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Penalization for a PDE with a Nonlinear Neumann boundary

condition and measurable coefficients ∗

Khaled Bahlali† Brahim Boufoussi ‡ Soufiane Mouchtabih †‡

Abstract: We consider a system of semi-linear partial differential equations with mea-

surable coefficients and a nonlinear Neumann boundary condition. We then construct a

sequence of penalized partial differential equations which converges to a solution of our ini-

tial problem. The solution we construct is in the Lp−viscosity sense, since the coefficients

can be not continuous. The method we use is based on backward stochastic differential

equations and their S-tightness. The present work is motivated by the fact that many par-

tial differential equations arising in physics have discontinuous coefficients.

Keywords: Reflected diffusion, Penalization method, Weak solution, S-topology, Back-

ward stochastic differential equations, Lp−viscosity solution for PDEs.

AMS Subject Classification 2010: 60H99; 60H30; 35K61.

1 Introduction

Let D be a C2 convex, open and bounded domain in R
d, and for (t, x) ∈ [0, T ] × D̄ we

consider the following reflecting stochastic differential equation

Xs = x+

∫ s

t
b(Xr)dr +

∫ s

t
σ(Xr)dWr +Ks, s ∈ [t, T ],

where b : Rd → R
d, σ : Rd → R

d×d′ are given measurable functions and K is a bounded

variation process satisfying some minimality conditions. Several authors have studied ap-

proximations of reflected diffusions in such domains. We refer for example to [20] and [35]
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†Université de Toulon, IMATH, EA 2134, 83957 La Garde cedex, France.
‡LIBMA, Department of Mathematics, Faculty of Sciences Semlalia, Cadi Ayyad University, 2390 Mar-

rakesh, Morocco
0E-mail addresses: khaled.bahlali@univ-tln.fr (Khaled Bahlali), boufoussi@uca.ma (Brahim Boufoussi),

soufiane.mouchtabih@gmail.com (Soufiane Mouchtabih)

1



in the case of a convex bounded domain D and with coefficients satisfying Lipschitz con-

ditions. The non-convex case was treated in [17] then extended to reflected diffusions on

non necessary bounded domains in [25]. A general situation of non Lipschitz coefficients

and non convex domain can be found in [28], where the authors studied, in particular, the

existence of a weak solution of the reflected equation, when the coefficients are merely mea-

surable and the diffusion coefficient may degenerate on some subset of the domain. Note

that equation (1) can be used to handle linear PDEs with Neumann Boundary conditions,

see for instance [10, 30, 34].

Our aim in the present work is to construct the solution of a system of semi-linear

partial differential equations (PDEs), with a nonlinear Neumann boundary condition by

penalization. For this purpose, we use the backward stochastic differential equations. This

allows us to provide probabilistic representations for solutions of different type of semilinear

PDEs, see for instance [24] for parabolic equations, [7] for elliptic equations with Dirichlet

boundary condition and [26] for a nonlinear Neumann boundary condition. More references

can be found in [23].

The penalization of nonlinear Neumann boundary problem (3) has been firstly consid-

ered in [4] when the coefficients b, σ are uniformly Lipschitz then extended by [2] to the

case where the coefficients b, σ are continuous. The main goal of the present paper is

to extend the results of [2], [4] to the situation where the coefficients b and σ are merely

measurable and the nonlinearity f is measurable in x.. Our work is motivated by the fact

that in many problems arising in physics. Our method is inspired from that developed in

[2, 4]. The difficulty in our situation is due to the discontinuity of the coefficients which

makes the convergence of the sequence of penalized equations more delicate. Moreover, due

to the non continuity of the coefficients, the classical viscosity solution, which is used in

[2, 4, 26], can not be defined for our PDEs. We therefore use the notion of Lp-viscosity

solution introduced in [5] for which we give here a probabilistic interpretation. More details

on this topic can be found in [5] and [6].

To describe our result, we shall recall some notations which will be used in the sequel.

We assume that there exists a function l ∈ C2
b (R

d) such that

D = {x ∈ R
d : l(x) > 0}, ∂D = {x ∈ R

d : l(x) = 0},

and for all x ∈ ∂D, ∇l(x) is the unit normal pointing toward the interior of D. In order to

define the approximation procedure we consider the application x 7→ dist2(x, D̄), therefore,

this function is C1 and convex on R
d. On the other hand we can choose l such that

< ∇l(x), δ(x) >≤ 0, ∀x ∈ R
d,
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where δ(x) := ∇
(

dist2(x, D̄)
)

is called the penalization term. We have

1

2
δ(x) =

1

2
∇
(

dist2(x, D̄)
)

= x− πD̄(x), ∀x ∈ R
d

where πD̄ is the projection operator. Moreover, δ is a Lipschitz function and we have

< z − x, δ(x) >≤ 0, ∀x ∈ R
d, ∀z ∈ D̄. (1)

We consider the following sequence of semi-linear partial differential equations (1 ≤ i ≤

k, 0 ≤ t ≤ T , x ∈ R
d, n ∈ N).























∂uni
∂t

(t, x) + Luni (t, x) + fi(t, x, u
n(t, x))

− n < δ(x),∇uni (t, x) > −n < δ(x),∇l(x) > hi(t, x, u
n(t, x)) = 0 ;

un(T, x) = g(x) .

(2)

where L is the infinitesimal generator corresponding to the diffusion part of X, that is

L =
1

2

∑

i,j

(σσ∗(.))ij
∂2

∂xi∂xj
+
∑

i

bi(.)
∂

∂xi
.

that (t, x) belongs to [0, T ] × D̄. Under suitable assumptions on the coefficients f , g and

h, by the mean of the connection between BSDEs and semi-linear PDEs, we prove that the

sequence un(t, x) converges, as n goes to infinity, to a function u(t, x), which is the solution

in the Lp−viscosity sense, of the following PDE with Neumann boundary condition:






















∂ui
∂t

(t, x) + Lui(t, x) + fi(t, x, u(t, x)) = 0 , 1 ≤ i ≤ k , (t, x) ∈ [0, T ) ×D ,

ui(T, x) = gi(x) , x ∈ D
∂ui
∂n

(t, x) + hi(t, x, u(t, x)) = 0 , ∀(t, x) ∈ [0, T ) × ∂D .

(3)

where ∂u
∂n is the outward normal derivative of u on the boundary of the domain and

∂ui

∂n (t, x) =< ∇l(x),∇ui(t, x) > for all x ∈ ∂D. It turns out that, even when the coef-

ficients are merely measurable, the convergence of un to u follows from the uniqueness in

law of the forward part.

Throughout the paper, C([0, T ],Rd) is the space of R
d-valued continuous function,

D([0, T ],Rd) is the space of Rd-valued cadlag functions and W 1,2
p,loc

(

[0, T ] ×R
d
)

is the clas-

sical Sobolev space of functions ϕ with values in R such that both ϕ and all the generalized

derivatives ∂tϕ, ∂xϕ and ∂2xxϕ belong to Lp
loc([0, T ] × R

d). Furthermore, for a sequence of

processes (Y n)n, Y
n ∗
−→
U

Y will denotes the convergence in law with respect to the uni-

form topology and Y n ∗
−→
S
Y is the weak convergence with respect to the S-topology. See

Appendix for a brief presentation of this topology and [11] for more details.
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The paper is outlined as follows, in Section 2 we prove the convergence of solutions of

our reflected SDE as well as our penalized SDE. The continuity of the solution with respect

to the initial data is also established for both penalized and reflected SDEs. In Section 3,

the same properties are established for the solutions of the BSDEs parts which is our first

main result. Section 4 gives the application to PDEs with nonlinear Neumann boundary

condition which is the second main result of this paper.

