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Leveraging Fine-Grained Transaction Data for Customer Life Event Predictions 

Abstract 

This real-world study with a large European financial services provider combines aggregated 

customer data including customer demographics, behavior and contact with the firm, with fine-

grained transaction data to predict four different customer life events: moving, birth of a child, 

new relationship, and end of a relationship. The fine-grained transaction data—approximately 60 

million debit transactions involving around 132,000 customers to more than 1.5 million different 

counterparties over a one-year period—reveal a pseudo-social network that supports the 

derivation of behavioral similarity measures. To advance decision support systems literature, this 

study validates the proposed customer life event prediction model in a real-world setting in the 

financial services industry; compares models that rely on aggregated data, fine-grained transaction 

data, and their combination; and extends existing methods to incorporate fine-grained data that 

preserve recency, frequency, and monetary value information of the transactions. The results 

show that the proposed model predicts life events significantly better than random guessing, 

especially with the combination of fine-grained transaction and aggregated data. Incorporating 

recency, frequency, and monetary value information of fine-grained transaction data also 

significantly improves performance compared with models based on binary logs. Fine-grained 

transaction data accounts for the largest part of the total variable importance, for all but one of the 

life events. 

Keywords 

Life event prediction, predictive modeling, pseudo-social networks, customer relationship 

management (CRM), big data, data science 
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1 Introduction 

Successful companies build long-term relations with their customers [1], often through formal 

customer relationship management (CRM) strategies [2]. As customers’ needs change, managing 

these relations becomes challenging though, so firms seek to analyze customer lifecycles to gain 

predictive indicators of customers’ behavior and needs [3]. According to family lifecycle theory, 

customers behave similarly when they are in the same life stage [4,5], and their movement from 

one stage to another over time usually is triggered by detectable events (e.g., new relationship, 

birth of a child). Such trigger events are typically important moments in life and we will refer to 

them as life events. Life events impose acute stressors on most people [6,7], so to adjust to the 

related changes, they reevaluate their consumption priorities and develop coping behaviors [8]. 

Thus, sudden shifts in customer needs and behaviors often occur after life events [8], such as 

when new parents start spending more on healthy food and less on eating out [9]. Managing 

customer relationships during such life events has crucial strategic importance and can align the 

company’s actions better with future customer behavior [10]. 

Accordingly, companies invest considerably in methods to detect life events; for example, 

approximately 40 life events, including moving and the birth of a child, can be detected from 

textual analyses of Twitter data [11]. Customer life event information is stored in databases that 

can be used for many CRM applications [12]. Correct detection of life events enables companies 

to engage customers with appropriate cross- or up-selling offers [13] and reactively target them 

with relevant marketing campaigns [14]. With Google ads for example, insurance companies can 

target customers who have recently moved with appropriate renters’ or homeowners’ insurance 

products [15]. Furthermore, recent innovations in big data analytics suggest options for moving 

beyond such detection efforts and toward life event predictions, which could support proactive 

rather than reactive targeting of customers [15].  
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Predictive models are instrumental to score customers based on the likelihood of experiencing a 

future life event. They use historical data to anticipate the future state of a customer [16]. 

Predictive modeling accordingly supports customer scoring applications in many CRM domains 

[17], such as customer churn prediction [e.g. 18], credit scoring [e.g. 19], and response modeling 

[e.g. 20]. These models rely on predictive variables that are engineered from customer data stored 

in large relational databases [21,22]. Typically, these variables reflect information about customer 

demographics, variables summarizing the customer relationship, such as length of relationship or 

purchase history,  and customer–company interactions; they generally are referred to as 

aggregated or structured variables [23]. Although big data analytics promise the use of other 

sources of (unstructured) data [15], including in predictive models [23], previous predictive 

modeling studies in CRM mainly focus on structured data [18,24]. 

To complement such insights, we propose and test, for the first time, a method for customer life 

event prediction (CLEP), which represents an especially challenging problem for most companies 

for three main reasons. First, most customer life events take place outside the scope of the 

relationship with the company [25]. For example, to predict whether a customer will move in 

coming months, the company often lacks any direct insights obtained from prior interactions with 

the customer, which differs from the situation that arises for other applications of predictive 

modeling. Customer churn predictions, for example, relate directly to the customer’s prior 

behavior. Second, CLEP requires information about prior life events to train the predictive 

machine learning model, and gathering such information requires additional effort and investment 

by companies, because they rarely gather such details in the course of normal business practices 

[26]. Third, most life events are rare, which affects data preprocessing and the modeling process 

[25].  

In general, predictive CRM applications depend on three types of variables aggregated at the 

customer level: those that refer to socio-demographical characteristics; those that describe the 

contact between the client and the company; and historical customer behaviors, including RFM 
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variables (i.e., recency, frequency and monetary value) derived from the customer relationship. 

We refer to these types as aggregated variables. Although they offer good performance in other 

CRM applications, they might be insufficient for accurate CLEP, for the reasons we just listed. 

Instead, recent attempts have demonstrated the added value of alternative aggregation strategies 

based on acknowledging the underlying network structures of fine-grained data that describe all 

interactions of customers with counterparties, on the most detailed level. Typical examples of 

fine-grained data include Facebook likes [27], payment history [23], and online display ad 

networks. Such data have great power to predict personal attributes [27] and improve targeted 

marketing [23]. They provide logs of every event (e.g., likes, payments) involving each 

counterparty (e.g., Facebook page, merchant), which can reveal novel insights into customers’ 

lifestyles [27]. In section 2, a detailed overview of fine-grained transaction data is presented, 

which is the type of fine-grained data used in this study. By leveraging these data for CLEP, we 

seek to contribute to research into the use of big data in CRM. 

