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Aut(F2) PUZZLES

SYLVAIN BARRÉ AND MIKAEL PICHOT

Abstract. This paper studies Aut(F2) and groups closely related to it from
a geometric perspective.

The discussion is centered around geometric structures called “ring puzzles”
and “ring complexes”, and groups which can be seen as “randomizations” of
the group Aut(F2), in the sense of [4], and can be investigated using these
structures.

In a recent paper [4] we discussed a class of “random groups of higher rank”.
These random groups come in various models, including in particular a “density
model” (as in the classical construction of Gromov), and they are associated with
“deterministic data” that are used to seed the construction.

The deterministic data in [4] was associated with nonarchimedean lattices, which
were chosen in particular for their relations to rank interpolation, and the question
of whether

R2↪X ?⇒ Z2↪Γ

whenever Γ ↷ X properly, X is nonpositively curved and X/Γ compact. The
so-called “flat closing conjecture” asserts that this has a positive answer.

The present paper uses deterministic data associated with Aut(F2), which pro-
duces random groups which “resemble Aut(F2)” in a geometrical sense.

We prove that:

Theorem 1. The random group in the density models associated with Aut(F2)
satisfies the flat closing conjecture.

More precisely, the statement holds with overwhelming probability, at arbitrary
density δ ∈ (0,1), and with respect to arbitrary deterministic data associated with
Aut(F2).

The corresponding result for nonarchimedean lattices was left open in [4], and
the techniques used in the present paper do not appear to shed light on the problem.
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2 SYLVAIN BARRÉ AND MIKAEL PICHOT

1. Organization of the proof

In what sense does the random group resemble Aut(F2)?
The proof of Theorem 1 relies on giving an answer to this question which is

precise enough to keep track of the (dis)appearance of (periodic) flat planes in the
random groups.

The text is centered around geometric structures called “ring puzzles” and “ring
complexes”, which are defined precisely in §2 and §3 respectively.

Ring puzzles are tessellations of the Euclidean plane with constraints on the
set of tiles and vertex neighbourhoods (see §2). Associated with Aut(F2) are ring
puzzles, called Aut(F2) puzzles, with two tiles and three types of neighbourhoods.
The definition is elementary involving simple local construction rules that are not
directly reminiscent of Aut(F2). Incidentally, ring puzzles give informative “snap-
shots” of the geometry of Aut(F2) itself.

It is known that Aut(F2) acts properly with compact quotient on a 2-dimensional
CAT(0) space called the Brady complex, which is essentially uniquely determined,
by results of Crisp and Paoluzzi [5]. The space of Aut(F2) puzzles is related to the
space of flats in the Brady complex or in any ring complex of type Aut(F2). In the
case of the Brady complex itself, the space of flat surjects onto the space of puzzles,
which is an indication that Aut(F2) plays the role of “space of maximal rank” in
rank interpolation [1].

The main objective in §2, and the first step in the proof of Theorem 1, is to show
that:

Theorem. There is an explicit classification of all Aut(F2) puzzles.

The classification finds:
● 4 infinite families of puzzles
● 9 exceptional puzzles not belonging to the families

See Theorem 21 for a detailed statement.
(Large portions of a puzzle do not determine the puzzle in general, puzzles are

“bifurcating spaces” with an interesting (pointed) Gromov–Hausdorff topology; see
Remark 22.)

Ring complexes are defined in §3 as metric simplicial complexes subjects to “ring
conditions” on the links. Compared to classical curvature conditions (the girth con-
dition in dimension 2), the ring conditions serve to control the local flatness and
shed light on the “intermediate rank” structure of Aut(F2) rather than the curva-
ture. Local rules identical to that of Aut(F2) puzzles give rise to ring complexes
of type Aut(F2). The random group in models associated with Aut(F2) acts on a
ring complex of type Aut(F2).

Theorem 1 is proved in §4 using the classification of puzzles. It relies on a more
general result in §3 (Theorem 25) establishing the flat closing conjecture under a
technical assumption which is satisfied for randomizations of Aut(F2).

We do not pursue the study of general ring puzzles in this paper. The definition
is very much in the spirit of introducing new rank interpolation tools (compare [1]
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or [3]). The ring conditions seem to give rise to an interesting set of objects to
study in their own right.

We will further discuss two points related to the Theorem 1 and its proof:

a) There are several significant differences between randomizations of Aut(F2) and
randomizations of nonarchimedean lattices as considered in [4]. For example,
we show in §3 that:

Theorem. For some choice of the deterministic data, the random group con-
tains Z2 with overwhelming probability at arbitrary density δ ∈ (0,1).

Here the deterministic data has to be chosen suitably, it is associated the sym-
metric groups Sn. The property underlying the statement of the theorem, which
is satisfied for deterministic data associated with Sn, is the small tori property
defined in §3, see Definition 33.

b) The above raises the question of using ring puzzles as “blueprints” to construct
groups which resemble Aut(F2) in a geometrical sense. While we can produce
a wide range of random examples, finding explicit groups does not appear to be
an easy task. We give an explicit construction of such a group in §5.

2. Ring puzzles

A ring puzzle is a tessellation of the Euclidean plane R2 using planar polygons
with coloured angles. The ring at a vertex of the puzzle is the coloured circle (of
length 2π) of small radius around that vertex.

By ring puzzle problem we mean the problem of classifying all puzzles whose
coloured polygons and rings belong to prescribed sets.

We consider here the following instance of the problem, which is related to
Aut(F2).

The two prescribed sets are:

Shapes ∶=

(an equilateral triangle and a lozenge) and

Rings ∶=

The yellow arcs have length 2π/3, the others π/3. (For details on the relation with
Aut(F2), see §3.)

