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We consider a system of semi-linear partial differential equations with measurable coefficients and a nonlinear Neumann boundary condition. We then construct a sequence of penalized partial differential equations which converges to a solution of our initial problem. The solution we construct is in the L p -viscosity sense, since the coefficients can be not continuous. The method we use is based on backward stochastic differential equations and their S-tightness. The present work is motivated by the fact that many partial differential equations arising in physics have discontinuous coefficients.

Introduction

Let D be a C 2 convex, open and bounded domain in R d , and for (t, x) ∈ [0, T ] × D we consider the following reflecting stochastic differential equation

X s = x + s t b(X r )dr + s t σ(X r )dW r + K s , s ∈ [t, T ],
where b : R d → R d , σ : R d → R d×d ′ are given measurable functions and K is a bounded variation process satisfying some minimality conditions. Several authors have studied approximations of reflected diffusions in such domains. We refer for example to [START_REF] Menaldi | Stochastic Variational Inequality for Reflected Diffusion[END_REF] and [START_REF] Tanaka | Stochastic Differential Equations with ReflectingBoundary Condition in Convex Regions[END_REF] 1 in the case of a convex bounded domain D and with coefficients satisfying Lipschitz conditions. The non-convex case was treated in [START_REF] Lions | Stochastic Differential Equations with Reflecting Boundary Conditions[END_REF] then extended to reflected diffusions on non necessary bounded domains in [START_REF] Pardoux | Symmetric reflected diffusions[END_REF]. A general situation of non Lipschitz coefficients and non convex domain can be found in [START_REF] Rozkosz | On stability and existence of solutions of SDEs with reflection at the boundary[END_REF], where the authors studied, in particular, the existence of a weak solution of the reflected equation, when the coefficients are merely measurable and the diffusion coefficient may degenerate on some subset of the domain. Note that equation [START_REF] Bahlali | Homogenization of semilinear PDEs with discontinuous averaged coefficients[END_REF] can be used to handle linear PDEs with Neumann Boundary conditions, see for instance [START_REF] Hsu | Probabilistic approach to the Neumann problem[END_REF][START_REF] Sato | Multidimensional diffusions and Markov processes on the boundary[END_REF][START_REF] Stroock | Diffusion Processes with boundary conditions[END_REF].

Our aim in the present work is to construct the solution of a system of semi-linear partial differential equations (PDEs), with a nonlinear Neumann boundary condition by penalization. For this purpose, we use the backward stochastic differential equations. This allows us to provide probabilistic representations for solutions of different type of semilinear PDEs, see for instance [START_REF] Pardoux | Backward SDE and quasilinear parabolic PDEs, in stochastic partial differential equations and their application[END_REF] for parabolic equations, [START_REF] Darling | Backwards SDE with random terminal time, and applications to semilinear elliptic PDE[END_REF] for elliptic equations with Dirichlet boundary condition and [START_REF] Pardoux | Generalized BSDEs and nonlinear Neumann boundary value problems[END_REF] for a nonlinear Neumann boundary condition. More references can be found in [START_REF] Pardoux | Stochastic differential equations, Backward SDEs, Partial differential equations[END_REF].

The penalization of nonlinear Neumann boundary problem [START_REF] Bahlali | Some properties of the solutions of stochastic differential driven by semi-martingales[END_REF] has been firstly considered in [START_REF] Boufoussi | An approximation result for a nonlinear Neumann boundary value problem via BSDEs[END_REF] when the coefficients b, σ are uniformly Lipschitz then extended by [START_REF] Bahlali | Penalization method for a nonlinear Neumann PDE via weak solution of reflected SDEs[END_REF] to the case where the coefficients b, σ are continuous. The main goal of the present paper is to extend the results of [START_REF] Bahlali | Penalization method for a nonlinear Neumann PDE via weak solution of reflected SDEs[END_REF], [START_REF] Boufoussi | An approximation result for a nonlinear Neumann boundary value problem via BSDEs[END_REF] to the situation where the coefficients b and σ are merely measurable and the nonlinearity f is measurable in x.. Our work is motivated by the fact that in many problems arising in physics. Our method is inspired from that developed in [START_REF] Bahlali | Penalization method for a nonlinear Neumann PDE via weak solution of reflected SDEs[END_REF][START_REF] Boufoussi | An approximation result for a nonlinear Neumann boundary value problem via BSDEs[END_REF]. The difficulty in our situation is due to the discontinuity of the coefficients which makes the convergence of the sequence of penalized equations more delicate. Moreover, due to the non continuity of the coefficients, the classical viscosity solution, which is used in [START_REF] Bahlali | Penalization method for a nonlinear Neumann PDE via weak solution of reflected SDEs[END_REF][START_REF] Boufoussi | An approximation result for a nonlinear Neumann boundary value problem via BSDEs[END_REF][START_REF] Pardoux | Generalized BSDEs and nonlinear Neumann boundary value problems[END_REF], can not be defined for our PDEs. We therefore use the notion of L p -viscosity solution introduced in [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF] for which we give here a probabilistic interpretation. More details on this topic can be found in [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF] and [START_REF] Crandall | Existence results for boundary problems for uniformly elliptic and parabolic fully nonlinear equations[END_REF].

To describe our result, we shall recall some notations which will be used in the sequel.

We assume that there exists a function l ∈ C 2 b (R d ) such that

D = {x ∈ R d : l(x) > 0}, ∂D = {x ∈ R d : l(x) = 0},
and for all x ∈ ∂D, ∇l(x) is the unit normal pointing toward the interior of D. In order to define the approximation procedure we consider the application x → dist 2 (x, D), therefore, this function is C 1 and convex on R d . On the other hand we can choose l such that < ∇l(x), δ(x) >≤ 0, ∀x ∈ R d ,

1 2 δ(x) = 1 2 ∇ dist 2 (x, D) = x -π D(x), ∀x ∈ R d
where π D is the projection operator. Moreover, δ is a Lipschitz function and we have

< z -x, δ(x) >≤ 0, ∀x ∈ R d , ∀z ∈ D. (1) 
We consider the following sequence of semi-linear partial differential equations (1

≤ i ≤ k, 0 ≤ t ≤ T , x ∈ R d , n ∈ N).            ∂u n i ∂t (t, x) + L u n i (t, x) + f i (t, x, u n (t, x)) -n < δ(x), ∇u n i (t, x) > -n < δ(x), ∇l(x) > h i (t, x, u n (t, x)) = 0 ; u n (T, x) = g(x) . ( 2 
)
where L is the infinitesimal generator corresponding to the diffusion part of X, that is

L = 1 2 i,j (σσ * (.)) ij ∂ 2 ∂x i ∂x j + i b i (.) ∂ ∂x i . that (t, x) belongs to [0, T ] × D.
Under suitable assumptions on the coefficients f , g and h, by the mean of the connection between BSDEs and semi-linear PDEs, we prove that the sequence u n (t, x) converges, as n goes to infinity, to a function u(t, x), which is the solution in the L p -viscosity sense, of the following PDE with Neumann boundary condition:

           ∂u i ∂t (t, x) + Lu i (t, x) + f i (t, x, u(t, x)) = 0 , 1 ≤ i ≤ k , (t, x) ∈ [0, T ) × D , u i (T, x) = g i (x) , x ∈ D ∂u i ∂n (t, x) + h i (t, x, u(t, x)) = 0 , ∀(t, x) ∈ [0, T ) × ∂D . (3) 
where ∂u ∂n is the outward normal derivative of u on the boundary of the domain and ∂u i ∂n (t, x) =< ∇l(x), ∇u i (t, x) > for all x ∈ ∂D. It turns out that, even when the coefficients are merely measurable, the convergence of u n to u follows from the uniqueness in law of the forward part.