However, because these fine-grained data are characterized by high dimensionality and sparsity, a 

different method than for aggregated data is required to summarize information on the client level 

while still maintaining the richness of the data. A scalable way to leverage fine-grained data is to 

calculate behavioral similarity scores among customers in a pseudo-social network (PSN) [23], as 

we detail in Section 2. Calculations of behavioral similarity measures solely rely on the existence 

of transactions with the same counterparties [23], but we attempt to extend this methodology to 

capture more information from fine-grained data. Noting that RFM variables, as contained within 

a customer’s purchase history, effectively summarize transaction history and can predict future 

customer behavior [28,29], we propose an extended approach to behavioral similarity measures 

that reflect not just whether customers engage in transactions with shared counterparties but also 

whether they transact in similar fashion with them by incorporating RFM information. 

In this study, four life events (moving, birth of a child, new relationship, end of relationship), are 

predicted using both aggregated and fine-grained transaction data, gathered from a real-life data 
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set provided by a financial services provider. A new methodology for the fine-grained transaction 

data is proposed that extends previous work of [23] by incorporating RFM information of the 

transaction logs. We benchmark the results against those obtained from existing methods. 

Companies can use such predictions for different applications; these predictions can be used to set 

up a targeted marketing campaign which can be very successful if products are correlated with life 

events (e.g. fire insurance and moving). A more subtle way to use these predictions is via 

personalization of the service. A client who enters the website of the company, for example, might 

be shown different products or promotions based on his predicted probability to encounter a life 

event. 

The objective of this study is to explore whether life events can be effectively predicted using 

customer profile and transaction data, and how fine-grained transaction data is best leveraged for 

this purpose. Previous research demonstrated that the outcomes of predictive models can help 

managers in making better decisions which improves the CRM [e.g. 30,31]. In this regard, 

predictive modeling is crucial for pro-active, data-driven decision making [32,33]. Companies that 

deploy data-driven decision systems perform better in objective measures of financial and 

operational results [34]. Customer life events are used in many CRM applications such as 

customer targeting, segmentation [35] and customer life time value estimations [5]. Therefore, 

CLEP will enable pro-active decision making in these areas and help companies in achieving a 

better CRM. 

This study contributes to the business analytics research stream in decision support systems 

literature in three ways. This study contributes to the literature in three ways. First, previous DSS 

literature have explored the potential of new analytical application domains [e.g. 31]. Therefore, 

this paper contributes to this literature stream that find innovative DSS by demonstrating the value 

of CLEP in a real-world setting. Second, extant research [e.g. 23] has focused on methodological 

development that proof the added value of fine-grained data in a predictive modeling setting. We 

extent the existing methodology for fine-grained data, which only allowed for binary input data, 
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for continuous input data. This allows us to explore and demonstrate the added value of the 

incorporation of RFM information of transactions in behavioral similarity measures derived from 

the PSN. Thirdly, this study investigates which data to include in CLEP; by constructing models 

with aggregated data and/or fine-grained data. Our results show that aggregated data and fine-

grained transaction data should be combined to obtain the highest predictive performance. 

Insights are provided in the importance of the different variable categories.  

First, this is the first study to demonstrate CLEP in a real-world setting. Second, existing 

methodology for fine-grained data, which only allowed for binary input data, is extended for 

continuous input data. This allows us to explore and demonstrate the added value of the 

incorporation of RFM information of transactions in behavioral similarity measures derived from 

the PSN. Thirdly, this study investigates which data to include in CLEP; by constructing models 

with aggregated data and/or fine-grained data. Our results show that aggregated data and fine-

grained transaction should be combined to obtain the highest predictive performance. Insights are 

provided in the importance of the different variable categories.  

After we elaborate on the proposed methodology and the use of fine-grained data in the next 

section, we provide an overview of our experimental design in Section 3. Section 4 presents the 

results. Section 5 offers conclusions, and Section 6 ends with limitations and directions for further 

research.  

2 Methodology  

This section provides an overview of the methodology. The first part presents a generic two-stage 

framework and discusses how fine-grained data and aggregated data can be combined and 

integrated in a predictive model. The second part zooms in on fine-grained data, which is the key 

aspect of this study. Note, that we focus mainly on fine-grained data in this section, as our 

methodological contribution specifically relates to such data. The treatment of aggregated data 
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follows well-known practices previously described in literature [E.g. 36,37] and is presented in 

detail in section 3, the experimental design. 

2.1 Framework for integrating fine-grained data in a predictive model 

This section provides an overview of how aggregated data and fine-grained data are combined in 

a predictive model. Figure 1 presents a high-level overview of this framework which summarizes 

the two main phases. Aggregated data and fine-grained data are handled separately because there 

is a difference in data complexity of these two data sources, and which allows aggregated data to 

be passed directly passed to the second phase. 

In the first phase, relevant variables are constructed for the fine-grained data. The fine-grained 

data requires, compared to the aggregated data, some additional steps to construct relevant 

variables. This entire process is detailed in section 2.2. First, the data are represented in a pseudo-

social network, which is explained in section 2.2.1 in full detail using a small example. Second, 

from this network, relevant variables are calculated which is referred as featurization [38]. Section 

2.2.2 explains how such variables are calculated based on existing methodology using a pseudo-

social network constructed on binary information. In section 2.2.3, a new methodology is 

proposed that extends the existing one such that it allows for pseudo-social networks constructed 

on continuous data. 

