
HAL Id: hal-02508132
https://hal.science/hal-02508132v1

Submitted on 13 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solvability in weighted Lebesgue spaces of the
divergence equation with measure data

Laurent Moonens, Emmanuel Russ

To cite this version:
Laurent Moonens, Emmanuel Russ. Solvability in weighted Lebesgue spaces of the divergence equation
with measure data. Studia Mathematica, 2021, 259 (3), pp.305-326. �10.4064/sm200313-16-9�. �hal-
02508132�

https://hal.science/hal-02508132v1
https://hal.archives-ouvertes.fr


SOLVABILITY IN WEIGHTED LEBESGUE SPACES

OF THE DIVERGENCE EQUATION WITH MEASURE DATA

LAURENT MOONENS AND EMMANUEL RUSS

Abstract. In the following paper, one studies, given a bounded, connected open set
Ω ⊆ R

n, κ > 0, a positive Radon measure µ0 in Ω and a (signed) Radon measure µ on
Ω satisfying µ(Ω) = 0 and |µ| 6 κµ0, the possibility of solving the equation div u = µ

by a vector field u satisfying |u| . κw on Ω (where w is an integrable weight only
related to the geometry of Ω and to µ0), together with a mild boundary condition.

This extends results obtained in [4] for the equation div u = f , improving them on
two aspects: one works here with the divergence equation with measure data, and also
construct a weight w that relies in a softer way on the geometry of Ω, improving its
behavior (and hence the a priori behavior of the solution we construct) substantially
in some instances.

The method used in this paper follows a constructive approach of Bogovskii type.

Introduction

Let Ω ⊂ R
n be an arbitrary bounded connected open subset. We are interested in the

following question, stated here in a rather vague fashion: given a signed Radon measure
µ on Ω with µ(Ω) = 0, does there exist a vector field u in a weighted L∞ space on Ω
solving the boundary value problem:

{

div u = µ in Ω,
u · ν = 0 on ∂Ω,

(1)

where the boundary condition for u means at least that, for all ϕ ∈ C∞(Rn) having
compact support in R

n (and hence allowed to be nonzero on and around the boundary
of Ω), one has:

∫

Ω

u(x) · ∇ϕ(x)dx = −

∫

Ω

ϕ(x)dµ(x)?

When dµ(x) = f(x)dx, where f ∈ L∞(Ω) has zero integral, this question, which was
widely studied when f ∈ Lp(Ω) with 1 < p < +∞ and Ω is smooth (see, for instance,
[3, Section 7] for the construction of a solution in W 1,p

0 (Ω)), was previously addressed
for arbitrary domains by Duran, Muschietti, Tchamitchian and the second author [4].
They characterized the bounded domains Ω with the following property: there exists
an integrable weight w > 0 in Ω such that, for all f ∈ L∞(Ω) with

∫

Ω
f(x)dx = 0, one

can find a measurable vector field u : Ω → R
n such that |u(x)| . w(x) for almost every

x ∈ Ω, solving
{

div u = f in Ω,
u · ν = 0 on ∂Ω,

(2)

1
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in the sense that:
∫

Ω

u(x) · ∇ϕ(x)dx = −

∫

Ω

f(x)ϕ(x)dx (3)

for all ϕ ∈ L1(Ω) weakly differentiable and such that w∇ϕ ∈ L1(Ω). Namely, they
proved (see [4, Theorem 2.1]) that the bounded domains Ω meeting this property are
precisely the ones for which the geodesic distance to a fixed point in Ω is integrable in
Ω, and can also be described as the ones supporting a weighted L1 Poincaré inequality.

We shall exhibit an example where the weight w is unbounded in Ω, but where it
is still possible to construct a bounded solution u of (1) where the boundary condition
means at least that (3) holds for any test function ϕ ∈ C∞(Rn) with compact support
in R

n — hence allowed to be nonzero on, and around, ∂Ω. In some situations, this can
be achieved by working in an open measurable cover of Ω, e.g. in an open set Ω̂ ⊇ Ω
having the same Lebesgue measure as Ω — see Example 2.3 below.
In the present paper, we improve the results of [4] replacing, in the right hand side of (2),
the function f by a general signed Radon measure µ on Ω satisfying µ(Ω) = 0 — which,
for some choices of µ0, forces the weight w to be unbounded for some solution to exist
in L∞

1/w(Ω,R
n), even when Ω is smooth (see [Remark 1.4, (ii)]). On the other hand, we

formulate our results in an arbitrary open cover Ω̂ of Ω satisfying |Ω̂| = |Ω| (which can
hence be Ω itself, or any open set containing Ω and contained in its essential interior
for example), which, as we already explained, can, in some instances, yield a bounded
weight (and hence a bounded solution to (2)) in Ω by choosing such a suitable cover.

Let us start by introducing more precisely the general framework of the paper, as well
as stating more accurately its main results.

1. Statements of the results

Throughout this paper, n > 1 is an integer and m stands for the Lebesgue mea-
sure in R

n. By “domain”, we mean an open connected subset of R
n. If A,B are

two nonempty subsets of Rn, d(A,B) denotes the distance between A and B, that is
d(A,B) = infx∈A, y∈B |x− y|, where |·| is the Euclidean norm. If E is a nonempty set and
A(f) and B(f) are two nonnegative quantities for all f ∈ E, the notation A(f) . B(f)
means that there exists C > 0 such that A(f) ≤ CB(f) for all f ∈ E. Finally, for all
open set U ⊂ R

n, D(U) denotes the space of C∞ functions in R
n with compact support

included in U .
Let us now state our precise results. Let Ω ⊂ R

n be a bounded domain. We choose,
once and for all, a measurable cover Ω̃ of Ω, which in our case means that one has Ω̃ ⊇ Ω
together with m(Ω̃ \ Ω) = 0 (see [6, Definition 132D]). For all x ∈ Ω̃, set:

d̃(x) := d(x,Rn \ Ω̃)

and:

Ω̂ :=
{

x ∈ Ω̃ : d̃(x) > 0
}

. (4)

Note that Ω̂ is an open subset of Rn.
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Example 1.1. For all x ∈ R
n, say that x is a point of density 1 for Ω if

lim
r→0

m(B(x, r) ∩ Ω)

m(B(x, r))
= 1.

The measure theoretic interior of Ω is defined as the set Ωe of points x ∈ R
n which have

density 1 for Ω. Note that Ω ⊂ Ωe ⊂ Ω, whereas the Lebesgue differentiation theorem
shows that one has m(Ωe \Ω) = 0. Hence Ωe is a natural choice one can think of for the
measurable cover Ω̃, but all our results hold for a general cover of Ω.