Throughout the paper, Appendix for a brief presentation of this topology and [START_REF] Jakubowski | A non-Skorohod Topology on the Skorohod space[END_REF] for more details.

C([0, T ], R d ) is the space of R d -valued continuous function, D([0, T ], R d ) is the space of R d -valued cadlag functions and W 1,2 p,loc [0, T ] × R d is
The paper is outlined as follows, in Section 2 we prove the convergence of solutions of our reflected SDE as well as our penalized SDE. The continuity of the solution with respect to the initial data is also established for both penalized and reflected SDEs. In Section 3, the same properties are established for the solutions of the BSDEs parts which is our first main result. Section 4 gives the application to PDEs with nonlinear Neumann boundary condition which is the second main result of this paper.

Reflected stochastic differential equations

Throughout the paper T is a fixed strictly positive number and d, d ′ ∈ N * . Consider a stochastic differential equation with reflecting boundary condition of the form

               X t,x s = x + s t b(X t,x r ) dr + s t σ(X t,x r ) dW r + K t,x s , K t,x s = s t ∇l(X t,x r )d|K t,x | [t,r] , |K t,x | [t,s] = s t 1 {X t,x r ∈∂D} d|K t,x | [t,r] , (4) 
where t ∈ [0, T ], s ∈ [t, T ] and the notation |K t,x | [t,s] stands for the total variation of K t,x on the interval [t, s], we will denote this continuous increasing process by k t,x s . In particular we have

k t,x s = s t < ∇l(X t,x r ), dK t,x r > . (5) 
We say that (Ω, F, P, {F s }, W, X, K) is a weak solution of (4) if (Ω, F, P, {F s }) is a stochastic basis, W is a d ′ -dimensional Brownian motion with respect to this basis, X is a continuous adapted process and K is a continuous bounded variation process such that X s ∈ D P-a.s, ∀s ∈ [t, T ] and (X, K) satisfies System (4).

We suppose the following assumptions The reflecting diffusions with measurable coefficients were considered in [START_REF] Rozkosz | On stability and existence of solutions of SDEs with reflection at the boundary[END_REF] and [START_REF] Slominski | Weak and strong approximations of reflected diffusions via penalization methods[END_REF] where the authors have proved some approximations, stability and existence results. It should be pointed out that in the case of no continuity of coefficients the uniqueness generally failed. Since the weak uniqueness is crucial to prove our main result, we assume that the weak uniqueness holds for Equation (4) i.e assumption (A.3).

1. D is a semicompact, the dimension d ≤ 2 and assumptions (A.1) -(A.2) hold.

2. b is measurable bounded, σ is continuous bounded and σσ * is uniformly nondegenerate.

Then the weak uniqueness holds for equation (4).

Indeed, let Ω, F, P, {F t } t≥0 , W, X, K be a weak solution of (4) and

f ∈ C 1,2 [0, T ] × D .
Applying Itô's formula to f (s, X s ):

f (s, X s ) = f (t, x) + s t ∂f ∂r + Lf (r, X r ) dr + s t ∇ x f (r, X r ) , ∇ℓ (X r ) dk r + s t ∇ x f (r, X r ) , σ (X r ) dW r . (6) 
Since σσ * is nondegenerate, we use Krylov's inequality for reflecting diffusions (see Theorem 5.1 in [START_REF] Laukajtys | Penalization methods for reflecting stochastic differential equations with jumps[END_REF]) to get for every s ∈ [t, T ] ,

E s t ∂f ∂r + Lf (r, X r ) 1 {Xr∈∂D} dr ≤ C s t D det (σσ * ) -1 ∂f ∂r + Lf d+1 1 {∂D} dsdx 1 d+1 = 0 .
Thus, equality (6) becomes

f (s, X s ) = f (t, x) + s t ∂f ∂r + Lf (r, X r ) 1 {Xr∈D} dr + s t ∇ x f (r, X r ) , ∇ℓ (X r ) dk r + s t ∇ x f (r, X r ) , σ (X r ) dW r , P-a.s. Therefore f (s, X s ) -f (t, x) - s t ∂f ∂r + Lf (r, X r ) 1 {Xr∈D} dr is a P-submartingale whenever f ∈ C 1,2 [0, T ] × D satisfies ∇ x f (s, x) , ∇ℓ (x) ≥ 0, ∀x ∈ ∂D.
Under the first set of assumptions we deduce from Theorem 3 in [START_REF] Krylov | Diffusion in the plane with reflection. Construction of the process[END_REF] that the process (X s ) s∈[t,T ] is unique in law. Under the second set of assumptions we apply Theorem 5.7

in [START_REF] Stroock | Diffusion Processes with boundary conditions[END_REF] with φ = l, γ := ∇φ and ρ := 0 we obtain that the solution to the submartingale problem is unique for each starting point (t, x), therefore our solution process (X s ) s∈[t,T ] is unique in law. Moreover, the uniqueness in law of the couple (X, K) follows from Theorem 6 in [START_REF] Karoui | Processus de réflexion dans Rn[END_REF].

X t,x,n s = x + s t b(X t,x,n r ) -nδ(X t,x,n r ) dr + s t σ(X t,x,n r )dW r , s ∈ [t, T ]. (7) 
For n ∈ N fixed, under assumptions (A.1) and (A.2), we can deduce from Krylov's works, see [START_REF] Krylov | Controlled diffusion processes[END_REF] and the references therein, that there exists a weak solution of Equation [START_REF] Darling | Backwards SDE with random terminal time, and applications to semilinear elliptic PDE[END_REF]. Moreover, Krylov have also established that it is possible to select a strong Markov weak solution of Equation [START_REF] Darling | Backwards SDE with random terminal time, and applications to semilinear elliptic PDE[END_REF]. In the sequel we shall need to show the continuity of the flow associated to this equation, for this goal we suppose the following assumption (A.4) The weak uniqueness holds for Equation [START_REF] Darling | Backwards SDE with random terminal time, and applications to semilinear elliptic PDE[END_REF].

Remark 2 We note that in the case of low dimension, d ≤ 2, and assumptions

(A.1)-(A.2)
are in force, the assumption (A.4) holds true, see [START_REF] Krylov | Diffusion in the plane with reflection. Construction of the process[END_REF] and [START_REF] Krylov | On weak uniqueness for some diffusions with discontinuous coefficients[END_REF].

We set for all t ∈ [0, T ]

K t,x,n s := s t -nδ(X t,x,n r )dr and k t,x,n s := s t < ∇l(X t,x,n r ), dK t,x,n r >, ∀s ∈ [t, T ].
We recall the following classical boundedness result, (see [START_REF] Bahlali | Penalization method for a nonlinear Neumann PDE via weak solution of reflected SDEs[END_REF]), we have

sup n≥0 E sup s∈[t,T ] |X t,x,n s | 2q + sup n≥0 E|K t,x,n | q [t,T ] < +∞, ∀q ≥ 1. ( 8 
)
The next proposition shows a convergence result of the penalized equation [START_REF] Darling | Backwards SDE with random terminal time, and applications to semilinear elliptic PDE[END_REF].

Proposition 3 Under the assumptions (A.1) -(A.3). We have:

(X t,x,n , K t,x,n ) * ---→ U ×U (X t,x , K t,x ).
Moreover (X t,x , K t,x ) satisfies system (4).

Proof. By Theorem 2.1 in [START_REF] Slominski | Weak and strong approximations of reflected diffusions via penalization methods[END_REF], the process (X t,x,n , K t,x,n ) converges to a solution of Equation ( 4). Hence the weak uniqueness gives the result.

