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Abstract 

Complex spectral envelopes of transition metal photo-excitations obtained using X-ray 

Photoelectron Spectroscopy (XPS) contain extensive information on the oxidation states and 

chemical bonding but pose multiple challenges for extracting reliable data due to the presence 

of multiple closely lying binding energy peaks.  In this work, we outlined a procedure for 

graphite supported copper nanoparticles (Cu NP/graphite) XPS data interpretation that 

involves constructing spectral envelopes of the potential copper components (Cu2O, CuO and 

Cu(OH)2) extracted from the diverse set of Cu NP/graphite samples and using Linear Least 

Squares (LLS) fitting to reconstruct the exact surface composition of Cu NP/graphite 

samples.  We utilized Informed Amorphous Sample Model (IASM) to calculate spectral 

envelopes using a physical process affecting the series of Cu NP/graphite samples, namely 

their synthesis procedure, to construct an informed line shape necessary to complete data 

reproduction by the model. The method described herein can be used to interpret crucial XPS 

data obtained in many science and engineering disciplines, including chemistry, fundamental 

and applied surface science, catalysis, semiconductors and many others. A brief discussion is 

also provided on the opportunities and pitfalls of deriving standard model line shapes from 

user sourced online databases. 
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1. Introduction.  Elemental and chemical state analysis by X-ray Photoelectron 

Spectroscopy (XPS) is an important tool in surface science and technology [1]. 

Reproducibility and reliability of this technique are underpinned by verifiable 

characterization of instrumentation so that results obtained by XPS are understandable, 

repeatable and scientifically beneficial.  Interpretation of data, especially complex spectral 

envelopes of the transition metals [2–7], requires complex peak fitting procedures using 

synthetic components and subtraction of the background due to the inelastically scattered 

electrons.  Purely synthetic components always involve a certain arbitrariness in choosing 

line shape parameters and the contributing number of spectral components. Hence, this 

typically involves a trial and error process with adjustments made to peak and background 

parameter constraints and line shape.  The line shapes selected are very influential in the 

outcome in terms of relative peak integrated intensities and are therefore an important choice 

when fitting a data envelope. Commonly accepted Gaussian instrumental broadening in 

addition to the Lorentzian energy distribution of the electrons often govern the mixed 

Gaussian-Lorentzian peak shape [8] while asymmetry within a line shape is often required [9] 

but less used. Without guidance from the data itself for the selection of the asymmetry 

parameters, it is extremely difficult to make a choice that would be significant to the 

outcome.  For this reason, these final peak models are often ad hoc in nature. Because of not 

using any appropriate guidance about the structural, physical and chemical processes 

affecting the sample, subjective data interpretation and quantification are often obtained.  A 

vector-based Informed Amorphous Sample Model (IASM) [10] was recently developed to 

provide an alternative to XPS spectra fitting that effectively reduced arbitrariness by 

incorporating information about a physical process affecting the sample without the need to 

identify synthetic line shapes.  Instead, the spectral forms are extracted using the external 

modifiers to the sample, such as heat or X-ray degradation, which introduce a shape 

constraint for a guided synthetic line shape necessary to complete data reproduction by the 

model. 

XPS analysis of supported metal nanoparticles [11] provides detailed information on their 

electronic (surface) structure as a function of size and how surface atom coordination impacts 

the electronic structure as well as the specific functional properties.  Specifically, supported 

copper nanoparticles have been shown to perform many hydrocarbon and oxygenate 

conversion reactions due to the presence of the specific reduced sites. For example, copper 

catalysts are known to hydrogenate furfural and the presence of both Cu(0) and Cu(I)
 
sites is 

necessary [12].  Carbon dioxide electrochemical reduction in liquid environments to form 
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hydrocarbons proceeds exclusively on copper catalysts [13,14].  Carbon dioxide was 

electrochemically reduced towards ethylene through facile and tunable plasma treatments 

and Cu(I)
 
sites were shown to be active [15].  Other work showed metallic Cu(0) to be 

active sites for the same reaction [16] via means of ex situ XPS.  Hence, Cu(0) and Cu(I) 

sites are routinely observed in various catalyst materials and the relative ratios of these two 

species are obtained by peak fitting and integrating the two peaks at ~916.0 and ~918.3 eV 

and taking the ratio of the respective areas [17].  This method can potentially introduce 

significant errors due to the (a) proximity of the Cu 2p3/2 peaks for these oxidation states and 