Example 1.2. Let Ω̃ be a fixed measurable cover of Ω, and define Ω̂ according to (4).

Since one has Ω ⊆ Ω̂ ⊆ Ω̃, it is clear that Ω̂ is itself a measurable cover of Ω. Moreover
Ω̂ is obviously open, and since it verifies Ω ⊆ Ω̂ ⊆ Ω̄, it is straightforward to see that Ω̂
is also connected. We shall in the sequel define:

d̂(x) := d(x,Rn \ Ω̂)

and let, for ε > 0:

Ω̂ε :=
{

x ∈ Ω̂ : d̂(x) > ε
}

.

From now on, many constructions will be done in the open set Ω̂.

A curve is a continuous map γ : [a, b] → R
n, where a < b are real numbers. We will

frequently identify γ and γ([a, b]). Say that γ is rectifiable if there existsM > 0 such that,

for all N > 1 and all a = t0 < ... < tN = b, there holds
∑N−1

i=0 |γ(ti+1)− γ(ti)| 6 M , and

define the length of γ, l(γ), as the supremum of
∑N−1

i=0 |γ(ti+1)− γ(ti)| over all possible
choices of N and a = t0 < ... < tN = b.
Let x0 ∈ Ω be a fixed point in Ω. For all x ∈ Ω̂, define dΩ̂(x) as the infimum of the

lengths of all rectifiable curves γ joining x to x0 in Ω̂ (note that such a curve always

exists since Ω̂ is open and rectifiably path-connected), and call dΩ̂ the geodesic distance

to x0 in Ω̂.
Let now µ0 be a fixed nontrivial finite (positive) Radon measure in Ω. We intend to
solve div u = µ, where µ belongs to the class of all finite signed Radon measures µ
in Ω satisfying µ(Ω) = 0 and |µ| . µ0. It turns out that a solution of this problem
involves the integrability of dΩ̂ with respect to µ0. We therefore introduce the following
condition, which may be satisfied or not, and does not depend on the choice of x0

1:

dΩ̂ ∈ L1(µ0). (5)

Let us now state our first result:

Theorem 1.3. Let Ω ⊂ R
n be a bounded domain. Then, there exists C > 0 such that,

for all nontrivial finite (positive) Radon measures µ0 in Ω such that (5) holds, one can
find a measurable weight w0 in Ω with the following properties:

(A) w0 ∈ L1(Ω) and w0(x) > 0 for almost every2 x ∈ Ω,

1Indeed, if y0 ∈ Ω is another point in Ω, and if d′
Ω̂
denotes the geodesic distance to y0 in Ω̂, then we

have |d
Ω̂
(x)− d′

Ω̂
(x)| 6 dist

Ω̂
(x0, y0) for all x ∈ Ω, where dist

Ω̂
(x0, y0) denotes the geodesic distance in

Ω̂ between x0 and y0. It hence follows that the integrability on Ω of d
Ω̂
and d′

Ω̂
are equivalent.

2Here and after, when no explicit measure is specified, “almost every” and Lp spaces are considered
with respect to the Lebesgue measure.
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(B) for any finite, signed Radon measure µ in Ω satisfying µ(Ω) = 0 and |µ| 6 κµ0

for some real number κ > 0, there exists a vector-valued function u solving (1)
and satisfying the following estimate:

|u(x)| 6 Cκ|w0(x)|, (6)

for a.e. x ∈ Ω.
Here, by saying that u solves (1) we mean that one has:

∫

Ω

u · ∇ϕ = −

∫

Ω

ϕdµ, (7)

for any ϕ ∈ D(Rn), where D(Rn) stands for the set of all functions in C ∞(Rn)
whose support is a compact set.

Remark 1.4. Let us formulate two first remarks.

(i) The reader will notice, at this stage, that (7) contains a weak Neumann-type
boundary condition in the fact that test functions in D(Rn) are allowed to be
nonzero on, and around, the boundary of Ω; equation (7) can hence be interpreted
as an integration by parts formula where the boundary term is zero. We shall
study, in section 3, how this condition can be strengthened by enlarging the set
of test functions for which (7) holds — showing in particular that (7) extends
to functions ϕ ∈ Lip(Rn), where the latter notation stands for the space of all
Lipschitz functions on R

n.
(ii) In some cases, the weight w0 constructed in the previous theorem must be

unbounded, even if Ω is a smooth domain, a ball for instance. Assume in-
deed, for example, that µ0 is a finite Radon measure in Ω satisfying (for some
0 < ε < n − 1) µ0(B(a, r)) > crn−1−ε for all 0 < r < r0 and some fixed
a ∈ Ω satisfying µ0({a}) = 0. Without loss of generality, we may assume that
0 < m0 := µ0(B(a, r0)) < 1

2
µ0(Ω). Now construct a signed measure µ on Ω

defined by:

µ := µ0 B(a, r0)−
m0

µ0(Ω)−m0

µ0 (Ω \B(a, r0)).

It is clear that one has µ(Ω) = 0, |µ| 6 µ0 and µ(B(a, r)) > crn−1−ε for all
0 < r < r0. Now if one were able to solve (1) in the lines of the above theorem
by u ∈ L∞

1/w0
(Ω,Rn) with a bounded w0, the Gauss-Green formula borrowed from

[8, Theorem 2.10] would imply

crn−1−ε 6 µ(B(a, r)) 6

∥

∥

∥

∥

u

w0

∥

∥

∥

∥

∞

∫

∂B(a,r)

w0 dH
n−1 6 Crn−1

for almost every 0 < r < r0, which yields a contradiction.

Actually, the condition (5) is also necessary for the existence of a weight w0 meeting
the conclusions of Theorem 1.3. These are both equivalent to an L1 Poincaré inequality,
as stated in the next theorem:

Theorem 1.5. Let Ω ⊂ R
n be a bounded domain and µ0 be a nontrivial finite positive

Radon measure, and define dΩ̂ as before. The following conditions are equivalent:

(a) dΩ̂ ∈ L1(µ0),
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(b) there exists a weight w ∈ L1(Ω), w > 0 a.e. satisfying the conclusions of Theo-
rem 1.3,

(c) there exists an integrable weight w ∈ L1(Ω), w > 0 a.e. yielding the following

Poincaré inequality for all locally Lipschitz functions f on Ω̂ belonging to L1(µ0)

whose local Lipschitz constant is bounded on Ω̂:

∫

Ω

|f(x)− fΩ| dµ0 .

