Smart Data Mining Techniques for Emergency Detection Using Wireless Sensor Networks - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Smart Data Mining Techniques for Emergency Detection Using Wireless Sensor Networks

Résumé

Environmental emergencies such as forest fires present a serious threat to the environment and human life. The monitoring system of emergencies should be capable of early detection in order to reduce possible damage. In this paper, we present a new approach for forest fire detection based on the integration of Data Mining techniques into sensor nodes. The idea is to use a clustered WSN where each node will individually decide on detecting fire using a classifier of Data Mining techniques. When a fire is detected, the node will send an alert through its cluster-head which will pass through gateways and other cluster-heads until it will reach the sink in order to inform the firefighters. The proposed approach is evaluated using the CupCarbon simulator. The simulation experiments show that our approach can provide fast detection of forest fires while consuming energy efficiently.
Fichier principal
Vignette du fichier
122466927b362649542184fbfc2a28fe83b3.pdf (637.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02508022 , version 1 (13-03-2020)

Identifiants

  • HAL Id : hal-02508022 , version 1

Citer

Massinissa Saoudi, Ahcène Bounceur, Reinhardt Euler, Tahar Kechadi. Smart Data Mining Techniques for Emergency Detection Using Wireless Sensor Networks. 11ème Colloque du GDR SoC-SiP, Jun 2016, Nantes, France. ⟨hal-02508022⟩
83 Consultations
72 Téléchargements

Partager

More