(b) in situ operating environments introducing other species due to the gas phase molecules 

[18].  New developments in instrumentation and electronics enabling X-ray spectroscopy 

under elevated gas pressures up to near ambient (NAP-XPS) [19,20] further provide for the 

ability of the complex metal or metal oxide particle analysis under gas atmosphere and 

temperature conditions relevant to those found in experiments [21–25].  This expanded XPS 

use into studies of solid-gas, solid-liquid, and vapor-liquid interfaces with applications 

including environmental chemistry, catalysis, and CO2 electrochemistry [26–31].  Figure 1 

shows that Cu 2p3/2 peak binding energy data for Cu(OH)2 and CuO overlap and may lead to 

the assignment errors in NAP-XPS data.  A significant overlap between Cu and Cu2O is also 

observed due to the proximity of the Cu 2p3/2 peaks while Cu(OH)2 is also present in moist 

environments but rarely identified.  Improved XPS data processing methods are needed for 

accurate evaluation of copper elemental and chemical state analysis.  A recent review by 

Sherwood provides an excellent tutorial towards the peak fitting of the XPS data [32] and 

suggests a guess of the fitting parameters needs to be made based upon a good understanding 

of the chemistry and physics of the surface under study. This guess needs to take into account 

related and existing data for similar systems or samples, including valuable information 

available in the database and comparative tools including a selection of the number of peaks 

present, together with a guessed value for the parameters that define each peak [32]. In 

complex heterogeneous environments, the selection of these parameters becomes arbitrary 

and is often guided by the interpreter’s bias [10]. 
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Figure 1.  Compiled Cu 2p3/2 peak binding energy data for Cu, Cu(OH)2 Cu2O and CuO.  A 

significant overlap between Cu(OH)2 and CuO as well as Cu and Cu2O can be observed.  The 

error bars represent the standard deviation between all reported values, obtained from 

references. Individual references and corresponding data are summarized in Table S1.  

 

In this work, we report developments in XPS analysis of copper particles supported on 

graphite (Cu NP/graphite) aimed at providing an operating mode capable of delivering the 

sensitivity and energy resolution suitable for most practical application of chemical state 

analysis while maintaining identical uniform response of intensity to electron energy.  In 

particular, identification of the chemical shifts and oxidation states in complex spectral 

envelopes, such as those of Cu 2p where shake-up and multiplet split contributions yield very 

complex line shapes, is difficult and a holistic approach is often taken where Auger and 

valence bands regions are also inspected simultaneously [33].  There is also the concern that 

surface sensitivity changes with kinetic energy for transition metal oxides with potential 

surface contamination envelopes that typically span for tens of eV and encompass steep 

change due to the inelastically scattered background. Well-formed photoemission lines need 

to be modeled by asymmetric line shapes to separate close-lying oxidation states, such as 

those of Cu(0) and Cu(I) [34].  Initially, we show the performance of the calibrated XPS 

instrument which allows defining the FWHM of the peaks necessary for fitting. We then 

perform peak fitting of the data where we extract synthetic components of graphite, Cu2O, 
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CuO and Cu(OH)2 from the existing data and use them to interpret any related components of 

the similar systems using Cu NP/graphite as an example.  For this, a combination of IASM 

model [10] and Linear Least Squares is utilized. 

 

2. Experimental 

2.1. Graphite supported copper nanoparticle (Cu/graphite) synthesis.  Synthesis 

method has been described previously [33].  Briefly, copper acetate monohydrate (0.1 g, 0.5 

mmol) was dissolved in degassed methanol (60 mL) at 25 °C. Graphite (0.5 g, <20 μm 

particle size, Aldrich) was added and the solution was degassed 5 min with H2. The solution 

was stirred for 16 h under H2 atmosphere at 25 °C. The solid was collected by filtration, 

washed with distilled methanol (3 × 5 mL), deionized water (3 × 5 mL), acetone (3 × 5 mL) 

then dried under vacuum overnight to give a black solid. ICP-MS analysis determined that 

the content of copper onto graphite was ca. 4.8–5 wt. %.  Synthesis conditions are shown in 

Table 1. 

