantly enriched in Gene
Ontology terms related to embryonic development as expected
(Supplementary Fig. 3e). Using this method, we demonstrated that
unmethylated subregions engaged more frequently with active
promoters than methylated subregions within SEs (Fig. 1d,
Supplementary Fig. 3h). Collectively, our findings confirm that
SEs are intrinsically heterogeneous, consisting of one or more
hypomethylated active enhancer units in ESCs.

Differential inactivation of SE units in EpiSCs. The transition
from pre- to post-implantation is marked by a global increase in
CpG methylation as reported in vitro and in vivo20–22. Using
newly generated BS-seq data in EpiSCs (this study), we observed
that SEs mapped in ESCs accumulate substantial levels of CpG
methylation in the primed cells (Supplementary Fig. 4a). By
contrast, ESC SE-interacting promoters remained largely hypo-
methylated (Supplementary Fig. 4a–c). Strikingly, however, we
found that CpG methylation was acquired in different patterns
across individual ESC SEs (Fig. 2a). While all enhancer units of
some SEs were targeted by high levels of CpG methylation (e.g.,
Klf4-associated SE), specific units escaped methylation in other
SEs (e.g., Klf13- and Lefty1-associated SEs). By comparing the
methylation status of all SE units in ESCs and EpiSCs, we thus
identified two types of units with different fates: persistently
unmethylated (PU, green) and differentially methylated (DM,
magenta; Fig. 2b, Supplementary Fig. 4d). Outside these regions,
CpG methylation was consolidated from ESCs to EpiSCs (inter-
stitial regions; INT, grey), largely contributing to the hyper-
methylated profile of SEs as a whole in EpiSCs (Supplementary
Fig. 4a).

To validate the assignment of PU and DM subregions in
independent ESC and EpiSC lines, we probed alternative BS-seq
studies14,23. To test whether the remodelling of SEs occurs in a
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step-wise manner, we also examined the profile of ESC-derived
epiblast-like cells (EpiLCs)23, offering a transitional stage between
naive and primed identities. In agreement with our data, PU
compared to DM subregions appeared largely unmethylated in
EpiLCs and EpiSCs (Fig. 2c, Supplementary Fig. 4e). DM
subregions in EpiLCs adopted an intermediate level relative to
PU and INT regions, becoming highly methylated in EpiSCs. To
further determine whether PU and DM subregions were
also differentially methylated in the developing embryo, we

processed available BS-seq data in ICM/epiblast tissues dissected
from pre- (E3.5 and E4.0) and post-implantation (E5.5 and E6.5)
embryos22. Importantly, a similar pattern of CpG methylation
was recapitulated in vivo, with DM subregions becoming
gradually and selectively decommissioned. During this process,
differential CpG methylation at PU, DM and INT was already
apparent starting from E3.5–E4 (Fig. 2d), which coincides
with the onset of de novo CpG methyltransferases expression in
the developing epiblast24. Collectively, our findings reveal that
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Fig. 1 Demarcation of active enhancer units within SEs through CpG methylation profiling in ESCs. a Schematic representation of the Klf4-associated SE
in embryonic stem cells (ESCs) grown in serum/LIF, showing CpG methylation, TF binding sites and epigenetic marks along the SE locus. The methylation
state of each CpG was determined using a HMM: unmethylated= blue, down; methylated= grey, up. In addition, the height of the bars indicates the
extend of methylation (positive values) and demethylation (negative values) of each CpG (see also Methods section). Coordinates of the Klf4-associated
SE are shown as reported in ref. 8. bMean Chip-seq read coverage of TFs, mediator and cohesin subunits, P300 and ATAC-seq signals at unmethylated (U;
blue) and methylated (M; grey) SE subregions in ESCs (serum/LIF). The mean read coverage scores were scaled to the maximal value for either region set.
Publicly available datasets used are listed in Supplementary Data 1. c Promoter–SE interactions along the Klf4 locus. The capture baits (black) for the Joshi
et al.15 and Sahlen et al.16 capture Hi–C interactions are shown. Key epigenetic enhancer marks (MED1, H3K27ac and ATAC-seq) overlap with
unmethylated SE subregions (U; blue) across Klf4-associated SE, while methylated regions (M; grey) are largely devoid of active histone marks.
Promoter–SE and intra-SE interactions are shown as red arcs; other interactions as grey arcs. d Box plots of the capture Hi–C interaction intensity (log2
fragments per kilobase million (FPKM)) of unmethylated (U; blue) and methylated (M; grey) SE subregions for which the SE has a significant interaction
with the target promoter. For this analysis, only expressed SE-interacting gene promoters were considered (reads per kilobase million (RPKM)≥ 1).
Unmethylated SE subregions interact at a significantly higher frequency as compared to methylated SE subregions with an equal number of capture baits
(**p= 0.002; ***p= 3.6 × 10−14, analysis of variance, controlling for the number of capture Hi–C baits per SE subregion and the log2 promoter–SE
subregion distance).
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enhancer units within SEs partition as constitutively hypomethy-
lated (PU) or decommissioned (DM) during the pre- to post-
implantation transition.

DM and PU units regulate distinct pluripotency gene modules.
As a functional readout of differential CpG methylation within
SEs, we tested whether the expression of SE-interacting pro-
moters was altered in vitro (from ESCs to EpiSCs) and in vivo
(from ICM E3.5 to epiblast E6.5)22,25. Expression changes were
predicted to be inversely related to average CpG methylation
levels and compared with expression dynamics measured by
RNA-seq (see Methods section). Amongst most affected SE-
interacting promoters, we identified well-established naive plur-
ipotency factors, including Klf4, Esrrb, Prdm14, Tbx3, Tcfcp2l1
and Zfp42 (Fig. 3a; magenta dots). These silenced promoters were
associated with SEs that only contain DM subregions (Supple-
mentary Data 3). In contrast, the expression of other genes was
predicted to be less affected, including Klf13, Lefty1, Med13l,
Otx2, Pou5f1, Nanog, Sox2 and Tet1 (Fig. 3a; green dots). These
promoters were expressed or even upregulated in the primed cells
and associated with SEs that contain at least one PU subregion.

To follow-up on this observation, we divided all ESC SEs into
two classes: class I SEs that enclose at least one PU subregion, and
class II SEs that only contain DM subregions (Fig. 3b), and asked
whether the two classes of SEs regulate distinct gene repertoires.
Given that multiple SEs can interact with the same active gene
promoters though at variable frequency (Supplementary Data 2),
we focused on the closest interacting genes, which indeed correlate
with the strongest SE–promoter interactions (Supplementary

Fig. 3f, g). Class I (light green) and class II (pink) SE-associated
genes showed comparable expression levels in ESCs (Supplemen-
tary Fig. 4f). Correlating with the presence of PU units, class I
genes overall remained expressed in EpiSCs. In contrast, class II
genes showed a significant trend for downregulation relative to
ESCs (Kruskal–Wallis test, p= 4 × 10−7). Importantly, these
contrasting gene expression dynamics were recapitulated in vivo
from E3.5 to E6.5 (Fig. 3c; p= 5.5 × 10−3), mirroring the
segregation of PU (unmethylated) and DM (methylated) sub-
regions in the peri-implantation epiblast (Fig. 2d).

To determine whether the differential transcriptional fates of
class I and class II SE-associated genes diverge in tandem at
the exit from naive pluripotency, we performed reverse
transcription-quantitative PCR (RT-qPCR) analysis of selected
candidates at different time points upon the conversion of ESCs
into EpiSCs in vitro26,27 (Fig. 3d, Supplementary Fig. 5a–c). As
anticipated, we found that class II SE-associated genes analysed
consistently loose expression starting from day 1 post induction.
In contrast, class I candidates remained largely expressed
through conversion and upon acquisition of primed pluripo-
tency. Collectively, our results suggest that SEs containing DM
subregions only (class II) regulate the expression of genes
associated with the naive ESC state. In contrast, SEs containing
at least one PU subregion (class I) remain active in primed
EpiSCs, promoting the expression of a core set of pluripotency
genes throughout the naive-to-primed cell state transition. In
agreement with this conclusion, DM subregions showed
declining H3K27ac deposition, OCT4 binding and accessibility
(ATAC-seq) from ESCs to EpiSCs (Fig. 3e), indicative of
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decommissioning as previously described at naive enhancers3.
In contrast, PU subregions retained an active enhancer status,
and maintained OCT4 and SOX2 binding along with primed
pluripotency TFs (OTX2 and ZIC2)4,5 in EpiLCs and EpiSCs
(Fig. 3e, Supplementary Fig. 5d, e), indicative of continued
activity.