Remark 4 Under assumptions (A.1) -(A.3), by virtue of Theorems 7 and 10 in [START_REF] Karoui | Processus de réflexion dans Rn[END_REF], the solution X t,x of Equation (4) is a Markov process.

We extend the processes (X t,x , K t,x ) and (X t,x,n , K t,x,n ) to [0, t] by denoting

X t,x s = X t,x,n s := x, K t,x s = K t,x,n s := 0, ∀ s ∈ [0, t].
Now, by using Itô's formula, the boundedness of b, σ and D, we obtain a priori estimations for the solutions of (4) .

Proposition 5 Under assumption (A.1). We have for all q ≥ 1 sup

n≥1 E sup s∈[0,T ] |X tn,xn s | 2q < ∞, sup n≥1 E|K tn,xn | q T < ∞. (9) 
We have the following continuity result with respect to the initial data for the solution of the penalized equations [START_REF] Darling | Backwards SDE with random terminal time, and applications to semilinear elliptic PDE[END_REF].

Proposition 6 Under assumptions (A.1), (A.2) and (A.4). The application

[0, T ] × R d ∋ (t, x) → (X t,x,n , K t,x,n ) is continuous in law.
Proof. Let (t m , x m ) → (t, x), arguing as in Corollary 2 in [START_REF] Rozkosz | On existence and stability of weak solutions of multidimensional stochastic differential equations with measurable coefficients[END_REF], (see also [START_REF] Krylov | Controlled diffusion processes[END_REF]), using the weak uniqueness we find

X tm,xm,n * --→ U X t,x,n ,
and we deduce that

K tm,xm,n * --→ U K t,x,n .
This ends the proof.

We now state a continuity in law with respect to the initial data for the solution of equation ( 4), which is a slight generalization of Lemma 3.8 in [START_REF] Bahlali | Penalization method for a nonlinear Neumann PDE via weak solution of reflected SDEs[END_REF].

Proposition 7 We suppose that (A.1) -(A.3) are in force. Then the map [0, T ] × D ∋ (t, x) → (X t,x , K t,x ) is continuous in law.
Proof. Let (t, x) ∈ [0, T ] × D be fixed and (t n , x n ) → (t, x), as n → +∞. We set

(X tn,xn s , K tn,xn s ) = (X n s , K n s ).
We will prove that the family (

X n , K n ) is tight as family of C([0, T ], R d × R d )-valued
random variables. By Itô's formula applied to X n s -X n r , where r is fixed and s ≥ r we deduce:

E|X n s -X n r | 8 ≤ C|s -r| 4 + CE sup v∈[r,s] v r < X n u -X n r , σ(X n u )dW n u > 4 ≤ C|s -r| 4 + CE s r |X n u -X n r | 2 |σ(X n u )| 2 du 2 ≤ C|s -r| 4 + C|s -r| 2 ≤ C max{|s -r| 4 , |s -r| 2 }.
Concerning K n , we have:

K n s -K n r = (X n s -X n r ) - s r b(X n u )du - s r σ(X n u )dW n u E|K n s -K n r | 8 ≤ CE|X n s -X n r | 8 + CE s r |b(X n u )|du 8 + CE sup v∈[r,s] v r σ(X n u )dW n u 8 ≤ C max{|s -r| 8 , |s -r| 2 }. Then (X t,x , K t,x ) is tight on C([0, T ], R d × R d )
with respect to the initial data (t, x). By Prokhorov's theorem, see Chap I in [START_REF] Pardoux | Stochastic differential equations, Backward SDEs, Partial differential equations[END_REF], there exists a subsequence still denoted by (

X n , K n ) such that (X n , K n ) * ---→ U ×U (X, K) .
We will proceed to the identification of the limits X law = X t,x and K law = K t,x . By the Skorohod's theorem, we can choose a probability space ( Ω, F , P), ( Xn , Kn , Ŵ n ) and ( X, K, Ŵ ) defined on this probability space such that

( Xn , Kn , Ŵ n ) law = (X n , K n , W n ), ( X, K, Ŵ ) law = (X, K, W ) and ( Xn , Kn , Ŵ n ) → ( X, K, Ŵ ) P-a.s, as n → ∞, where ( Ŵ n , F Ŵ n , Xn ) and ( Ŵ , F Ŵ , X )
are Brownian motions. We now define 

Since the processes X n and X have finite moments (uniformly in n) of any order, σ is non degenerate and the coefficients b, σ are bounded, then using Skorokhod's representation theorem ([31] p. 32) and Krylov's estimate, one can show that:

s t b( Xn r )dr P roba -----→ s t b( Xr )dr as n → +∞, s t σ( Xn r )d Ŵ n r P roba -----→ s t σ( Xr )d Ŵr , as n → +∞.
Since b and σ are bounded we deduce by the Lebesgue dominated theorem that the following convergence holds in L q ( Ω) for each q ≥ 1, Ê sup

s∈[t,T ] V n s -Vs q → 0, as n → +∞.
We consider

V n s := x + s t b(X n r )dr + s t σ(X n r )dW n r .
Then X n s = V n s + K n s , and we remark that

(X n , K n , W n , V n ) law = Xn , Kn , Ŵ n , V n on C [0, T ], R d × R d × R d ′ × R d and Xn s = V n s + Kn s P -a.s.
We pass to the limits we get Xs = Vs + Ks Pa.s taking into account of [START_REF] Hsu | Probabilistic approach to the Neumann problem[END_REF], it follows that ( X, K) is a solution of Equation ( 4) with initial data (t, x). By the weak uniqueness we have ( X, K) = (X t,x , K t,x ). Then (X n , K n ) converges to (X t,x , K t,x ) as n → +∞. This achieves the proof.

The next technical lemma is a stochastic version of Helly-Bray theorem, see Proposition 3.4 in [START_REF] Zalinescu | Weak solutions and optimal control for multivalued stochastic differential equations[END_REF].

Lemma 8 Let (M n , η n ) : (Ω n , F n , P n ) → C([0, T ], R d ) be a sequence of random variables and (M, η) such that (M n , η n ) * ---→ U ×U (M, η).
If (η n ) n has bounded variation a.s. and

sup n≥1 P |η n | [0,T ] > a → 0, as a → ∞
then η has a.s bounded variation and

T 0 < M n r , dη n r > * --→ U T 0 < M r , dη r >, as n → ∞.
We can immediately deduce from the previous lemma the following convergences.

Lemma 9 Assume (A.1) -(A.4). Then we have

k t,x,n * --→ U k t,x and k tn,xn * --→ U k t,x .
Proof. In view of the convergence (X t,x,n , K

t,x,n ) * ---→ U ×U (X t,x , K t,x
) and Lemma 8 applied

with (M n , η n ) = (∇l(X t,x,n ), K t,x,n ), we get k t,x,n * --→ U k t,x .
For the second point, by the continuity in law with respect to the initial data, (X tn,xn , K tn,xn

) * ---→ U ×U (X t,x , K t,x ),
again by Lemma 8 applied this time with (M n , η n ) = (∇l(X tn,xn ), K tn,xn ), we obtain

k tn,xn * --→ U k t,x . 9 Consider the functions f , h : [0, T ] × R d × R k → R k and g : R d → R k , satisfying the
following assumptions:

(A.5) There exist positive constants C 1 , C 2 , l h and µ f ∈ R, β < 0 and q ≥ 1 such that

∀t, s ∈ [0, T ], ∀ (x, x ′ , y, y ′ ) ∈ R d 2 × R k 2 we have (i) < y ′ -y, f (t, x, y ′ ) -f (t, x, y) > ≤ µ f |y ′ -y| 2 , (ii) | h(t, x ′ , y ′ ) -h(s, x, y)| ≤ l h (|t -s| + |x ′ -x| + |y ′ -y|), (iii) < y ′ -y, h(t, x, y ′ ) -h(t, x, y) > ≤ β |y ′ -y| 2 , (iv) |f (t, x, y)| + |h(t, x, y)| ≤ C 1 (1 + |y|), (v) |g(x)| ≤ C 2 (1 + |x| q ).
g is continuous and f is measurable with respect to x and continuous in (t, y).