We assume that we have an infinite supply of coloured polygons for each shape
type, called the pieces of the puzzle. The position and orientation of the pieces in
the plane is free.

In this section we discuss the ring puzzle problem on these two sets. Every
solution to the problem is called an Aut(F2) puzzle.

For example, here is a permitted (bi-infinite) portion of an Aut(F2) puzzle which
we shall call the 2-strip.
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The main result (Theorem 21) classifies Aut(F2) puzzles. This can be achieved
after a series of preliminary results on the local-global geometry of these puzzles.

Let us first isolate an important property of the two sets given above, which
reflects the fact that Aut(F2) puzzles are “nonpositively curved”:

Definition 2. A ring puzzle problem has the θ0-extension property if the prescribed
sets satisfies the following condition: whenever a coloured segment [0, θ] of length
θ ∈ [0,2π] can be isometrically embedded in distinct coloured rings respecting the
coloration, then θ ≤ θ0.

For Aut(F2) puzzles we have that θ0 = π, which corresponds to nonpositive
curvature.

The following consequence is straightforward:

Lemma 3. Assuming the θ0-extension property, every ring puzzle is such that if
consecutive pieces meet at a vertex contributing to an angle > θ0, then the remaining
pieces at this vertex are uniquely determined (up to colour preserving isometry).

Let P be an Aut(F2) puzzle.

Definition 4. A ◇-gallery in P is a sequence of consecutive (= intersecting along
an edge) lozenges. Two lozenges are connected if they belong to a ◇-gallery. The
connected components of lozenges in P are called the ◇-components of P .

Lemma 5. Let C be a ◇-component. The inner angle at every vertex of ∂ C is
equal to either π/3, 2π/3 or π.

Proof. The inner angle is a multiple of π/3. Assume that it is > π; since we are on
the boundary, it can only be 4π/3 or 5π/3. The value 4π/3 would single out the
first ring, however, the remaining colour (namely yellow) corresponds to a lozenge,
contradicting the fact that we are on the boundary. The value 5π/3 is prohibited
by the fact that they is no yellow–green simplicial path of length 5π/3 inside in the
prescribed set of rings (by simplicial we mean both of whose end points are vertices
of the ring). �

Let us consider the finite ◇-components first.

Lemma 6. Every finite ◇-component of P is a parallelogram of size m × n such
that min(m,n) ≤ 2.

Proof. The fact that finite ◇-components are parallelograms follow from Lemma 5.
If m×n denotes the size of such a component with m ≤ n, then we claim that m ≤ 2.
This is a combinatorial problem which can be solved in the 3-neighbourhood of the
component. Note that the 3rd ring has to be used at every point in the boundary,
except at the two obtuse angles, where it is the 2nd ring that has to be used.
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The solution of the problem, assuming m ≥ 3 towards a contradiction, is sum-
marized in the following drawing:

The rightmost part does not extend in P given the prescribed sets of types. The
drawing explicits one of several similar cases. �

In general, the prescribed sets in a ring puzzle problem will determine basic
blocks (“tiles”) that fit together to build larger portions of the puzzle using the
extension property.

An interesting block for Aut(F2) puzzles is the w-block :

The w-block appears in the proof of Lemma 6.
Observe that w-blocks are “forward analytic” in the following sense:

Lemma 7. Every w-block in P extends to a unique w-strip in P .

By w-strip we mean the strip (infinite at least on the right hand side):

⋯

Lemma 7 is a consequence of Lemma 3.
Note that two w-strips cannot intersect transversally in the forward direction.
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Lemma 8. The ◇-components of type 2 × 2 in P extend uniquely into a bi-infinite
strip of height 4 of the form

Proof. This is a consequence of Lemma 7. �

We call this strip the double w-strip.

Lemma 9. Finite ◇-component of type 2 × n with n ≥ 3 are contained in a unique
puzzle.

Proof. A ◇-component C of size 2 × n with n ≥ 3

admits a unique extension of the form

by Lemma 7.
Furthermore using the extension property we have a unique upward extension

(and by symmetry a unique downward extension) of the strip. This in turn exhibits
a w-strip in the north-east direction (and by symmetry in the south-west direction)
that edges an acute sector along with the horizontal w-strip, implying that the
horizontal strip belongs to at most one puzzle. A construction by induction then
shows that the puzzle exists.

We will call this puzzle the puzzle of type 2 × n. �
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Here is a portion of the puzzle of type 2 × 4:

Remark 10. Lemma 8 can be understood as the limiting case “n → 2” of Lemma
9.

Lemma 11. Assume that P contains a finite ◇-component C of type 1 × n where
n ≥ 3. Then C is included in a strip S of height n in P (infinite both to the left and
to the right) of the form:

Furthermore, the following two conditions are satisfied:
a) the ◇-components of S parallels to C are all of type 1×n, except for at most

one component of type 2 × n. If there is such a component, then P is the
puzzle of type 2 × n, otherwise S is as indicated in the figure above.

b) every ◇-component of S remains a ◇-component in P (otherwise said, it is
adjacent to triangles in P ∖ S on both sides, as indicated in the figure).

The strip described in the figure above is called the bi-infinite strip of type 1×n
(all ◇-component of the strip are of type 1 × n).
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Proof. Starting with a ◇-component in P of size 1 × n

there is a unique extension of the form

which by induction form a half strip S↑ ⊃ C in the upward direction, together with
the right 1-neighbourhood of it. The same argument applies in downward direction
by symmetry, which delivers the indicated strip S = S↑ ∪ S↓ ⊃ C together with a
1-neighbourhood of it on both sides.

Inspection of the neighbourhood shows that the ◇-components parallel to C are
◇-component in P , which therefore are of the form m × n for m = 1,2.