Cell-to-cell methylation heterogeneity at DM in ESCs. ESCs in
serum/LIF can toggle from naive-to-primed pluripotency states

with some cells initiating differentiation, as reflected in hetero-
geneous transcriptional states28,29. Interestingly, cell state fluc-
tuations also manifest at the epigenetic level with evidence of
CpG methylation oscillations at enhancers30–33. To assess the
level of cell-to-cell methylation heterogeneity at PU and DM, and
its potential association with gene expression, we reanalysed
parallel single-cell transcriptional (sc-RNA-seq) and bisulphite
(sc-BS-seq) data from ESCs grown in serum/LIF and 2i/LIF30.
Remarkably, substantial variation in CpG methylation levels was
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revealed at DM subregions in serum/LIF conditions (Fig. 4a). In
contrast, PU subregions were stably hypomethylated in all cells
examined. As expected, heterogeneity across SE subregions was
less apparent in 2i/LIF conditions, which promote global genome
hypomethylation in ESCs11,24.

Using hierarchical clustering (see Methods section), we
identified two subpopulations in serum/LIF ESCs: “naive-like”
cells showing hypomethylated DM subregions as seen in 2i/LIF,
and “primed-like” cells harbouring higher methylation level and
variance at the same regions (Fig. 4a, b, Supplementary Fig. 6a).
CpG methylation dynamics at DM subregions were also evident
when comparing the profiles of individual class I (Med13l) and
class II (Esrrb) SEs in the two cell clusters (Fig. 4c and
Supplementary Fig. 6b for additional examples). These modula-
tions correlated with changes in the expression of class II but not
class I SE-associated genes, suggesting functional importance.
Here, class II genes were highly expressed in “naive-like” cells
only (Supplementary Fig. 6c, d), in agreement with the DM
hypomethylated status of these cells. This suggests that epigenetic
heterogeneity at DM subregions might selectively destabilise the
expression of ESC-specific genes, enabling their acute down-
regulation upon exit from naive pluripotency.

Given the importance of PU subregions, we sought to
investigate how these enhancer units are protected from similar
CpG methylation dynamics in ESCs. Interrogating available bulk
ESC ChIP-seq datasets in serum/LIF (Supplementary Data 1), we
found that PU relative to DM and INT subregions harboured
higher enrichment for H3K4me3 in contrast to H3K4me1 or
H3K27ac (Fig. 4d, left panel). H3K4me3 is known to repel the
binding of de novo DNA methyltransferases DNMT3A and
DNMT3B (DNMT3s), possibly leading to less CpG methylation
at these sites34,35. We therefore compared the relative occupancy
of DNMT3s at SE subregions, along with the antagonistic enzyme
TET1, which is capable of removing CpG methylation in a
multistep process36. As anticipated, PU subregions showed
significantly lower DNMT3s occupancy and higher recruitment
of TET1 (Fig. 4d, right panel). By comparison, DM subregions
appeared to be co-bound by TET1 and DNMT3s, especially
DNMT3A known to target naive enhancers upon ESC differ-
entiation37. To evaluate whether PU and DM subregions could be
predicted based on these epigenetic signatures, logistic regression
models were fitted with subregion type as a binary outcome (DM
vs PU) and a set of individual features as quantitative predictor
variables (see Methods section). All features tested apart from
H3K27ac were significantly associated with DM/PU status
(Supplementary Data 8). Increased ChIP-seq enrichment for
DNMT3s and H3K4me1 were found highly predictive of the DM
status, while TET1, H3K4me3 and ATAC-seq signals were most
closely associated with the PU status. CpG density also appeared

to be a better predictor of PU units, in coherence with TET1
preferential binding to CpG-rich regions38–40. Interestingly, 17%
of PU subregions harboured high CpG density (above 0.05;
Supplementary Fig. 6e), alone accounting for their hypomethy-
lated status41 as predicted.

To further our understanding of how DNMT3s and TET
binding impacts on CpG methylation dynamics at the single-cell
level, we used available sc-BS-seq data collected from DNMT3A/B
double and TET1-3 triple knockout (KO) ESCs grown in serum/
LIF31. Variance in CpG methylation at PU subregions remained
mostly unchanged upon the loss of either DNMT3 or TET
proteins (Fig. 4e), pointing to a non-exclusive protective role for
TET binding at these subregions. In contrast, methylation variance
at DM regions was highly reduced upon loss of DNMT3s and to a
much lesser extend in TETs KO ESCs. This indicates that CpG
methylation dynamics at DM subregions depend on the activity of
de novo methyltransferases, and furthermore suggests that TET-
mediated demethylation might not be a main driver of epigenetic
heterogeneity at SEs, as similarly reported using allele-specific
reporters of candidate SEs33.

ESRRB most specifically demarcates DM subregions within
SEs. To explore the additional regulators of CpG methylation at
DM subregions besides DNMT3s, we used available sc-RNA-
seq30 to ask whether sporadic induction of early differentiation/
primed pluripotency genes in serum/LIF42 could play a part in
the observed cell-to-cell epigenetic heterogeneity. Receiver oper-
ating characteristic (ROC) curves were generated to evaluate, on
the basis of their normalised expression levels, the ability of co-
expressed or individual genes to separate “naive-like” from
“primed-like” single-cell clusters defined in Fig. 4a (see Methods
section and ref. 43). Notably, three gene sets were tested encoding
for naive, general or primed pluripotency markers (Supplemen-
tary Data 4). Our results ruled out that the latter drives (as genetic
oscillators) the metastable epigenetic state of DM subregions,
instead pointing to a role for naive pluripotency factors (Fig. 4f,
left panel). Among these factors, Esrrb, Klf2 and Rex1/Zfp42 (area
under the ROC curve (AUC) values > 0.92, p= 10−5) were
identified as top genes whose increased expression best dis-
criminates “naive-like” cells from “primed-like” cells (Fig. 4f,
right panel; Supplementary Fig. 6f). In contrast, Oct4, Klf4, Nanog
or Nr5a2 provided less predictive power. These findings raise the
possibility that heterogeneous expression and/or binding of spe-
cific naive pluripotency TFs could regulate the local CpG
methylation dynamics and accessibility of SE subregions.

To interrogate the role of TF binding in defining distinctive
chromatin states along SEs, we analysed TF motif enrichment in
PU, DM and INT subregions, and examined the expression status