 

Table 1.  Synthesis conditions and sample labeling of the Cu NP/graphite samples used in 

XPS studies. 

Cu 

NP/graphit

e 

Preparation 

method 

Synthesi

s time, 

hours 

Synthesis 

temperatur

e, °C 

Loadin

g on 

support

, % 

weight 

Particle 

shape
a
 

Particl

e size 

range,
 

nm
a
 

Averag

e size, 

nm
a
 

TM07 

NaBH4 in 

H2O 12 80 20 spherical 8-9 8.6 

TM09 

hydrazine in 

MeOH 24 Under reflux 20 spherical 20-200 97 

TM10 

hydrazine in 

H2O 24 Under reflux 20 cubic 

100-

400 234 

TM15 calcination 3 350 20 spherical 20-30 25 

TM17 H2 in MeOH 12 25 5 spherical 2-3 2.2 

TM18 

H2 in MeOH, 

then 

calcination 

12 + 3 25 then 350 

5 spherical 10-15 12 

TM19 H2 in H2O 12 25 20 

uncontrole

d 

100-

400 316 

a. Particle size and shape were determined from Transmision Electron Microscopy (TEM) 

measurements.  From 30 to 200 particles were measured in each case. 

 

2.2. XPS analysis and data processing.   
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2.2.1. XPS sample measurements. X-ray photoelectron spectroscopy (XPS) analysis was 

performed using Kratos Axis Nova and Ultra (University of Nantes, Nantes, France) 

instruments.  The instrument used a monochromated Al K source 1486.6 eV. The 

instrument base pressure was 5 x 10
-10

 Torr.  The instrument calibration was done following 

the procedure by Seah et al. [35,36].  The slot aperture was used for survey spectra with an 

analysis area of ca.700 um x 300 m, while a 27 m selected area aperture was used for high-

resolution regions. Pass energy (PE) of 80 eV, corresponding to an all over Fermi edge 

resolution of 0.89 ± 0.02 eV with a 0.5 eV step, was used to acquire wide range survey 

spectra. A PE of 20 eV, corresponding to an all over Fermi edge resolution of 0.40 ± 0.02 eV 

with a 0.1 eV step, was used to acquire narrow spectra of the Cu 2p, C 1s orbitals and valence 

band region.  The carbon conductivity was good enough to avoid any charging artifacts. All 

measurements were performed without charge neutralizer.  TM samples used to create the 

LLS solutions were measured using 300W X-ray power. For the degradation study of TM15, 

the X-ray power was 150W.  The PE160 survey measurement returned 284.3 eV for C 1s 

peak calibration. 

 

2.2.2. Tougaard background.  The Tougaard background [37] is computed from the 

measured spectrum      generated by the photoemission peak plus inelastic scattering signal 

due to the photoemission peak using the integral 

           

 
                  (1) 

where 

     
  

           
  

 

           
            (2) 

Therefore 

            

 
                  (3) 

                    (4) 

If the start energy for the region over which the background is defined is    , then the value   

is calculated such that 

                               (5) 

so that 

  
                  

      
         (6) 

where              is the offset defined in the region parameter in CasaXPS. 
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The U 2 Tougaard background used in this paper is formed from the above definition by 

setting D = 0 and using a negative value for the C parameter in Equation (2). 

2.2.3. Linear Least Squares Approximation.  Given a set of linearly independent 

functions                             a function     can be defined by 

                                           (7) 

where               are constant values. 

In a well-posed example the list of functions                             are 

component-curves differing in position (defined by peak maximum) and shape. The weighted 

sum of these component spectra      represents a linear least squares solution approximating 

a measured data envelope.  

When using Equation (1) to model a spectrum, the function      must reproduce the data 

envelope as closely as possible. The concept expressed by the term closely has the 

mathematical meaning as follows. The conventional and common measure of closeness is the 

least-squares sum 

                            
  

         (8) 

is a minimum, where                 are   data channels in which signal is collected 

representing intensity partitioned by incrementing binding energy. 

Minimizing the function                  with respect to the parameters               is 

achieved by requiring 

  

   
                              (9) 

Since 

                                                            
  

    (10) 

  

   
                                                      

     (11) 

Collecting terms are rearranging the minimization problem yields the following. 