∫

Ω

|∇f |w, (8)

where fΩ := 1
µ0(Ω)

∫

Ω
fdµ0.

Before starting, let us present the structure of the present paper by sketching how one
can obtain its main Theorems.

The proof of Theorem 1.3 goes as follows. Mainly, one first constructs a solution u
to the equation div u = µ using a Bogovskii-type representation formula inspired by [4]
(and relying on a previous work by Bogovskii [2]). The main idea is to represent u as
an integral of the form:

u(x) =

∫

Ω

G(x, y) dµ(y),

where G(x, y) is a Bogovskii type kernel suitable for our problem, which satisfies growth
estimates yielding the boundedness of u with respect to some integrable weight. In this
paper, we shall devote section 2 to the construction of a solution u by means of such a
representation formula, and to the study of the associated Bogovskii-type kernel. Let
us just mention for now that the definition of this kernel heavily relies on a system of
paths, borrowed from [4], joining any point in Ω to a fixed one, in an almost “geodesic”
fashion while remaining inside the given measurable cover of Ω we work in (namely,

Ω̂). It is then a combination of routine approximation arguments, and subtle properties
of the paths system, that the vector field u constructed using this approach, satisfies
the boundary conditions implicitly contained in (7), and even stronger ones; we devote
section 3 to studying those boundary issues.

Let us mention that the equation (2), with a measure valued right hand side, was
widely studied in [8] in the whole space R

n. To our best knowledge, the present work
is the first time that a Bogovskii type approach is proposed to solve (2) in a bounded
general domain.

As far as Theorem 1.5 is concerned, the equivalence of the three stated properties
will follow from duality arguments and, roughly speaking, from applying (some version
of) Poincaré’s inequality to the distance function dΩ̂. Proving Theorem 1.5 will be the
purpose of section 4.
Acknowledgements: This research was conducted during the visits of the authors to
Laboratoire de Mathématiques d’Orsay and the Institut Fourier. The authors wish to
thank the institutes for the kind hospitality. The second author was partially supported
by the French ANR project “RAGE” no. ANR-18-BCE40-0012.
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2. A Bogovskii-type representation formula

Before we start describing the procedure announced in the introduction, we borrow
from [4] the construction of a system of paths in Ω̂, which relies on a decomposition of

Ω̂ into Whitney cubes.
Recall that d̂ denotes the distance function to the complement of Ω̂. We fix as before

x0 ∈ Ω and denote by dΩ̂ the geodesic distance, in Ω̂, to x0. Dilating the whole setting
by some factor around x0, we may moreover assume (which will be useful later for
computational purposes) that one has:

B(x0, 1) ⊆ Ω and d̂(x0) > 15. (9)

Applying the result in [4, p. 800] to the open set Ω̂ and to x0, we get a family of paths

in Ω̂ which enjoys a series of properties. This family will be used in the next section to
solve the divergence equation by a Bogovskii-type approach.

Lemma 2.1. For all y ∈ Ω̂, there exists a rectifiable curve γy : [0, 1] → Ω̂ such that,
writing γ(t, y) = γy(t), the following properties hold:

(a) for all y ∈ Ω̂, γ(0, y) = y, γ(1, y) = x0,
(b) (t, y) 7→ γ(t, y) is measurable,

(c) for all x, y ∈ Ω and all r 6 1
2
d̂(x),

l(γy ∩B(x, r)) . r (10)

and
l(γy) . dΩ̂(y), (11)

(d) for all ε > 0 small enough, there exists δ > 0 such that

∀y ∈ Ω̂ε, γy ⊂ Ω̂δ.

We now introduce once and for all the weight that will be used throughout the paper.
Let µ0 be a Radon measure on Ω. Assume that the geodesic distance to x0 in Ω̂, namely
the function dΩ̂, satisfies (5). Define a function ω on Ω by:

ω(x) = µ0

({

y ∈ Ω : there exists t ∈ [0, 1] such that |γ(t, y)− x| 6
1

2
d̂(x)

})

. (12)

We also define a localized3 version of the Riesz potential µ0, I1µ0, by letting, for x ∈ Ω

I1µ0(x) :=

∫

Ω

|x− y|−n+1 dµ0(y).

Define finally, for x ∈ Ω:

w0(x) := I1µ0(x) + ω(x)d̂(x)−n+1. (13)

It is shown in [4] that, when µ0 = L n is the Lebesgue measure in R
n, one can actually

work with the weight w0(x) := ω(x)d̂(x)1−n.

The present section is devoted to proving Theorem 1.3 in the latter context by con-
structing a solution to the equation div u = µ in L∞

1/w0
satisfying (7) for all ϕ ∈ D(Rn)

3Note that, contrary to the usual definition, we integrate over Ω in the definition of I1µ0.
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(recalling that this includes some mild boundary condition on u) — we shall discuss
in the next section how (7) can, in some cases, be extended to a larger class of test
functions (hence yielding a stronger boundary condition on u).

Let us restate Theorem 1.3 by making w0 explicit.

Proposition 2.2. Assume that µ0 is a nontrivial finite (positive) Radon measure in Ω
satisfying (5) and let w0 be the weight defined by (13). Then, the following properties
hold:

(A) w0 ∈ L1(Ω) and w0(x) > 0 for almost every x ∈ Ω,
(B) for all κ > 0, for any finite, signed Radon measure µ in Ω satisfying µ(Ω) = 0

and |µ| 6 κµ0 for some real number κ > 0, there exists a vector-valued function
u satisfying the following two properties:
(i) for all ϕ ∈ D(Rn), one has:

∫

Ω

u · ∇ϕ = −

∫

Ω

ϕdµ, (14)

so that in particular u solves weakly the equation div u = µ in Ω;
(ii) for a.e. x ∈ Ω, one has:

|u(x)| 6 Cκ|w0(x)|, (15)

where C > 0 only depends on Ω and the choice of the family γ.

Before to prove the above proposition, let us start by an example illustrating how
working in a suitable measurable cover of Ω can change drastically the behavior of the
weight w0 constructed above.

Example 2.3. Pick up a sequence (hk)k∈N ⊆ (0, 1) strictly decreasing to 0, let ε > 0 be
small, and let for k ∈ N:

Lk :=

{

[0, 1− ε]× {hk} if k is even,

[ε, 1]× {hk} if k is odd.