2 Reflected stochastic differential equations

Throughout the paper T is a fixed strictly positive number and d, d′ ∈ N
∗. Consider a

stochastic differential equation with reflecting boundary condition of the form































Xt,x
s = x+

∫ s

t
b(Xt,x

r ) dr +

∫ s

t
σ(Xt,x

r ) dWr +Kt,x
s ,

Kt,x
s =

∫ s

t
∇l(Xt,x

r )d|Kt,x|[t,r],

|Kt,x|[t,s] =

∫ s

t
1{Xt,x

r ∈∂D}d|K
t,x|[t,r],

(4)

where t ∈ [0, T ], s ∈ [t, T ] and the notation |Kt,x|[t,s] stands for the total variation of Kt,x

on the interval [t, s], we will denote this continuous increasing process by kt,xs . In particular

we have

kt,xs =

∫ s

t
< ∇l(Xt,x

r ), dKt,x
r > . (5)

We say that (Ω,F ,P, {Fs},W,X,K) is a weak solution of (4) if (Ω,F ,P, {Fs}) is a stochastic

basis, W is a d′−dimensional Brownian motion with respect to this basis, X is a continuous

adapted process and K is a continuous bounded variation process such that Xs ∈ D̄ P−a.s,

∀s ∈ [t, T ] and (X,K) satisfies System (4).

We suppose the following assumptions

(A.1) b : Rd → R
d and σ : Rd → R

d×d′ are measurable bounded functions,

(A.2) There exists α > 0 such that for all x ∈ R
d σσ∗(x) ≥ α I,

(A.3) The weak uniqueness holds for Equation (4).

The reflecting diffusions with measurable coefficients were considered in [28] and [33]

where the authors have proved some approximations, stability and existence results. It

should be pointed out that in the case of no continuity of coefficients the uniqueness generally

failed. Since the weak uniqueness is crucial to prove our main result, we assume that the

weak uniqueness holds for Equation (4) i.e assumption (A.3).
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Remark 1 We assume that one of the following sets of assumptions is satisfied

1. D is a semicompact, the dimension d ≤ 2 and assumptions (A.1)− (A.2) hold.

2. b is measurable bounded, σ is continuous bounded and σσ∗ is uniformly nondegenerate.

Then the weak uniqueness holds for equation (4).

Indeed, let
(

Ω,F ,P, {Ft}t≥0 ,W,X,K
)

be a weak solution of (4) and f ∈ C1,2
(

[0, T ]× D̄
)

.

Applying Itô’s formula to f (s,Xs):

f (s,Xs) = f (t, x) +

∫ s

t

(

∂f
∂r + Lf

)

(r,Xr) dr +

∫ s

t
〈∇xf (r,Xr) ,∇ℓ (Xr)〉 dkr

+

∫ s

t
〈∇xf (r,Xr) , σ (Xr) dWr〉 .

(6)

Since σσ∗ is nondegenerate, we use Krylov’s inequality for reflecting diffusions (see Theorem

5.1 in [15]) to get for every s ∈ [t, T ] ,

E

∫ s

t

∣

∣

∣

(∂f

∂r
+ Lf

)

(r,Xr)
∣

∣

∣
1{Xr∈∂D}dr

≤ C

(
∫ s

t

∫

D
det (σσ∗)−1

(∂f

∂r
+ Lf

)d+1
1{∂D} dsdx

)
1

d+1

= 0 .

Thus, equality (6) becomes

f (s,Xs) = f (t, x) +

∫ s

t

(

∂f
∂r + Lf

)

(r,Xr) 1{Xr∈D}dr +

∫ s

t
〈∇xf (r,Xr) ,∇ℓ (Xr)〉 dkr

+

∫ s

t
〈∇xf (r,Xr) , σ (Xr) dWr〉 , P-a.s.

Therefore

f (s,Xs)− f (t, x)−

∫ s

t

(∂f

∂r
+ Lf

)

(r,Xr) 1{Xr∈D}dr

is a P-submartingale whenever f ∈ C1,2
(

[0, T ]× D̄
)

satisfies

〈∇xf (s, x) ,∇ℓ (x)〉 ≥ 0,∀x ∈ ∂D.

Under the first set of assumptions we deduce from Theorem 3 in [12] that the process

(Xs)s∈[t,T ] is unique in law. Under the second set of assumptions we apply Theorem 5.7

in [34] with φ = l, γ := ∇φ and ρ := 0 we obtain that the solution to the submartingale

problem is unique for each starting point (t, x), therefore our solution process (Xs)s∈[t,T ] is

unique in law. Moreover, the uniqueness in law of the couple (X,K) follows from Theorem

6 in [8].
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We consider the penalized SDEs related to our reflected diffusion Xt,x

Xt,x,n
s = x+

∫ s

t

[

b(Xt,x,n
r )− nδ(Xt,x,n

r )
]

dr +

∫ s

t
σ(Xt,x,n

r )dWr, s ∈ [t, T ]. (7)

For n ∈ N fixed, under assumptions (A.1) and (A.2), we can deduce from Krylov’s works, see

[13] and the references therein, that there exists a weak solution of Equation (7). Moreover,

Krylov have also established that it is possible to select a strong Markov weak solution of

Equation (7). In the sequel we shall need to show the continuity of the flow associated to

this equation, for this goal we suppose the following assumption

(A.4) The weak uniqueness holds for Equation (7).

Remark 2 We note that in the case of low dimension, d ≤ 2, and assumptions (A.1)−(A.2)

are in force, the assumption (A.4) holds true, see [12] and [14].

We set for all t ∈ [0, T ]

Kt,x,n
s :=

∫ s

t
−nδ(Xt,x,n

r )dr and kt,x,ns :=

∫ s

t
< ∇l(Xt,x,n

r ), dKt,x,n
r >, ∀s ∈ [t, T ].

We recall the following classical boundedness result, (see [2]), we have

sup
n≥0

E sup
s∈[t,T ]

|Xt,x,n
s |2q + sup

n≥0
E|Kt,x,n|q[t,T ] < +∞, ∀q ≥ 1. (8)

The next proposition shows a convergence result of the penalized equation (7).

Proposition 3 Under the assumptions (A.1)− (A.3). We have:

(Xt,x,n,Kt,x,n)
∗

−−−→
U×U

(Xt,x,Kt,x).

Moreover (Xt,x,Kt,x) satisfies system (4).

Proof. By Theorem 2.1 in [33], the process (Xt,x,n,Kt,x,n) converges to a solution of

Equation (4). Hence the weak uniqueness gives the result.

Remark 4 Under assumptions (A.1) − (A.3), by virtue of Theorems 7 and 10 in [8], the

solution Xt,x of Equation (4) is a Markov process.

We extend the processes (Xt,x,Kt,x) and (Xt,x,n,Kt,x,n) to [0, t] by denoting

Xt,x
s = Xt,x,n

s := x, Kt,x
s = Kt,x,n

s := 0, ∀ s ∈ [0, t].

Now, by using Itô’s formula, the boundedness of b, σ and D, we obtain a priori estima-

tions for the solutions of (4) .
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Proposition 5 Under assumption (A.1). We have for all q ≥ 1

sup
n≥1

E sup
s∈[0,T ]

|Xtn,xn
s |2q <∞, sup

n≥1
E|Ktn,xn |qT <∞. (9)

We have the following continuity result with respect to the initial data for the solution of

the penalized equations (7).

Proposition 6 Under assumptions (A.1), (A.2) and (A.4). The application [0, T ] × R
d ∋

(t, x) → (Xt,x,n,Kt,x,n) is continuous in law.