                                              
 
             

 
     (12) 

                                
 
                   

 
                    

 
   

 
    

         
 
             (13) 
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If we use vector notation                                    and                   

then, using dot product notation for vector scalar multiplication, the condition for minimizing 

the function                  reduces to a system of linear equations in   unknowns the 

solution of which yields a function      that approximates data                 in a least 

squares sense. These linear equations can be written as follows: 

                                      
                                       
                                      

 
                                      

    (14) 

If a matrix   is defined in terms of the vectors    

                         (15) 

Then the set of simultaneous equations written in matrix notation becomes 

                  (16) 

where                    The least-squares problem has a theoretical solution, provided 

the inverse matrix         exists, in the form 

                     (17) 

Equation (17) is solved by computing the inverse matrix         by means of the singular 

value decomposition algorithm described in Béchu et al. [38]. Non-negative constraints are 

applied to the fitting of spectral forms to data as part of the linear least-squares procedure. 

2.2.4. Informed Amorphous Sample Model (IASM) for data analysis via spectral 

components.  IASM was used to extract fitting spectral components from a set of 

experimental data [10].  These components are non-synthetic and not arbitrarily chosen, but 

rather extracted from experimental data and are informative of the physical nature of the 

sample.  The data processing involved (1) identification of a subset of spectra that can be 

mathematically described using only two principal components or spectral forms and (2) 

reproduction of the entire data subset by using linear combinations of these two spectral 

forms only.  The first step uses a standard linear Principal Component Analysis (PCA) 

procedure while the second step uses standard linear least-squares fitting to find the 
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appropriate spectral forms that can be used as components in a peak model.  The exact data 

processing steps were as follow.   

1. It was assumed graphite was the dominant source for C 1s signal and all samples 

contained spectra and background compatible with a graphitic signal, 

2. A contribution from graphitic signal was removed from spectra measured from each 

TM sample by computing a value for C 1s intensity above a U 2 Tougaard 

background, where identical Tougaard cross-section parameters are used for graphite 

and TM samples, then a proportion of graphite spectra calculated as the ratio of C 

1sTM to C 1sgraphite is subtracted from each TM sample., 

3. Since graphite spectra contribute O 1s signal to TM spectra and the exact nature of O 

1s signal from graphite from different TM samples is unknown at the time of 

removing the graphitic contribute from TM samples, a pre-processing step is 

performed to eliminate O 1s from the reference graphite data. A linear background 

was placed beneath the O 1s peak measured from graphite and the background for the 

energy interval defined for the O 1s peak replaces the measured O 1s peak for 

graphite. This is deemed preferable to subtracting O 1s based on the standard graphite 

data, but should be allowed for when copper and oxygen is compared in computed 

spectra, 

4. The act of subtracting graphitic signal has greatest influence on the valance band 

(VB) data hence a subtraction procedure is required to unveil copper chemical 

information within VB data. A comparison of computed VB spectra to standard Cu (I) 

and Cu(II) oxide is important to data analysis, 

5. The C 1s narrow scan region is omitted from spectra analyzed. The rationale for 

omitting the C 1s region is related to the narrow width for graphitic C 1s and the 

relatively intense signal for C 1s compared to copper which is anticipated to create a 

bias in linear least squares reproduction steps used as part of the analysis of TM 

samples. Broader loss peaks from C 1s are included in the calculation to support and 

guide linear least squares to a meaningful graphitic contribution within TM data. 

6. An important feature for these data is the use of graphitic support. Alignment of the 

graphitic C 1s peak through TM samples is assumed to imply a common binding 

energy scale for all measurements. No binding energy calibration is performed for 

TM samples analyzed, 

7. Vector decomposition is performed making use of TM17, TM09 and the degradation 

sequence based on TM15. TM17 is predominately hydroxide in nature. TM15 is 
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initially predominately Cu(II) oxide whereas TM09 contains a significant proportion 

of Cu(I) oxide. From these data a total of three copper spectral forms are computed 

which are supplemented with the graphite spectral form as described above, 

8. Linear least-squares solutions to TM samples are used to partition signal between 

different chemical states of copper. 

2.2.5. Data processing software.  XPS data including peak fitting, line shape synthesis, 

envelope background modeling and subtraction, quantification of components and plotting, 

was processed using a CasaXPS program (suite version 2.3.23).  