Fig. 3 Partitioning of enhancer units within SEs as constitutively active or decommissioned in primed cells. a Predicted and observed gene expression
fold change (log2) of SE target genes in vitro (left) and in vivo (right). The predicted fold change is the negative product of the interaction intensity (log2
normalised reads) in ESCs (serum/LIF; ser) and CpG methylation changes (percent change) at PU and DM subregions from ESCs to EpiSCs (in vitro) or
E3.5 ICM to E6.5 Epi (in vivo; see Methods section and Supplementary Data 1). Well known pluripotency genes associated with different categories of SE
subregions are highlighted in magenta (DM) and in green (PU). PCC, Pearson’s correlation coefficient. b Venn diagram depicting SE subregion composition
and number of SEs falling into class I (light green) and class II (pink) categories. Class I SEs contain PU or PU+DM subregions, while class II SEs only
contain DM subregions. c Expression (log2 RPKM) of all closest interacting gene promoters associated with class I or class II SEs in epiblast cells in vivo at
different developmental times (from E3.5 to E6.5)22. p-Values (Kruskal–Wallis test) are indicated. d Expression changes (log2(fold change)) relative to
ESCs (serum/LIF) of selected genes associated with class I (light green) or class II (pink) SEs during the conversion of ESCs into EpiSCs in vitro (RT-qPCR).
Class I candidates are: Lefty1, Pou5f1, Otx2, Smarcad1, Sox2, Tet1, Klf13, Med13l and Nanog; class II candidates are: Esrrb, Klf4, Prdm14, Tbx3, Tdh, Tet2, Tfcp2l1,
Klf2, Klf5 and Zfp42. Statistical analysis was performed using non parametric tests for repeated measures data in factorial designs. The factorial design
chosen corresponds to f1.ld.f1 in nparLD R-package. Kinetics of the two classes were statistically different (p= 4.5 × 10−12, Wald test). Data represent three
independent conversion experiments (n= 3). Source data are provided as Supplementary Data 10. e H3K27ac deposition, OCT4 binding and chromatin
accessibility (ATAC-seq) of PU, DM and INT subregions in ESCs (serum/LIF; ser), EpiLCs and EpiSCs. Publicly available datasets used are listed in
Supplementary Data 1.
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of TFs corresponding to these motifs (see Methods section).
Approximately half of the statistically enriched motifs (hypergeo-
metric test, Benjamini–Hochberg (BH) adjusted p < 0.05) in
either PU or DM subregions were attributed to at least one
corresponding TF expressed in serum/LIF ESCs (RPKM ≥ 1;
Supplementary Fig. 7a). In contrast, INT subregions harboured

statistically enriched motifs that correspond to less frequently
expressed TFs (p < 3 × 10−6) including differentiation-associated
TFs induced later in development (Supplementary Data 5).

Interestingly, the cognate motif for ESRRB/NR5A2 showed
strong enrichment in DM subregions only (p < 5 × 10−9), while
the KLF/SP motif was found enriched in both DM (p < 3 × 10−7)
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and PU subregions (p < 2 × 10−27). These correspond to the
pluripotency factors ESRRB/NR5A2 and KLF2, KLF4 or KLF5
that are highly expressed in naive pluripotency and downregulated
as primed pluripotency is established (Fig. 5a, b). In addition, PU
subregions encompassed multiple motifs of pluripotency TFs that
remain expressed in EpiSCs, including OCT4 (Pou5f1) and SOX2.
Collectively, our findings corroborate a possible role for naive
pluripotency factors in regulating DM subregions, and further-
more suggest that PU might be maintained hypomethylated and
accessible through hotspot binding of numerous TFs.

In agreement, inspection of the relative enrichment for ESRRB,
KLF2, KLF4, KLF5, STAT3 and OSN at PU, DM and INT
subregions in ESCs along with other enhancer constituents
revealed that all proteins examined were more enriched at PU
subregions (Fig. 5c, Supplementary Data 1). While DM subregions
displayed lower protein enrichment, we noticed that, of all the TFs
evaluated, ESRRB showed the strongest binding at these
subregions. Interrogation of independent datasets generated using
a modified ChIP-seq protocol with improved site resolution
(ChIP-exo)44 confirmed that DM subregions were indeed highly
bound by ESRRB compared to STAT3 and SOX2 (Fig. 5d). These
results point to a prominent role for ESRRB in demarcating and
possibly regulating DM subregions in ESCs in line with our single-
cell analyses (Fig. 4f).

ESRRB binding inhibits de novo methylation at DM sub-
regions. To support our conclusion, we asked whether ESRRB is
necessary for the enhancer activity of DM-containing SEs in
ESCs. For this, we compared the expression fold changes of
selected class I (PU containing) and class II (DM-containing
only) SE-associated gene candidates in Esrrb-depleted (−/−)
ESCs45, and Nanog−/− ESCs28 for comparison, relative to control
populations. We found that the expression of class II SE-
interacting promoters was uniquely sensitive to the depletion of
ESRRB compared to class I candidates (Fig. 5e, Supplementary
Fig. 7b, c). A similar trend was observed upon depletion of
NCOA3 (Supplementary Fig. 7d, e), an essential co-activator of
ESRRB in ESCs46. Nanog−/− ESCs, in contrast, showed no clear
segregation between class I and class II candidates (Fig. 5e, right
panel). Re-introducing wild-type (WT) Esrrb in Esrrb−/− ESCs
(EsrrbWT) enhanced the expression of almost all genes tested,
with a more pronounced gain at class II compared to class I genes
(Fig. 5f, Supplementary Fig. 7f, g). Esrrb−/− ESCs were also
transfected with a AF-2 mutant (MutAF-2) Esrrb form where the
ability of ESRRB to recruit co-activators at bound sites is

abolished46. EsrrbMutAF-2 cells showed lowered class I and class II
gene expression (Fig. 5f, right panel) and could not be maintained
in culture. This suggests that overexpressing mutant ESRRB
protein might impede the formation of activation protein com-
plexes at SEs, triggering spontaneous differentiation.

Collectively, these findings confirm ESRRB as a potent
regulator of self-renewal and transcription in ESCs with class II
SE-associated genes being distinctively sensitive to the loss of
ESRRB. We note, however, that the expression of these genes
further declined in converted EpiSCs (c-EpiSCs) from −/− and
control ESCs, implying that the constitutive depletion of ESRRB
might destabilise but not fully inactivate DM-containing SEs in
ESCs. This agrees with the maintenance of an undifferentiated
state in Esrrb−/− ESCs, showing no induction of the early Otx2,
Fgf5 and Dnmt3b differentiation markers and retained expression
of Pou5f1, Sox2 and Nanog in serum/LIF (see Supplementary
Fig. 7h and ref. 45). To corroborate whether the methylation state
of DM subregions was also affected by the loss of ESRRB binding,
we focussed on the Klf4 locus as an example of class II SE-
interacting promoters (Supplementary Fig. 7g) and a model gene
target of ESRRB46,47. Using an assay combining digestion with
methylation-sensitive restriction nucleases and locus-specific
qPCR amplication48, we examined CpG sites spanning DM
and INT subregions of Klf4-associated SE (Fig. 5g). Results
revealed an increase in CpG methylation at all DM sites analysed
in Esrrb−/− compared to control (f/f) ESCs. As anticipated,
methylation reached similarly high levels at DM and INT sites in
c-EpiSCs, where Klf4 expression is extinguished (Supplementary
Fig. 7h). These findings suggest that ESRRB might promote the
expression of class II genes, at least partly, by conferring
resistance to de novo methylation at DM subregions.

ESRRB-mediated mediator and POL2 activity at DM sub-
regions. ESRBB is known to facilitate the recruitment of key TFs
and co-activators at ESRRB-bound enhancers in ESCs46,49–52. To
further elucidate the molecular consequences of ESRRB depletion,
we investigated the binding of OCT4, P300 and MED1 at the
Klf4-associated SE using ChIP-qPCR assays (Fig. 6a; also Sup-
plementary Fig. 8a, b for an extended analysis). No major
alteration in the binding profile of either OCT4 or P300 across all
regions tested was observed, as previously reported44. In contrast,
we found that MED1 recruitment was significantly reduced or
abolished in the absence of ESRRB. Given the essential role of
MED1 in regulating enhancer–promoter interactions in ESCs8,53,
we examined the profile of chromatin interactions at the Klf4