We assume without loss of generality that the processes (X t,x,n s , K t,x,n s

) s∈[t,T ] and (X t,x s , K t,x s ) s∈[t,T ] are considered on the canonical space. Consider the following generalized BSDEs on [t, T ]

Y t,x,n s = g(X t,x,n T ) + T s f (r, X t,x,n r , Y t,x,n r ) dr - T s U t,x,n r dM X t,x,n r + T s h(r, X t,x,n r , Y t,x,n r )dk t,x,n r (11) and Y t,x s = g(X t,x T ) + T s f (r, X t,x r , Y t,x r ) dr - T s U t,x r dM X t,x r + T s h(r, X t,x r , Y t,x r )dk t,x r , (12) 
where

M X t,x,n s := s t σ(X t,x,n r )dW r and M X t,x s := s t σ(X t,x r )dW r . (13) 
Under assumption (A.5), there exist (Y t,x,n s , U t,x,n s

) s∈[t,T ] and (Y t,x s , U t,x s ) s∈[t,T ] unique solutions of equations ( 11) and ( 12) respectively (see [START_REF] Pardoux | Generalized BSDEs and nonlinear Neumann boundary value problems[END_REF]).

Remark 10

We note that one or other assumption (A.5)(ii) or (A.5)(iii) is sufficient to ensure the existence and uniqueness of the solutions to both BSDEs [START_REF] Jakubowski | A non-Skorohod Topology on the Skorohod space[END_REF] and [START_REF] Krylov | Diffusion in the plane with reflection. Construction of the process[END_REF]. Condition (A.5)(iii) will be used to establish some estimates in goal to prove the tightness proprieties and (A.5)(ii) is necessary for the identification of the limit.

The next proposition will be used in order to get the convergence of the solutions of the sequence of penalized PDEs.

Proposition 11 Assume (A.1)-(A.5). The following convergence holds

(Y t,x,n , M t,x,n , H t,x,n ) * -----→ S×S×S (Y t,x , M t,x , H t,x )
where

M t,x,n s := s t U t,x,n r dM X t,x,n r , H t,x,n s := s t h(r, X t,x,n r , Y t,x,n r )dk t,x,n r , M t,x s := s t U t,x r dM X t,x
r and H t,x s :=

s t h(r, X t,x r , Y t,x r )dk t,x r . (14) 
Moreover,

lim n→∞ Y t,x,n t = Y t,x t .
Proof. The solutions satisfy the following estimate

sup n≥0 E sup t≤s≤T |Y t,x,n s | 2 + sup n≥0 E T t U t,x,n s σ(X t,x,n s ) 2 ds < +∞
for the proof see [START_REF] Boufoussi | An approximation result for a nonlinear Neumann boundary value problem via BSDEs[END_REF]. To show the tightness property with respect to the S-topology we compute the conditional variation CV T defined in [START_REF] Pardoux | Symmetric reflected diffusions[END_REF] in Appendix. Arguing as in [START_REF] Boufoussi | An approximation result for a nonlinear Neumann boundary value problem via BSDEs[END_REF], we can prove that (Y t,x,n , M t,x,n , H t,x,n ) is tight with respect to the S-topology, so there exists

a subsequence still denoted (Y t,x,n , M t,x,n , H t,x,n ) and ( Ȳ , M , H) in (D([0, T ], R k )) 3 , such that (X t,x,n , K t,x,n , Y t,x,n , M t,x,n , H t,x,n ) * ---------→ U ×U ×S×S×S (X t,x , K t,x , Ȳ , M , H). ( 15 
)
Next, we will pass to the limit and show the convergence of each term in BSDE [START_REF] Jakubowski | A non-Skorohod Topology on the Skorohod space[END_REF].

Let's start with 

E T ∧τ n R s f (r, X t,x,n r , Y t,x,n r ) -f (r, X t,x, r , Ȳr )dr ≤ J 1 (n, R, η) + J 2 (n, R, η) + J 3 (R, η) (16) 
where

J 1 (n, R, η) = E T ∧τ n R s f (r, X t,x,n r , Y t,x,n r ) -f η (r, X t,x,n r , Y t,x,n r )dr J 2 (n, R, η) = E T ∧τ n R s f η (r, X t,x,n r , Y t,x,n r ) -f η (r, X t,x r , Ȳr )dr J 3 (R, η) = E T ∧τ n R s f η (r, X t,x r , Ȳr ) -f (r, X t,x r , Ȳr )dr .
Since the function f η is continuous with respect to its three arguments, it follows that the maps (x, y) → T 0 f η (r, x(r), y(r))dr is continuous, we pass to the limit in J 2 (n, R, η) as n → +∞ we deduce that J 2 (n, R, η) goes to 0. Now, consider J 1 (n, R, η) and let M > 0

J 1 (n, R, η) ≤ E T ∧τ n R s f (r, X t,x,n r , Y t,x,n r ) -f η (r, X t,x,n r , Y t,x,n r ) 1 {|Y t,x,n r |>M } dr +E T ∧τ n R s f (r, X t,x,n r , Y t,x,n r ) -f η (r, X r,x,n r , Y t,x,n r ) 1 {|Y t,x,n r |≤M } dr ≤ C E T ∧τ n R s (1 + Y t,x,n r )1 {|Y t,x,n r |>M } dr +E T ∧τ n R s sup {|y|≤M } f (r, X t,x,n r , y) -f η (r, X t,x,n r , y) dr ≤ C M 1/2 E T s (1 + Y t,x,n r ) 2 dr 1 2 E T s |Y t,x,n r |dr 1 2 +E T ∧τ n R s |ζ η (t, X t,x,n r )|dr where ζ η (r, x) = sup {|y|≤M } |f (r, x, y) -f η (r, x, y)|.
Thanks to Krylov's inequality, there exists a positive constant N (T, R, d) such that

J 1 (n, R, η) ≤ C M 1/2 E T ∧τ n R s (1 + Y t,x,n r ) 2 dr 1 2 E T s |Y t,x,n r |dr 1 2 +N (T, R, d) ζ η L d+2 ([0,T ]×D R )
passing successively to the limit in η → 0 and M → +∞, it follows that J 1 (n, R, η) tends to zero for all n ∈ N. Concerning J 3 (R, η) similar arguments as above prove the convergence of this term to zero as η goes to zero, we note that in the prove of the convergence of this term, we will need some integrability on the process Ȳ and this is ensured by Lemma A.2 in [START_REF] Lejay | BSDE driven by Dirichlet process and semi-linear Parabolic PDE. Application to Homogenization[END_REF].

Since τ n R is increasing to infinity as R tends to infinity, then for R large enough

T ∧ τ n R = T . Finally, lim n→+∞ E T s f (r, X t,x,n r , Y t,x,n r ) -f (t, X t,x
r , Ȳr )dr = 0.