Define Ω := (0, 1)2 \
⋃

k∈N Lk. For all (x, y) ∈ Ω, consider the path γ(x,y) drawn in
the above picture and observe that this family of paths satisfies all conditions stated in
Lemma 2.1. For this example, take for µ0 the (two-dimensional) Lebesgue measure. Fix
(x0, y0) as on the picture (with y0 > h0 and, say, 0 < x0 small), denote by dΩ(x, y) the
geodesic distance from (x, y) to (x0, y0) in Ω, and let d(x, y) be the distance from (x, y)
to the boundary of Ω.
If (x, y) ∈ Ω, there exists k ∈ N such that hk+1 < y 6 hk. It is plain to see that

dΩ(x, y) . k(1− ε).

It follows that
∫

Ω

dΩ(x, y)dxdy =
∑

k∈N

∫

hk+1<y6hk

dΩ(x, y)dxdy

. (1− ε)
∑

k∈N

k(hk − hk+1),
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0.2 0.4 0.6 0.8 1.

0.2

0.4

0.6

0.8
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0

γ(x,y)
Lk−1

Lk

Lk+1

L0

L1

(x0, y0)

Γ

(x, y)

Qk

Figure 1. The set Ω := (0, 1)2 \
⋃

k∈N Lk from Example 2.3

which entails that dΩ ∈ L1(Ω) (for the Lebesgue measure) provided that
∑

k∈N

k(hk − hk+1) < +∞. (16)

For all k, denote by Qk the set of points (x, y) ∈ Ω such that ε < x < 1− ε and
∣

∣

∣

∣

y −
hk + hk+1

2

∣

∣

∣

∣

6 η(hk − hk+1)

for η > 0 small enough (and independent from k). It is clear that, for all (x, y) ∈ Qk,
one has:

d(x, y) 6 hk − hk+1.

Moreover, for all (x̃, ỹ) ∈ Ω such that ε < x̃ < 1−ε and ỹ 6 hk, the path γ(x̃,ỹ) intersects

the ball B
(

(x, y), 1
2
d(x, y)

)

. It follows that:

ω(x, y) > hk(1− 2ε).

As a consequence,

w(x, y) &
hk(1− 2ε)

hk − hk+1
=

1− 2ε

1−
hk+1

hk

. (17)

Choosing, for instance, hk :=
1

(k+1)3
, it is obvious that (16) holds and (17) shows that w

is unbounded in Ω.
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If, instead of Ω, we consider now Ω̃ := (0, 1)2, which is obviously a measurable cover

of Ω, the associated weight, denoted w̃, satisfies d̃(x, y) . w̃(x, y) . 1 + d̃(x, y), and is

therefore bounded in Ω, where d̃ denotes the distance to the boundary of Ω̃.

The proof of Proposition 2.2 relies on several lemmata. The first one is an easy
observation about w0.

Lemma 2.4. Let w0 be defined as before.

(1) For every x ∈ Ω, I1µ0(x) > 0.
(2) For all p ∈ [1, n

n−1
), I1µ0 ∈ Lp(Ω). In particular, I1µ0(x) < +∞ for almost every

x ∈ Ω.

Proof of Lemma 2.4. That one has I1µ0(x) > 0 for every x ∈ Ω follows at once from
its definition and the fact that µ0 is non trivial. Let now p ∈ [1, n

n−1
), p′ defined by

1
p
+ 1

p′
= 1 and g ∈ Lp′(Ω) with ‖g‖p′ = 1. Using Hölder’s inequality and Fubini’s

theorem, one obtains:
∣

∣

∣

∣

∫

Ω

I1µ0(x)g(x) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

(
∫

Ω

|x− y|1−ng(x) dx

)

dµ0(y)

∣

∣

∣

∣

.

(
∫

B(0,2 diamΩ)

|z|p(1−n) dx

)
1

p

µ0(Ω),

which ends the proof. �

A second preparatory lemma provides the integrability of ω against some power of the
distance function to R

n \ Ω̂.

Lemma 2.5.
∫

Ω

ω(x)d̂(x)−n+1dx < +∞. (18)

Proof. We follow the proof of [4, Lemma 2.3], indicating only the main differences. Let

x ∈ Ω. If d̂(x) > 60
7
, then one has ω(x)d̂(x)−n+1 6 C < +∞. We can therefore

assume that d̂(x) < 60
7
. In this case, let y ∈ Ω be such that there exists t0 satisfying

|γ(t0, y)− x| 6 1
2
d̂(x).

Since we also have 15− |x− x0| 6 d̂(x0)− |x− x0| 6 d̂(x) (recall that (9) holds), we
obtain:

|γ(t0, y)− x0| > |x− x0| − |x− γ(t0, y)|

> |x− x0| −
1

2
d̂(x)

> 15−
3

2
d̂(x)

>
7

4
d̂(x)−

3

2
d̂(x) =

1

4
d̂(x).

This implies that x0 /∈ B(γ(t0, y),
1
4
d̂(x)) and hence that one has:

1

4
d̂(x) 6 l(γy ∩ B(γ(t0, y),

1

4
d̂(x))) ;
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the rest of the proof is then virtually identical to that of [4, Lemma 2.3]. �

Proof of Proposition 2.2. Observe that (A) is an immediate consequence of Lemmas 2.4
and 2.5.

We give a constructive proof of (B) relying on ideas going back to Bogovskii [2], which
was extended to John domains in [1] and was further generalized to arbitrary domains
in [4]. We here adapt to our context arguments from the proof of [4, Lemma 2.4],
completing them at some specific points.

Let from now on B0 := B(x0, 1); it is clear by (9) that one has B0 ⊆ Ω. We choose a
function χ ∈ D(Ω) supported in B0 and such that

∫

Ω
χ(x)dx = 1. For each y ∈ Ω\{x0},

let τ(y) be the smallest t > 0 such that γ(t, y) ∈ ∂B(y, 1
2
d̂(y)) in case there exists a

t ∈ [0, 1] for which one has γ(t, y) ∈ ∂B(y, 1
2
d̂(y)) — call this “case 1” — , and let

τ(y) = 1 otherwise — call this “case 2”. We define a function t 7→ ρ(t, y), t ∈ [0, 1], by
letting, in case 1:

ρ(t, y) = α |y − γ(t, y)| if t 6 τ(y),

ρ(t, y) = 1
d̂(x0)

d̂(γ(t, y)) if t > τ(y),

where α is so chosen that ρ(·, y) is a continuous function — this means that we have to
take

α =
2

d̂(x0)

d̂(γ(τ(y), y))

d̂(y)
.

In case 2, we let, for 0 6 t 6 1:
ρ(t, y) := t.

Claim 1. For all t ∈ [0, 1] and all z ∈ B0, we have γ(t, y) + ρ(t, y)(z − x0) ∈ Ω̂.