Proof. Let (tm, xm) → (t, x), arguing as in Corollary 2 in [27], (see also [13]), using the

weak uniqueness we find

Xtm,xm,n ∗
−−→
U

Xt,x,n,

and we deduce that

Ktm,xm,n ∗
−−→
U

Kt,x,n.

This ends the proof.

We now state a continuity in law with respect to the initial data for the solution of

equation (4), which is a slight generalization of Lemma 3.8 in [2].

Proposition 7 We suppose that (A.1) − (A.3) are in force. Then the map [0, T ] × D̄ ∋

(t, x) → (Xt,x,Kt,x) is continuous in law.

Proof. Let (t, x) ∈ [0, T ] × D̄ be fixed and (tn, xn) → (t, x), as n→ +∞. We set

(Xtn,xn
s ,Ktn,xn

s ) = (Xn
s ,K

n
s ).

We will prove that the family (Xn,Kn) is tight as family of C([0, T ],Rd × R
d)−valued

random variables. By Itô’s formula applied to Xn
s − Xn

r , where r is fixed and s ≥ r we

deduce:

E|Xn
s −Xn

r |
8 ≤ C|s− r|4 +CE

(

sup
v∈[r,s]

∣

∣

∣

∣

∫ v

r
< Xn

u −Xn
r , σ(X

n
u )dW

n
u >

∣

∣

∣

∣

)4

≤ C|s− r|4 +CE

(
∫ s

r
|Xn

u −Xn
r |

2|σ(Xn
u )|

2du

)2

≤ C|s− r|4 +C|s− r|2 ≤ Cmax{|s − r|4, |s− r|2}.

Concerning Kn, we have:

Kn
s −Kn

r = (Xn
s −Xn

r )−

∫ s

r
b(Xn

u )du−

∫ s

r
σ(Xn

u )dW
n
u

7



Hence,

E|Kn
s −Kn

r |
8 ≤ CE|Xn

s −Xn
r |

8 + CE

(
∫ s

r
|b(Xn

u )|du

)8

+ CE

(

sup
v∈[r,s]

∣

∣

∣

∣

∫ v

r
σ(Xn

u )dW
n
u

∣

∣

∣

∣

)8

≤ Cmax{|s− r|8, |s − r|2}.

Then (Xt,x,Kt,x) is tight on C([0, T ],Rd × R
d) with respect to the initial data (t, x). By

Prokhorov’s theorem, see Chap I in [23], there exists a subsequence still denoted by (Xn,Kn)

such that

(Xn,Kn)
∗

−−−→
U×U

(X,K) .

We will proceed to the identification of the limits X
law
= Xt,x and K

law
= Kt,x. By the Skoro-

hod’s theorem, we can choose a probability space (Ω̂, F̂ , P̂), (X̂n, K̂n, Ŵ n) and (X̂, K̂, Ŵ )

defined on this probability space such that

(X̂n, K̂n, Ŵ n)
law
= (Xn,Kn,W n), (X̂, K̂, Ŵ )

law
= (X,K,W )

and (X̂n, K̂n, Ŵ n) → (X̂, K̂, Ŵ ) P̂-a.s, as n → ∞, where (Ŵ n,FŴn,X̂n

) and (Ŵ ,FŴ ,X̂)

are Brownian motions. We now define

V̂ n
s := x+

∫ s

t
b(X̂n

r )dr +

∫ s

t
σ(X̂n

r )dŴ
n
r ,

V̂s := x+

∫ s

t
b(X̂r)dr +

∫ s

t
σ(X̂r)dŴr. (10)

Since the processes Xn and X have finite moments (uniformly in n) of any order, σ is non

degenerate and the coefficients b, σ are bounded, then using Skorokhod’s representation

theorem ([31] p. 32) and Krylov’s estimate, one can show that:

∫ s

t
b(X̂n

r )dr
Proba

−−−−−→

∫ s

t
b(X̂r)dr as n → +∞,

∫ s

t
σ(X̂n

r )dŴ
n
r

Proba
−−−−−→

∫ s

t
σ(X̂r)dŴr, as n → +∞.

Since b and σ are bounded we deduce by the Lebesgue dominated theorem that the

following convergence holds in Lq(Ω̂) for each q ≥ 1,

Ê sup
s∈[t,T ]

∣

∣

∣
V̂ n
s − V̂s

∣

∣

∣

q
→ 0, as n→ +∞.

We consider

V n
s := x+

∫ s

t
b(Xn

r )dr +

∫ s

t
σ(Xn

r )dW
n
r .

8



Then Xn
s = V n

s +Kn
s , and we remark that

(Xn,Kn,W n, V n)
law
=
(

X̂n, K̂n, Ŵ n, V̂ n
)

on C
(

[0, T ],Rd × R
d × R

d′ × R
d
)

and

X̂n
s = V̂ n

s + K̂n
s P̂− a.s.

We pass to the limits we get

X̂s = V̂s + K̂s P̂− a.s

taking into account of (10), it follows that (X̂, K̂) is a solution of Equation (4) with ini-

tial data (t, x). By the weak uniqueness we have (X̂, K̂) = (Xt,x,Kt,x). Then (Xn,Kn)

converges to (Xt,x,Kt,x) as n→ +∞. This achieves the proof.

The next technical lemma is a stochastic version of Helly-Bray theorem, see Proposition

3.4 in [36].

Lemma 8 Let (Mn, ηn) : (Ωn,Fn,Pn) → C([0, T ],Rd) be a sequence of random variables

and (M,η) such that

(Mn, ηn)
∗

−−−→
U×U

(M,η).

If (ηn)n has bounded variation a.s. and

sup
n≥1

P
(

|ηn|[0,T ] > a
)

→ 0, as a→ ∞

then η has a.s bounded variation and

∫ T

0
< Mn

r , dη
n
r >

∗
−−→
U

∫ T

0
< Mr, dηr >, as n→ ∞.

We can immediately deduce from the previous lemma the following convergences.

Lemma 9 Assume (A.1) − (A.4). Then we have

kt,x,n
∗

−−→
U

kt,x and ktn,xn ∗
−−→
U

kt,x.

Proof. In view of the convergence (Xt,x,n,Kt,x,n)
∗

−−−→
U×U

(Xt,x,Kt,x) and Lemma 8 applied

with (Mn, ηn) = (∇l(Xt,x,n),Kt,x,n), we get kt,x,n
∗

−−→
U

kt,x. For the second point, by

the continuity in law with respect to the initial data, (Xtn,xn ,Ktn,xn)
∗

−−−→
U×U

(Xt,x,Kt,x),

again by Lemma 8 applied this time with (Mn, ηn) = (∇l(Xtn,xn),Ktn,xn), we obtain

ktn,xn
∗

−−→
U

kt,x.

9



3 Backward stochastic differential equations

Consider the functions f , h : [0, T ] × R
d × R

k → R
k and g : R

d → R
k, satisfying the

following assumptions:

(A.5) There exist positive constants C1, C2, lh and µf ∈ R, β < 0 and q ≥ 1 such that

∀t, s ∈ [0, T ], ∀ (x, x′, y, y′) ∈
(

R
d
)2

×
(

R
k
)2

we have

(i) < y′ − y, f(t, x, y′)− f(t, x, y) >≤ µf |y
′ − y|2,

(ii) | h(t, x′, y′)− h(s, x, y)| ≤ lh (|t− s|+ |x′ − x|+ |y′ − y|),

(iii) < y′ − y, h(t, x, y′)− h(t, x, y) >≤ β |y′ − y|2,

(iv) |f(t, x, y)|+ |h(t, x, y)| ≤ C1 (1 + |y|),

(v) |g(x)| ≤ C2(1 + |x|q).

g is continuous and f is measurable with respect to x and continuous in (t, y).