Concerning the term

T s h(r, X t,x,n r , Y t,x,n r )dk t,x,n r , we use the Lipschitz continuity of h, the week convergence of k t,x,n to k t,x with respect to the uniform topology, together with Lemma 3.3 in [START_REF] Boufoussi | An approximation result for a nonlinear Neumann boundary value problem via BSDEs[END_REF], we get that there exists a countable set Q ⊂ [0, T ) such that, for any s ∈ [0, T ]\Q, Ȳs = g(X t,x T ) + T s f (r, X t,x r , Ȳr )dr -( MT -Ms ) + T s h(r, X t,x r , Ȳr )dk t,x r .

Since the processes Ȳ , M and H are càdlàg, the previous equality holds true for all s ∈ [t, T ].

Moreover, Lemma A.1 in [START_REF] Lejay | BSDE driven by Dirichlet process and semi-linear Parabolic PDE. Application to Homogenization[END_REF], ensures that the process M is a F X t,x , Ȳ , M -martingale. We shall now show that M X t,x is a F X t,x , Ȳ , M -martingale. Let ψ s be a bounded continuous

mapping form C [t, s], R d × D [t, s], R k 2 , ϕ ∈ C ∞ b (R d ) and L = 1 2 i,j (σσ * (.)) ij ∂ 2 ∂x i ∂x j + i b i (.) ∂ ∂x i
be the infinitesimal generator of the diffusion part of the process X t,x . By Itô's formula we obtain that

ϕ(X t,x,n s ) -ϕ(x) - s t Lϕ(X t,x,n r )dr - s t ∇ϕ(X t,x,n r )dK t,x,n
r is a F X t,x,n -martingale. For any t ≤ s 1 < s 2 ≤ T and for each n ∈ N, we have

E ψ s 1 X t,x,n , Y t,x,n , M t,x,n ϕ(X t,x,n s 2 ) -ϕ(X x,t,n s 1 ) - s 2 s 1 Lϕ(X t,x,n r )dr - s 2 s 1 ∇ϕ(X t,x,n r )dK t,x,n r = 0.
Moreover, lim n→∞ E ψ s 1 X t,x,n , Y t,x,n , M t,x,n ϕ(X t,x,n s 2 )ϕ(X t,x,n s 1 ) -

s 2 s 1 Lϕ(X t,x,n r )dr = E ψ s 1 X t,x , Ȳ , M ϕ(X t,x s 2 ) -ϕ(X t,x s 1 ) - s 2 s 1
Lϕ(X t,x r )dr .

In fact, we will only show the convergence of the term ψ s 1 X t,x,n , Y t,x,n , M t,x,n s 2 s 1 Lϕ(X t,x,n r

)dr

E ψ s 1 X t,x,n , Y t,x,n , M t,x,n s 2 s 1 Lϕ(X t,x,n r )dr -ψ s 1 X t,x , Ȳ , M s 2 s 1 Lϕ(X t,x r )dr ≤ E ψ s 1 X t,x,n , Y t,x,n , M t,x,n -ψ s 1 X t,x , Ȳ , M s 2 s 1 Lϕ(X t,x,n r )dr +E ψ s 1 X t,x , Ȳ , M s 2 s 1 Lϕ(X t,x,n r )dr - s 2 s 1 Lϕ(X t,x r )dr = B 1 (n) + B 2 (n)
in view of [START_REF] Laukajtys | Penalization methods for reflecting stochastic differential equations with jumps[END_REF], the continuity of ψ and the boundedness of b, σ, ϕ, ∂ϕ ∂x i and ∂ 2 ϕ ∂x i ∂x j we obtain

lim n→+∞ B 1 (n) = 0. Concerning B 2 (n) B 2 (n) = E ψ s 1 X t,x , Ȳ , M s 2 s 1 Lϕ(X t,x,n r )dr - s 2 s 1
Lϕ(X t,x r )dr

≤ C E s 2 s 1 Lϕ(X t,x,n r ) -Lϕ(X t,x r ) dr ≤ C d i E s 2 s 1 b i (X t,x,n r ) ∂ϕ ∂x i (X t,x,n r ) -b i (X t,x r ) ∂ϕ ∂x i (X t,x r ) dr + C d i,j E s 2 s 1 σσ * (X t,x,n r ) ij ∂ 2 ϕ ∂x i x j (X t,x,n r ) -σσ * (X t,x r ) ij ∂ 2 ϕ ∂x i x j (X t,x r ) dr
using the boundedness of b, σ, ∂ϕ ∂x i and ∂ 2 ϕ ∂x i ∂x j , combined with Krylov's estimate, we proceed as in [START_REF] Lejay | BSDE driven by Dirichlet process and semi-linear Parabolic PDE. Application to Homogenization[END_REF] to conclude that lim n→+∞ B 2 (n) = 0. On the other side, using [START_REF] Laukajtys | Penalization methods for reflecting stochastic differential equations with jumps[END_REF], the boundedness of ψ, ∇ϕ and estimation in [START_REF] Karoui | Processus de réflexion dans Rn[END_REF] together with Lemma 8 we obtain

lim n→∞ E ψ s 1 X t,x,n , Y t,x,n , M t,x,n s 2 s 1 ∇ϕ(X t,x,n r )dK t,x,n r = E ψ s 1 X t,x , Ȳ , M s 2 s 1 ∇ϕ(X t,x r )dK t,x r .
Hence,

E ψ s 1 X t,x , Ȳ , M ϕ(X t,x s 2 ) -ϕ(X x,t s 1 ) - s 2 s 1
Lϕ(X t,x r )dr -

s 2 s 1 ∇ϕ(X t,x r )dK t,x r = 0
Itô's formula gives rise

E ψ s 1 X t,x , Ȳ , M s 2 s 1 ∇ϕ(X t,x r )dM X t,x r = 0 then, M X t,x is a F X t,x , Ȳ , M -martingale. Since Y t,x and U t,x are F X t,x -adapted, M t,x = . t U t,x r dM X t,x
r is also F X t,x , Ȳ , Mmartingale. Therefore, using Itô's formula, assumptions on f and h, and a generalized Gronwall lemma (see Lemma 12 in [START_REF] Maticiuc | Viability of moving sets for a nonlinear Neumann problem[END_REF]), we obtain

Y t,x = Ȳ and M t,x = M .
For the second claim, By Lemma 3.3 in [START_REF] Boufoussi | An approximation result for a nonlinear Neumann boundary value problem via BSDEs[END_REF] applied with time T , we have

T t h(r, X t,x,n r , Y t,x,n r )dk t,x,n r * --→ T t h(r, X t,x r , Y t,x r )dk t,x r .
Since M t,x,n * --→ S M t,x , using Remark 2.4 in [START_REF] Jakubowski | A non-Skorohod Topology on the Skorohod space[END_REF], we get M t,x,n T → M t,x T in law. We now pass to the limit in

Y t,x,n t = g(X t,x,n T ) + T t f (r, X t,x,n r , Y t,x,n r )dr -M t,x,n T + T t h(r, X t,x,n r , Y t,x,n r )dk t,x,n r , we deduce that Y t,x t = g(X t,x T ) + T t f (r, X t,x r , Y t,x r )dr -M t,x T + T t h(r, X t,x r , Y t,x r )dk t,x r .

Which ends the proof

We extend (Y t,x , U t,x ) and M X t,x to [0, t) as follows

Y t,x s := Y t,x t , U t,x s := 0 and M X t,x s := 0, ∀ s ∈ [0, t).
We now state a continuity property of the mappings (t, x) → Y t,x .