In a second phase, data pre-processing and modeling steps are included. The aggregated data 

requires data pre-processing steps to deal with categorical variables, outliers and missing values. 

As these steps are common practice in any predictive model and not the core of this study, they 

are only discussed in section 3 about the experimental design. Variables constructed on both data 

types can be combined in a predictive model. An appropriate modeling technique is chosen based 

on the problem at hand. Previous studies have already explored many algorithms in many 

different settings such as customer churn prediction [E.g. 18,39,40], customer acquisition [E.g. 

41] and customer response modeling [E.g. 30]. We do base our choice for a modeling techniques

on existing literature, which is detailed in section 3.3. 
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2.2 Methodology for fine-grained data 

In this section, the methodology for fine-grained data is discussed. In elaborating the methodology 

for extracting variables from fine-grained data, we first present different representations of 

transaction data, which is the type of fine-grained data that are used in the focal study. Next the 

PSN is presented and we explain how it is derived from fine-grained transaction data. Then we 

outline a state-of-the-art method proposed by Martens et al.  [23] for calculating behavioral 

similarity scores between customers, according to customers’ transactions with counterparties. 

Finally, to extend this existing methodology, we propose incorporating RFM values resulting 

from the customers’ payment behavior.  

2.2.1 Fine-grained transaction data representation 

Fine-grained transaction data contain the logs of transactions or payments from clients to several 

counterparties, such as companies, institutions, and other clients. This information can be 

represented in three ways, as illustrated through an example in Figure 2.Note that Figure 2 only 

serves illustrative purposes to help explain the main principles of the proposed methodology. 

Fine-grained 
data 

(E.g. fine-
grained 

transaction 
data) 

• Section 2.2.1

• Binary based [23]
(Section 2.2.2)

• RFM –based
(Section 2.2.3)

Aggregated 
data 

Phase 2 

Phase 1 

Behavioral 

similarity scores 

Figure 1: Framework for integrating fine-grained data in a predictive model 

Pseudo Social network Modeling 

Data pre-processing 
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Real-world fine-grained data would typically contain thousands or even millions of records and 

thousands of counterparties.  First, it can be represented in a large matrix M1, where element xij 

represents the occurrence of a transaction between client i and counterparty j. In Figure 2, xij is a 

binary indicator that signals whether a client made a payment to the counterparty, which we refer 

to as binary logs. Life event information is represented in a separate binary vector. Thus for every 

life event, a separate model is constructed. Second, the information in matrix M1 could indicate an 

adjacency matrix for a bi-graph; in our case, the clients and counterparties would be the two nodes 

in a bi-graph. Edges, defined by the transaction data, exist only between clients and counterparties 

with non-zero values. In Figure 2, client Ahmed appears only in the bi-graph connected with the 

counterparty Ikea because he only interacted with this counterparty. Third, a uni-graph that 

represents a PSN among clients, based on their similar transaction behavior toward counterparties, 

can be derived from the bi-graph. In Figure 2, Ahmed is connected to the clients Ramon, Emma, 

and Jacob, because they share Ikea as a counterparty. The PSN is a social network because 

customers are linked with one another, but it is “pseudo” in the sense that, unlike in real social 

networks, even the strongly linked customers might not know one another [23]. In Figure 2, 

clients Ahmed and Ramon are linked in the PSN because they both made a payment to 

counterparty Ikea, but they probably have never met.  
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Figure 2: Representations of transaction data adapted from Martens et al. [23].  
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2.2.2 Behavioral similarity 

The graphical representation of fine-grained transaction data as a PSN provides links among 

customers, on the basis of the similarity of their counterparties. The similarity weights of these 

links incorporate two principles in the original method [23]. First, customers that share more 

counterparties earn higher weights. Second, popular counterparties are subject to down-weighting 

because large companies such as energy providers often establish little similarity information. The 

Tax Office counterparty in Figure 2, for example, needs to be down-weighted, because all but one 

of the clients made payments to it. This method, developed specifically to handle fine-grained 

transaction data, effectively trades off computational efficiency, scalability, and predictive 

performance [42]. 

Behavioral similarity scores, based on similarity weights between customers, then can be derived 

for customers within the network. In a predictive modeling context, customers who have recently 

experienced a life event serve as “seeds,” and the scores indicate the similarity between a focal 

customer and the average seed customers. The underlying assumption is that customers who have 

strong links in the PSN, and thus transact with similar merchants, behave similarly in other ways 

too, such as encountering important life events or buying the same products [43]. In Figure 2, 

clients Victoria and Ramon have experienced a life event and serve as seed customers. The 

behavioral similarity score aims to represent how similar the payment behavior of any other 

customer, such as Emma or Jacob, is to that of these seed customers. As demonstrated by Martens 

et al. [23] and presented in Equation (1), the behavioral similarity scores can be regrouped 

algebraically by counterparty. For every counterparty j, the empirical probability Ej (ratio of seed 

customers that made a payment to the counterparty [NSj] and the total number of customers [NCj]) 

represents the behavioral similarity term. Therefore, the behavioral similarity score of client Xi is 

defined as the sum of empirical probabilities Ej of counterparties to which Xi has made at least one 

payment, as in Equation (2). 
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���

	.
(1) 


��
������ =  ∑ ��� | ����� . (2) 

Using the example in Figure 2, we can calculate the empirical probabilities Ej for every 

counterparty j, with the process we summarize in Table 1. In our simplified example, clients 

Emma and Jacob made payments to the same counterparties, namely Walmart, Ikea, and the Tax 

Office, so their behavioral similarity scores are identical:  


��
��������  =  
��
������� �  = �!"##�"$% +  �'(�" + �)"� *++�,�

 = 0.33 + 0.25 + 0.40  = 0.98

(3) 

Table 1: Calculation of empirical probabilities for counterparties in the example 

Merchant j Clients NCj NSj Ej 

Walmart Victoria, Emma, Jacob 3 1 0.33 
McDonalds Victoria, Ramon 2 2 1 
Ikea Ahmed, Ramon, Emma, Jacob 4 1 0.25 
Tax Office Victoria, Ramon, Li, Emma, Jacob 5 2 0.40 

Note: Clients in bold are the seed customers. 