We have to prove that a component of type 2 × n can only appear once. This
can be done directly noticing that the puzzle of type 2 × n actually contains only
one ◇-component of type 2×n, or with the following direct proof. Suppose we have
two components, without loss of generality we may assume that they are separated
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only by components of type 1 × n.

Note that the eastern neighbourhood of any ◇-component of type 2 × n contains
two w-blocks whose forward direction intersect transversally.

By Lemma 7, w-blocks extend uniquely in the forward direction. This contradicts
the fact that w-strips do not intersect transversally, and proves the result.

The figure above illustrates the argument. We have indicated the completion in
the case of two ◇-components of type 2×n separated by precisely one ◇-component
of type 1×n. In this case a direct local contradiction appears in the 1-neighbourhood
of the upmost component of type 2 × n. �

Lemma 12. Assume that every component is finite and of type 1 × n with n =
1,2. Then every finite component is of type 1 × 2, and corresponds to a unique
corresponding Aut(F2) puzzle.

Proof. It is easy to check that there is no puzzle in which every ◇-component is of
type 1 × 1. The proof of the lemma, starting from a component of type 1 × 2, is
then in the same spirit as that of Lemma 11, given the fact that every component
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has type 1 × n with n ≤ 2. The resulting puzzle of type 1 × 2 is

�

We now turn to infinite ◇-components.

Lemma 13. An infinite ◇-component is either
a) the tessellation of the plane by lozenges (called the ◇-plane) or half of it

(called the half ◇-plane)
b) a bi-infinite strip of lozenges (◇-strip) or half of it (semi-infinite ◇-strip)
c) a ◇-sector (with either an acute or an obtuse angle)

Proof. This follows from Lemma 5. �

Every (semi-infinite) ◇-strip of lozenges is bounded by a (semi-infinite) 2-strip.
In particular both half ◇-planes and bi-infinite ◇-strip give rise to an alternating
2-strip/◇-strip Aut(F2) puzzles.

Note that:

Lemma 14. If P contains a semi-infinite ◇-strip S of height n, then n = 1 or n = 2.

The proof is similar to that of Lemma 6.

Lemma 15. The semi-infinite ◇-strips of type 2 ×∞ can be extended in precisely
two ways: a puzzle called the star puzzle of type 2 × ∞, or a half-puzzle whose
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boundary is the following strip of height 3:

We refer to the above strip as “the 3-strip”, and the half-puzzle containing it will be
called the half puzzle of type 2 ×∞.

Proof. Take a semi-infinite (horizontal) ◇-strip S of height 2. The proof of Lemma
11 shows that there exits a unique sector extending S “in the upper direction”. This
sector contains a double w-strip as follows:

There are two extensions of it, corresponding to the two ways a lozenge can be
oriented with respect to adjacent the south-east triangles in the figure.
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We have already encountered the first extension. It can be derived from the
proof of Lemma 9 or Lemma 11 and appears as a “half of” the limit (in the Gromov-
Hausdorff sense, say) of the puzzle of type 2 × n as n→∞:

The lowermost 3-strip is the 3-strip.
The second extension, which leads to a unique puzzle, is

That it can be extended into at most one puzzle follows by Lemma 7 (and Lemma
3), and it is easy to show that this puzzle (the star puzzle of type 2 ×∞) exists by
induction. �

In particular, it appears that the semi-infinite ◇-strip of type 2×∞ embeds twice
(at most) in an Aut(F2) puzzle.

Lemma 16. If P contains a semi-infinite ◇-strip of type 1 × ∞ then one of the
following holds:



Aut(F2) PUZZLES 13

● P is the puzzle of type 2 × n where n ≥ 3
● P contains the half-puzzle of type 2 ×∞
● P is the star puzzle of type 2 ×∞
● P contains the double w-strip (see Lemma 8)
● P contains the half-puzzle of type 1×n (defined below) whose boundary strip
of type 1 × n for some n ≥ 3

● P is the V -puzzle:

Proof. Take a semi-infinite (horizontal) ◇-strip S of height 1. Again as in the
proof of Lemma 11 one can construct a quarter puzzle P↑ extending S “in the upper
direction” which contains parallel (semi-infinite) 2-strips and (by assumption) semi-
infinite ◇-strip S of height 1.

The lower part of P↑ admits a unique extension as follows:

X
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(In the picture the semi-infinite strips are horizontal.)
If the piece at X is a triangle, then we have a ◇-component of type 2 × n below

it heading south-east. There are 4 cases:
● If n = 1 then P↑ extends uniquely east using a 3-strip. The resulting half-
puzzle P↑,→ piles up horizontal 3-strips.

● If n = 2 then by Lemma 8 the quarter puzzle P↑ extends uniquely east using
the 4-strip (compare Lemma 20).

● If 3 ≤ n <∞ then P is the puzzle of type 2 × n (see Lemma 9)
● Otherwise, n = ∞, and Lemma 15 shows that either P is the star of type

2 ×∞ or contains the half-puzzle of type 2 ×∞.
We now assume that the piece at X is a square and extend the portion of the

puzzle uniquely as follows:

Y

If the piece at Y is a triangle, then by Lemma 6 the puzzle contains a ◇-component
of type m × 3 with m = 1,2, and we can apply Lemma 11 to find either that P is
the puzzle of type 2 × 3, or if n = 1 that P contains the half-puzzle of type 1 × 3.