Proposition 12 Assume (A.1) -(A.3) and (A.5). For a sequence (t n , x n ) converging to (t, x), there exists a subsequence

(t n k , x n k ) k∈N such that Y tn k ,xn k * --→ S Y t,x .
Proof. We denote (Y tn,xn , X tn,xn , k tn,xn ) = (Y n , X n , k n ). We have for all t ∈ [0, T ]

E sup 0≤s≤T |Y n s | 2 + E T 0 U n s σ(X n s ) 2 ds < C, ∀n ∈ N, E sup 0≤s≤T |Y s | 2 + E T 0 U s σ(X s ) 2 ds < C,
where C is a constant independent of and n, see [START_REF] Pardoux | Generalized BSDEs and nonlinear Neumann boundary value problems[END_REF]. We compute the conditional variation defined by [START_REF] Pardoux | Symmetric reflected diffusions[END_REF] in Appendix, we get

sup n≥0 CV T (Y n ) + E sup 0≤s≤T |Y n s | + E sup 0≤s≤T |M n s | + CV T (H n ) + E sup 0≤s≤T |H n s | < ∞.
Then, (Y n , M n , H n ) is tight with respect to the S-topology. So there exists a subsequence

still denoted by (Y n , M n , H n ) and ( Ȳ , M , H) in (D([0, T ], R k )) 3 , such that (X tn,xn , K tn,xn , Y n , M n , H n ) * ---------→ U ×U ×S×S×S (X t,x , K t,x , Ȳ , M , H).
The same arguments used in the proof of Proposition 11 ensure that for all s ∈ [t, T ]

Ȳs = g(X t,x T ) + T s 1 [t,T ] f (r, X t,x r , Ȳr )dr -( MT -Ms ) + T s h(r, X t,x r , Ȳr )dk t,x
r and Y t,x = Ȳ and M t,x = M .

Which ends the proof

The next result will be employed in the sequel.

Proposition 13 Under assumptions (A.1)-(A.5). The functions

u n : (t, x) ∈ [0, T ] × R d → u n (t, x) := Y t,x,n t and u : (t, x) ∈ [0, T ] × D → u(t, x) := Y t,x t are continuous.
Proof. We will show only that the function u is continuous. Let (t n , x n ) → (t, x), as n → +∞. From the proof of Proposition 12, we can extract a subsequence still denoted

(t n , x n ), such that (X tn,xn , K tn,xn , Y tn,xn , M tn,xn ) * -------→ U ×U ×S×S (X t,x , K t,x , Y t,x , M t,x )
By Lemma 3.3 in [START_REF] Boufoussi | An approximation result for a nonlinear Neumann boundary value problem via BSDEs[END_REF] applied for t = T , we have

T 0 h(r, X tn ,xn r , Y tn,xn r )dk tn,xn r * --→ T 0 h(r, X t,x r , Y t,x r )dk t,x r Since M tn,xn * --→ S M t,
x , using Remark 2.4 in [START_REF] Jakubowski | A non-Skorohod Topology on the Skorohod space[END_REF], we get M tn,xn T → M t,x T . By virtue of Krylov's inequality for reflected diffusions, we can show that

T 0 1 [tn,T ] f (r, X tn,xn r , Y tn,xn r )dr → T 0 1 [t,T ] f (r, X t,x
r , Y t,x r )dr in law . We now pass to the limit in

u(t n , x n ) = Y tn,xn tn = Y tn,xn 0 = g(X tn,xn T ) + T 0 1 [tn,T ] f (r, X tn,xn r , Y tn,xn r )dr -M tn,xn T + T 0 h(r, X tn ,xn r , Y tn,xn r )dk tn,xn r . 
Exactly as in the proof of the Proposition 12, we deduce that the limit of u(t n , x n ), as

n → +∞ is u(t, x) = Y t,x t = Y t,x 0 = g(X t,x T ) + T 0 1 [t,T ] f (r, X t,x r , Y t,x r )dr -M t,x T + T 0 h(r, X t,x r , Y t,x r )dk t,x r .
Which is the desired result.

Application to nonlinear Neumann boundary value problems

The coefficients of our PDEs are not continuous this why we cannot define the solutions in the classical viscosity sense. We then adopt the L p -viscosity solution introduced in [START_REF] Caffarelli | On viscosity solutions of fully nonlinear equations with measurable ingredients[END_REF].

This notion of solutions is used to study nonlinear PDEs with measurable coefficients. We first recall the definition of the L p -viscosity solution for PDEs [START_REF] Bahlali | Penalization method for a nonlinear Neumann PDE via weak solution of reflected SDEs[END_REF]. For simplicity, we adopt the following notations 

L n ϕ := Lϕ -n < δ(.), ∇ϕ > f (r, x, y) := f (r, x, y) -n < ∇l(x), δ(x) > h(r, x, y). 1. A function u ∈ C([0, T ] × R d , R k ) is a L p -viscosity sub-solution of the PDEs system (2), if for every x ∈ R d , u i (T, x) ≤ g i (x), 1 ≤ i ≤ k, and for every ϕ ∈ W 1,2 p,loc ([0, T ] × R d ) and ( t, x) ∈ (0, T ] × R d at which u i -ϕ has a local maximum, one has ess lim inf (t,x)→( t,x) - ∂ϕ ∂t (t, x) -L n ϕ(t, x) -fi (t, x, u(t, x)) ≤ 0. 2. A function u ∈ C([0, T ] × R d , R k ) is a L p -viscosity super-solution of the PDEs (2), if for every x ∈ R d , u i (T, x) ≥ g i (x), 1 ≤ i ≤ k,
- ∂ϕ ∂t (t, x) -L n ϕ(t, x) -fi (t, x, u(t, x)) ≥ 0. 3. A function u ∈ C([0, T ] × R d , R k ) is a L p -viscosity solution if it is both a L p -viscosity
sub-solution and super-solution.

Remark 15 Assertion (1) means that for every ε > 0, r > 0, there exists a set A ⊂ B r ( t, x) of positive measure -∂ϕ ∂t (t, x) -L n ϕ(t, x) -fi (t, x, u(t, x)) ≤ ε, ∀(t, x) ∈ A.

We now define the L p -viscosity solution for system (3), which can be seen as a natural extension of the notion of viscosity solution of PDEs with nonlinear Neumann boundary condition, to the case of PDEs with measurable coefficients.

Definition 16 Let p be an integer such that p > d + 2

(i.) u ∈ C([0, T ] × D, R k ) is called a L p -viscosity subsolution of System (3) if u i (T, x) ≤ g i (x), x ∈ D, 1 ≤ i ≤ k
, and moreover for any

1 ≤ i ≤ k, ϕ ∈ W 1,2 p,loc ([0, T ] × D)
, and ( t, x) ∈ (0, T ] × D at which u iϕ has a local maximum, one has ess lim inf

(t,x)→( t,x) - ∂ϕ ∂t (t, x) -Lϕ(t, x) -f i (t, x, u(t, x)) ≤ 0, if x ∈ D, ess lim inf (t,x)→( t,x) min - ∂ϕ ∂t (t, x) -Lϕ(t, x) -f i (t, x, u(t, x)), - ∂ϕ ∂n (t, x) -h i (t, x, u(t, x)) ≤ 0, if x ∈ ∂D. (ii.) u ∈ C([0, T ] × D, R k ) is called a L p -viscosity super-solution of (3) if u i (T, x) ≥ g i (x),
x ∈ D, 1 ≤ i ≤ k, and moreover for any 1 ≤ i ≤ k, ϕ ∈ W 1,2 p,loc ([0, T ] × D), and ( t, x) ∈ (0, T ] × D at which u iϕ has a local minimum, one has ess lim sup

(t,x)→( t,x) - ∂ϕ ∂t (t, x) -Lϕ(t, x) -f i (t, x, u(t, x)) ≥ 0, if x ∈ D, ess lim sup (t,x)→( t,x) max - ∂ϕ ∂t (t, x) -Lϕ(t, x) -f i (t, x, u(t, x)), - ∂ϕ ∂n (t, x) -h i (t, x, u(t, x)) ≥ 0, if x ∈ ∂D. (iii.) u ∈ C([0, T ] × D, R k ) is called a L p -viscosity solution of System (3) if it is both a
L p -viscosity sub-and super-solution.