Equation (2) represents one option for calculating behavioral similarities, but other variants are 

available, as detailed in Equations (4)–(9) [23]. They differ in two main ways. First, the 

components pertaining to the seed customers, which we called behavioral similarity terms, are 

calculated differently. Second, two variants down-weight popular merchants based on inverse 

consumer frequency (ICF) or a cross-validated beta distribution. All calculations account only for 

the binary logs of the payment transactions as presented in matrix M1. Martens et al. [23] and De 

Cnudde et al. [42] provide more elaborate discussions of behavioral similarity scores based on 

PSN. These behavioral similarity scores can be used to score customers as presented in section 4. 

567� = 8�9�: � ;
���

	.
(4) 


<'�_�����>� =  ∑ ���
��?�|���� . (5) 


<'�_'�@�>� =  ∑ ���
��?�|����  567�A�. (6)
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<'�_<�>� =  ∑ ���
��?�|����  B�C∗, F∗��A�. (7) 

 
<'�_���>� =  ∑ G
��|���� . (8) 

 
<'�_��>� =  ∑ 5�
���>� ≠ 0��|���� . (9) 

   

where 

n Total number of customers in the data set, 

m All unique counterparts, 

J A specific counterparty, such that j ∊ m, 

NCj The number of customers who made payments to the counterpart j, 

NSj The number of seed customers who made payments to the counterpart j, and  

xij Binary variable that indicates whether customer i made a payment to counterpart j. 

 

2.2.3. Extension of behavioral similarity with RFM 

The derivation of behavioral similarity scores from a PSN built on fine-grained transaction data is 

a powerful way to incorporate this information in a predictive model, but it only accounts for 

whether transactions with counterparties occurred, such that the matrix M1 contains binary 

payment information. The existing method thus can only handle binary input data, which can 

cause an important loss of information. Hence, to contribute to this research domain, we seek to 

enrich the model with RFM dimensions gathered from fine-grained transaction data, because 

these variables reflect transactional information with great richness and have substantial 

importance for predictive marketing applications [e.g. 30,44]. Therefore, we propose a new 

methodology to incorporate RFM information of fine-grained transaction data to calculate 

behavioral similarity measures, as an extension of Martens et al. [23]. 

To predict life events, binary transactions might not tell the full story. In the example from Figure 

2, clients Emma and Jacob earn the same behavioral similarity score because they are connected 
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to the same counterparties, but richer information might improve the accuracy of these behavioral 

similarity scores. Consider matrix M2 in Figure 3, in which every element reflects the total 

monetary value that a client spends with different merchants instead of the binary logs as 

presented in matrix M1. At counterparty Ikea, client Ramon, who experienced a life event, spent 

substantially more than client Ahmed, who did not. This important nuance is not captured in the 

binary logs. We propose that clients should earn higher similarity scores when they resemble seed 

customers, in that they have spent more at Ikea. In this example, client Jacob spent a lot more at 

Ikea than Emma, so Jacob’s behavior is more similar to the seed customer Ramon’s, and he takes 

a higher score than Emma who spent less at Ikea. For this example, we use monetary value, but 

the same logic applies to recency and frequency variables. 

The extension of the behavioral similarity scores to RFM-based behavioral similarity scores 

requires several adjustments to Equations (1)–(9). For our illustration, we focus on monetary 

value, but all presented formulas are similar for the recency and frequency dimensions. Note that 

these Equations are built step by step, such that elements of a previous Equation are sometimes 

used in later Equations. First, the behavioral similarity scores using RFM should capture whether 

the observed value is more similar to seed customers or non-seed customers, such as by 

calculating the deviations between a client’s value and the average values for seed and non-seed 

clients. These deviations can be defined for a client i and counterparty j as: 

J
��>� = KL
� − N��K, and (10) 

J6��>� = KL6� − N��K, (11) 

where ASj represents the average monetary value for all seed customers of a counterparty j, and 

ACj is the average monetary value for all non-seed customers. In this case, xij does not represent 

the binary variable but the specific monetary value for customer i at counterparty j. Table 2 

contains these values, calculated for monetary value using our ongoing example. 
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Table 2: Average monetary value for seed and non-seed clients 

  

Merchant 

j 

Clients Total 

amount 

spent, non-

seed clients 

Total 

amount 

spent, seed 

clients 

ACj ASj 

Walmart Victoria, Emma, Jacob 0 10 0 10 
McDonalds Victoria, Ramon 0 25 0 12.50 
Ikea Ahmed, Ramon, Emma, 

Jacob 
10 200 10 200 

Tax Office Victoria, Ramon, Li, Emma, 
Jacob 

70 145 70 72.50 

  

Notes: Clients in bold are the seed customers. 