The puzzle of type 1 × n (for n = 4)

The conclusion is identical for every n = 3,4, . . . If n = ∞ we obtain a sector in
P which is part of the V -puzzle (and corresponds to the limit n → ∞). Since the
horizontal strips alternate 2-strips and ◇-strips of height 1, this sector in P extends
uniquely to the V -puzzle. �
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Let us now turn to the ◇-sectors, both of which are limiting cases of half ◇-strips
as the height increases. Recall however that ◇-strips in flat can only have height 1
or 2.

Lemma 17. If the puzzle contains a sector with acute angle, then it contains a
component of type 2 × n for some n = 1, . . . ,∞ (if n = ∞ this is the semi-infinite
◇-strip of type 2).

Proof. Acute sectors extend uniquely (up to symmetry along the bisector) to the
following finite puzzle:

This puzzle contains (at the bottom-left) a ◇-component of type 2 × n with n =
1, . . . ,∞. If n = 1 then the sector extends uniquely to a half plane containing the
3-strip. If n = 2 then it extends uniquely to a half-plane containing the 4-strip.
Otherwise

By Lemma 12, we have n ≥ 2 and by Lemma 8 we have n ≥ 3. Applying Lemma
11 gives the conclusion. �

Lemma 18. There exists a unique puzzle containing a sector with obtuse angle.
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Proof. Obtuse sectors extend to:

which creates a w-strip. Existence and uniqueness of the puzzle is proved by in-
duction using Lemma 3 as earlier. �

Let us then classify extensions of the 3-strips and the double w-strips.

Lemma 19. If P contains the 3-strip S, then P contains only parallels 3-strips
and at most two copies of the half puzzle of type 2 ×∞.

The 3-strip puzzle is the puzzle made only of parallels 3-strips. Every other
puzzle is called the 3-strip puzzle of height h where h ≥ 1 is the number of parallels
3-strips it contains. We call half 3-strip puzzle the puzzle containing exactly one
half-puzzle of type 2 ×∞. Every 3-strip puzzle of height h < ∞ contains two such
puzzles.

Lemma 20. There are precisely two puzzles containing the double w-strip.

Proof. Note that, using the symmetry along the vertical axis, the double w-strip
extends uniquely as follows:

By Lemma 7 this can be extended north in a unique way. �
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The two puzzles in Lemma 20 will be called the opposite acute sector puzzle and
the adjacent acute sector puzzle. The corresponding half puzzle is:

Theorem 21. The Aut(F2) puzzles come in 4 infinite series and 9 exceptional
puzzles not belonging to the series.

The 9 exceptional puzzles are:

a) the ◇-puzzle
b) the 2 × 1-puzzle (see Lemma 12)
c) the star puzzle of type 2 ×∞
d) the 3-strip puzzle and the half 3-strip puzzle
e) the opposite acute sector puzzle and the adjacent acute sector puzzle (see Lemma

8 and Lemma 20).
f) the obtuse sector puzzle (see Lemma 18)
g) the V -puzzle

The 4 infinite series are:

A) the alternating 2-strip/◇-strip series. This contains three subseries:
● the bounded 2-strip/◇-strip series. They are parametrized by biinfinite
sequences (⋯, n−1, n0, n1,⋯) recording the heights of the ◇-strips in the
given order, where ni ≥ 1 is arbitrary. There are uncountably many such
puzzles.

● The sided 2-strip/◇-strip series. The 1-sided series is parametrized by right
infinite sequences (n0, n1,⋯) of heights of ◇-strips, where ni ≥ 1 is arbi-
trary, giving uncountably many puzzles. The 2-sided series is parametrized
by finite sequences (n0, n1, nr) where r is finite but arbitrary. This gives
countably many puzzles.
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B) the 1×n series. They are constructing using the strip of type 1×n (Lemma 11)
and can be encoded by the biinfinite sequence (⋯, n−1, n0, n1,⋯) of heights here
ni ≥ 1 is arbitrary, and at least one ni ≥ 3. There are uncountably many such
puzzles. This series also splits into 3 subseries, the bounded 1×n series and the
sided 1 ×∞ series, which can either be one-sided or two-sided.

C) the 2 × n series, where n = 3,4, . . . (n <∞). There is a unique puzzle for every
n × 2 (Lemma 9).

D) the 3-strip series of height h ≥ 1 (Lemma 19).

Several of the exceptional puzzles appear as limits of elements of the infinite
series. For example, a), c), and d) can be seen as limiting cases of A), C), and
D) respectively, and b) can be seen as a limit of B when “n→ 2”. The V -puzzle g)
can also be seen as a limiting case for B), and D) can be seen as a limiting case for
C) when n →∞. The obtuse sector puzzle, on the other hand, does not appear to
be a limit — and similarly for e).

Proof. Let P be an Aut(F2) puzzle. We assume that P is not one of the exceptional
puzzles and prove that it belongs to one of the series.

Note that P does not contain an obtuse sector. If it contains an acute sector
then it contains a strip of type 2×n. If it contains a semi-infinite strip of type 2×∞
and since it is not the star puzzle of type 2 ×∞ it contains the 3-strip. Not being
in d) it belongs to D).

If P contains a semi-infinite strip of type 1×∞ but no semi-infinite strip of type
2 ×∞, then it belongs to B) by Lemma 16.

If P contains a bi-infinite ◇-strip then it belongs to A.
By Lemma 13 we may now assume that every ◇-component of P is finite. If has

a component of type 2 × n then we are in case C). Otherwise every component is
finite of type 1 × n. Then this is case B). �

Remark 22. One can organize puzzles into a “space of puzzles” as follows. A
marked puzzle is a parametrization f ∶R2 → P where f is isometric. Define a
valuation v on the set Puzzles′ of all marked puzzles (with prescribed shapes and
rings) by

v(f, f ′) = sup{r, f(B(0, r))
simplicial isometric

≃ f ′(B(0, r))}

with corresponding metric
d(f, f ′) = e−v(f,f

′).