We assume without loss of generality that the processes (Xt,x,n
s ,Kt,x,n

s )s∈[t,T ] and (Xt,x
s ,Kt,x

s )s∈[t,T ]

are considered on the canonical space. Consider the following generalized BSDEs on [t, T ]

Y t,x,n
s = g(Xt,x,n

T ) +

∫ T

s
f(r,Xt,x,n

r , Y t,x,n
r ) dr −

∫ T

s
U t,x,n
r dMXt,x,n

r

+

∫ T

s
h(r,Xt,x,n

r , Y t,x,n
r )dkt,x,nr (11)

and

Y t,x
s = g(Xt,x

T ) +

∫ T

s
f(r,Xt,x

r , Y t,x
r ) dr −

∫ T

s
U t,x
r dMXt,x

r +

∫ T

s
h(r,Xt,x

r , Y t,x
r )dkt,xr , (12)

where

MXt,x,n

s :=

∫ s

t
σ(Xt,x,n

r )dWr and MXt,x

s :=

∫ s

t
σ(Xt,x

r )dWr. (13)

Under assumption (A.5), there exist (Y t,x,n
s , U t,x,n

s )s∈[t,T ] and (Y t,x
s , U t,x

s )s∈[t,T ] unique solu-

tions of equations (11) and (12) respectively (see [26]).

Remark 10 We note that one or other assumption (A.5)(ii) or (A.5)(iii) is sufficient to

ensure the existence and uniqueness of the solutions to both BSDEs (11) and (12). Con-

dition (A.5)(iii) will be used to establish some estimates in goal to prove the tightness

proprieties and (A.5)(ii) is necessary for the identification of the limit.

The next proposition will be used in order to get the convergence of the solutions of the

sequence of penalized PDEs.
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Proposition 11 Assume (A.1)-(A.5). The following convergence holds

(Y t,x,n,M t,x,n,Ht,x,n)
∗

−−−−−→
S×S×S

(Y t,x,M t,x,Ht,x)

where

M t,x,n
s :=

∫ s

t
U t,x,n
r dMXt,x,n

r , Ht,x,n
s :=

∫ s

t
h(r,Xt,x,n

r , Y t,x,n
r )dkt,x,nr ,

M t,x
s :=

∫ s

t
U t,x
r dMXt,x

r and Ht,x
s :=

∫ s

t
h(r,Xt,x

r , Y t,x
r )dkt,xr . (14)

Moreover, lim
n→∞

Y t,x,n
t = Y t,x

t .

Proof. The solutions satisfy the following estimate

sup
n≥0

E sup
t≤s≤T

|Y t,x,n
s |2 + sup

n≥0
E

∫ T

t
‖U t,x,n

s σ(Xt,x,n
s )‖2ds < +∞

for the proof see [4]. To show the tightness property with respect to the S-topology we

compute the conditional variation CVT defined in (25) in Appendix. Arguing as in [4], we

can prove that (Y t,x,n,M t,x,n,Ht,x,n) is tight with respect to the S−topology, so there exists

a subsequence still denoted (Y t,x,n,M t,x,n,Ht,x,n) and (Ȳ , M̄ , H̄) in (D([0, T ],Rk))3, such

that

(Xt,x,n,Kt,x,n, Y t,x,n,M t,x,n,Ht,x,n)
∗

−−−−−−−−−→
U×U×S×S×S

(Xt,x,Kt,x, Ȳ , M̄ , H̄). (15)

Next, we will pass to the limit and show the convergence of each term in BSDE (11).

Let’s start with
∫ T
s f(r,Xt,x,n

r , Y t,x,n
r )dr. It should be noted that the function f may be

discontinuous in x, then the mapping (x, y) →
∫ T
0 f(r, x(r), y(r))dr from C([0, T ],Rd) ×

D([0, T ],Rk) to R
k is not necessary continuous. So, to prove the convergence of this term

we proceed as follows: for R > 0 let DR := {x ∈ R
d, |x| ≤ R} and τnR := inf{r > t, |Xt,x,n

r | >

Ror |Xt,x
r | > R}∧T , with convention inf{∅} = ∞ and let fη(t, x, y) = η−dϕ(x/η)∗f(t, x, y),

where ϕ is an infinitely differentiable function such that
∫

ϕ(x)dx = 1.

E

∣

∣

∣

∣

∫ T∧τn
R

s
f(r,Xt,x,n

r , Y t,x,n
r )− f(r,Xt,x,

r , Ȳr)dr

∣

∣

∣

∣

≤ J1(n,R, η) + J2(n,R, η) + J3(R, η) (16)

where

J1(n,R, η) = E

∣

∣

∣

∣

∫ T∧τn
R

s
f(r,Xt,x,n

r , Y t,x,n
r )− fη(r,X

t,x,n
r , Y t,x,n

r )dr

∣

∣

∣

∣

J2(n,R, η) = E

∣

∣

∣

∣

∫ T∧τnR

s
fη(r,X

t,x,n
r , Y t,x,n

r )− fη(r,X
t,x
r , Ȳr)dr

∣

∣

∣

∣

J3(R, η) = E

∣

∣

∣

∣

∫ T∧τn
R

s
fη(r,X

t,x
r , Ȳr)− f(r,Xt,x

r , Ȳr)dr

∣

∣

∣

∣

.

11



Since the function fη is continuous with respect to its three arguments, it follows that the

maps (x, y) →
∫ T
0 fη(r, x(r), y(r))dr is continuous, we pass to the limit in J2(n,R, η) as

n→ +∞ we deduce that J2(n,R, η) goes to 0. Now, consider J1(n,R, η) and let M > 0

J1(n,R, η) ≤ E

∫ T∧τn
R

s

∣

∣f(r,Xt,x,n
r , Y t,x,n

r )− fη(r,X
t,x,n
r , Y t,x,n

r )
∣

∣ 1{|Y t,x,n
r |>M}dr

+E

∫ T∧τn
R

s

∣

∣f(r,Xt,x,n
r , Y t,x,n

r )− fη(r,X
r,x,n
r , Y t,x,n

r )
∣

∣ 1{|Y t,x,n
r |≤M}dr

≤ C E

∫ T∧τnR

s
(1 +

∣

∣Y t,x,n
r

∣

∣)1{|Y t,x,n
r |>M}dr

+E

∫ T∧τn
R

s
sup

{|y|≤M}

∣

∣f(r,Xt,x,n
r , y)− fη(r,X

t,x,n
r , y)

∣

∣ dr

≤
C

M1/2

(

E

∫ T

s
(1 +

∣

∣Y t,x,n
r

∣

∣)2dr

)

1

2
(

E

∫ T

s
|Y t,x,n

r |dr

)

1

2

+E

∫ T∧τn
R

s
|ζη(t,X

t,x,n
r )|dr

where ζη(r, x) = sup
{|y|≤M}

|f(r, x, y)− fη(r, x, y)|. Thanks to Krylov’s inequality, there exists

a positive constant N(T,R, d) such that

J1(n,R, η) ≤
C

M1/2

(

E

∫ T∧τn
R

s
(1 +

∣

∣Y t,x,n
r

∣

∣)2dr

)

1

2
(

E

∫ T

s
|Y t,x,n

r |dr

)

1

2

+N(T,R, d)‖ζη‖Ld+2([0,T ]×DR)

passing successively to the limit in η → 0 and M → +∞, it follows that J1(n,R, η) tends to

zero for all n ∈ N. Concerning J3(R, η) similar arguments as above prove the convergence

of this term to zero as η goes to zero, we note that in the prove of the convergence of this

term, we will need some integrability on the process Ȳ and this is ensured by Lemma A.2

in [16].