Second, the calculation of the ratio Rij , as presented in Equation (12), is similar to that of the 

empirical probability Ej [23] which was discussed before in Equation (1). Next, Equation (13) 

describes how the maximum value is calculated at a counterparty j and similarly Equation (14) 

provides the calculation for the minimum value. These minimum and maximum values are 

necessary in Equation (15) to describe how Rij is normalized to R’ij , which  ensures the output 

always lies within the interval [0,1]. Clients with values of deviation from the average for seed 
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customers smaller than those from non-seed customers receive higher scores. In analogy with 

section 2.2, the final behavioral similarity score Sbesim_rfm of a client i that includes one of the RFM 

indicators is therefore the sum of ratios R’ij of the counterparties to which the client has made 

payments as shown in Equation (16). The respective equations are as follows:  

O�� = �PQ �R���S��
PQ �R���S��	.

(12) 

T�N� =  ln �|L6� −  L
�| + 1�. (13) 

TX�� = � �
PQ �|Y��Z Y��|S���	.

(14) 

O′�� = � �\��Z]�;��
]"��Z]�;�

	.
(15) 


��
��_$+����� =  ∑ O′��� | ���^: . (16) 

Table 3 contains the behavioral similarity scores of clients from our example. Clients Emma and 

Jacob do not exhibit the same behavioral similarity score anymore; they differ in their spending at 

the different merchants. The difference between their scores mainly reflects the different 

monetary values in relation to Ikea for which Jacob is clearly more similar to the seed customers 

than Emma. 

Third, analogous to the behavioral similarity scores derived from the binary PSN, we construct 

three variants to calculate behavioral similarity for each RFM dimension. These behavioral 

similarity scores account for deviance, so it is possible to detect whether a customer is more 

similar to the seed customers or the overall population. The following equations provide an 

overview of these measures. Equation (17) calculates the behavioral similarity as in the example 

and depends on the normalized ratio R’ij defined in Equation (15). The two other variants also use 

the normalized ratio R’ij, but adjust the weights of the counterparties, similar to Equations (6) and 

(7) respectively. The weighing of counterparties in Equation (18) are based on the ICF. In

Equation (19), these weights are determined by a cross-validated Beta distribution. 
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$+�_;,;
���� =  ∑ O′��� | ���^: . (17) 

 
$+�_'�@���� =  ∑ O′�� 567�A�� | ���^: . (18) 

 
$+�_<���� =  ∑ O′��  B�C∗, F∗��A�� | ���^: . (19) 

 

Table 3: Behavioral similarity scores based a PSN constructed with monetary value links 

 

Clients i R’i , Walmart R’i , Ikea R’i , tax office Sbesim_rfm 

Emma 0.7291 0.1681 0.5678 1.4650 
Jacob 0.8358 0.7200 0.5506 2.0760 

 

 

3 Experimental set-up 

3.1 Data and experimental design 

The data in this study came from a large European financial services provider. For all 132,703 

customers included, this financial services provider is their primary bank; all customers thus 

exhibit bank transactions. Moreover, in line with the General Data Protection Regulations, all 

customers gave formal consent to the use of their data. Figure  presents the timeline for the 

variable construction. The experimental design mimics previous research, and we apply a ten-fold 

cross-validation [23]. That is, we split the data into ten different folds, each used once as a test set, 

with the remaining nine folds as the train set. If required, we also can split the training data into a 

train and validation set (one third of the train data), to determine hyper-parameter settings. To 

derive the behavioral similarity scores, all clients in the train set that faced the particular life event 

in the independent period are considered seed customers for that particular life event. Based on 

the information that is included (aggregated, fine-grained or a combination), different models are 

defined for which further details about the specifics of each model are provided in section 3.3. 

The independent variables come from two sources. First, 207 aggregated variables, as frequently 

used in other predictive scoring models [22,45,46], describe socio-demographic information (e.g., 

age, gender), customer purchase history (e.g., relationship length, monetary value, product 



18 

possession), and customer–company contacts (e.g., number of consults, number of complaints). 

Second, the raw transaction records, similar to the fine-grained transaction data described in 

Section 2, contain around 60 million debit transactions by all customers, involving more than 1.5 

million different merchants, over a one-year period. Both sources provide information only for the 

independent period as indicated on the timeline in Figure 4. 

The dependent variables are four life events, rigorously collected by the financial services 

provider, because it regards them as the most important determinants of its business. These 

variables are binary indicators that receive a value of 1 if the life event was registered or 0 

otherwise. The models predict such life events for the next 6 months (Figure 4). In our setting we 

create separate models for each life event. All customers that experienced the considered life 

event in the train set are considered as seed customers for the PSN.  In Table 4, which summarizes 

the life events, considered customers refers to the number of customers who theoretically might 

encounter the life event; for example, only customers currently in a relationship could experience 

an end of relationship event. 

Figure 4: Timeline for variable creation 

Table 4: Overview of dependent variables 

Life moment Definition # Considered 

Customers 

Incidence 

Moving Change in permanent address 132,703 9.44% 
Birth Birth of a child 132,703 1.64% 
New relationship Relationship change from single to 

married or officially living together 
101,819 2.02% 

End relationship Relationship change from married 
or officially living together to 

30,884 1.61% 

01/03/2016 01/09/2017 01/03/2017 

Independent period Dependent period 
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single 

3.2 Data preprocessing 

The aggregated data preprocessing follows standards established by prior customer scoring 

literature [18,45]. The fine-grained transactional data contain anonymized transaction logs from 

payments by customers to merchants, which can be entered directly into the PSN and do not 

require further preprocessing. 