The space of marked puzzles is

Puzzles ∶= Puzzles′/{d = 0}.

Some of the statements regarding convergence of puzzles can be interpreted in the
space Puzzles. For example the obtuse sector puzzle “is not a limit” because it
corresponds to an isolated point in Puzzles. Note that the space of puzzles is
compact if the sets of shapes and rings are finite. It is endowed with an action of
R2 given by

t ⋅ f ∶= f ○ t−1

for t a translation of R2 turning Puzzles into a lamination whose leaves correspond
to puzzles with the given set of shapes and rings.
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3. Ring complexes and flat plane problems

Ring puzzles, or portions thereof, can be “glued together” to form “nonplanar
ring puzzles”, which are more complicated objects to understand.

Let us start with a 2-complex X and say that X is a ring complex if its faces
are flat polygons in the Euclidean plane with coloured angles.

The rings at a vertex of X is set of all coloured circles of length 2π of small
radius around that vertex.

The type of a ring complex is the prescribed set of coloured faces and rings
(considered up to coloured isometry).

We study ring complexes of type Aut(F2) as considered earlier:

T ∶= { }

Lemma 23. The group Aut(F2) acts properly on a ring complex of type Aut(F2)
with compact quotient.

Proof. The Brady complex has the required properties. �

Note that ring complexes are naturally endowed with a global metric, namely
the length metric. They are not necessarily nonpositively curved.

A flat plane in X is an isometric embedding R2↪X. Every flat plane in a ring
complex is a ring puzzle of the same type.

The Z2 embedding problem for X is the question of whether

R2↪X⇒Z2↪Γ

whenever Γ ↷ X properly with X/Γ compact. Gromov asks for example if this is
true for X simplicial and nonpositively curved, say, of dimension 2 (see [7]). When
X is nonpositively curved we have

Z2↪Γ⇒R2↪X

by the flat torus theorem and the “flat closing conjecture” asserts the embedding
problem has a positive answer. In §4 and §5 the groups are nonpositively curved.

Definition 24. Consider a simplicial strip S ≃ R × [a, b] and a simplicial subset
L ⊂ S. The strip S is said to be uniquely L-embeddable inX if for any two simplicial
embeddings f, f ′∶S↪X and any translation g∶S → S

f ′ = f ○ g on L ⇒ f ′ = f ○ g on S.

(Note that g is then necessarily a simplicial map.)

Consider the following two 1-strips in a ring complex of type Aut(F2):
● the ◇-strip:

● the △-strip:
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These strips are said to be uniquely ◇-embeddable if they are uniquely L-embeddable
with respect to a lozenge.

We say that X is acylindrical if there is no embedding

S1 ×R /↪X

of a bi-infinite cylinder into X.

Theorem 25. If in an acylindrical ring complex of type Aut(F2) every ◇-strip
and every △-strip is uniquely ◇-embeddable, then the Z2 embedding problem has a
positive solution.

The proof of Theorem 25 relies on two lemmas. The first lemma uses the classi-
fication.

Lemma 26. Suppose that X is a ring complex X of type Aut(F2) and fix Γ ↷
X with X/Γ compact. If X contains a flat, then it contains a flat that contains
infinitely many parallel ◇-strips, or a flat that contains infinitely many parallel △-
strips.

Proof. We claim that if X contains a flat, then it contains a flat which is isomorphic
to either a ◇-puzzle, a puzzle of uniformly bounded type 1×n (including n = 2), or
a puzzle of uniformly bounded alternating 2-strip/◇-strip type. The lemma follows
easily from this.

The proof of the claim is a standard sort of compactness argument which relies
on the classification. Let Π be a flat and K be a relatively compact fundamental
domain for Γ↷X.

Suppose for example that Π contains a ◇-sector S. Choose vertices xn in S
moving apart from the boundary of S, and sn ∈ Γ such that snxn ∈K. For every r >
0 we can find infinitely many n for which the flats snΠ coincide on r-neighbourhood
of K. A diagonal argument delivers a flat

Π∞ ∶= lim
n in a subsequence

snΠ

with x ∈ Π∞ such that for every r and every n large enough (depending on r) the
ball of radius r and center x in Π coincide with the ball of radius r and center s−1

n x
in Πn. This shows that Π∞ is the ◇-flat.

This covers cases a), d), e), f) and C) and D) of the classification. The same
argument works if Π contains ◇-strips of arbitrary large height, showing that case
B) of the classification leads to either a ◇-flat, or Π a uniformly bounded flat of
type 1 × n (including n = 2). This covers cases b) and B).

In cases c) and g) it is easy to choose xn so that Π∞ is the alternating 2-strip/◇-
strip flat where the ◇-strip has height 1. Finally in case A), either the height is
uniformly bounded, or we can choose xn so that Π∞ is the ◇-flat. �

Lemma 27. Suppose that X is a ring complex X of type Aut(F2) and fix a proper
action Γ↷X with X/Γ compact. Assume furthermore that

● X is acylindrical and uniformly locally finite
● X contains a flat that contains infinitely many parallel copies of a simplicial
strip S

● S is uniquely L-embeddable in X for some non empty compact simplicial
set L

● there are infinitely many distinct simplicial translates of L in S.
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Then Z2↪Γ.

Proof. Let S denote the strip given with simplicial set L ⊂ S.
Let Π be a flat in X that contains infinitely many parallel copies of S, say

fk ∶S↪X with ran fk ∥ ran fl, fk ≠ fl (k ≠ l ≥ 1)
Note that fk ≠ fl on L if k ≠ l.