Fig. 4 Contrasting CpG methylation dynamics at PU and DM subregions in individual ESCs. a CpG methylation levels (mCpG/CpG) at PU, DM and INT
SE subregions in 16 individual ESCs grown in 2i/LIF (2i, white) and 64 ESCs grown in serum/LIF30 (serum, black). Each row represents one single cell, with
blue–red colour gradient indicating proportion of methylated CpGs in the corresponding SE subregion class. Using hierarchical clustering, three cell clusters
are identified: 2i (light blue), “naive-like” (blue) and “primed-like” (orange) serum-ESCs. b Violin plots representing the distribution of the average
methylation (%) across SE subregions for five randomly selected single cells in each of the three single-cell clusters defined in a. c Profiles of CpG
methylation levels throughout the Med13l- (class I) and Esrrb-associated (class II) SEs with indication of PU (light green), DM (pink) and INT (grey)
subregions. Each line gives the lowest-smoothed average of each individual CpG methylation across all individual cells in the corresponding cluster:
2i cluster (light blue), “naive-like” cluster (blue) and “primed-like” cluster (orange). d Heatmaps showing the relative levels of enrichment (median log2 fold
change of ChIP-seq signal (RPKM+ 1) over input signal (RPKM+ 1)) for selected histone marks (left panel) and CpG methylation regulators (right panel)
at PU, DM and INT subregions in bulk ESCs grown in serum/LIF. Enrichment scores for each feature are scaled by dividing by the mean enrichment score
for that feature across all subregions. See Supplementary Data 1 for dataset accession numbers. e Box plots representing the distribution of methylation
variances across PU (green) and DM (magenta) subregions for each individual cell analysed in different treatment conditions (2i and serum wild-type
ESCs, and Dnmt3a/b DKO and Tet1-3 TKO ESCs grown in serum/LIF)30,31. f Receiver operating characteristic (ROC) curves comparing the performance of
naive (yellow), general (orange) and primed (red) pluripotency gene sets in discriminating “naive-like” and “primed-like” cell clusters based on the average
of their normalised expression levels (left panel). ROC curves comparing the performance of individual naive pluripotency genes (discriminating “naive-
like” and “primed-like” cell clusters based on normalised expression level), illustrating Esrrb, Klf2 and Zfp42 as best classifiers of “naive-like” and “primed-
like” clusters (AUC values= 0.928, 0.963 and 0.948 respectively; p= 10−5; right panel).
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Fig. 5 DM subregions are most specifically demarcated by high levels of ESRRB binding. a Transcription factor (TF) motif enrichment in PU, DM and INT
subregions, and gene expression of corresponding TFs in ESCs (serum/LIF) and EpiSCs25. b Motifs and statistical enrichment (hypergeometric test, BH
adjusted) for TFs shown in a. c Heatmap showing the relative enrichment levels (median log2 fold change of ChIP-seq signal (RPKM+ 1) over input signal
(RPKM+ 1)) at SE subregions in ESCs for TFs, co-regulators and chromatin accessibility (ATAC-seq). d Heatmap showing relative enrichment levels
(calculated as in c) at SE subregions in ESCs for ESRRB, SOX2 and STAT3-independent ChIP-exo datasets. Enrichment scores for each feature are scaled by
dividing by the mean enrichment score for that feature across all subregions. See Supplementary Data 1 for dataset accession numbers. e Expression
changes (RT-qPCR) relative to control ESCs of selected class I (Oct4, Smarcad1, Otx2, Lefty1, Klf13, Med13l, Tet1 and Nanog) and class II (Tfcp2l1, Klf2,
Klf4, Klf5, Tdh, Tbx3, Tet2 and Esrrb) SE-associated genes in Esrrb-depleted (−/−) and Nanog−/− ESCs. Medians are indicated by bars. Mann–Whitney
test was used to compare class I (light green) and class II (pink) expression behaviour. f Expression changes (RT-qPCR) in WT or MutAF-2 transfected
Esrrb−/− ESCs relative to empty vector are shown for selected class I and class II SE-associated genes as in a. Data represent three independent
experiments (n= 3). g CpG methylation at different CpG positions (asterisks) within DM (magenta) and INT (grey) subregions of the Klf4-associated SE in
Esrrb−/− (blue) and control (f/f; grey) ESCs and corresponding converted EpiSCs (c-EpiSCs; red and orange, respectively), as well as in control ESCs
cultured in 2i/LIF (2i; black dashed). The profile of Esrrb−/− ESCs was not analysed in 2i/LIF due to loss of cell viability as previously reported50. Data are
means ± s.e.m. of three independent experiments (n= 3). Source data are provided as Supplementary Data 10.
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locus using circular chromosome conformation capture (4C-seq)
assays in 2i/LIF ESCs (2i) and both control (f/f) and Esrrb−/−

ESCs grown in serum/LIF (ser) with declining levels of MED1
binding (Fig. 6b). Strong interactions were detected in 2i- and
weaker interactions in ser-ESCs where cell heterogeneity is
most apparent (see Fig. 4). As anticipated, Klf4 promoter–SE
interactions were further lowered in Esrrb−/− ESCs, particularly
at DM subregions (Fig. 6b, Supplementary Fig. 8c). This was

accompanied by reduced POL2 recruitment and expression of
eRNA (Fig. 6c, d, Supplementary Fig. 8f, g), further demon-
strating decreased enhancer activity at the Klf4-associated SE.

To establish the specific dependency of MED1 occupancy on
ESRRB binding across all PU and DM subregions, ChIP-seq of
MED1 and H3K27ac as a control were performed in ESRRB-
depleted and control ESCs (this study). In line with our ChIP-
qPCR, strong loss of MED1 occupancy in Esrrb−/− cells was
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confirmed genome wide (Fig. 6e). Importantly, the degree of
MED1 loss correlated significantly with ESRRB occupancy levels
in WT ESCs, particularly at DM subregions (PCC=−0.51, p=
4 × 10−33). In contrast, ESRRB depletion did not significantly
affect the H3K27ac levels of PU and DM subregions. As MED1
can be recruited by multiple TFs54,55, the relationship between
ESRRB occupancy and MED1 loss was also examined in the
context of OCT4 binding as control. Using a linear regression
model (see Methods section; Supplementary Data 9), we found no
significant association between OCT4 binding scores in ESCs and
the loss of MED1 upon ESRRB depletion (Student’s t-test, p=
0.27), highlighting the specificity of ESRRB–MED1 association in
our model system.

Collectively, our results dissect SEs into ESRRB-dependent
(DM) subregions that most specifically regulate ESC-specific
pluripotency genes and become decommissioned in the primed
state. These SE subregions are highly bound by ESRRB in
naive ESCs and display strong loss of MED1 occupancy and
enhancer activity in ESRRB-depleted cells concomitant with the
acquisition of CpG methylation (e.g., Klf4). In contrast, PU
subregions retain MED1 occupancy in ESRRB-depleted cells.
These regions are associated with genes that maintain or even
gain expression in primed pluripotency (e.g., Lefty1, Fig. 6f, left
panel). Lastly, partial decommissioning of SEs that contain both
PU and DM subregions explains the lowered but not completely
lost expression of some pluripotency genes during early
embryonic development (e.g., Spry4, Fig. 6f, right panel).

Discussion
SEs are defined as clusters of enhancer units located within large
domains of H3K27ac deposition and cell-type-specific TF bind-
ing. How these domains are organised and to which extent
enhancer units within SEs are functionally equivalent is still the
matter of debate44,56–60. In our study, we delved into these
questions in the context of ESCs, particularly at the earliest steps
of differentiation where the exit from naive pluripotency is
regulated. Under serum/LIF conditions, we show that enhancer
units within SEs are linked together by methylated interstices
(INT), as previously suggested61. The focal unmethylated sub-
regions of SEs coincide with the binding of TFs and co-regulators
(e.g., MED1 and POL2) where SE–promoter interactions pre-
ferentially assemble, in agreement with the concept of hub
enhancers62. Moreover, we find that the prevalence of chromatin
interactions and eRNA transcription at unmethylated over
methylated regions is conserved under 2i/LIF conditions, which
enforce a globally hypomethylated state in ESCs (Supplementary

Figs. 3h–j and 8d). This suggests that the organisation of SEs is
largely imposed by cell-type-specific TFs, most likely counter-
acting CpG methylation at binding sites under permissive
conditions14,63–66. Unexpectedly, however, we uncover pro-
nounced differences in the dynamics of CpG methylation and
chromatin configurations amongst SE enhancer units as unveiled
at the onset of ESC differentiation. Functionally, we show that
enhancer units within SEs partition into two subtypes (i.e., PU
and DM) that follow independent fates during the naive-to-
primed pluripotency transition. While PU subregions remain
hypomethylated, highly accessible and hotspots of protein bind-
ing in ESCs and EpiSCs, DM subregions are targeted by de novo
methylation and loose their enhancer signatures (e.g., OCT4
binding, H3K27ac and ATAC-seq signals) in the primed cells.
Hence, while PU and DM enhancer units are both engaged in
ESCs, they become constitutively active (PU) or decommissioned
(DM) in EpiSCs, as further established in the peri-implantation
epiblast in vivo.