To prove this claim, it is enough to check that one has:

ρ(t, y) 6
1

5
d̂(γ(t, y)). (19)

Observe that in case 1, for 0 6 t 6 τ(y), we have |y − γ(t, y)| 6 1
2
d̂(y), which implies

ρ(t, y) 6 α
2
d̂(y) and, in turn, ρ(t, y) 6 αd̂(γ(t, y)), for it is clear that we have:

d̂(y) 6 |y − γ(t, y)|+ d̂(γ(t, y)) 6
1

2
d̂(y) + d̂(γ(t, y)),

and hence also d̂(y) 6 2d̂(γ(t, y)). We then have d̂(γ(τ(y), y)) 6 d̂(y)+|γ(τ(y), y)− y| =
3
2
d̂(y), and hence also α 6 1

5
. By construction this finally yields (19), and therefore

Claim 1 in case 1.
In case 2, it is clear that we have x0 ∈ B(y, 1

2
d̂(y)); in particular this yields |y− x0| 6

1
2
d̂(y) and we hence have:

d̂(y) > d̂(x0)− |y − x0| > 15−
1

2
d̂(y),

which implies 3
2
d̂(y) > 15. But for 0 6 t 6 1 we also have γ(t, y) ∈ B(y, 1

2
d̂(y)) so that:

d̂(γ(t, y)) > d̂(y)− |y − γ(t, y)| > d̂(y)−
1

2
d̂(y) =

1

2
d̂(y) > 5 > 5ρ(t, y).
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This completes the proof of Claim 1.

Fix now ϕ ∈ D(Rn). Using the fact that m(Ω̂ \ Ω) = 0 and proceeding exactly as in
the proof of [4, Lemma 2.4], we compute:

∫

Ω

ϕdµ = −

∫

Ω

∫

Ω

G(x, y) · ∇ϕ(x) dx dµ(y), (20)

where G(x, y) is defined as follows for x, y ∈ Ω, x 6= y:

G(x, y) :=

∫ 1

0

[

γ̇(t, y) + ρ̇(t, y)
x− γ(t, y)

ρ(t, y)

]

χ

(

x0 +
x− γ(t, y)

ρ(t, y)

)

dt

ρ(t, y)n
. (21)

As the following lemma shows, G(x, y) is well-defined for a.e. x ∈ Ω and µ-a.e. y ∈ Ω.

Lemma 2.6. For a.e. x ∈ Ω and µ-a.e. y ∈ Ω, G(x, y) is well defined and one has:
∫

Ω

|G(x, y)| d |µ| (y) . κw0(x).

Proof. Note first that the integrand in G(x, y) vanishes unless one has |x − γ(t, y)| <
ρ(t, y)). We now let Ω′ := {y ∈ Ω : τ(y) < 1} and, as in the proof of [4, Lemma 2.5], we
write for y ∈ Ω′:

G(x, y) = G1(x, y) +G2(x, y)

with

G1(x, y) =

∫ τ(y)

0

[

γ̇(t, y)−

(

γ̇(t, y) · (y − γ(t, y))

|y − γ(t, y)|2

)

(x− γ(t, y))

]

· χ

(

x0 +
x− γ(t, y)

α |y − γ(t, y)|

)

1

αn |y − γ(t, y)|n
dt,

and

G2(x, y) =

∫ 1

τ(y)

[

γ̇(t, y) + [γ̇(t, y) · ∇d̂(γ(t, y))]
x− γ(t, y)

d̂(γ(t, y))

]

· χ

(

x0 + d̂(x0)
x− γ(t, y)

d̂(γ(t, y))

)

[d̂(x0)]
n

d̂(γ(t, y))n
dt. (22)

Proceeding as in the proof of [4, Lemma 2.5], we get the following estimate for x, y ∈ Ω:

|G1(x, y)| 6 C |x− y|−n+1 .

We hence have that:
∫

Ω′

|G1(x, y)| d |µ| (y) 6 CκI1µ0(x). (23)

Following once more the proof of [4, Lemma 2.5], we also show that one has:
∫

Ω′

|G2(x, y)| d |µ| (y) 6 Cκω(x)d̂(x)−n+1, (24)
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and gathering (23) and (24) yields:
∫

Ω′

|G(x, y)| d |µ| (y) 6 Cκw0(x), (25)

for a.e. x ∈ Ω.
If we fix now y ∈ Ω \ Ω′ (meaning that we are in case 2), we compute γ(t, y) =

y + t(x0 − y), γ(t, y) + ρ(t, y)(z − x0) = y + t(z − y), γ̇(t, y) = x0 − y and ρ̇(t, y) = 1.
We hence get, from (21):

G(x, y) =

∫ 1

0

x− y

t
· χ

(

y +
x− y

t

)

dt

tn
.

Yet in order for the integrand in the above integral to be nonzero, we should have
y + x−y

t
∈ B0, implying in particular that one has:

∣

∣

∣

∣

y +
x− y

t
− x0

∣

∣

∣

∣

< 1.

We hence compute:
∣

∣

∣

∣

x− y

t

∣

∣

∣

∣

6 1 + |x0 − y| 6 1 + diamΩ.

Letting c := (1 + diamΩ)−1, we get in particular t > c|x− y| and hence also:

|G(x, y)| 6

∫ 1

c|x−y|

dt

tn
6

c1−n

1− n
|x− y|−n+1 6 C|x− y|−n+1.

Integrating over Ω \ Ω′, we get:
∫

Ω\Ω′

|G(x, y)| d|µ|(y) 6 CκI1µ0(x) 6 Cκw0(x). (26)

According to (25) and (26), we have shown that:
∫

Ω

|G(x, y)| d|µ|(y) =

∫

Ω′

|G(x, y)| d|µ|(y) +

∫

Ω\Ω′

|G(x, y)| d|µ|(y) 6 Cκw0(x), (27)

which concludes the proof of Lemma 2.6. �

As in [4], we define u by

u(x) =

∫

Ω

G(x, y) dµ(y),

which is well-defined by Lemma 2.6, and we have, for a.e. x ∈ Ω:

|u(x)| 6 Cκw0(x), (28)

which is exactly (15). It then follows from (20) and Fubini’s theorem, which we may
apply thanks to Lemmata 2.5 and 2.6, that we have, for any ϕ ∈ D(Rn):

∫

Ω

u · ∇ϕ = −

∫

Ω

ϕdµ, (29)

which is (14). �
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Remark 2.7. In the context of the preceding proof, assume moreover that, for some
ε > 0, µ0 satisfies µ0(B(x, r)) . rn−1+ε for all x ∈ Ω and all 0 < r < d̂(x). Then one
can compute, for x ∈ Ω (calling C > 0 a constant such that G1(x, y) vanishes unless one

has |x− y| 6 Cd̂(x), see [4, p. 804]):
∫

|y−x|6Cd̂(x)

1

|x− y|n−1
dµ0(y) 6

∞
∑

k=0

∫

2−k−1Cd̂(x)<|y−x|62−kCd̂(x)

1

|x− y|n−1
dµ0(y).