Remark 17 We remark that if the ingredients in the definition above are continuous we recover the classical viscosity solution of PDEs with Neumann boundary condition defined in [START_REF] Pardoux | Generalized BSDEs and nonlinear Neumann boundary value problems[END_REF].

We are now able to state and prove our main result. Moreover

lim n→∞ u n (t, x) = u(t, x), ∀(t, x) ∈ [0, T ] × D,
where u n and u are defined in Proposition 13.

We divide the proof of Theorem 15 in two lemmas and the convergence is ensured by Proposition 10.

Lemma 19

The function u n is a L p -viscosity solution of system (2).

Proof. The proof will follow the techniques used in Proposition 5.1 in [START_REF] Bahlali | Homogenization of semilinear PDEs with discontinuous averaged coefficients[END_REF]. Let ϕ ∈ W 1,2 p,loc [0, T ] × R d , let ( t, x) ∈ [0, T ] × R d be a point which is a local maximum of u n iϕ. Since p > d + 2, then ϕ admits a continuous version which we consider from now on. We assume without loss of generality that

u n i ( t, x) = ϕ( t, x). ( 17 
)
∂ϕ ∂t (t, x) + L n ϕ(t, x) + fi (t, x, u n (t, x)) < -ε, λa.e in B α ( t, x) [START_REF] Maticiuc | Viability of moving sets for a nonlinear Neumann problem[END_REF] where λ denote the Lebesgue measure and B α ( t, x) is the ball of centre ( t, x) and radius α. Since ( t, x) is a local maximum of u n iϕ, we find a positive number α ′ (which we can suppose equal to α) such that

u n i (t, x) ≤ ϕ(t, x) for all (t, x) in B α ( t, x). ( 19 
)
Define the stopping time

τ = inf{s ≥ t; |X t,x,n s -x| > α} ∧ ( t + α)
Since X t,x,n is a Markov diffusion, one can show, as in [START_REF] Karoui | Backward stochastic differential equations a general introduction, in Backward stochastic differential equations, N. El[END_REF], that for every r ∈

[ t, t + α], Y t,x,n r = u n (r, X t,x,n r 
). Hence, the process ( Ȳs ,

Ūs ) := Y t,x,n,i s , 1 [0,τ ] U t,x,n,i s s∈[ t, t+α] solves the BSDE for every s ∈ [ t, t + α] Ȳs = u n i (τ, X t,x,n τ ) + t+α s 1 [0,τ ] fi (r, X t,x,n r , u n (r, X t,x,n r )) dr - t+α s Ūr dM X t,x,n r . (20) 
On the other hand, by Itô-Krylov's formula (see Chap. 2 Sec. 2 and 3 [START_REF] Krylov | Controlled diffusion processes[END_REF]), the process ( Ŷs , Ûs ) s∈[ t, t+α] defined by ( Ŷs , Ûs ) := ϕ(s ∧ τ, X t,x,n s∧τ ), 1 [0,τ ] ∇ϕ(s, X t,x,n

s ) satisfies Ŷs = ϕ(τ, X t,x,n τ ) - t+α s 1 [0,τ ] ∂ϕ ∂r + L n ϕ (r, X t,x,n r ) dr - t+α s Ûr dM X t,x,n r . By the choice of τ , (τ, X t,x,n τ ) ∈ B α ( t, x), then u n i (τ, X t,x,n τ ) ≤ ϕ(τ, X t,x,n τ ).
Consider the set

A := {(t, x) ∈ B α ( t, x), ∂ϕ ∂t + L n ϕ + fi (., ., u n (., .)) (t, x) < -ε}
and A c := B α ( t, x)\A is the complement of A. By assumption [START_REF] Maticiuc | Viability of moving sets for a nonlinear Neumann problem[END_REF] we get λ(A c ) = 0. Since the process X t,x,n is nodegenerate, Krylov's inequality (see Chap. 2 Sec. 2 and 3 [START_REF] Krylov | Controlled diffusion processes[END_REF])

implies that 1 A c (r, X t,x,n r ) = 0 dr × Pa.e. It follows that

0 < E(τ -t)ε ≤ E t+α t -1 [0,τ ] ∂ϕ ∂r + L n ϕ (r, X t,x,n r ) + fi (r, X t,x,n r , u n (r, X t,x,n r )) dr This implies that -1 [0,τ ] ∂ϕ ∂r + L n ϕ (r, X t,x,n r ) + fi (r, X t,x,n r , u n (r, X t,x,n r 
)) > 0 on a set of dt × dP-positive measure. Therefore, the comparison theorem in Remark 2.5 in [START_REF] Pradoux | weak convergence and homogenization of semilinear PDEs[END_REF] shows that Ŷt > Ȳt , that is ϕ( t, x) > u n i ( t, x), which contradicts assumption [START_REF] Lions | Stochastic Differential Equations with Reflecting Boundary Conditions[END_REF].

Lemma 20 The function u is a L p -viscosity solution of system (3) in the sense of Definition 16.

Proof. We shall prove that u is a L p -viscosity subsolution. Let ϕ ∈ W 1,2 p,loc ([0, T ] × D) and let ( t, x) ∈ [0, T ] × D be a point which is a local maximum of u iϕ. We consider a continuous version of ϕ and we assume without loss of generality that

u i ( t, x) = ϕ( t, x). ( 21 
)
We skip the proof in the case x ∈ D because of its similitude with that of u n in the previous lemma. We consider the case x ∈ ∂D, we suppose that ess lim inf

(t,x)→( t,x) min - ∂ϕ ∂t (t, x) -Lϕ(t, x) -f i (t, x, u(t, x)), - ∂ϕ ∂n (t, x) -h i (t, x, u(t, x)) > 0.
It follows that there exist ε, α > 0 such that ∂ϕ ∂t (t, x) + Lϕ(t, x) + f i (t, x, u(t, x)) < -ε and ( 22)

∂ϕ ∂n (t, x) + h i (t, x, u(t, x)) < -ε λ -a.e in B α ( t, x). Since ( t, x) is a local maximum of u i -ϕ we have u i (t, x) ≤ ϕ(t, x) in B α ( t, x) Define τ := inf{s ≥ t : |X t,x s -x| > α} ∧ ( t + α) Since X t,x is a Markov process, we have ∀r ∈ [ t, t + α], Y t,x r = u(r, X t,x r ). Moreover, the process ( Ȳs , Ūs ) := (Y t,x,i s∧τ , 1 [0,τ ] (s)U t,x,i s ) for s ∈ [ t, t + α] solves the equation Ȳs = u i (τ, X t,x τ ) + t+α s 1 [0,τ ] f i (r, X t,x r , u(r, X t,x r ))dr - t+α s Ūr dM X t,x r + t+α s h i (r, X t,x r , u(r, X t,x r ))dk t,x r .
( Ŷs , Ûs ) := (ϕ(s ∧ τ, X t,x s∧τ ), 1 [0,τ ] ∇ϕ(s, X t,x s )) solves the following BSDE

Ŷs = ϕ(τ, X t,x τ ) - t+α s 1 [0,τ ] (r) ∂ϕ ∂t + Lϕ (r, X t,x r )dr - t+α s Ûr dM X t,x r - t+α s 1 [0,τ ] (r) ∂ϕ ∂n (r, X t,x r )dk t,x r .
We consider the set A = {(t, x) ∈ B α ( t, x) : ∂ϕ ∂t (t, x) + Lϕ(t, x) + f i (t, x, u(t, x)) < -ε} then λ(A c ) = 0, where A c is the complement set of A. By Krylov's inequality (see [START_REF] Bahlali | Some properties of the solutions of stochastic differential driven by semi-martingales[END_REF], [START_REF] Melnikov | Stochastic equations and Krylov's estimates for semi-martingales[END_REF] and [START_REF] Rozkosz | On existence and stability of weak solutions of multidimensional stochastic differential equations with measurable coefficients[END_REF]) we get 1 A c (r, X t,x r ) = 0 dr × dPa.e, it follows that

E t+α t
-1 [0,τ ] (r) ( ∂ϕ ∂t + Lϕ)(r, X t,x r ) + f i (r, X t,x r , u(r, X t,x r )) dr ≥ E(τ -t)ε > 0.