Remarkably, we find that PU subregions are not detected
across all ESC SEs and most specifically regulate the expression of
a core set of genes shared by naive and primed cells. This evokes a
pivotal role for PU subregions in the upholding of pluripotency
during this key developmental transition. Of interest, hotspots of
TF binding were also reported within lineage-specific SEs with a
prevalent role at the onset of progenitor differentiation67,68. Thus,
PU-like subregions might similarly operate in other cell state
transitions at different stages of development. Whether PU sub-
regions mapped in pluripotent cells are subsequently inactivated
upon gastrulation, as suggested by their methylated profiles in
somatic cells (Supplementary Fig. 4g), and what are the molecular
pathways protecting their activity prior to lineage specification
are still to be fully delineated. Of relevance, previous studies
suggest that selective naive enhancers transiently escape decom-
missioning via the binding of distinct TFs whose expression is
regionalised during the patterning of the epiblast69,70. Conversely,
we observe that a large number of germ-layer-associated TF
motifs (e.g., HOX, IRX, NKX, OLIG, PAX and SOX) are enriched
within INT (methylated) regions of SEs, pointing to the presence
of “latent” lineage-specific enhancer units (or seed enhancers10).
While these putative enhancer units are most likely inactive in
pluripotent cells, they might become unveiled in a tissue-specific
manner upon CpG demethylation in due course of development.

In contrast to PUs, we show that DM subregions are demarcated
by a high-level of ESRRB binding. Concurringly, ESRRB’s cognate
binding motif is strongly enriched at DM relative to PU subregions
in contrast to other pluripotency TF motifs. Functionally, we
establish that DM enhancer units regulate the expression of pre-

Fig. 6 Destabilised enhancer activity at DM subregions upon depletion of ESRRB in ESCs. a ChIP-qPCR for OCT4, P300 and MED1 at indicated sites
(arrowheads) along the Klf4-associated SE in Esrrb−/− and control (f/f) ESCs. Data are expressed as fold enrichment over input and normalised to a
flanking control (C) region. Data are represented as means (bar plots) and individual values (dots) of independent experiments (n= 3 for OCT4 and P300;
n= 4 for MED1). *Statistically significant difference (Mann–Whitney test, p < 0.05). b Top: ATAC-seq in serum/LIF (ser), MED1 in 2i/LIF (2i) and ESRRB in
serum/LIF (ser) (Supplementary Data 1) along with MED1 and H3K27ac in control (serf/f) and Esrrb−/− ESCs grown in serum/LIF (ser−/−) at the Klf4
locus. Y-axis indicates RPKM and starts at 0; bottom: 4C-seq interactions between the Klf4 promoter viewpoint (blue band) and SE in control ESCs grown
in 2i/LIF (2if/f) or in serum/LIF (serf/f), and in serum/LIF Esrrb−/− ESCs (ser−/−). Y-axis indicates RPKM and starts at 0. The bottom two tracks show the
4C-seq interaction fold changes (log2) in 2if/f and ser−/− compared to serf/f in bins of 5 kb. Promoter–SE interactions at the ESRRB/MED1 occupied DM
regions (yellow bands) are significantly stronger in 2i and weaker in ser−/−. *p < 0.05, **p < 0.01; DEseq2; (n= 3 independent experiments). c ChIP-qPCR
for POL2 at the same sites as in a in Esrrb−/− and Esrrbf/f ESCs. Data are expressed as fold enrichment over input and normalised to control (C) region.
Data are represented as means and individual values of independent experiments (n= 4). Statistically significant difference (Mann–Whitney U test, *p <
0.05). d Expression of eRNA at the same sites as in a in Esrrb−/− and Esrrbf/f ESCs. Data are normalised to control (C) region and are represented as
means and individual values of biological replicates; (n= 2 for Esrrb−/−; n= 3 for Esrrbf/f). *Statistically significant difference (Mann–Whitney test, p <
0.05). e MED1 and H3K27ac occupancy changes in Esrrb−/− (ser−/−) compared to control (serf/f) ESCs. PCC, Pearson’s correlation coefficient; (n= 2
independent experiments). f ChIP-seq tracks of MED1 and H3K27ac in Esrrb−/− (ser−/−) and control (serf/f) ESCs, as well as ESRRB and ATAC at Lefty1
and Spry4 -associated SEs. Source data are provided as Supplementary Data 10.
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implantation gene modules, and are uniquely sensitive to the loss of
ESRRB that underlies or triggers the exit from naive
pluripotency48,50. Focussing on the Klf4-associated (DM-contain-
ing) SE as a model locus, we demonstrate that ESRRB depletion in
ESCs is sufficient to impede the loading of the mediator complexes
at Klf4-associated SE, reduces the expression of its target gene, and
promotes CpG methylation at DM subregions. This might involve
methylation spreading from DNMT3B highly bound INT regions
owing to the processive activity of DNMT3B enzymes66,71. ESRRB-
dependent MED1 recruitment is further confirmed across all SEs
genome wide, particularly at DM subregions, and is essential
for maximal transcriptional activation by promoting class II
SE–promoter interactions. Accordingly, we find that chromatin
interactions at the Klf4 locus are destabilised upon ESRRB depletion,
concomitant with a reduction in POL2 recruitment and eRNA
production. These findings corroborate knowledge of nuclear
receptor-mediated gene activation mechanisms72–74, and further-
more are supported by the ability of ESRRB to interact with med-
iator and POL2 complexes in ESCs46,49,51. Given the importance of
ESRRB in stabilising the recruitment of these complexes, possibly
via its co-activator NCOA3, it will be of interest to study the role of
ESRRB-NCOA3 in the formation of phase-separated condensates
recently identified as key activation domains, particularly at SEs54,55.

Another most interesting feature of DM subregions is their
varying levels of CpG methylation as revealed in individual ESCs.
While both methylase and demethylase enzymes are co-recruited
to DM subregions, we show that DNMT3s rather than TET
activities drive methylation variance at SEs. Besides DNMT3s, we
reveal that cell-to-cell DM epigenetic heterogeneity closely
associates with the variable expression of Esrrb, which in turn is

under the control of a DM-containing (class II) SE and dyna-
mically methylated in cells initiating differentiation (see Fig. 4c
and ref. 48). Given ESRRB’s ability to access ERRE binding sites
within methylated regions75 and inhibit de novo CpG methyla-
tion upon binding (this study), we propose that a balance between
DNMT3s and ESRRB activities instigates a metastable state at
DM subregions prone for decommissioning upon exit from naive
pluripotency (Fig. 7). This metastable state is thought to be
resolved upon Esrrb silencing and subsequent consolidation of
CpG methylation at these sites, facilitating the dismantling of the
pre-implantation transcriptional programme as pluripotency is
safeguarded post-implantation. In line with this model, depletion
of DNMT3s is known to delay Esrrb extinction and the exit from
naive ESC pluripotency (ref. 76 and our unpublished observa-
tions). It is worth noting that the action of ESRRB is not restricted
to SEs but most likely extends to a subpopulation of TEs that
are targeted by hypermethylation in EpiSCs and similarly sensi-
tive to the loss of ESRRB in ESCs (Supplementary Fig. 9). Thus,
our study highlights the pivotal role of ESRRB in regulating
and partitioning naive enhancers during pluripotency state
transitions50,75, and furthermore offers mechanistic insights into
the nature of the molecular events that follow the loss of ESRRB
during early development.