Since τnR is increasing to infinity as R tends to infinity, then for R large enough T ∧ τnR =

T . Finally,

lim
n→+∞

E

∣

∣

∣

∣

∫ T

s
f(r,Xt,x,n

r , Y t,x,n
r )− f(t,Xt,x

r , Ȳr)dr

∣

∣

∣

∣

= 0.

Concerning the term
∫ T
s h(r,Xt,x,n

r , Y t,x,n
r )dkt,x,nr , we use the Lipschitz continuity of h, the

week convergence of kt,x,n to kt,x with respect to the uniform topology, together with Lemma

3.3 in [4], we get that there exists a countable set Q ⊂ [0, T ) such that, for any s ∈ [0, T ]\Q,

Ȳs = g(Xt,x
T ) +

∫ T

s
f(r,Xt,x

r , Ȳr)dr − (M̄T − M̄s) +

∫ T

s
h(r,Xt,x

r , Ȳr)dk
t,x
r .

12



Since the processes Ȳ , M̄ and H̄ are càdlàg, the previous equality holds true for all s ∈ [t, T ].

Moreover, Lemma A.1 in [16], ensures that the process M̄ is a FXt,x,Ȳ ,M̄−martingale. We

shall now show that MXt,x

is a FXt,x,Ȳ ,M̄−martingale. Let ψs be a bounded continuous

mapping form C
(

[t, s],Rd
)

×D
(

[t, s],Rk
)2
, ϕ ∈ C∞

b (Rd) and

L =
1

2

∑

i,j

(σσ∗(.))ij
∂2

∂xi∂xj
+
∑

i

bi(.)
∂

∂xi

be the infinitesimal generator of the diffusion part of the process Xt,x. By Itô’s formula we

obtain that

ϕ(Xt,x,n
s )− ϕ(x)−

∫ s

t
Lϕ(Xt,x,n

r )dr −

∫ s

t
∇ϕ(Xt,x,n

r )dKt,x,n
r

is a FXt,x,n

-martingale. For any t ≤ s1 < s2 ≤ T and for each n ∈ N, we have

E

[

ψs1

(

Xt,x,n, Y t,x,n,M t,x,n
)

(

ϕ(Xt,x,n
s2 )− ϕ(Xx,t,n

s1 )−

∫ s2

s1

Lϕ(Xt,x,n
r )dr

−

∫ s2

s1

∇ϕ(Xt,x,n
r )dKt,x,n

r

)]

= 0.

Moreover,

lim
n→∞

E

[

ψs1

(

Xt,x,n, Y t,x,n,M t,x,n
)

(

ϕ(Xt,x,n
s2 )− ϕ(Xt,x,n

s1 )−

∫ s2

s1

Lϕ(Xt,x,n
r )dr

)]

= E

[

ψs1

(

Xt,x, Ȳ , M̄
)

(

ϕ(Xt,x
s2 )− ϕ(Xt,x

s1 )−

∫ s2

s1

Lϕ(Xt,x
r )dr

)]

.

In fact, we will only show the convergence of the term ψs1

(

Xt,x,n, Y t,x,n,M t,x,n
) ∫ s2

s1
Lϕ(Xt,x,n

r )dr

E

∣

∣

∣

∣

ψs1

(

Xt,x,n, Y t,x,n,M t,x,n
)

∫ s2

s1

Lϕ(Xt,x,n
r )dr − ψs1

(

Xt,x, Ȳ , M̄
)

∫ s2

s1

Lϕ(Xt,x
r )dr

∣

∣

∣

∣

≤ E

∣

∣

∣

∣

[

ψs1

(

Xt,x,n, Y t,x,n,M t,x,n
)

− ψs1

(

Xt,x, Ȳ , M̄
)]

∫ s2

s1

Lϕ(Xt,x,n
r )dr

∣

∣

∣

∣

+E

∣

∣

∣

∣

ψs1

(

Xt,x, Ȳ , M̄
)

[
∫ s2

s1

Lϕ(Xt,x,n
r )dr −

∫ s2

s1

Lϕ(Xt,x
r )dr

]∣

∣

∣

∣

= B1(n) +B2(n)

in view of (15), the continuity of ψ and the boundedness of b, σ, ϕ, ∂ϕ
∂xi

and ∂2ϕ
∂xi∂xj

we obtain
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lim
n→+∞

B1(n) = 0. Concerning B2(n)

B2(n) = E

∣

∣

∣

∣

ψs1

(

Xt,x, Ȳ , M̄
)

[
∫ s2

s1

Lϕ(Xt,x,n
r )dr −

∫ s2

s1

Lϕ(Xt,x
r )dr

]
∣

∣

∣

∣

≤ C E

∫ s2

s1

∣

∣Lϕ(Xt,x,n
r )− Lϕ(Xt,x

r )
∣

∣ dr

≤ C

d
∑

i

E

∫ s2

s1

∣

∣

∣

∣

bi(X
t,x,n
r )

∂ϕ

∂xi
(Xt,x,n

r )− bi(X
t,x
r )

∂ϕ

∂xi
(Xt,x

r )

∣

∣

∣

∣

dr

+ C

d
∑

i,j

E

∫ s2

s1

∣

∣

∣

∣

(

σσ∗(Xt,x,n
r )

)

ij

∂2ϕ

∂xixj
(Xt,x,n

r )−
(

σσ∗(Xt,x
r )
)

ij

∂2ϕ

∂xixj
(Xt,x

r )

∣

∣

∣

∣

dr

using the boundedness of b, σ, ∂ϕ
∂xi

and ∂2ϕ
∂xi∂xj

, combined with Krylov’s estimate, we proceed

as in (16) to conclude that lim
n→+∞

B2(n) = 0. On the other side, using (15), the boundedness

of ψ, ∇ϕ and estimation in (8) together with Lemma 8 we obtain

lim
n→∞

E

[

ψs1

(

Xt,x,n, Y t,x,n,M t,x,n
)

∫ s2

s1

∇ϕ(Xt,x,n
r )dKt,x,n

r

]

= E

[

ψs1

(

Xt,x, Ȳ , M̄
)

∫ s2

s1

∇ϕ(Xt,x
r )dKt,x

r

]

.

Hence,

E

[

ψs1

(

Xt,x, Ȳ , M̄
)

(

ϕ(Xt,x
s2 )− ϕ(Xx,t

s1 )−

∫ s2

s1

Lϕ(Xt,x
r )dr −

∫ s2

s1

∇ϕ(Xt,x
r )dKt,x

r

)]

= 0

Itô’s formula gives rise

E

[

ψs1

(

Xt,x, Ȳ , M̄
)

∫ s2

s1

∇ϕ(Xt,x
r )dMXt,x

r

]

= 0

then, MXt,x

is a FXt,x,Ȳ ,M̄− martingale. Since Y t,x and U t,x are FXt,x

−adapted, M t,x =
∫ .
t U

t,x
r dMXt,x

r is also FXt,x,Ȳ ,M̄− martingale. Therefore, using Itô’s formula, assumptions

on f and h, and a generalized Gronwall lemma (see Lemma 12 in [18]), we obtain

Y t,x = Ȳ and M t,x = M̄.

For the second claim, By Lemma 3.3 in [4] applied with time T , we have
∫ T

t
h(r,Xt,x,n

r , Y t,x,n
r )dkt,x,nr

∗
−−→

∫ T

t
h(r,Xt,x

r , Y t,x
r )dkt,xr .