First, we impute missing values, according to the specific characteristics of each variable. That is, 

the missing values might be imputed using zero, the median, or the modus [16]. The very fact that 

the variable is missing is potentially important information [47], so we use new dummy variables 

to flag these imputations. Second, outliers are extreme values that can distort predictive 

performance [48], so we use winsorization to transform them into less extreme values, within a 

three standard deviation range of the variable mean [49,50]. Third, we also create dummies for 

categorical variables, to encode the presence or absence of a particular category. The v unique 

values of the categorical variable are represented with v – 1 dummy variables [51]; every 

categorical variable thus transformed into dummy variables increases the total number of 

variables. Fourth, the incidences of the different life events range from 1.61% to 9.44%, so they 

are clearly imbalanced. Random undersampling [52] is frequently applied to remedy such 

imbalances for predictive modeling [53,54]. Practically, the number of customers of the majority 

class—that is, those without any change in the life event—gets reduced to the same level as the 

minority class—that is, customers who experienced the life event. Only the training data are 

altered; the test data must present the actual situation as realistically as possible. 

3.3 Modeling 

First, the five constructed models differ in the data used, as summarized in Table 5. The 

aggregated and fine-grained transaction data are modeled separately. As in previous research. 
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[23], the scores of the models that use both types of data are combined by a linear model, with the 

coefficients estimated using a validation set of the training data. 

Second, all models are trained using logistic regression with forward variable selection. As one of 

the most popular algorithms for binary classification tasks, logistic regression supports many 

marketing applications [e.g. 16,45,55]; it combines comprehensibility with robust results and 

good predictive performance, often even better than more complex models [16,56]. A logistic 

regression estimates the interpretable posterior probabilities directly. For a binary dependent 

variable, the logistic regression estimates the probability P(y=1|x) by: 

_�` = 1|>� =  1
1 + aZ�bcSd >� ,

(20) 

where x ∊ ℝn is an n-dimensional input vector (independent variables), w is the parameter vector

(weights), and w0 defines the intercept [57]. The calculation of the estimates for w0 and w uses a 

maximum likelihood procedure. 

The model that solely includes aggregated data is denoted mod_s. The models with fine-grained 

transaction data feature behavioral similarity scores based on the PSN (see Section 2). We select 

the best performing variant in terms of calculating behavioral similarity, using the performance of 

a validation set. The model mod_psn uses original PSN behavioral similarities, whereas mod_rfm 

uses Equations (17)–(19) to extend the PSN with RFM measures, combining these variables 

linearly according to the validation set of the training data.  

Table 5: Overview of models 

Models  Data 

Aggregated Data Fine-Grained Transaction Data 

Binary RFM 

Mod_s X 
Mod_psn X 
Mod_rfm X 
Mod_s_psn X X 
Mod_s_rfm X X 
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3.4 Evaluation criteria 

To measure the predictive performance of the different models, we use the area under the receiver 

operating characteristics curve (AUC) and top decile lift (TDL), as they are frequently applied to 

evaluate customer scoring models [e.g. 16,18,58]. The AUC is an independent performance 

measure of the discriminatory power of the predicted probabilities for the considered life event. 

For a binary classification, it provides a simple, one-value score between 0.5 and 1 [59]. The 

intuitive ranking offers a measure of posterior life event probabilities; in a CLEP context, it 

indicates the probability that a randomly chosen person with a life event is correctly ranked higher 

than a person without that life event. The TDL is a measure to assess the predictive performance 

of a model by expressing the predictive performance in the top decile as a number that indicates 

how much better (>1) or worse (<1) it performs than random guessing. It is commonly used to 

evaluate predictive performance in a binary classification setting [e.g. 45], instead measures 

predictive performance for the top decile, relative to random guessing. Companies often focus 

only on some of their customer base, because it is too expensive to target all customers. From a 

managerial point of view, the TDL is highly relevant, because it pertains specifically to those 

customers who are most likely to experience a life event and thus the optimal ones to target [56]. 

We consider the top 10%, similar to prior literature [23]. 

To test whether observed differences in the performance measures across the models are 

statistically significant, the comparison of the classifiers uses an established testing framework 

[60]. The non-parametric Wilcoxon signed-ranks tests [61] rank performance differences between 

two classifiers and compare the ranks for positive and negative differences. We use this method to 

assess the pairwise differences among the models in this study.  

4 Results and discussion 

In presenting the results, we start with overall performance, then compare the predictive 

performance of the RFM-based behavioral similarity scores with that of the occurrence-based 

behavioral similarity scores. Third, we compare models that combine aggregated data and fine-
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grained transaction data against models with single data sources, before detailing a meta-analysis 

to specify variations of behavioral similarity in the different models in the fourth part of this 

section.  

4.1 Overall performance 

The overall performance of the models can be compared with random guessing, which have, by 

definition, a value of AUC of 0.50 and a value of TDL of 1.Tables 6 and 7 list the average AUC 

and TDL values for the ten test folds, showing that all models perform better than random 

guessing for all considered life events; birth, new relationship, and end relationship each achieve 

AUC values of more than 71%. The combination of aggregated and fine-grained data produces a 

TDL of around 3. Predicting life event moving appears more difficult, according to our results, 

such that the predictive performance of mod_s for moving is considerably lower than that for the 

other three life events. From a managerial perspective, the fact that life events can be better 

predicted from data than random guessing can help to improve the customer experience through 

better service. In the financial services industry, companies can for example use these predictions 

to show the most relevant products first when a customer is browsing in its bank application. A 

more traditional way to use these predictions is for the bank advisor to propose a meeting when 

there is a high probability that the client will have a life event. 