Methods
Datasets. Gene Expression Omnibus accession numbers for the sequencing data
generated in this paper are GSE124476 (BS-seq in EpiSCs), superseries GSE139189
(MED1, H3K27ac ChIP-seq and 4C-seq in Esrrb−/− and control ESCs). All other
publicly available datasets used are specified in Supplementary Data 1. The mm9
reference mouse genome was used for our study.
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Fig. 7 Proposed model depicting the role of ESRRB at SEs in pluripotent stem cells. In naive pluripotent cells, the dynamic expression and binding of the
nuclear receptor ESRRB instigates a metastable state at DM subregions (magenta) by counteracting DNMT3s activities as reflected in cell-to-cell CpG
methylation heterogeneity. In contrast, PU subregions (green) consist of hotspots of core and naive pluripotency TF binding and remain stably
unmethylated. Upon ESRRB depletion and/or during the establishment of primed pluripotency, DM subregions are rapidly and selectively destabilised with
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subregions remain unmethylated and highly bound by core and primed pluripotency TFs, indicative of their continued enhancer activity. The partitioning of
enhancer units within SEs as constitutively active (PU) or decommissioned (DM) proposes a mechanism by which the pluripotency transcriptional
programme can be partially reset during the naive-to-primed transition, preserving pluripotency as cells prepare for subsequent differentiation. Core
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complexes (MED), DNMT and TET enzymes.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14916-7

12 NATURE COMMUNICATIONS |         (2020) 11:1112 | https://doi.org/10.1038/s41467-020-14916-7 | www.nature.com/naturecommunications

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124476
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139189
www.nature.com/naturecommunications


Cell culture. Mouse ESCs were routinely cultured on 0.1% gelatin coated plates and
maintained in Glascow Minimum Essential Medium (GMEM) media supplemented
with 10% fetal bovine serum (serum), MEM non-essential amino acids, beta-mer-
captoethanol, L-glutamine, sodium pyruvate, sodium bicarbonate, penicillin/strep-
tomycin, LIF (prepared in-house) and the appropriate drug selection (serum/LIF
conditions). Where mentioned, ESCs were adapted into serum-free culture condi-
tions using either N2B27 or chemically defined medium (CDM77) supplemented
with 1 μM PD0325901, 3 μMCHIR99021 and LIF (2i/LIF conditions). c-EpiSCs and
embryo-derived EpiSCs were cultured in N2B27 (ref. 26) or CDM25, respectively,
both supplemented with 20 ng/mL activin A and 12 ng/mL fibroblast growth factor
2 (FGF2). Mouse Esrrb−/− ESCs45, Nanog−/− ESCs28 and matching control
populations have been previously described. Ncoa3−/− and control ESCs were
derived from mutant and WT B6/129 mice and kindly provided by Austin Cooney.
For the generation of rescued Esrrb−/− ESCs, cDNA encoding Esrrb WT or AF-2
point-mutant46 form was cloned into the pPyCAGIP vector, and one million of cells
transfected with Lipofectamine 2000 and 2 μg of either of these two vectors or an
empty vector (control). Twenty-four hour post-transfection 1 μg/mL puromycin
was added for selection and after 8–10 days of culture individual ESC clones were
isolated and expanded indefinitely under selection.

Conversion of ESCs into EpiSCs. R1-ESCs (ATCC) used for conversion were
cultured in 2i/LIF or serum/LIF. To induce conversion into the primed EpiSC state,
ESCs were trypsinized and replated into CDM supplemented with FGF2 (12 ng/ml)
and activin A (20 ng/ml), on serum-coated cultures plates27. Passage was per-
formed after 4–5 days using collagenase II treatment. Cells were considered as
stably converted (c-EpiSCs) after at least three passages in the presence of FGF2
and activin A.

RT-qPCR. Total RNA was isolated and DNaseI-treated using the RNeasy mini kit
(Qiagen). For eRNA detection, total RNA was isolated using Trizol (Invitrogen)
and DNAse-treated was performed on purified RNA using TURBO DNA-fre Kit
(Invitrogen). Samples were reverse-transcribed using SuperScript III (Invitrogen)
and random primers following the manufacturer’s instructions. For quantification,
cDNA (or DNA) samples were amplified with SYBR Green PCR Mastermix (Sigma
or Applied Biosystems), using a StepOne™ System (Applied Biosystems). Data were
normalised using the geometric mean of Sdha and Pbgd for conversion experi-
ments or S17, L19 and Gapdh for mutant, and matching control ESCs. Pri-
mers used in RT-qPCR assays are listed in Supplementary Data 6.

Chromatin immunoprecipitation. ChIP was performed as previously described78

with minor modifications outlined below. Chromatin was fixed with 1% for-
maldehyde (Sigma-Aldrich) for 10 min and sonicated on a bioruptor (Diagenode)
to produce fragments of 100–500 bp, and ChIPs performed with Protein G-coupled
magnetic Dynabeads (Invitrogen) and the following antibodies: 8 µg MED1 (A300-
793A Bethyl Laboratories), 5 µg OCT4 (sc-8628 SantaCruz), 5 µg p300 (sc-585
SantaCruz), 5 µg POL2 (Clone 8WG16 MMS-126R, Covance) and 5 µg H3K27ac
(Ab4729 Abcam). The amounts of chromatin (protein) used in each ChIP were as
follows: 400 µg (OCT4), 500 µg (P300), 500 µg (H3K27ac) and 800 µg (MED1 and
POL2). Following washes of bound DNA–protein complexes, DNA was eluted in
1% sodium dodecyl sulfate (SDS) and treated with 40 ng/µl RNaseA following
0.2 µg/µl Proteinase K. After phenol/chloroform purification, DNA was then pre-
cipitated at −20 °C with 20–30 μg GlycoBlue carrier (Invitrogen), 1/10 volume of
3M NaAc and 2 volumes of 100% ethanol. Resuspended pellets were used for
qPCR or for generation of libraries for sequencing (MED1 and H3K27ac).
Sequencing libraries were prepared using the NEBNext® Ultra™ DNA Library Prep
Kit and Multiplex Oligos (New England Biolabs) from 5 ng of DNA. Following
analysis on an Agilent Bioanalyzer libraries were pooled and sequenced on an
Illumina Genome Analyzer II (Illumina). Quality of the sequenced reads was
assessed using the FASTQC program (Babraham Bioinformatics). Primers used in
ChIP-qPCR assays are listed in Supplementary Data 6.

5mC Analysis by restriction enzyme digestion. Genomic DNA was extracted
using the DNeasy kit (Qiagen). A total of 1 µg of eluted DNA was diluted in 17 µl of
20% TE buffer. For each set of enzyme reaction, 2 µl of appropriate restriction
enzyme buffer was added to the diluted DNA. A volume of 9.5 µl of the mixture
was then transferred to a separate tube, serving as undigested control. A volume of
0.5 µl (5U) of enzymes was added to the remaining DNA mixture. Both digestion
reactions and undigested control were incubated overnight in 37 °C incubator. A
volume of 95 µl of 20% TE buffer was then added to both digested and undigested
samples, which were then proceeded with qPCR analysis. Enzymes (methylation
sensitive) used in this study are BsaAI, Ssil, HpaII and Hin6I, and qPCR primer
sequences are listed in Supplementary Data 6.

Western blots. Cells were lysed for 30 min on ice into RIPA buffer (150 mM NaCl,
1% NP-40, 0.5% NaDeoxycholate, 0.1% SDS, 50 mM Tris-HCl pH8.0) in the
presence of protease and phosphatase inhibitors (Pierce). Proteins were quantified
using BCA assay (Pierce). A total of 10–15 µg of proteins were charged on pre-cast
polyacrylamide gel 4–15% (Biorad) for 1 h run at 100 V. Transfer was then
performed on Trans-Blot Turbo (Biorad) for 7 min on a PVDF membrane

(Hybond-P, GE Healthcare). After blocking in TBS-Tween20 0.01% (TBS-T) with
either 4% non-fatty milk or 5% BSA, membranes were incubated overnight at 4 °C
with primary antibodies. After washes in TBS-T, membranes were incubated with
secondary antibodies for 1 h, washed and revealed with ECL2 western blotting
substrate (Pierce). Chemiluminescent signals were captured using Chemidoc
Touch imaging system (Biorad) and then analysed with ImageJ (imagej.nih.gov/ij).
Signals were normalised to H3 or Actin. Western blots were repeated at least three
times. Antibodies used were: ESRRB (R&D H6705; 1:1000), NCOA3 (SantaCruz
Sc9119; 1:1000), NANOG (Abcam, 80892; 1:1000), ACTIN (Sigma, A5441; 1:5000)
and H3 (Abcam ab1791; 1:10,000). Uncropped and unprocessed scans of blots are
included in Supplementary Data 10.