 

3.  Results and discussion.   

3.1. Challenges associated with the assignment of Cu 2p photoemission peaks in 

copper particles.  There are many samples analyzed by XPS where the concept that to each 

chemical state within a peak model there is a component peak that can be identified with a 

chemical state. While for many samples the one-chemical-state one-component approach is 

adequate, there are however many examples where this approach is of limited use. Copper 

and copper oxides exhibit both simple and complex structure providing examples for the 

fitting of peaks to data where the difficulty is evident for different reasons in both the simple 

single-component case and also in the complex peak structure case. 

For an isolated copper atom, the ground state electron configuration can be viewed as 

                                   

When in the solid-state, the XPS of copper results in spectroscopic features depending on 

how compounds make use of valence electrons        with both significant and insignificant 

differences in core-level photoemission peaks depending on oxidation state. Only by 

comparing valence band and Auger spectra is it possible to distinguish between metallic 

copper Cu(0) and Cu2O Cu(I). Photoemission from Cu 2p and Cu 3p for these Cu(0) and 

Cu(I) are highly correlated in terms of binding energy and peak shape, whereas there is a 

dramatic change to these photoemission peaks for Cu(II) oxidation state. These Cu(II) spectra 

demonstrate how photoemission peaks do not necessarily conform to the concept of well-

defined peaks that can easily be approximated by a single component within a peak model 

representing a chemical state for said material. Rather than one-to-one correspondence 

between component peaks and chemical states, copper provides examples of where XPS 

yields spectral signatures for chemical state spread over many eV. Separation of chemical 

state signal based on these types of data envelopes remains a goal for XPS, but assigning 
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binding energy to specific features with these extended structures is not as important or 

appropriate as the intrinsic shape that conveys the identity for oxidation state. Figure 2 

displays Cu 2p doublet peaks that (1) spread over an energy interval of more than 30 eV and 

(2) illustrates the changes possible for spectra where incomplete electron shells result in 

complex structures not easily open to interpretation by individual components within a peak 

model.  Cu(II) is complicated by the possibility that a characteristic spectral shape is a 

consequence of both CuO and Cu(OH)2 both contributing to the observed data.   

 

Figure 2: Copper metal and oxide spectra illustrating a similarity between Cu 2p for Cu(0) and Cu(I) 

(Cu2O) while Cu(II) (CuO) takes a form dictated to by multiplet splitting for a material where both d 

and s orbitals contribute to the oxide signal formation. The binding energy for Cu(I) and Cu(II) is not 

well defined as both were measured using charge compensation. 

In this work, we make use of copper supported on graphite as a means of investigating copper 

oxidation states by developing IASM components. Graphite C 1s signal is used for 

confirming binding energy calibration for recorded spectra. Data treatment by IASM makes 

use of linear analysis and therefore confidence in the energy calibration is essential.  

 

3.2. Copper nanoparticles supported on graphite: determining instrumental 

parameters using a well-defined C 1s region.  Data measured from a set of samples 

synthesized using the procedure described by d’Halluin et al. [33] from C 1s spectra show 

that graphitic signal can be used to characterize and align spectra from different copper 

oxidation states for copper nanoparticles supported on graphite.  While the line shape for pass 

energy 160 slot is far from ideal, intensity and transmission characteristics for this mode 

allowing quantification are not compromised by factors influencing line shapes. High 

Cu2O

CuO

Cu metal

965 960 955 950 945 940 935 930

Binding Energy (eV)
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sensitivity modes are an essential part of the analysis by XPS and these data from graphite 

provide evidence quantification is possible making use of the flat transmission response to 

imaging lens mode FoV2 pass energy of 160 full slot selected area aperture. Survey data 

presented in Figure 3 is quantified using the C 1s signal and C KLL Auger emission. Both 

peak areas are corrected for escape depth only [39]. Relative sensitivity for these two peaks 

for low atomic number atoms is linked in the sense that photoemission from the K shell is 

directly linked to Auger emission [40] as the dominant relaxation mode for carbon. The 

angular distribution is identical for C 1s and C KLL.  This was verified by the fact that the 

quantification between F1s and F2s showed 50/50% based on Effective Attenuation Length 

(EAF) and Scofield cross-sections [41–43].  Figure 3 inset presents C 1s spectra measured 

using 27 m slot selected area aperture mode and pass energy of 5. Combining improved 

energy resolution from pass energy of 5 and narrow width of signal due to the 27 m slot, 

selected area aperture yields data from graphite and two sample of Cu NP/graphite – TM07 

and TM10 - with identical peak shape. These data show no alteration to peak position, 

FWHM or shape for C 1s spectra.  These data provide evidence supporting the use of 

graphitic signal in data treatment used to analyze Cu oxidation state of Cu NP/graphite by 

d’Halluin et al. [33]. 