 Table 6: Average AUC values (10-fold cross-validation) and standard errors 

Mod_s Mod_psn Mod_rfm Mod_s_psn Mod_s_rfm 

Moving 0.633*** 

(0.013) 
0.510*** 

(0.009) 
0.656***

(0.045) 
0.635*** 
(0.012) 

0.664*** 
(0.025) 

Birth 0.725*** 
(0.029) 

0.553*** 
(0.012) 

0.667*** 
(0.034) 

0.739*** 
(0.020) 

0.748*** 
(0.037) 

New relationship 0.681*** 
(0.035) 

0.542*** 
(0.019) 

0.656*** 
(0.036) 

0.712*** 
(0.016) 

0.730*** 
(0.039) 

End relationship 0.690*** 
(0.044) 

0.567*** 
(0.025) 

0.640*** 
(0.029) 

0.671*** 
(0.039) 

0.719*** 
(0.041) 

Notes: The model with the highest average AUC over 10 folds is underlined. 
The AUC of a random model is by definition equal to 0.50. Based on the Wilcoxon signed rank test, significant 
differences from the random model at the 90%, 95%, and 99% levels are indicated by *, **, and ***, respectively. 

Table 7: Average TDL values (10-fold cross-validation) and standard errors 

Mod_s Mod_psn Mod_rfm Mod_s_psn Mod_s_rfm 
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Moving 1.866*** 
(0.118) 

1.052* 
(0.065) 

1.391*** 
(0.372) 

1.889*** 
(0.127) 

1.985*** 
(0.325) 

Birth 2.880*** 
(0.600) 

1.233** 
(0.195) 

1.544** 
(0.284) 

3.097*** 
(0.290) 

3.000*** 
(0.226) 

New relationship 3.000*** 
(0.516) 

1.133** 
(0.142) 

1.482*** 
(0.252) 

3.167*** 
(0.290) 

3.242*** 
(0.267) 

End relationship 2.509*** 
(0.435) 

1.453** 
(0.458) 

1.737** 
(0.559) 

2.851** 
(0.652) 

2.799*** 
(0.844) 

Notes: The model with the highest average TDL over 10 folds is underlined. 
The TDL of a random model is by definition equal to 1. Based on the Wilcoxon signed rank test, significant differences 
from the random model at the 90%, 95%, and 99% levels are indicated by *, **, and ***, respectively. 

4.2 Fine-grained transaction data: RFM versus binary 

The results show that mod_rfm consistently outperforms mod_psn, and the differences are 

significant for all assessments with the exception of the TDL for end relationship. When taking 

into account aggregated data, the positive effect of RFM logs over binary logs is mixed with the 

performance increase of the aggregated data. Nevertheless the AUC of mod_s_rfm is always 

significantly higher than the mod_s_psn for all life events. The performance measured by TDL for 

mod_s_rfm is significantly better for the new relationship life event, but the other TDL 

differences are not significant. The detailed Wilcoxon test statistics for these two analyses are in 

Table 8, and the results clearly confirm the value of incorporating RFM information into 

behavioral similarity scores derived from the fine-grained transaction data.  

Table 8: Wilcoxon signed-rank test statistics over differences in performance 

Moving Birth New 
relationship 

End 
relationship 

AUC TDL AUC TDL AUC TDL AUC TDL 
Mod_rfm vs. 
mod_psn 

0*** 0*** 0*** 2** 0*** 0*** 0*** 13

Mod_s_rfm vs. 
mod_s_psn 

2*** 14 16* 26 16* 15* 0*** 9

*Significant at 90%. **Significant at 95%. ***Significant at 99%.

4.3 Combination of data sources versus single source 

In comparing the performance of a model that combines both data sources (mod_s_rfm) with two 

single-source models (mod_rfm and mod_s), we find that the former performs better than a model 
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that features only fine-grained transaction data. These results are significant for all life events for 

both AUC and TDL, with the exception of the AUC for event moving. Furthermore, mod_s_rfm 

always performs better than mod_s too, and the differences in performance are significant for all 

life events in terms of AUC. However, the observed TDL difference between mod_s_rfm and 

mod_s is significant only for new relationship. Table 9 presents the detailed Wilcoxon test 

statistics, which clearly indicate that both data sources add some value for predicting life events 

and clarify that the fine-grained transaction data and aggregated data do not measure the same 

thing. Therefore, both data sources should be combined to achieve the best predictive 

performance. 

Table 9: Wilcoxon signed-rank test statistics over the differences in performance  

 

 Moving Birth New 
relationship 

End 
relationship 

 AUC TDL AUC TDL AUC TDL AUC TDL 
Mod_s_rfm vs. 
mod_rfm 

14 0*** 0*** 0*** 0*** 0*** 0*** 0*** 

Mod_s_rfm vs. 
mod_s 

0*** 12 2** 25 0*** 17* 8* 15 

 

*Significant at 90%. **Significant at 95%. ***Significant at 99%. 

 

4.4 Meta-analyses 

We conducted two meta-analyses, to determine the importance of the different data categories, as 

well as investigate the implications of the selected behavioral similarity variations.  

4.4.1 Variable importance 

To determine the relative importance of the different variable categories, we use the absolute 

value of the Wald statistic for each individual predictor. The Wald statistic relates directly to the 

normalized β coefficients of the variables in the regression. Instead of a traditional logistic table, 

which can represent only a single model, we present the average importance of the aggregated 

variable categories in Figure 5, Panels a–d, across the multiple models in our ten-fold cross-

validation experimental design. 
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Among the three categories of aggregated variables (customer demographics, customer behavior, 

client–company contact), customer demographics are always the most important for predicting 

life events—a logical finding, in that customer demographics often feature variables that relate 

conceptually to life events. Customer behavior information also can help predict life events, with 

less importance. Yet in typical CRM applications, such as customer churn prediction, customer 

behavior is often the most important variable category [e.g. 18]. Finally, the variables that 

describe the contact between the client and company have the least importance. With regard to the 

fine-grained transaction data, we note substantial impacts in terms of predicting life events. They 

represent the most important source of information for moving, birth, and new relationships. The 

model that uses the RFM-extended behavioral similarity scores extracts far more predictive 

information out of the data, which then leads to heightened importance scores. 