4C-sequencing. Esrrbf/f and Esrrb−/− ESCs were cultured in serum/LIF or 2i/LIF
(control cells only), and three biological replicates were employed per condition.
4C-seq experiments were performed as previously50 with minor modifications.
Briefly, 10 million cells were crosslinked for 13 min with 2% paraformaldehyde in
ESC culture medium, quenched with glycine and lysed in 15 ml lysis buffer (10 mM
Tris pH 7.5, 10 mM NaCl, 0.2% NP-40, 1× protease inhibitors) for 30 min at 4 °C.
Nuclei were then incubated with 0.25% SDS for 30 min in NEB buffer3 followed by
Triton X-100 treatment for 30 min, both at 37 °C. Nuclei were then digested with
700 U DpnII enzyme (NEB) overnight at 37 °C. The enzyme was inactivated at
65 °C for 15 min followed by “in nuclei” ligation at 16 °C with 2000 U T4 ligase
(NEB). Samples were then treated with protease K and RNAseA, and DNA was
purified by phenol–chloroform (Sigma). DNA was further digested with 50 U BfaI,
and purified with QIAquick PCR purification columns followed by a second
ligation at 16 °C. Next, 1000 ng of 4C-seq library was amplified with bait-specific
inverse primers50 and using the Expand Long template PCR system (Roche
11759060001) for 28 PCR cycles. PCR products were then purified and 50 ng DNA
was used for library preparation using KAPA Hyperprep kit (Roche) and five PCR
cycles. Libraries were sequenced on the Illumina NextSeq 500 (Illumina) to obtain
paired-end sequences of 50 bp.

In silico analysis of CpG methylation data. For each WGBS sample, CpG
information have been filtered to keep only those for which we had a sufficient
coverage of at least 7 reads (apart from GSM1904118 and GSM1904112 datasets).
HMM analysis has been applied on each chromosome independently. Genome was
split in segments containing CpGs spaced by <1 kb. Segments containing <10 CpGs
have been filtered out. Parameters of HMM analysis on the remaining CpGs were
initialised using viterbiEM function of tileHMM R-package; CpGs were considered
to be in two different states: methylated or unmethylated. Corresponding HMM
model has been applied for CpGs states call on the whole chromosome. Then, in
ESC (serum/LIF) and EpiSC samples independently, segments of SEs containing at
least four consecutive unmethylated CpGs were collected (with a coverage of at
least 7 reads and distant of <1 kb). Intersection of EpiSC and ESC unmethylated
segments were defined as PU regions. Segments containing at least four consecutive
CpGs that were unmethylated in ESCs and methylated in EpiSCs were defined as
DM regions. Segments of SE regions located between PU and DM segments were
defined as INT segments. Coordinates and CpG methylation information on the
different samples (in vitro and in vivo) can be found in Supplementary Data 3. In
Figs. 1a and 2a, CpG methylation is presented on a −1 to 1 scale, in order to
visualise their unmethylated (negative values) or methylated (positive values) state
as determined by HMM. The height of the bar indicates the percentage of
methylation within reads covering each CpG, with positive values representing the
extent of methylation, and negative values, the extent of demethylation (−1 +%
methylation).

ChIP-seq data processing and analysis at SE subregions. All ChIP-seq datasets
were processed from raw reads (Fastq files) to filtered, mapped and deduplicated
reads (bam files) through a standardised pipeline. This pipeline involves: adaptor
removal, low-quality read trimming and filtering using Trimmomatic; alignment to
mm9 reference genome with Bowtie2; duplicate read marking and removal with
Picard Tools. ChIP-seq coverage plots were produced as follows (assuming the total
read count has been calculated at base-pair resolution for a set of mapped reads,
scaled by sequencing library depth and normalised to scaled coverage from input
DNA library): for each of a set of genomic regions of interest, the region is split into
a fixed number (1000) of windows of equal width, and the average coverage across
each window is computed; the average of each window’s coverage is then computed
across all regions of interest.

ATAC-seq data processing and accessibility analysis. Chromatin accessibility
measured by ATAC-seq in ESCs grown in 2i/LIF (2i), serum/LIF (ser), and
in EpiSCs was downloaded from published data (Supplementary Data 1) and
mapped with Bowtie2. Low-quality mapping reads (MAPQ < 10) and duplicated
reads were omitted for further analysis. ATAC-seq peaks were called with MACS2
version 2.1.1.20160309, with a q-value threshold of 0.01 and using whole cell
extract (WCE) (input) as control. The number of ATAC-seq peaks intersecting SE
subregions in 2i-ESCs, ser-ESCs or EpiSCs was computed using the summar-
izeOverlaps function from the GenomicRanges R-package. When multiple SE
subregions overlapped the same ATAC-seq region, the SE subregion with highest
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overlap was assigned. The average chromatin accessibility level per SE subregion
was computed with the featureCounts function in the Rsubread package and
normalised to RPKM after subtracting the read counts from the WCE (input) data.
Data are shown in Supplementary Data 3.

RNA-seq analysis. Gene expression values (average RPKM of at least two repli-
cates) were taken from publicly available RNA-seq datasets (Supplementary
Data 1). Genes with an expression value of 1 RPKM or more in ESCs grown in
serum/LIF (n= 11,087) were considered expressed.

Promoters of closest expressed genes. Promoters were defined as the 5 kb
window surrounding an annotated transcription start site. Gencode GRCm37
(version M1) gene annotation was used. The distance from a SE to the promoter of
the closest expressed gene was determined with the “distanceToNearest” function in
the R-package GenomicRanges Only promoters of known genes were considered.

4C-seq data analysis. 4C forward or reverse PCR primers from paired-end
sequenced FASTQ files were trimmed with cutadapt allowing a 10% mismatch:
cutadapt -g [primer_seq] -O [primer_length −2] -e 0.1 --discard-untrimmed.
Trimmed reads were mapped to the mm9 reference genome using Bowtie2 with the
option “very-sensitive” in single-end mode. Low-quality reads (MAPQ < 10) were
discarded. The FourCSeq package was used to map reads from the forward and
reverse PCR primer to valid restriction sites. Reads were normalised compared with
DESeq2 discarding reads that mapped in trans. For visualisation, counts were
smoothed using a running mean with k= 7 bins. Differential analysis was done by
DEseq2 using the local dispersion fit, after summing read counts in bins of 5 kb
surrounding the viewpoint (up to 1Mb up- and downstream). Bins with coverage
<1000 RPKM were discarded for differential analysis. Data are shown in Supple-
mentary Data 7.

Capture Hi–C analysis. High-resolution capture Hi–C (CHiC) studies (Supple-
mentary Data 2) were used to map significant promoter–SE interactions in ESCs
grown under serum/LIF (ser) or 2i/LIF (2i). Data from Joshi et al. were previously
mapped with BWA MEM to the GRCm37 (mm9) reference genome. The other
datasets were mapped with HiCUP. For all datasets, PCR duplicates, read pairs
mapping to the same restriction fragment (self-ligation) and pairs with low map-
ping quality (MAPQ < 10) were removed. For the DpnII data (Joshi)15 and NcoI
data (Sahlen)16, four consecutive restriction fragments were merged into a pseudo-
fragment to increase the read count and confidence per called interaction. We
used the CHICAGO pipeline for CHiC17 to call significant interactions between
these pseudo-fragments in the ser-ESC or 2i-ESC state with a default threshold
(score >= 5). Additionally, interactions with coverage of <5 reads (geometric mean
of the replicates) were discarded. CHICAGO takes the geometric mean of the
pairwise interactions counts when multiple replicates are available. The much
lower library depth of the second replicate (Supplementary Data 2) causes lower
read counts on average and a much smaller number of significant interactions.
Given that the CHiC libraries from Joshi et al. can be treated as independent
replicates with the same effective resolution, we decided to merge the interaction
read counts for the Sahlen replicates prior to running the CHICAGO pipeline.