Yet we have for k ∈ N:
∫

2−k−1Cd̂(x)<|y−x|62−kCd̂(x)

1

|x− y|n−1
dµ0(y) 6 (2−k−1Cd̂(x))1−nµ0[B(x, 2−kCd̂(x)]

. 2n−1Cε2−kε[d̂(x)]ε.

It hence follows that one has:
∫

Ω

G1(x, y) dµ0(y) . Cε[d̂(x)]
ε,

and that one could hence prove Proposition 2.2 with a weight of the form w0(x) =

ω(x)[d̂(x)]1−n + Cε[d̂(x)]
ε.

We now examine how (29) can, in some cases, be extended to a wider class of test
functions — hence extending, in some sense, the mild “boundary condition” appearing
in (14) (see Remark 1.4 above).

3. Extending the boundary condition

Let us start by denoting by G the space of all locally integrable functions f on Ω̂
having a weak gradient in Ω̂ and such that, for all δ > 0, there exists r > n (depending

on δ) such that |∇f | ∈ Lr(Ω̂δ). Now define a space E by:

E := {f ∈ G : f ∈ L1(µ0) and |∇f |w0 ∈ L1(Ω)}. (30)

It will be shown in this section that, under the assumptions of Theorem 1.3, (7) can be
extended to test functions in E .

Remark 3.1. Let us make immediately two straightforward observations.

(i) The integrability condition on |∇f | in each Ω̂δ readily implies that any f ∈ G is

bounded and continuous on Ω̂δ for all δ > 0; in particular f has to be continuous
on Ω̂. Moreover it is clear that G contains the space of all locally Lipschitz
functions in Ω̂ with bounded Lipschitz constant on Ω̂.

(ii) The space E defined above obviously contains the space of all locally Lipschitz

function f on Ω̂ with bounded local Lipschitz constant and satisfying f ∈ L1(µ0).
(iii) Finally, observe that both E and G are vector spaces enjoying the property that

for any f ∈ E (resp. f ∈ G ), one has f+, f−, |f | ∈ E (resp. f+, f−, |f | ∈ G ) and
max(|∇f+|, |∇f−|, |∇|f ||) 6 |∇f | a.e. in Ω (with respect to Lebesgue’s measure).

We now turn to prove the following improvement of our main theorem.
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Theorem 3.2. Assume that µ0 is a nontrivial finite (positive) Radon measure in Ω
satisfying (5) and let w0 be the weight defined by (13), so that it satisfies properties
(A) and (B) in Proposition 2.2. Given a (signed) Radon measure µ on Ω satisfying
µ(Ω) = 0 and |µ| 6 κµ0 for some κ > 0, let also u ∈ L∞

1/w0
be the solution of div v = µ

constructed in Proposition 2.2, so that it satisfies |u| 6 Cκ|w0| a.e. on Ω, where C > 0
is independent of κ, µ and µ0. We then have, for all g ∈ E :

∫

Ω

u · ∇g = −

∫

Ω

g dµ. (31)

Proof. Given ε > 0, define a signed Radon measure µε on Ω by µε(A) := µ(A ∩ Ω̂ε) for

all A ⊂ Ω (that is to say that µε is the restriction of µ to Ω∩ Ω̂ε). We have in particular
|µε| 6 |µ| 6 κµ0, so that, by Proposition 2.2, if

uε(x) :=

∫

Ω

G(x, y)χΩ̂ε∩Ω
(y)dµ(y),

then |uε| 6 Cκw0 as well as:
∫

Ω

uε · ∇ϕ = −

∫

Ω

ϕdµε,

for all ϕ ∈ D(Rn).
We shall show in a moment that one has, for any g ∈ E :

∫

Ω

uε · ∇g = −

∫

Ω

g dµε. (32)

Let us first show how the latter equality will imply (31). To this purpose, fix g ∈ E and
observe, on one hand, that one has, for all x ∈ Ω:

|u(x)− uε(x)| 6

∫

Ω

|G(x, y)||1− χΩ∩Ω̂ε
(y)| d|µ|(y).

Since limε→0 χΩ∩Ω̂ε
(y) = 1, inequality (27) and the Lebesgue dominated convergence

theorem ensure that uε converges a.e. to u when ε → 0. Writing then, a.e. on Ω:

|uε · ∇g| 6 Cκw0|∇g| ∈ L1(Ω),

and using the Lebesgue dominated convergence theorem again, we see that:
∫

Ω

uε · ∇g →

∫

Ω

u · ∇g,

as ε → 0.
On the other hand, observe using the Lebesgue dominated convergence theorem once
more (recall that g ∈ L1(µ) by definition of E ) that one has:

∣

∣

∣

∣

∫

Ω

g dµ−

∫

Ω

g dµε

∣

∣

∣

∣

6

∫

Ω

|g||1− χΩε∩Ω| d|µ| → 0,

as ε → 0.
Combining the last two facts with (32) then yields (31).
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We now turn to the proof of (32). To that purpose, fix g ∈ E , let (ρk) ⊆ D(Rn) be
an approximate identity satisfying supp ρk ⊆ B(0, 2−k) for all k and define

ϕk := ρk ∗ (gχk) ∈ D(Rn),

where χk := χΩ̂
2−k

and g is extended by 0 outside Ω — this convolution being well

defined on the whole space, smooth since ρk is smooth, and having compact support
since Ω is bounded. We hence have for each k, according to Proposition 2.2 :

∫

Ω

uε · ∇ϕk = −

∫

Ω

ϕk dµε. (33)

Since g is continuous in Ω̂, it is clear, moreover, that ϕk converges uniformly to g on Ω̂ε.
It hence follows that one has:

lim
k→∞

∫

Ω

ϕk dµε = lim
k→∞

∫

Ω∩Ω̂ε

ϕk dµ =

∫

Ω∩Ω̂ε

g dµ =

∫

Ω

g dµε. (34)

On the other hand, let δ > 0 be associated to ε according to property (d) in Lemma 2.1.