Figure 5. Relative importance of variable categories by model 
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a. Moving life event b. Birth life event

c. New relationship life event d. End relationship life event

Notes: BEH = customer behavior, DEM = Customer demographics, CON = Client/company contact, FG_PAY = fine-grained 
transaction. 

4.4.2 Behavioral similarity variants 

By considering different approaches for calculating behavioral similarity, we derive counts of the 

selected behavioral similarity calculation variations per model, as depicted in Figure 6. The 

variations that adjust the weight of the counterparties are more frequently selected during the 

cross-validation. Then Figure 7, Panels a–d, presents the selected behavioral similarity variations 

per life event. Each life event indicates a dominant variation, which differs across events. For 

example, in mod_s_rfm, moving and end relationship are dominated by variation b, but for birth 

and new relation, the variation icf is preferable. 

Figure 6: Count of selected behavioral similarity variations per model 
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Figure 7: Count of selected behavioral similarity measures per life event 

a. mod_psn b. mod_rfm

c. mod_s_psn d. mod_s_rfm

5 Conclusions 

With this study, we sought to contribute to the business analytics research stream in decision 

support system literature in three main ways. First, we investigate CLEP in a real-world setting. In 

so doing, we demonstrate that life event prediction is feasible; all the life events we test can be 

predicted more accurately than random guessing. Therefore, these results should guide decision 

makers in their investments in life event prediction tools, as part of their broader CRM strategies. 
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Second, we propose and test an extension to a state-of-the-art method to incorporate fine-grained 

transaction data. Although PSN methods offer excellent performance in other applications [23], 

they also can be extended with behavioral similarity measures based on RFM variables obtained 

from payment transactions. The incorporation of RFM-based behavioral similarity measures 

significantly improves predictive performance. Third, by benchmarking models that incorporate 

different types of information, we derive insights about the importance of different variable 

categories. In particular, we show that optimal predictive performance requires a combination of 

aggregated and fine-grained transactional data. Practitioners thus can apply the guidelines that we 

establish herein to implement CLEP models, by leveraging fine-grained transaction data, 

customer demographics, and customer behavior as the most important data sources. Client–

company contact information has less importance when it comes to predicting life events. 

6 Limitations and future research 

This study is the first to predict several life events using real-world data from the financial 

services industry and shows that the PSN can be successfully extended with behavioral similarity 

measures based on RFM, but it also features some limitations and directions for further research.  

First, extending the behavioral similarity measures to account for RFM of payment transactions 

can improve predictive performance; further research also might consider alternative, innovative 

ways to calculate behavioral similarity or different ways to combine the RFM of the transactions 

to achieve even better improvements. Similarly, the results confirm the added value of fine-

grained transactional data for predicting life events; other available sources of data might improve 

predictive performance even further. Because life events are personally significant, by definition, 

they likely are top of mind among customers, so communications with the company might be 

insightful, as they are for other applications [62].  

Second, in demonstrating options for accurately predicting life events, this study is limited to only 

a portion of the potential CRM applications. For example, to understand how to target customers 
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about to experience specific life events, it would be interesting to investigate conversion rates for 

different offers. As demonstrated in uplift modeling studies [63], some customers might prefer not 

to be targeted by life event–specific campaigns. An interesting question involves whether their 

preferred targeting tactics differ across various life events.  

Third, using real-world data has many advantages, but they often are difficult to obtain. We study 

the financial services industry, but other industries also might benefit from CLEP. In the 

telecommunications industry for example, customers’ telecom needs might change after a life 

event, so the company might propose specific subscription formulas. Telecom operators also 

possess substantial, relevant data for such predictions and may have developed customer scoring 

models. Therefore, this sector would be an interesting context in which to test our proposed 

methodology. Also in the retailing industry, many applications could benefit from accurate life 

event predictions. Many retailers are already aware of the impact of life events on customer 

behavior, such as for example Wallmart, who dedicates a webpage to such events. Predicting life 

events might help to target the right customers with the right promotions, which could give a 

competitive advantage.  Moreover, retailers possess store transaction data, which are a form fine-

grained data and for which the methodology of this study could be used. In this regard, the legal 

context in the different industries should be considered, which can be different than in the 

financial services industry. Clients in the financial services industry have an obligation to provide 

life event for certain products for example. Especially in Europe, the storage and the use of 

personal data is strictly regulated. . Companies have to specify why certain data are collected and 

for which purpose; while customers have to formally accept this. 

Fourth, our results demonstrate that predicting life events can be predicted using a combination of 

aggregated and fine-grained transaction data. However, as in any predictive model, the success of 

our models relies on good data quality. The real-world case study in the financial services industry 

that was discussed in this paper benefitted from rigorous data collection on life events, but in 

other industries accurate life event data might be difficult to obtain by companies. This could lead 
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to problems related to missing values and data accuracy, which in turn could compromise 

predictive performance. Therefore, further research could investigate the effect of missing values 

on the predictive performance of customer life event prediction and explore strategies to deal with 

such issues. 
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