 

Figure 3. Survey data measured from 

graphite using pass energy 160 full slot 

selected area aperture. (inset) 

Comparison of graphite and two Cu 

NP/ graphite samples containing 

graphite measured using pass energy of 

5 eV and making use of the 27 m slot 

selected area aperture mode.  

 

3.3. Copper nanoparticles supported on graphite: deriving spectral envelopes to 

separate the copper signal.  We begin by illustrating the complex problem of accurately 

describing the oxidation states of copper.  Routinely, it is done by peak fitting Cu 2p region 

Name

C KLL

C 1s

Pos.

1217.51

284.31

RSF

1.0

1.0

At%

50.23

49.77

C 1s

C KLL

1200 900 600 300 0

Binding Energy (eV)

graphite

TM07
TM10

286.5 285 284
Binding Energy (eV)
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with synthetic components.  Provided with the complexity of using Cu 2p region only, we 

turn to the overall spectral envelope.  Figure 4 shows Cu 3p and valence band region spectra 

of Cu metal and Cu2O.  Cu 3p doublet of Cu2O peaks look very similar to those of Cu metal, 

but the valence associated with the Cu2O components is clearly different from the metallic Cu 

valence band.  This illustrates how Cu 3p and valence band data support the assignment of 

Cu2O rather than Cu metal. Additionally, the data shown in Figure 4 were obtained without 

charge compensation from TM experimental samples implying that the graphite substrate has 

played a significant role in establishing the correct energy scale needs to be accounted for 

when computing IASM spectral envelopes. 

 

Figure 4.  Cu 3p and valence band 

region spectra of Cu metal and Cu2O 

extracted from TM samples. 

Following the logic established in Figure 4, three spectral components of copper compounds 

were constructed from samples TM09, TM19 and TM17 using IASM method [10].  

Additionally, graphite fitted to TM09 (mostly Cu2O) and TM19 (mostly CuO and Cu(OH)2). 

These spectral components were constructed for Cu 3p and valence band spectra only and no 

Cu 2p region was used.  For component extraction, we considered the evolution in spectral 

shapes due to the synthesis procedure variation within the TM set of samples.  The data 

processing involved identification of a subset of spectra that can be mathematically described 

using only two principal components or spectral forms and reproduction of the entire data 

subset by using linear combinations of these two spectral forms only.  Notably, the spectral 

forms identified must exhibit contrast due to a physical or chemical process.  If they are not 

sufficiently different, the optimization procedure will not return a well-defined solution.  In 

this case, three copper oxide and hydroxide components were identified including Cu2O, CuO 

and Cu(OH)2).  The spectral components obtained are shown in Figure 5. 
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Graphite Cu(OH)2 

  

CuO Cu2O 

Figure 5.  Model chemical components for Cu 3p and valence band regions of TM samples 

into four components. These components are standard spectra from graphite plus three 

computed components from samples TM09, TM17 and TM19. 

 

Utilizing the spectral components shown in Figure 5, spectral fitting was performed to 

determine the composition of the TM09, TM18 and TM19 samples. Effectively, LLS spectra 

shown in black illustrates a spectrum formed from the sum of a set of four spectra 

representing different elemental (carbon and copper) and different chemical state for copper 

appropriately scaled to reproduce a spectrum measured from samples.  It can be seen that 

LLS derived spectra almost fully overlap with the experimental spectra, now providing an 

exact composition of each component contributing to it.  These compositions are compiled in 

Table 2.  No metallic Cu was observed on the surface of these particles as they form a 
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complex oxide or hydroxide layers under moist environments.  From the results shown in 