Since X/Γ is compact there exist elements sk ∈ Γ such that

sk ○ fk = s1 ○ f1 on L

for infinitely many k ≥ 1.
Since S is uniquely L-extendable we have that

sk ○ fk = s1 ○ f1 on S

for infinitely many k ≥ 1.
Choose k large enough so that ran fk ∩ ran f1 = ∅ and write f = f1, f ′ = fk and

s = s−1
k ○ s1 so that f ′ = s ○ f .

By assumption we can find infinitely many distinct translates of L in S. Let
gn∶S → S denote the corresponding translations (n ≥ 1). Since X/Γ is compact,
there exist an index n0 ≥ 1 and elements tn ∈ Γ such that

tn ○ f ○ gn = f ○ gn0 on L

for infinitely many n ≥ 1.
Since S is uniquely L-extendable we have that

tn ○ f ○ gn = f ○ gn0 on S

for infinitely many n ≥ 1.
Choose n large enough so that f ○ gn(L) ∩ f ○ g1(L) = ∅ and write g = gn0 ○ g−1

n

and t = tn so that we have the intertwining relation

t ○ f = f ○ g
on S. Note that g is a simplicial translation. Furthermore tm ○ f = f ○ gm for every
m ∈ Z.

Denote by f∨f ′∶ [a, b]×R→ Π ⊂X the simplicial strip lying “between f and f ′” in
Π (whose range is the convex closure of both strips in Π). Thus there is a < a′ < b′ < b
such that S is simplicially isomorphic to both [a, a′] × R and [b′, b] × R, and the
restriction of f ∨ f ′ to these strips is f and f ′, respectively.

Since X is locally finite, there are only finitely many strips in X isometric to
ran f ∨f ′ containing ran f . Therefore there exists m and a translation h∶ [a, b]×R→
[a, b] ×R such that

tm ○ (f ∨ f ′) = (f ∨ f ′) ○ h.
Note that h coincide with gm on [a, a′] ×R, so we will replace t with tm to obtain
the relations

t ○ f = f ○ h and t ○ (f ∨ f ′) = (f ∨ f ′) ○ h.
on S ≃ [a, a′] ×R and [a, b] ×R. This implies that

tq ○ f = f ○ hq and tq ○ (f ∨ f ′) = (f ∨ f ′) ○ hq.
on S ≃ [a, a′]×R and [a, b]×R, respectively, for every q ∈ Z, and in particular that

tq ○ f ′ = f ′ ○ hq

on S ≃ [b′, b] ×R, for every q ∈ Z.
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Then
tq ○ s ○ f = tq ○ f ′ = f ′ ○ hq = s ○ f ○ hq = s ○ tq ○ f.

Choose a point x ∈ ran f . The relation shows that for every q ∈ Z the commutator

[tq, s] ∈ StabΓ(x),
which is a finite group by assumption. Therefore we can find q ≠ q′ such that

[tq, s] = [tq
′

, s]
so

[tq−q
′

, s] = e.
Since

tq ○ f = f ○ hq

for every q, it follows that t has infinitely order in Γ.
Assume towards a contradiction that s has finite order in Γ. Then the subset of

X
order of s
⋃
k=0

ran sk ○ (f ∨ f ′)

is a simplicial cylinder in X, whose existence is precluded by assumption.
Thus, ⟨tq−q

′

, s⟩ ≃ Z2 in Γ. �

Remark 28. The space of marked flats Flats(X) is the set

Flats(X) = {R2↪X}
of all isometric embeddings R2↪X. This is a classical object associated with X;
it has been studied in particular by Pansu and is useful when studying the rigidity
of symmetric spaces (cf. [8, §14]).

The space Flats(X) has two commuting actions of R2 and Γ

t ⋅ f ∶= f ○ t−1 and s ⋅ f ∶= s ○ f
respectively at the source and the range, for t a translation of R2, s ∈ Γ, and
f ∶R2↪X an embedding.

If X is locally finite and X/Γ is compact then Flats(X)/Γ is a compact space.
It is not empty if X is not hyperbolic, and it is endowed with a structure of a
lamination whose leaves are associated with flat planes in X and given by the
action of R2.

If X is a ring complex of type Aut(F2) we have an obvious map

Flats(X)→ Puzzles(Aut(F2))
which is continuous and open.

Note that in the case of ring complexes of type Aut(F2), the subset Flatsx(X)
corresponding to flats in X of type x = a), b), . . . is closed whenever flats of type
x are geometrically periodic (i.e. the simplicial isometry group acts with compact
quotient). This holds for flats of type a) or b), for example.

A ring complex X is said to be full if the map Flats(X) → Puzzles(T ) is
surjective with respect to T = T (X), where T (X) denotes the type of X (minimal
sets of shapes and rings in X).

This notion of “fullness” can be thought of as a weakening of the idea of “space
of maximal rank” from rank interpolation.

For example the Brady complex is full, and we think of it as a space of maximal
rank among ring complexes of type Aut(F2). It plays the role of Euclidean buildings
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in [4], which are the prototypical “spaces of maximal rank” (in their respective
classes, namely among spaces of type Ã2, of type B̃2 or of type G̃2).

Observe also that the classification of Euclidean buildings into types is primarily
a classification of their apartments (flats) and associated Coxeter groups, which in
spirit is not very far from the definition of ring complexes being “of type Aut(F2)”
described in the present paper.

4. Randomizing Aut(F2)

Let Γp ≤ Γ0 ∶= Aut(F2) be finite index subgroups and consider the deterministic
data (Γ0,{Γp},X0) in the sense of [4], where X0 is the Brady space.

We only discuss the density model. Results can also be established in the
bounded model (for example).