CHiC library normalisation and correlation analysis. Interaction frequencies
were normalised using DESeq2. Because CHiC is based on proximity ligation, loci
in close proximity of the capture bait have higher read counts and more variance
compared to more distal loci. To mitigate this effect, we applied the DESEq2
normalisation in four distance categories: (<25 kb, 25–100 kb, 100–300 kb and
>300 kb) following an approach we used earlier50. Next, we computed the pairwise
Spearman correlation coefficient between the promoter–SE/promoter–SE sub-
regions interactions in library X and library Y.

Promoter–subregion interaction frequency at SE subregions. CHiC interaction
frequency between promoters and SE subregions was computed at the native 1
restriction fragment resolution (DpnII or NcoI) for all promoter–SE pairs that had
a significant interaction. SE subregions smaller than 500 bp were discarded since
they often have too few overlapping restriction fragments to enable a robust
analysis. Statistical differences per subregion class (PU, DM and INT) were
assessed by a linear regression model that accounts for the two major confounders:
the number of capture baits per subregion and the promoter–subregion distance
(log2).

Predicting expression changes using BS-seq and capture Hi–C. We hypothe-
sised that changes in CpG methylation would mostly affect the gene expression of
the strongest interacting promoters (Fig. 3a). In other words, expected gene
expression changes are a function of the CpG methylation change from ESCs
(serum/LIF) to EpiSCs, as well as the CHiC interaction strength (and its changes).
Therefore, we estimated the expected expression change ΔX= log2(normalised
CHi–C reads) × (%CpG ESC−%CpG EpiSC). The analysis was restricted to PU
and DM SE subregions.

TF motif analysis. We used Gimme motifs to find TF motifs that are statistically
enriched in the PU, DM or INT SE subregions. Since the SE subregions are
typically quite broad, we partitioned each SE subregion into equally spaced regions
with a length of 291 bp; the median length of the ATAC-seq peaks. To determine a
threshold for TF motif presence/absence, 50,000 regions of 291 bp were randomly
sampled from the genome. For each motif, the 99% was used as a cut-off, leading to
an empirical false discovery rate of 0.01 (gimme threshold). Next, we counted
the number of present motifs in the PU, DM and INT subregions of SEs relative to
the union of the regions and applied a hypergeometric test. p-Values were adjusted
for multiple testing using Benjamini–Hochberg correction.

sc-BS-seq and RNA-seq processing. Processed scM&Tseq data30 were obtained
from the Gene Expression Omnibus (accession GSE74534). Segments of SE regions
were mapped to mm9 coordinates using UCSC liftOver tool (https://genome.ucsc.
edu/cgi-bin/hgLiftOver). For each SE subregion type (PU, DM and INT), mCpG/
total-CpG ratio was computed from all reads mapping to any CpG site within an
SE segment of the corresponding type. Complete linkage hierarchical clustering
was performed on all available ESCs, using the squared differences between the
total DM mCpG/total-CpG averages of each cell. This clustering was used to define
two clusters of ESCs: one cluster included all 2i-ESCs and a subset of the serum-
ESCs (which we defined as “naive-like” ESCs); the other cluster contained only
serum-ESCs (which we defined as “primed-like” ESCs). Differential gene expres-
sion analysis was performed using Limma to compute empirical Bayes moderated
t-statistics from linear models fitted to RNA-seq read counts for serum-ESCs by the
DM methylation cluster to which the corresponding cell had been assigned. DNA
methylation profiles (Fig. 4c, Supplementary Fig. 6b) were created using Loess
smoothing of estimated methylation at each CpG locus. For any given ESC
treatment condition, the variance in CpG methylation level for each individual cell
analysed of that condition was computed among all different SE subregions. The
distributions of these methylation variances are shown as box plots (Fig. 4e,
Supplementary Fig. 6a).

Evaluation of ESC classification (ROC curves). sc-RNA-seq read counts for each
mapped gene were normalised by median centring and scaling to a standard
deviation of 1. ROC curves were prepared by plotting sensitivity against 1-
specificity. In this context, sensitivity is the proportion of all “naive-like” cells
among the top-ranking n according to the signature of interest; 1-specificity is the
proportion of all non “naive-like” cells among the top-ranking n according to
the signature of interest. A signature score is either the normalised read count in
the given cell for a single gene, or the mean of normalised read counts of a set of
genes in the given cell. AUC was computed through numeric integration of the
corresponding ROC curve.

Predicting DM/PU status based on epigenetic features. To evaluate predictive
power of epigenetic features to classify SE subregions as PU or DM, logistic
regression models were fitted with region class as a binary outcome (DM vs PU)
and each of a set of features as quantitative predictor variables: average ChIP-seq
enrichment for TET1, DNMT3A/B, H3K4me1, H3K4me3, H3K27ac, average
ATAC-seq signals in serum/LIF ESCs and CpG density. Models were fitted using
the generalised linear model function implementation ‘glm’ in R. Model coefficient
estimates, standard errors, t-statistics and corresponding p-values are provided in
Supplementary Data 8. Positive coefficient estimates imply subregions with
increased values for the corresponding feature have increased probability of being
classed as DM (as opposed to PU).

Impact of OCT4 binding on ESRRB–MED1 relationship. MACS2 was applied to
call peaks from serum/LIF ESC OCT4 ChIP-seq study analysed for Fig. 3e. SE
subregions were assigned an OCT4 binding score using average log(ChIP/control)
enrichment for any peaks overlapping the SE subregion, or assigned a score of 0 if
no peaks overlapped. A linear regression model was fitted to log2 fold change of
MED1 ChIP-seq enrichment in Esrrb−/− relative to Esrrbfl/fl ESCs as a quantitative
outcome variable, with serum/LIF ESC ESRRB ChIP enrichment, subregion class
(DM vs PU) and OCT4 binding score as predictor variables. Model coefficients,
t-statistics and p-values were obtained from the fitted linear model using the
‘summary.lm’ function in R, and are provided in Supplementary Data 9. Negative
coefficient estimates imply SE subregions with higher values for the corresponding
feature show a greater decrease in MED1 DNA-binding signal following ESRRB
depletion.

Visualisation of genomic data. ATAC-seq and ChIP-seq bigwig tracks were
prepared using deeptools “bamCoverage”, with parameters “binsize”= 10, “nor-
malizedUsing”= RPKM and “extendReads”= 200 (or fragment size in the case of
paired-end sequencing). Tracks where visualised on the Washu epigenome
browser.

Data representation. Box plots: Centre lines show the medians; box limits indicate
the 25th and 75th percentiles as determined by R software; whiskers extend
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1.5 times the interquartile range from the 25th and 75th percentiles, outliers are
represented by dots.

Violin plots: White dots show the medians; box limits indicate the 25th and 75th
percentiles as determined by R software; whiskers extend 1.5 times the interquartile
range from the 25th and 75th percentiles; polygons represent density estimates of
data and extend to extreme values.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
New datasets generated in this study has been deposited in GEO: WGBS in EpiSCs
(GSE124476), H3K27ac, MED1 ChIP-seq and 4C-seq in Esrrb−/− and control (f/f) ESCs
(superseries GSE139189). The source data underlying Fig. 3d and Supplementary Fig. 5a,
c, e, f; Supplementary Fig. 7e, g, h; Fig. 5g; Fig. 6a and Supplementary Fig. 8b; Fig. 6c and
Supplementary Fig. 8f; Fig. 6d and Supplementary Fig. 8g; Supplementary Fig. 7b, d, c, f;
Supplementary Fig. 8c are provided as Supplementary Data 10.

Code availability
Codes are available at https://github.com/edcurry/esc-se-regions.
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