Since M t,x,n ∗
−−→
S

M t,x, using Remark 2.4 in [11], we get M t,x,n
T → M t,x

T in law. We now

pass to the limit in

Y t,x,n
t = g(Xt,x,n

T ) +

∫ T

t
f(r,Xt,x,n

r , Y t,x,n
r )dr −M t,x,n

T

+

∫ T

t
h(r,Xt,x,n

r , Y t,x,n
r )dkt,x,nr ,

14



we deduce that

Y t,x
t = g(Xt,x

T ) +

∫ T

t
f(r,Xt,x

r , Y t,x
r )dr −M t,x

T

+

∫ T

t
h(r,Xt,x

r , Y t,x
r )dkt,xr .

Which ends the proof

We extend (Y t,x, U t,x) and MXt,x

to [0, t) as follows

Y t,x
s := Y t,x

t , U t,x
s := 0 and MXt,x

s := 0, ∀ s ∈ [0, t).

We now state a continuity property of the mappings (t, x) → Y t,x.

Proposition 12 Assume (A.1) − (A.3) and (A.5). For a sequence (tn, xn) converging to

(t, x), there exists a subsequence (tnk
, xnk

)k∈N such that Y tnk
,xnk

∗
−−→
S

Y t,x.

Proof. We denote (Y tn,xn ,Xtn,xn , ktn,xn) = (Y n,Xn, kn). We have for all t ∈ [0, T ]

E sup
0≤s≤T

|Y n
s |2 + E

∫ T

0
‖Un

s σ(X
n
s )‖

2ds < C, ∀n ∈ N,

E sup
0≤s≤T

|Ys|
2 + E

∫ T

0
‖Usσ(Xs)‖

2ds < C,

where C is a constant independent of and n, see [26]. We compute the conditional variation

defined by (25) in Appendix, we get

sup
n≥0

(

CVT (Y
n) + E sup

0≤s≤T
|Y n

s |+ E sup
0≤s≤T

|Mn
s |+CVT (H

n) + E sup
0≤s≤T

|Hn
s |

)

<∞.

Then, (Y n,Mn,Hn) is tight with respect to the S−topology. So there exists a subsequence

still denoted by (Y n,Mn,Hn) and (Ȳ , M̄ , H̄) in (D([0, T ],Rk))3, such that

(Xtn,xn ,Ktn,xn , Y n,Mn,Hn)
∗

−−−−−−−−−→
U×U×S×S×S

(Xt,x,Kt,x, Ȳ , M̄ , H̄).

The same arguments used in the proof of Proposition 11 ensure that for all s ∈ [t, T ]

Ȳs = g(Xt,x
T ) +

∫ T

s
1[t,T ]f(r,X

t,x
r , Ȳr)dr − (M̄T − M̄s) +

∫ T

s
h(r,Xt,x

r , Ȳr)dk
t,x
r

and

Y t,x = Ȳ and M t,x = M̄.

Which ends the proof

The next result will be employed in the sequel.
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Proposition 13 Under assumptions (A.1)-(A.5). The functions un : (t, x) ∈ [0, T ]×R
d 7→

un(t, x) := Y t,x,n
t and u : (t, x) ∈ [0, T ]× D̄ 7→ u(t, x) := Y t,x

t are continuous.

Proof. We will show only that the function u is continuous. Let (tn, xn) → (t, x), as

n → +∞. From the proof of Proposition 12, we can extract a subsequence still denoted

(tn, xn), such that

(Xtn,xn ,Ktn,xn , Y tn,xn ,M tn,xn)
∗

−−−−−−−→
U×U×S×S

(Xt,x,Kt,x, Y t,x,M t,x)

By Lemma 3.3 in [4] applied for t = T , we have
∫ T

0
h(r,Xtn ,xn

r , Y tn,xn
r )dktn,xn

r
∗

−−→

∫ T

0
h(r,Xt,x

r , Y t,x
r )dkt,xr

Since M tn,xn
∗

−−→
S

M t,x, using Remark 2.4 in [11], we get M tn,xn

T → M t,x
T . By virtue of

Krylov’s inequality for reflected diffusions, we can show that
∫ T
0 1[tn,T ]f(r,X

tn,xn
r , Y tn,xn

r )dr →
∫ T
0 1[t,T ]f(r,X

t,x
r , Y t,x

r )dr in law . We now pass to the limit in

u(tn, xn) = Y tn,xn

tn = Y tn,xn

0 = g(Xtn,xn

T ) +

∫ T

0
1[tn,T ]f(r,X

tn,xn
r , Y tn,xn

r )dr −M tn,xn

T

+

∫ T

0
h(r,Xtn ,xn

r , Y tn,xn
r )dktn,xn

r .

Exactly as in the proof of the Proposition 12, we deduce that the limit of u(tn, xn), as

n→ +∞ is

u(t, x) = Y t,x
t = Y t,x

0 = g(Xt,x
T ) +

∫ T

0
1[t,T ]f(r,X

t,x
r , Y t,x

r )dr −M t,x
T

+

∫ T

0
h(r,Xt,x

r , Y t,x
r )dkt,xr .

Which is the desired result.

4 Application to nonlinear Neumann boundary value prob-

lems

The coefficients of our PDEs are not continuous this why we cannot define the solutions

in the classical viscosity sense. We then adopt the Lp−viscosity solution introduced in [5].

This notion of solutions is used to study nonlinear PDEs with measurable coefficients. We

first recall the definition of the Lp−viscosity solution for PDEs (2). For simplicity, we adopt

the following notations

Lnϕ := Lϕ− n < δ(.),∇ϕ >

f̄(r, x, y) := f(r, x, y)− n < ∇l(x), δ(x) > h(r, x, y).
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Definition 14 Let p be an integer such that p > d+ 2.

1. A function u ∈ C([0, T ] × R
d,Rk) is a Lp−viscosity sub-solution of the PDEs system

(2), if for every x ∈ R
d, ui(T, x) ≤ gi(x), 1 ≤ i ≤ k, and for every ϕ ∈W 1,2

p,loc([0, T ]×

R
d) and (t̂, x̂) ∈ (0, T ]× R

d at which ui − ϕ has a local maximum, one has

ess lim inf
(t,x)→(t̂,x̂)

{

−
∂ϕ

∂t
(t, x)− Lnϕ(t, x) − f̄i(t, x, u(t, x))

}

≤ 0.

2. A function u ∈ C([0, T ]×R
d,Rk) is a Lp−viscosity super-solution of the PDEs (2), if

for every x ∈ R
d, ui(T, x) ≥ gi(x), 1 ≤ i ≤ k, and for every ϕ ∈ W 1,2

p,loc([0, T ] × R
d)

and (t̂, x̂) ∈ (0, T ]× R
d at which ui − ϕ has a local minimum, one has

ess lim sup
(t,x)→(t̂,x̂)

{

−
∂ϕ

∂t
(t, x)− Lnϕ(t, x) − f̄i(t, x, u(t, x))

}

≥ 0.

3. A function u ∈ C([0, T ]×R
d,Rk) is a Lp−viscosity solution if it is both a Lp−viscosity

sub-solution and super-solution.

Remark 15 Assertion (1) means that for every ε > 0, r > 0, there exists a set A ⊂ Br(t̂, x̂)

of positive measure

−
∂ϕ

∂t
(t, x)− Lnϕ(t, x) − f̄i(t, x, u(t, x)) ≤ ε, ∀(t, x) ∈ A.

We now define the Lp−viscosity solution for system (3), which can be seen as a natural

extension of the notion of viscosity solution of PDEs with nonlinear Neumann boundary

condition, to the case of PDEs with measurable coefficients.