Then -1 [0,τ ] (r)( ∂ϕ ∂t + Lϕ)(r, X t,x r ) > 1 [0,τ ] (r)f i (r, X t,x r , u(r, X t,x r )) on a set of dr × dP positive measure. Furthermore, by Theorem 1.4 in [START_REF] Pardoux | Generalized BSDEs and nonlinear Neumann boundary value problems[END_REF] we get Ŷt > Ȳt , which contradicts our assumption [START_REF] Meyer | Tightness criteria for laws of semimartingales[END_REF].

(ii.) x n converges to x in the S-topology if and only if (x n ) satisfies ( 23), [START_REF] Pardoux | Backward SDE and quasilinear parabolic PDEs, in stochastic partial differential equations and their application[END_REF] and for every subsequence (n k ), one can find a further subsequence (n k l ) and a countable subset Q ⊂ [0, T ] such that x n k l t → x t , t ∈ [0, T ]\Q.

Corollary 22 If (x n ) is relatively S-compact and there exists a countable subset Q such that for every t ∈ [0, T ]\Q, x n t → x t , then (x n ) converges to x.

We now recall that a sequence of processes (X n ) n converges weakly to X in the S-topology, X n * --→ S X, if for every subsequence (X n k ), we can find a further subsequence (X n k l ) and (ii.) (X n ) is relatively compact with respect to the convergence " * --→ S " Proposition 24 If (X n ) is S-tight and there exists a countable subset Q ⊂ [0, T ] such that for every j ∈ N and every t 1 , t 2 , ..., t j ∈ [0, T ]\Q (X n t 1 , X n t 2 , ..., X n t j ) * -→ (X t 1 , X t 2 , ..., X t j )

where X is a process with trajectories in D([0, T ], R). Then X n * --→ S X.

On a probability space (Ω, F, P) with a filtration F t , let X be an adapted process with paths a.s in D([0, T ], R). If X t is integrable for all t ∈ [0, T ], we define the conditional variation of X by CV T (X) = sup

π n i=1 E E[X t i+1 -X t i |F t i ] , (25) 
where the supremum is taken over all subdivisions π of the interval [0, T ]. If CV T (X) < ∞ then the process X is called a quasi-martingale. Notice that for martingales X the quantity CV T (X) = 0.

We have the following criterion, for the proof we refer for example to [START_REF] Lejay | BSDE driven by Dirichlet process and semi-linear Parabolic PDE. Application to Homogenization[END_REF] and the references therein.

Theorem 25 Let (X n ) n≥1 be a family of stochastic process in D([0, T ], R).

If sup n≥1 CV T (X n ) + E sup 0≤s≤T |X n s | < ∞ , (26) 
then the sequence (X n ) n≥1 is S-tight and there exists a subsequence (X n k ) k≥1 of (X n ) n≥1 , a process X belonging to D([0, T ], R), and a countable subset Q ⊂ [0, T ) such that for every j ≥ 1 and for any finite subset {t 1 , . . . , t j } of [0, T ] \ Q the following convergence is true:

X n k t 1 , . . . , X n k t j *
--→ X t 1 , . . . , X t j as k → ∞ .

Remark 26 Note that T is not in the countable subset Q. More precisely the projection π T : D([0, T ], R) → R, which assigns to x the value x(T ), is continuous with respect to the S-topology (cfr Remark 2.4. p.8 in [START_REF] Jakubowski | A non-Skorohod Topology on the Skorohod space[END_REF]).

UY

  the classical Sobolev space of functions ϕ with values in R such that both ϕ and all the generalized derivatives ∂ t ϕ, ∂ x ϕ and ∂ 2 xx ϕ belong to L p loc ([0, T ] × R d ). Furthermore, for a sequence of processes (Y n ) n , Y n * -→ will denotes the convergence in law with respect to the uniform topology and Y n * -→ S Y is the weak convergence with respect to the S-topology. See

(A. 1 )

 1 b : R d → R d and σ : R d → R d×d ′ are measurable bounded functions, (A.2) There exists α > 0 such that for all x ∈ R d σσ * (x) ≥ α I, (A.3) The weak uniqueness holds for Equation (4).

  Xr )d Ŵr .

T s f

 f (r, X t,x,n r , Y t,x,n r )dr. It should be noted that the function f may be discontinuous in x, then the mapping (x, y)→ T 0 f (r, x(r), y(r))dr from C([0, T ], R d ) × D([0, T ], R k ) to R k is not necessary continuous. So,to prove the convergence of this term we proceed as follows: for R > 0 let D R := {x ∈ R d , |x| ≤ R} and τ n R := inf{r > t, |X t,x,n r | > R or |X t,x r | > R}∧T , with convention inf{∅} = ∞ and let f η (t, x, y) = η -d ϕ(x/η) * f (t, x, y), where ϕ is an infinitely differentiable function such that ϕ(x)dx = 1.

Theorem 18

 18 Under assumptions (A.1)-(A.5), for p > d+2 the functions u n : [0, T ]×R d → R k and u : [0, T ] × D → R k are L p -viscosity solutions respectively for systems (2) and (3).

a

  stochastic processes (Y l ) and Y defined on ([0, 1], B [0,1] , λ), such that the laws of Y l and X n k l are the same, l ∈ N, for each ω ∈ [0, 1] Y l (ω) converges to Y (ω) in the S-topology, and for each ε > 0, there exists an S-compact subsetK ε ⊂ D([0, T ], R) such that λ ({ω ∈ [0, 1] : Y l (ω) ∈ K ε , l = 1, 2, ...}) > 1ε.Proposition 23The following two properties are equivalent (i.) (X n ) is S-tight.

  and for every ϕ ∈ W 1,2 p,loc ([0, T ] × R d ) and ( t, x) ∈ (0, T ] × R d at which u iϕ has a local minimum, one has

	ess lim sup
	(t,x)→( t,x)

Appendix

The S-topology on the space D([0, T ], R d ) was introduced by Jakubowski [START_REF] Jakubowski | A non-Skorohod Topology on the Skorohod space[END_REF]. It is weaker than the Skorokhod topology but stronger than the Meyer-Zheng one in [START_REF] Meyer | Tightness criteria for laws of semimartingales[END_REF]. We recall here some relevant results about the S-topology in the case of real paths but they can be extend easily to the case of finite dimensional space R d . We have the following propositions.

Proposition 21

and for all a, b ∈ R such that a < b

where N a,b is the usual number of up-crossings given levels a < b, that is, N a,b (x) ≥ k if one can find numbers 0 ≤ t 1 < t 2 < ... < t 2k-1 < t 2k ≤ T such that x t 2i-1 < a and x t 2i > b, i = 1, 2, ..., k.