Recall that if Pp denotes a process for selecting finite random subsets of elements
in the set

Cp ∶= {Γp-orbits of faces in X0}
then the density model can be defined in the following way, given a parameter
δ ∈ (0,1).

Definition 29. The density model over (Γ0,{Γp},X0) is associated with
Pp ∶= “choose ∣Cp∣δ chambers in Cp, uniformly and independently at random”.

We have the following phase transition at δ = 2
3
.

Proposition 30 (See [4, §5]). If Γ denotes the random group in the density model
over (Γ0,{Γp},X0) then

(1) if δ < 2/3 then Γ acts properly on a CAT(0) space X without boundary such
that X/Γ compact

(2) if δ > 2/3 then Γ splits off a free factor isomorphic to a free group Fn on n
generators.

Lemma 31. The random group in the density model over (Γ0,{Γp},X0) acts on
a ring complex of type T .

Proof. By construction the random group Γ at arbitrary density acts on a space X
which is locally isometric to a subspace of X0 and therefore the links of X embed
L. Note that if 1/2 < δ < 2/3 the contraction of free faces removes free paths in the
link, and if δ > 2/3 the links are not necessarily connected. The shape set of X is
also a subset of the shape set of X, so X is of type T . This is true more generally
of the α-model [4, §4]. �

The following result is an application of Theorem 25.

Theorem 32. For arbitrary deterministic data (Γ0,{Γp},X0) with Γ0 = Aut(F2),
Γp are finite index subgroups, and X0 denotes the brady complex, the random group
in the density model over (Γ0,{Γp},X0) satisfies the flat closing conjecture.

This may be compared to the randomized lattices in nonarchimedean Lie groups
[4], for which the corresponding statement is open.

Proof. Let Γ↷X denote the action of the random group on its associated random
classifying space. Since X is nonpositively curved [4] it is acylindrical. In order
to apply Theorem 25 we have to check the unique extension property for X. This
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follows from a generalization of [4, Lemma 11] to strips, which are simply connected
(see also [1, Lemma 13].). Namely if A ⊂ Cp is an arbitrary subset and, in the
notation of [4, Lemma 11], if

S ⊂XA ∶=X0 − ⋃
C∈A

○
C

is a strip, then the map j ∶ S → Π ⊂ XA lifts to unique map j̃ ∶ S → Π̃ ⊂ X̃A

through any point j̃(s) = x̃ ∈ X̃A, s ∈ S such that πA(x̃) = j(s) =∶ x and we have a
commutative diagram

X̃A

πA

��
S

j
//

j̃
??

XA

We prove that the strip S is uniquely L-embeddable in X if it is so in the Brady
complex X0. Since both the ◇-strip and the △-strip are uniquely embeddable in
X0 (which is an easy exercise), the result will follow.

Consider two simplicial embeddings f, f ′∶S↪ X̃A and a translation g∶S → S

f ′ = f ○ g on L.

We have to show that f ′ = f ○ g on S.
Let j ∶= πA ○ f ○ g and j′ ∶= πA ○ f ′. These are two embeddings S → XA ⊂ X0

which coincide on L. By the the unique strip extension property for S in X0, we
have that j = j′ on S.

Let s ∈ L and x̃ = f ′(s) = f ○ g(s) ∈ f ′(L) = f ○ g(L). There is a unique lift j̃
of j such that j̃(s) = x̃ and a unique lift j̃′ of j′ such that j̃′(s) = x̃ so j̃ = j̃′ on S
(since j = j′ on S). Applying uniqueness again f ○ g = j̃ on S and f ′ = j̃′ on S. So
f ′ = f ○ g on S.

This establishes the unique extension property for X̃A with respect to an arbi-
trary — in particular for a random — subset A ⊂ Cp. �

The Aut(F2) models differ from the nonarchimedean lattices models of [4] in
many respects. What we prove below is that for suitable choices of the deterministic
data, the presence of periodic flats persists at arbitrary densities δ ∈ (0,1). This
relies on the fact that the following “small tori property” can be achieved for Aut(F2)
models, for example for deterministic data associated with the symmetric group,
using superexponential growth.

Definition 33. We say that the deterministic data (Γ0,{Γp},X0) has the small tori
property (in the density model) if for any p ≥ 1 there exists an embedding Z2↪Γ0

and a simplicial embedding R2↪X0 with Z2 ↷ R2 (freely and cocompactly) such
that

∀δ > 0, ∣(R2)(2)/(Z2 ∩ Γp)∣ ≤ O(∣X(2)/Γp∣δ).
where (2) indicates 2-faces.

This is easily seen to be an algebraic condition on the growth of the finite index
subgroups relative to the embedding of Z2, at least if X is a CAT(0) space (see the
proof of Theorem 35).

The persistence of periodic flat planes at arbitrary density will follow from:
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Lemma 34. If (Γ0,{Γp},X0) has the small tori property, where X0 is a CAT(0)
space, then Z2 embeds in the random group at arbitrary density δ ∈ (0,1) with
overwhelming probability.

The proof is extracted from [4, §6].

Proof. Let δ ∈ (0,1) be given. Let Cp be the set of Γp-orbits of 2-cells in X0 (which
can be triangles or lozenges) and let Fp be the set of Z2 ∩Γp orbits of 2-cells in R2

viewed as a flat plane in X0.
Let α < 1 − δ. By the small tori property we have

∣Fp∣ ≤ O(∣X(2)/Γp∣α).
Write F ′

p for the image of Fp in Cp so

∣F ′
p∣ ≤ C ∣Cp∣α

for some constant C > 0.
Consider a sequence Y1, Y2, Y3, . . . of i.i.d. random variables with values in Cp.