Definition 16 Let p be an integer such that p > d+ 2

(i.) u ∈ C([0, T ] × D̄,Rk) is called a Lp−viscosity subsolution of System (3) if ui(T, x) ≤

gi(x), x ∈ D̄, 1 ≤ i ≤ k, and moreover for any 1 ≤ i ≤ k, ϕ ∈W 1,2
p,loc([0, T ]× D̄), and

(t̂, x̂) ∈ (0, T ] × D̄ at which ui − ϕ has a local maximum, one has

ess lim inf
(t,x)→(t̂,x̂)

{

−
∂ϕ

∂t
(t, x)− Lϕ(t, x)− fi(t, x, u(t, x))

}

≤ 0, if x̂ ∈ D,

ess lim inf
(t,x)→(t̂,x̂)

min

(

−
∂ϕ

∂t
(t, x)− Lϕ(t, x) − fi(t, x, u(t, x)),

−
∂ϕ

∂n
(t, x)− hi(t, x, u(t, x))

)

≤ 0, if x̂ ∈ ∂D.

17



(ii.) u ∈ C([0, T ]× D̄,Rk) is called a Lp−viscosity super-solution of (3) if ui(T, x) ≥ gi(x),

x ∈ D̄, 1 ≤ i ≤ k, and moreover for any 1 ≤ i ≤ k, ϕ ∈ W 1,2
p,loc([0, T ] × D̄), and

(t̂, x̂) ∈ (0, T ] × D̄ at which ui − ϕ has a local minimum, one has

ess lim sup
(t,x)→(t̂,x̂)

{

−
∂ϕ

∂t
(t, x)− Lϕ(t, x)− fi(t, x, u(t, x))

}

≥ 0, if x̂ ∈ D,

ess lim sup
(t,x)→(t̂,x̂)

max

(

−
∂ϕ

∂t
(t, x)− Lϕ(t, x)− fi(t, x, u(t, x)),

−
∂ϕ

∂n
(t, x)− hi(t, x, u(t, x))

)

≥ 0, if x̂ ∈ ∂D.

(iii.) u ∈ C([0, T ] × D̄,Rk) is called a Lp−viscosity solution of System (3) if it is both a

Lp−viscosity sub- and super-solution.

Remark 17 We remark that if the ingredients in the definition above are continuous we

recover the classical viscosity solution of PDEs with Neumann boundary condition defined

in [26].

We are now able to state and prove our main result.

Theorem 18 Under assumptions (A.1)−(A.5), for p > d+2 the functions un : [0, T ]×R
d →

R
k and u : [0, T ]× D̄ → R

k are Lp−viscosity solutions respectively for systems (2) and (3).

Moreover

lim
n→∞

un(t, x) = u(t, x), ∀(t, x) ∈ [0, T ]× D̄,

where un and u are defined in Proposition 13.

We divide the proof of Theorem 15 in two lemmas and the convergence is ensured by

Proposition 10.

Lemma 19 The function un is a Lp−viscosity solution of system (2).

Proof. The proof will follow the techniques used in Proposition 5.1 in [1]. Let ϕ ∈

W 1,2
p,loc

(

[0, T ] × R
d
)

, let (t̂, x̂) ∈ [0, T ] × R
d be a point which is a local maximum of uni − ϕ.

Since p > d + 2, then ϕ admits a continuous version which we consider from now on. We

assume without loss of generality that

uni (t̂, x̂) = ϕ(t̂, x̂). (17)

18



We will argue by contradiction. Assume that there exists ε, α > 0 such that

∂ϕ

∂t
(t, x) + Ln ϕ(t, x) + f̄i(t, x, u

n(t, x)) < −ε, λ− a.e inBα(t̂, x̂) (18)

where λ denote the Lebesgue measure and Bα(t̂, x̂) is the ball of centre (t̂, x̂) and radius

α. Since (t̂, x̂) is a local maximum of uni − ϕ, we find a positive number α′ (which we can

suppose equal to α) such that

uni (t, x) ≤ ϕ(t, x) for all (t, x) in Bα(t̂, x̂). (19)

Define the stopping time

τ = inf{s ≥ t̂; |X t̂,x̂,n
s − x̂| > α} ∧ (t̂+ α)

Since Xt,x,n is a Markov diffusion, one can show, as in [9], that for every r ∈ [t̂, t̂ + α],

Y t̂,x̂,n
r = un(r,X t̂,x̂,n

r ). Hence, the process (Ȳs, Ūs) :=
(

Y t̂,x̂,n,i
s , 1[0,τ ]U

t̂,x̂,n,i
s

)

s∈[t̂,t̂+α]
solves

the BSDE for every s ∈ [t̂, t̂+ α]

Ȳs = uni (τ,X
t̂,x̂,n
τ ) +

∫ t̂+α

s
1[0,τ ]f̄i(r,X

t̂,x̂,n
r , un(r,X t̂,x̂,n

r )) dr −

∫ t̂+α

s
Ūr dM

X t̂,x̂,n

r . (20)

On the other hand, by Itô-Krylov’s formula (see Chap. 2 Sec. 2 and 3 [13]), the process

(Ŷs, Ûs)s∈[t̂,t̂+α] defined by

(Ŷs, Ûs) :=
(

ϕ(s ∧ τ,X t̂,x̂,n
s∧τ ), 1[0,τ ]∇ϕ(s,X

t̂,x̂,n
s )

)

satisfies

Ŷs = ϕ(τ,X t̂,x̂,n
τ )−

∫ t̂+α

s
1[0,τ ]

(

∂ϕ

∂r
+ Lnϕ

)

(r,X t̂,x̂,n
r ) dr −

∫ t̂+α

s
ÛrdM

X t̂,x̂,n

r .

By the choice of τ , (τ,X t̂,x̂,n
τ ) ∈ Bα(t̂, x̂), then u

n
i (τ,X

t̂,x̂,n
τ ) ≤ ϕ(τ,X t̂,x̂,n

τ ).

Consider the set

A := {(t, x) ∈ Bα(t̂, x̂),

(

∂ϕ

∂t
+ Lnϕ+ f̄i(., ., u

n(., .))

)

(t, x) < −ε}

and Ac := Bα(t̂, x̂)\A is the complement of A. By assumption (18) we get λ(Ac) = 0. Since

the process X t̂,x̂,n is nodegenerate, Krylov’s inequality (see Chap. 2 Sec. 2 and 3 [13])

implies that 1Ac(r,X t̂,x̂,n
r ) = 0 dr × P− a.e. It follows that

0 < E(τ − t̂)ε ≤ E

∫ t̂+α

t̂
−1[0,τ ]

[(

∂ϕ

∂r
+ Lnϕ

)

(r,X t̂,x̂,n
r ) + f̄i(r,X

t̂,x̂,n
r , un(r,X t̂,x̂,n

r ))

]

dr

19



This implies that

−1[0,τ ]

[(

∂ϕ

∂r
+ Lnϕ

)

(r,X t̂,x̂,n
r ) + f̄i(r,X

t̂,x̂,n
r , un(r,X t̂,x̂,n

r ))

]

> 0

on a set of dt× dP−positive measure. Therefore, the comparison theorem in Remark 2.5 in

[22] shows that Ŷt̂ > Ȳt̂, that is ϕ(t̂, x̂) > uni (t̂, x̂), which contradicts assumption (17).

Lemma 20 The function u is a Lp−viscosity solution of system (3) in the sense of Defi-

nition 16.

Proof. We shall prove that u is a Lp−viscosity subsolution. Let ϕ ∈ W 1,2
p,loc([0, T ] × D̄)

and let (t̂, x̂) ∈ [0, T ] × D̄ be a point which is a local maximum of ui − ϕ. We consider a

continuous version of ϕ and we assume without loss of generality that

ui(t̂, x̂) = ϕ(t̂, x̂). (21)

We skip the proof in the case x̂ ∈ D because of its similitude with that of un in the previous

lemma. We consider the case x̂ ∈ ∂D, we suppose that

ess lim inf
(t,x)→(t̂,x̂)

min

(

−
∂ϕ

∂t
(t, x)− Lϕ(t, x)− fi(t, x, u(t, x)),

−
∂ϕ

∂n
(t, x)− hi(t, x, u(t, x))

)

> 0.