Figure 6, it can be inferred that hydrazine in methanol is an efficient reagent to deposit 

partially reduced Cu NP on graphite as manifested by a relatively high Cu2O content, as 

compiled in Table 2.  Further, NP dispersion can influence the observed spectral intensity 

[44] while the particle size could influence the Cu 2p spectrum via variation in the relative 

peak area intensities of the shake-up lines [45].  Correlation between the synthesized particle 

structural parameters, compiled in Table 1 and their XPS determined surface chemical 

composition, shown in Table 2, however, suggests a much stronger influence of the particle 

preparation than their size on the chemical composition.  Namely, calcination resulted in 

higher CuO content (TM17 vs TM18), while hydrazine was shown as a better reductant than 

H2 in methanol (TM9 vs TM17) and in water (TM10 vs TM19) 

 

  

(a) (b) 
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(c)  

Figure 6. (a)-(c) Spectra formed from the sum of a set of four spectra representing graphite, 

Cu2O, CuO and Cu(OH)2 appropriately scaled to reproduce an experimental spectrum 

measured from samples TM09, TM18 and TM19.  LSS spectra are shown in black and in most 

cases, it overlaps with the experimental. 

 

Table 2. Analysis of chemical state for a range of Cu NP/graphite samples based on 

component spectra shown in Figure 5 and 6. Percent area is based on signal above a 

Tougaard background applied to Cu 3p signal. 

Sample Identifier Cu(OH)2 % Cu2O % CuO % 

TM07 20.1 42.6 37.3 

TM09 14.9 69.5 15.6 

TM10 18.4 51.8 29.7 

TM15 9.8 13.8 76.4 

TM17 83.7 0.6 15.7 

TM18 8.9 10.2 80.8 

TM19 22.6 2.8 74.6 

3.4. Evolution of copper nanoparticles supported on graphite under X-rays: effect of 

the measurements on the chemical state of copper. An IASM approach is based on sample 

knowledge and the manipulation of data acquired from the samples of interest. Treating 

spectra as vectors, data are transformed to new spectral forms from the original measured 

data by a combination of observing similarities to standard materials spectra from other 

sources (such as the La Trobe XPS database) [46] and observing relationships between 

photoemission peaks from the data under analysis as these transformations are performed.  

Data sets corresponding to Cu NP/graphite exhibiting Cu(II) characteristics were selected for 

further analysis. A sequence of repetitive measurements was performed for the sample 

identified as TM15. The objective for these repeat measurements of TM15 was to assess the 
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stability of these materials with respect to the measurement process.  These repeat 

measurements provide useful information about reduced states for the Cu NP/graphite. 

IASM transformation was applied to all data collected from each sample to include  Cu 2p, 

Cu Auger, O 1s, C 1s, Cu 3p and valance band narrow scan spectra. Data are measured using 

pass energy, 20 hybrid transfer lens mode slot selected area aperture and slot entrance 

aperture to the hemispherical analyzer on a Kratos Axis Ultra. Irregular energy increments 

were used to permit extended energy intervals for Cu Auger and other nominal background 

intervals used to provide context for photoemission signal acquired at a smaller energy step 

size suitable for peak widths achieved for pass energy 20/slot energy resolution. Vectors 

formed from these merged narrow-scan signal are processed to remove a U 2 Tougaard 

background where C = -1643 (Equation (2) as proposed by Tougaard for a universal 

background to photoemission spectra).  While computing spectroscopic shapes representative 

of CuO, Cu2O and Cu(OH)2 peaks were included in the calculation allowing variations in 

carbon, Cu 3p and valance band data to be examined. By monitoring changes to these 

contextual peaks relationships of importance to the chemistry of interest are assessed and 

help guide the selection of appropriate intermediate forms. The exercise of computing these 

intermediate spectral shapes provides insight into the potential chemistry of these materials 

under analysis and is seen as valuable in its own right.  Cu metal and Cu(I) are difficult to 

separate using Cu 2p, however making use of Cu Auger and O 1s it is clear the component 

assigned to Cu2O includes oxygen signal and the shape for the corresponding Cu Auger 

assigned as Cu(I) is clearly not Cu metal Auger (not shown). Both Cu 2p and Cu Auger 

generate trends within the TM15 stability study shown in Figure 7c, namely, the component 

assigned as Cu(I) increases with elapsed time while both CuO and Cu(OH)2 decrease with 

time.   
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(a) Linear Least Squares decomposition of 

TM15 Cu 2p after 523 seconds of elapsed 

time during sample stability study. 