We claim that uε = 0 outside Ω ∩ Ω̂ 2

3
δ. Indeed, if uε(x) 6= 0 for some x ∈ Ω, there

exists y ∈ Ω ∩ Ω̂ε such that G(x, y) 6= 0. Therefore, there exists t ∈ [0, 1] such that

|x− γ(t, y)| 6 ρ(t, y) 6 1
5
d̂(γ(t, y)). This implies that

d̂(x) > d̂(γ(t, y))− |x− γ(t, y)|

> d̂(γ(t, y))−
1

5
d̂(γ(t, y)) >

4

5
δ >

2

3
δ.

This means that one has x ∈ Ω̂ 2

3
δ.

Observe now that if x ∈ Ω̂ 2

3
δ and k ∈ N satisfying 2−k < 1

3
δ are given, one gets:

d̂(y) ≥ d̂(x)− |x− y| ≥
2

3
δ − 2−k >

1

3
δ > 2−k;

it hence follows that one has ϕk(x) = ρk ∗ g(x) for all such x and k. Since g has a weak

gradient in Ω̂, we also have, for the same x and k:

∇ϕk = ρk ∗ ∇g. (35)

Using the latter facts, one computes:
∣

∣

∣

∣

∫

Ω

uε · ∇ϕk −

∫

Ω

uε · ∇g

∣

∣

∣

∣

6 Cκ

∫

Ω̂ 2
3
δ

|∇ϕk −∇g|w0,

(recall that for the Lebesgue measure, it does not matter if one integrates on Ω̂ 2

3
δ or

Ω∩ Ω̂ 2

3
δ). Now since one has g ∈ E , there exists r > n for which one has ∇g ∈ Lr(Ω̂ 2

3
δ).

Using Hölder’s inequality and (35), we have, for 1 < r′ < n
n−1

satisfying 1
r
+ 1

r′
= 1:

∫

Ω̂ 2
3
δ

|∇ϕk −∇g|w0 6 ‖w0‖
Lr′

(

Ω̂ 2
3
δ

)‖∇g − ρk ∗ ∇g‖
Lr

(

Ω̂ 2
3
δ

).
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Yet using Lemma 2.4 and the fact that one has, for x ∈ Ω̂ 2

3
δ:

ω(x)d̂(x)1−n 6

(

2

3
δ

)1−n

µ0(Ω),

we see that ‖w0‖Lr′(Ω̂ 2
3
δ
) < +∞; since the sequence (ρk ∗ ∇g) converges in Lr(Ω̂ 2

3
δ) to

∇g, we hence see that one has:

lim
k→∞

∫

Ω

uε · ∇ϕk =

∫

Ω

uε · ∇g,

which, combined to (33) and (34), finishes the proof of (32). �

We now come to prove the equivalence of the solvability of (1) and some versions of
Poincaré inequalities.

4. Equivalence between the solvability of (1) and some Poincaré
inequalities

This section is devoted to the equivalence between the solvability of (1) and some
versions of Poincaré inequalities. Let w ∈ L1(Ω) be a positive weight. We define spaces
E and G as in the beginning of Section 3, using the weight w instead of w0.

Definition 4.1. (1) Say that (P1) holds if there exists C > 0 such that, for all
f ∈ E ,

∫

Ω

|f(x)− fΩ| dµ0 6 C

∫

Ω

|∇f |w, (P1)

where fΩ := 1
µ0(Ω)

∫

Ω
f(x)dµ0(x).

(2) Say that (P ∗
1 ) holds if there exists C > 0 such that, for all f ∈ G such that

E := {f = 0} verifies µ0(E) > 0, one has,
∫

Ω

|f(x)| dµ0 6 C

(

1 +
µ0(Ω)

µ0(E)

)
∫

Ω

|∇f |w, (P ∗
1 )

where it is understood that the finiteness of the right-hand side of the inequality
implies that f ∈ L1(µ0).

We first observe that, given a weight w, (P1) and (P ∗
1 ) are equivalent:

Proposition 4.2. Let w ∈ L1(Ω) be a positive weight in Ω. Then:

(1) (P1) and (P ∗
1 ) are equivalent,

(2) if (P1) or (P ∗
1 ) holds, then for all f ∈ G with |∇f |w ∈ L1(Ω), one has f ∈

L1(µ0).

Proof. Assume first that (P1) holds. We first check (P ∗
1 ) for functions f ∈ E such that

the set E := {f = 0} verifies µ0(E) > 0. Note that in this case, one gets:

|fΩ| =
1

µ0(E)

∫

E

|f − fΩ| dµ0 6
1

µ0(E)

∫

Ω

|f − fΩ| dµ0,

which entails
∫

Ω

|f | dµ0 6

∫

Ω

|f − fΩ| dµ0 + |fΩ|µ0(Ω) .

(

1 +
µ0(Ω)

µ0(E)

)
∫

Ω

|∇f |w. (36)
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Fix now f ∈ G with |∇f |w ∈ L1(Ω), let E := {f = 0} and assume one has µ0(E) > 0.
For all N > 1, define fN = max (−N,min(f,N)), which still belongs to G with |∇fN | 6
|∇f | almost everywhere in Ω (for the Lebesgue measure); we hence get fN ∈ E . Since
µ0 ({fN = 0}) > µ0(E) > 0, (P ∗

1 ) applied to fN ∈ E shows that
∫

Ω

|fN(x)| dµ0 .

(

1 +
µ0(Ω)

µ0(E)

)
∫

Ω

|∇fN |w 6

(

1 +
µ0(Ω)

µ0(E)

)
∫

Ω

|∇f |w,

and since fN(x) → f(x) for all x ∈ Ω, the Fatou lemma proves that f ∈ L1(µ0), and
(P ∗

1 ) holds.
Assume now that (P ∗

1 ) holds for all f ∈ G with µ0 ({f = 0}) > 0. That (P1) holds for
all functions f ∈ E can be proved as in [4, Section 3.2].
Assume finally that (P ∗

1 ) holds, and let f ∈ G be nonnegative with |∇f |w ∈ L1(Ω).