It follows that there exist ε, α > 0 such that

∂ϕ

∂t
(t, x) + Lϕ(t, x) + fi(t, x, u(t, x)) < −ε and (22)

∂ϕ

∂n
(t, x) + hi(t, x, u(t, x)) < −ε λ− a.e in Bα(t̂, x̂).

Since (t̂, x̂) is a local maximum of ui − ϕ we have

ui(t, x) ≤ ϕ(t, x) in Bα(t̂, x̂)

Define

τ := inf{s ≥ t̂ : |X t̂,x̂
s − x̂| > α} ∧ (t̂+ α)

Since Xt,x is a Markov process, we have ∀r ∈ [t̂, t̂ + α], Y t̂,x̂
r = u(r,X t̂,x̂

r ). Moreover, the

process (Ȳs, Ūs) := (Y t̂,x̂,i
s∧τ , 1[0,τ ](s)U

t̂,x̂,i
s ) for s ∈ [t̂, t̂+ α] solves the equation

Ȳs = ui(τ,X
t̂,x̂
τ ) +

∫ t̂+α

s
1[0,τ ]fi(r,X

t̂,x̂
r , u(r,X t̂,x̂

r ))dr −

∫ t̂+α

s
ŪrdM

X t̂,x̂

r

+

∫ t̂+α

s
hi(r,X

t̂,x̂
r , u(r,X t̂,x̂

r ))dkt̂,x̂r .
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On the other hand, by Itô-Krylov’s formula, see for example Corollary 3.6 in [3], the process

(Ŷs, Ûs) := (ϕ(s ∧ τ,X t̂,x̂
s∧τ ), 1[0,τ ]∇ϕ(s,X

t̂,x̂
s )) solves the following BSDE

Ŷs = ϕ(τ,X t̂,x̂
τ )−

∫ t̂+α

s
1[0,τ ](r)

(

∂ϕ

∂t
+ Lϕ

)

(r,X t̂,x̂
r )dr −

∫ t̂+α

s
ÛrdM

X t̂,x̂

r

−

∫ t̂+α

s
1[0,τ ](r)

∂ϕ

∂n
(r,X t̂,x̂

r )dkt̂,x̂r .

We consider the set

A = {(t, x) ∈ Bα(t̂, x̂) :
∂ϕ

∂t
(t, x) + Lϕ(t, x) + fi(t, x, u(t, x)) < −ε}

then λ(Ac) = 0, where Ac is the complement set of A. By Krylov’s inequality (see [3], [19]

and [27]) we get 1Ac(r,X t̂,x̂
r ) = 0 dr × dP− a.e, it follows that

E

∫ t̂+α

t̂
−1[0,τ ](r)

[

(
∂ϕ

∂t
+ Lϕ)(r,X t̂,x̂

r ) + fi(r,X
t̂,x̂
r , u(r,X t̂,x̂

r ))

]

dr ≥ E(τ − t̂)ε > 0.

Then

−1[0,τ ](r)(
∂ϕ

∂t
+ Lϕ)(r,X t̂,x̂

r ) > 1[0,τ ](r)fi(r,X
t̂,x̂
r , u(r,X t̂,x̂

r ))

on a set of dr × dP positive measure. Furthermore, by Theorem 1.4 in [26] we get Ŷt̂ > Ȳt̂,

which contradicts our assumption (21).

Appendix

The S-topology on the space D([0, T ],Rd) was introduced by Jakubowski [11]. It is weaker

than the Skorokhod topology but stronger than the Meyer-Zheng one in [21]. We recall here

some relevant results about the S-topology in the case of real paths but they can be extend

easily to the case of finite dimensional space R
d. We have the following propositions.

Proposition 21

(i.) K ⊂ D([0, T ],R) is relatively S-compact if and only if

sup
x∈K

sup
t∈[0,T ]

|xt| < +∞ (23)

and for all a, b ∈ R such that a < b

sup
x∈K

Na,b(x) < +∞ (24)

where Na,b is the usual number of up-crossings given levels a < b, that is, Na,b(x) ≥ k if

one can find numbers 0 ≤ t1 < t2 < ... < t2k−1 < t2k ≤ T such that xt2i−1
< a and xt2i > b,

i = 1, 2, ..., k.
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(ii.) xn converges to x in the S-topology if and only if (xn) satisfies (23), (24) and for every

subsequence (nk), one can find a further subsequence (nkl) and a countable subset Q ⊂ [0, T ]

such that x
nkl
t → xt, t ∈ [0, T ]\Q.

Corollary 22 If (xn) is relatively S-compact and there exists a countable subset Q such

that for every t ∈ [0, T ]\Q, xnt → xt, then (xn) converges to x.

We now recall that a sequence of processes (Xn)n converges weakly to X in the S-topology,

Xn ∗
−−→
S

X, if for every subsequence (Xnk), we can find a further subsequence (Xnkl ) and

a stochastic processes (Yl) and Y defined on ([0, 1],B[0,1], λ), such that the laws of Yl and

Xnkl are the same, l ∈ N, for each ω ∈ [0, 1] Yl(ω) converges to Y (ω) in the S-topology, and

for each ε > 0, there exists an S-compact subset Kε ⊂ D([0, T ],R) such that

λ ({ω ∈ [0, 1] : Yl(ω) ∈ Kε, l = 1, 2, ...}) > 1− ε.

Proposition 23 The following two properties are equivalent

(i.) (Xn) is S-tight.

(ii.) (Xn) is relatively compact with respect to the convergence ”
∗

−−→
S

”

Proposition 24 If (Xn) is S-tight and there exists a countable subset Q ⊂ [0, T ] such that

for every j ∈ N and every t1, t2, ..., tj ∈ [0, T ]\Q

(Xn
t1 ,X

n
t2 , ...,X

n
tj )

∗
−→ (Xt1 ,Xt2 , ...,Xtj )

where X is a process with trajectories in D([0, T ],R). Then Xn ∗
−−→
S

X.

On a probability space (Ω,F ,P) with a filtration Ft, let X be an adapted process with paths

a.s in D([0, T ],R). If Xt is integrable for all t ∈ [0, T ], we define the conditional variation

of X by

CVT (X) = sup
π

n
∑

i=1

E
[
∣

∣E[Xti+1
−Xti |Fti ]

∣

∣

]

, (25)

where the supremum is taken over all subdivisions π of the interval [0, T ]. If CVT (X)<∞

then the process X is called a quasi-martingale. Notice that for martingales X the quantity

CVT (X) = 0.

We have the following criterion, for the proof we refer for example to [16] and the references

therein.
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Theorem 25 Let (Xn)n≥1 be a family of stochastic process in D([0, T ],R). If

sup
n≥1

(

CVT (X
n) + E

[

sup
0≤s≤T

|Xn
s |

])

<∞ , (26)

then the sequence (Xn)n≥1 is S-tight and there exists a subsequence (Xnk)k≥1 of (Xn)n≥1,

a process X belonging to D([0, T ],R), and a countable subset Q ⊂ [0, T ) such that for every

j ≥ 1 and for any finite subset {t1, . . . , tj} of [0, T ] \Q the following convergence is true:

(

Xnk
t1 , . . . ,X

nk
tj

)

∗
−−→

(

Xt1 , . . . ,Xtj

)

as k → ∞ .

Remark 26 Note that T is not in the countable subset Q. More precisely the projection

πT : D([0, T ],R) → R, which assigns to x the value x(T ), is continuous with respect to the

S-topology (cfr Remark 2.4. p.8 in [11]).
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