 

(b) Linear Least Squares decomposition of TM15 

Cu Auger and O 1s after 523 seconds of elapsed 

time during sample stability study. 

 

 

(c) Linear Least Squares decomposition of TM15 

Cu 2p profiling the response of Cu NP/graphite to 

acquisition conditions plotted against elapsed 

time between measurements. 

 

Figure 7.  

 

Spectral forms in Figure 7 evolved with elapsed time under the X-ray beam and LLS applied 

to these data based on IASM approach indicated the measured proportion for Cu2O increased 

as CuO and Cu(OH)2. XPS is a surface sensitive technique so these changes could be due to 

changes in chemistry or segregation of particles. A similar analysis based on valence band 

region peaks indicates attenuation of graphite signal as a proportion with time; therefore, 

segregation is a distinct possibility as graphite is not expected to change its chemical state.  

Finally, there is also the possibility the sample is being contaminated by a carbon overlayer 
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which increases with time. Nevertheless, these results illustrate how an analysis based on 

IASM is sensitive to changes in sample composition and capable of measuring small changes 

in surface chemistry.  We, therefore, treat the composition Table 2 for as received TM15, 

TM17, TM18 and TM19 with caution since the contribution from Cu(I) may be influenced by 

the XPS measurement itself. 

An intriguing question arises whether XPS databases, such as XPSSurfA [46], The La Trobe 

University, Australia, XPS Reference Dataset based on the crowdsourcing of various XPS 

spectra, can be utilized in combination with IASM. Availability of spectra in a widely used 

file format (VAMAS ISO 14976) is of great value when assessing IASM component shapes 

and was extensively used in the preparation of this paper and other analyses using IASM.  

However, the key to using the IASM approach is to make use of consistent data sets 

measured from samples with similar characteristics. This necessarily means data acquired 

from different instruments from samples with potentially different handling, storage, 

preparation include differences in intensities that make it difficult to predict and make use of 

when fitting by LLS.  Fitting of unknown data by linear least squares requires pre-processing 

steps aimed at aligning data from different samples from different instruments and these pre-

processing steps return user bias into data treatment.  The TM15 degradation study provides 

an example of why IASM is so powerful when attempting to understand samples.  If CuO 

component has a shape with a proportion of Cu2O, it can appear that the Cu2O is only 

anticorrelated with the Cu(OH)2. Only if CuO shape is correct then there is the possibility to 

see both CuO and Cu(OH)2 decline with the exposure time, as shown in Figure 7.  Hence, the 

most appropriate method is to measure fitting components and sample of interest on the same 

instrument, potentially deriving them by applying sample modifiers, such as X-ray exposure, 

temperature or oxidizing/reducing gases, currently achievable using near ambient pressure 

instruments.   

4. Conclusions.  The research was performed into managing the problem of operator 

bias in describing complex metal, such as Cu 2p, spectral envelopes by acquiring well-

formed photoemission peaks with lab-based instruments and creating line shapes capable to 

characterizing these well-formed data.  An XPS data processing technique for extracting line-

shapes from experimental data based on a vector model has been developed and found to 

provide valuable insights into changes induced in Cu NP/graphite.  In particular, components 

of Cu NP/graphite were constructed from the data rather than using synthetic components. It 

was illustrated that Cu 3p and VB data support the assignment of Cu2O rather than Cu metal 
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and allow for direct quantification of each spectral component weight in the overall surface 

composition.  Examples of the potential IASM application are not limited to copper and are 

abound.  For example, recent data by David J. Morgan elucidated ruthenium containing 

catalyst chemical speciation using Ru 3p region for determination of Ru oxidation state rather 

than conventionally used Ru 3d.  Innate photoreduction of RuCl3 was shown to take place 

when exposed to X-rays while also undergoing complex surface hydrolysis due to the 

intrinsic sample hygroscopicity [47].  These changes in the sample physical state should be 

encouraged and measured and the corresponding line shapes can potentially be used to 

reconstruct the overall sample surface composition. Thus, we believe that the emergence of 

NAP-XPS will allow routinely generating sample modifiers needed to accurately interpret 

complex spectral envelopes. 
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