The probability P(Ep) of the event:

Ep = {Yi ∉ F ′
p, ∀i ≤ ∣Cp∣δ}

satisfies

P(Ep) ≥ (1 −
∣F ′
p∣

∣Cp∣
)
∣Cp∣δ

≥ e−2∣Cp∣δ−1∣F ′

p∣ ≥ e−2C∣Cp∣δ−1+α

so P(Ep) → 1. Applying Lemma 11 in [4] we have that Z2↪Γ with overwhelming
probability at density δ. �

This can be applied to the case of Aut(F2) in the following way. Write F2 = ⟨x, y⟩
and define automorphisms α,β ∈ Aut(F2)

α∶x→ x, y → x2y, β∶x→ xy2, y → y

so

ᾱ = ( 1 2
0 1

) and β̄ = ( 1 0
2 1

)

where ᾱ, β̄ are the reduction relative to the short exact sequence

IA2↪Aut(F2)
¯↠ GL2(Z).

IA2 = Inn(F2) = ⟨α0, β0⟩ ≃ F2 is the subgroup of inner automorphisms:

α0∶x→ x, y → xyx−1, β0∶x→ yxy−1, y → y.

It is well–known that ⟨ᾱ, β̄⟩ ≃ F2 so we have a split exact sequence

IA2↪ IA2 ⋊ ⟨α,β⟩↠⟨ᾱ, β̄⟩.

Theorem 35 (Periodic flat planes at arbitrary density). Let Ap◁F2 be a charac-
teristic subgroup of F2 and let Bp◁F2 be a normal subgroup such that F2/Bp is the
group Sp of permutations of the set with p elements. Suppose that [F2 ∶ Ap] ≤ eO(p).
If the deterministic data (Γ0,{Γp},X0) satisfy:

● Γ0 = Aut(F2)
● X0 is the Brady complex
● Γ1 = IA2 ⋊ ⟨α,β⟩ (a subgroup of index 24 in Γ0)
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● for p ≥ 2, we have Γp ∶= Ap ⋊ Bp where we view Ap as a subgroup of IA2

and Bp as a subgroup of ⟨ᾱ, β̄⟩.
Then with overwhelming probability Z2↪Γ ∶= the random group at density δ ∈ (0,1).

Proof. Since X0 is a CAT(0) space the triple (Γ0,{Γp},X0) has the small tori
property if and only if there exists an embedding Z2↪Γ such that

∀δ > 0, ∣Z2/(Z2 ∩ Γp)∣ ≤ O(∣Γ/Γp∣δ).

We have

∣⟨α0⟩/(⟨α0⟩ ∩Ap)∣ ≤ eO(p), and similarly ∣⟨β0⟩/(⟨β0⟩ ∩Ap)∣ ≤ eO(p)

by assumption and

∣⟨α⟩/(⟨α⟩ ∩Bp)∣ ≤ g(p), and similarly ∣⟨β⟩/(⟨β⟩ ∩Bp)∣ ≤ g(p)

where

g(p) ∶= maximal order of an element in Sp

is the Landau function (see Wikipedia). Note that the value g(p) can be indeed
achieved in our situation [6, §2.63].

Landau has proved that

lim
p→∞

ln g(p)√
p lnp

= 1

therefore

∣⟨α⟩/(⟨α⟩ ∩Bp)∣ ≤ eO(p), and similarly ∣⟨β⟩/(⟨β⟩ ∩Bp)∣ ≤ eO(p).

If Λ ≃ Z2 denotes the subgroup of Aut(F2) generated either by α0, α or by β0, β
then we have

∣Λ/(Λ ∩ Γp)∣ ≤ eO(p).

On the other hand by Stirling’s approximation

∣Γ/Γp∣ ≥ p! ≥ (p
e
)
p

.

This shows that

∀δ > 0, ∣Λ/(Λ ∩ Γp)∣ ≤ O(∣Γ/Γp∣δ).

Then Lemma 34 applies. �

Remark 36. 1) Aut(F2) has many interesting finite quotients leading to interesting
phase transitions in the corresponding density model. We hope to come back to
this elsewhere.

2) The variation of the small tori property which is implicit in [4] is the assertion
that there is α ≥ 0 such that for any p ≥ 1 there are Z2↪Γ0 and R2↪X0 with
Z2 ↷ R2 freely and cocompactly such that

∀δ > α, ∣(R2)(2)/(Z2 ∩ Γp)∣ ≤ O(∣X(2)/Γp∣δ).
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5. The explicit construction

The construction provides a non positively curved simplicial complex X and a
group Γ acting freely on X with 3 orbits of vertices.

The link at every vertex is a “double” of the link of the Brady complex as ex-
plicited on the following drawing (in red and black). See [5, Fig. 6] for the link of
the Brady complex itself.

a1

a2

a3

b1

b2

b3

c1

c2

c3

d1

d2

d3

e1

e2

e3

f1

f2

f3

x1

y1

x2
y2

x3

y3

The figure shows X/Γ. The 1-skeleton (in green) of X/Γ supports the following
set of faces:

triangles: ●1 ●2 ●3 where ● = a, b, c, d, e, f, x, y
lozenges: ●1●′2●′3●2, where ● = a, b, c, d, e, f and x1d3y

′
1b
′
1, x1c

′
3y

′
1a1, x2f3y

′
2c
′
1,

x2e
′
3y

′
2d1, x3a3y

′
3e
′
1, x3b

′
3y

′
3f1.

It is easy to see that the complex X thus constructed is a ring complex of type
Aut(F2). Further inspection shows that X fails to be hyperbolic and has the iso-
lated flats property. Every link contains 8 cycles of length 2π and the corresponding
puzzles are of type A.

This group appears to be an intriguing sort of “double” of Aut(F2).
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