Since f is continuous in Ω̂, there exists t0 > 0 such that µ0 ({f 6 t0}) > 0. Define now

f̃ = (f − t0)+. It is plain to see that f ∈ L1(µ0) if and only if f̃ ∈ L1(µ0). Since f̃ ∈ G ,
∣

∣

∣
∇f̃
∣

∣

∣
6 |∇f | and µ0

({

f̃ = 0
})

> 0, (P ∗
1 ) applied to f̃ shows that f̃ ∈ L1(µ0), so that

the same is true for f . In the general case, apply this conclusion to f+ and f−. �

Remark 4.3. It follows from the preceding proof that having inequality (P1) for all locally

Lipschitz functions on Ω̂ with bounded Lipschitz constants in Ω and belonging to L1(µ0),

is equivalent to (P ∗
1 ) holding for locally Lipschitz functions in Ω̂ whose local Lipschitz

constant is bounded in Ω̂.

The following statement precises somewhat the statement of Theorem 1.5 given in the
introduction. We keep the notations of the previous section.

Theorem 4.4. Let Ω and µ0 be as in the statement of Theorem 1.3, and define dΩ̂ as
before. The following conditions are equivalent:

(a) dΩ̂ ∈ L1(µ0),
(b) there exists a weight w ∈ L1(Ω), w > 0 a.e. satisfying the conclusions of Theo-

rem 1.3,
(c) there exists a weight w ∈ L1(Ω), w > 0 a.e. yielding either (P1) or (P ∗

1 ).

Remark 4.5. As the proof (combined to Remark 4.3) will show, all these statements are
also equivalent to the following ones:

(c’) there exists a weight w ∈ L1(Ω), w > 0 a.e. yielding (P1) for all bounded locally

Lipschitz functions in Ω̂ whose local Lipschitz constant is bounded in Ω̂;
(c”) there exists a weight w ∈ L1(Ω), w > 0 a.e. yielding (P ∗

1 ) for all locally Lipschitz

functions in Ω̂ whose local Lipschitz constant is bounded in Ω̂.

Proof. That (a) implies (b) was established in Theorem 1.3, since one can take w = w0

where w0 is defined in (13). Assume now that (b) holds and pick up g ∈ L∞(Ω, µ0)
with ‖g‖∞ 6 1. By (b) and Theorem 3.2, there exists a vector-valued function u in Ω
satisfying the following conditions:

(i)
∫

Ω
u · ∇h = −

∫

Ω
(g − gΩ)h dµ0 for all h ∈ E ;

(ii)
∥

∥

u
w

∥

∥

∞
. 1.
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It follows that for any f ∈ E , we have:
∣

∣

∣

∣

∫

Ω

(f − fΩ)gdµ0

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

(f − fΩ)(g − gΩ)dµ0

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω

u · ∇f

∣

∣

∣

∣

.

∫

Ω

|∇f | w,

which yields (P1), and hence also (P ∗
1 ) by Proposition 4.2.

Assume now that (c) is fulfilled. Since µ0(Ω) > 0, there exist y0 ∈ Ω and r0 > 0 such
that B(y0, r0) ⊂ Ω and µ0(B(y0, r0)) > 0. Denoting by d′

Ω̂
the geodesic distance to y0 in

Ω̂, we observe that d′
Ω̂
is locally Lipschitz on Ω̂ with local Lipschitz constant less than

1, meaning in particular that one has d′
Ω̂
∈ G . As a consequence of (P ∗

1 ) applied to

f := (d′
Ω̂
− r0)+, we then get:

∫

Ω

f dµ0 .

∫

Ω

|∇f |w 6

∫

Ω

w < +∞,

which yields the integrability of d′
Ω̂
with respect to µ0, hence (a) since condition (5) is

independent of the choice of x0. �

Remark 4.6. Observe that, as indicated in Remark 4.5, the proof of the fact that (c)
implies (a) has only used (P ∗

1 ) for the function (d′
Ω̂
− r0)+, which is locally Lipschitz in

Ω̂ and has a local Lipschitz constant bounded by 1 on Ω̂.

Remark 4.7. Assume that the weight w ∈ L1(Ω), w > 0 a.e. yields a Poincaré inequality
(P1). It then follows from the previous proposition that one has dΩ̂ ∈ L1(Ω), and hence
that there exists a (perhaps different) weight w̃ ∈ L1(Ω), w̃ > 0 a.e. (one can take
w̃ = w0 as in (13)) yielding the solvability, for any (signed) Radon measure µ in Ω
satisfying µ(Ω) = 0 and |µ| 6 κµ0, of problem (1) by some vector field u satisfying
‖ u
w̃
‖∞ 6 Cκ. As it follows from the following abstract reasoning, one can in fact take

w̃ = w.
Suppose indeed that w ∈ L1(Ω), w > 0 a.e. yields (P1). Fix κ > 0 and µ be a (signed)

Radon measure in Ω satisfying µ(Ω) = 0 and |µ| 6 κµ0.
Introduce the spaces L1

w(Ω,R
n), consisting of all measurable vector fields u satisfying

|u|w ∈ L1(Ω) (endowed with ‖u‖L1
w
:= ‖uw‖1) and L∞

1/w(Ω,R
n), consisting of all mea-

surable vector fields u satisfying |u|
w

∈ L∞(Ω) (endowed with ‖u‖L∞

1/w
(Ω) :=

∥

∥

u
w

∥

∥

∞
). We

also introduce the auxiliary space:

F :=
{

v ∈ L1
w(Ω,R

n) : there exists g ∈ E with v = ∇g a.e. in Ω
}

,

which is a subspace of L1
w(Ω,R

n). Define for all v ∈ F :

T (v) := −

∫

Ω

g dµ,

if v = ∇g a.e. on Ω, with g ∈ E and observe that this is unambiguous due to the fact
that if h ∈ E verifies ∇h = 0 a.e., then it is constant on Ω, so that one has

∫

Ω
h dµ = 0

(recall that µ(Ω) = 0).
Using (P1), we compute for v ∈ F and g ∈ E satisfying v = ∇g a.e. on Ω:

|T (v)| =

∣

∣

∣

∣

∫

Ω

(g − gΩ) dµ

∣

∣

∣

∣

6 κ

∫

Ω

|g − gΩ| dµ0 . κ

∫

Ω

|∇g|w = κ‖v‖L1
w(Ω).
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Hence by the Hahn-Banach theorem T extends to a bounded linear operator on L1
w(Ω,R

n).
There thus exists u ∈ L∞

1/w(Ω,R
n) verifying ‖u‖L∞

1/w
(Ω) = ‖T‖ . κ such that one has

T (v) =
∫

Ω
u · v for all v ∈ L1

w(Ω,R
n). This implies, for any g ∈ E :

∫

Ω

u · ∇g = T (∇g) = −

∫

Ω

g dµ,

and we hence see that the weight w allows the existence of a solution u ∈ L∞
1/w(Ω) to

the equation div v = µ satisfying the required estimate.
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