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Penalization for a PDE with a Nonlinear Neumann boundary

condition and measurable coefficients *

Khaled Bahlalif Brahim Boufoussi Soufiane Mouchtabih *

Abstract: We consider a system of semi-linear partial differential equations with mea-
surable coefficients and a nonlinear Neumann boundary condition. We then construct a
sequence of penalized partial differential equations which converges to a solution of our ini-
tial problem. The solution we construct is in the LP—viscosity sense, since the coefficients
can be not continuous. The method we use is based on backward stochastic differential
equations and their S-tightness. The present work is motivated by the fact that many par-
tial differential equations arising in physics have discontinuous coefficients.

Keywords: Reflected diffusion, Penalization method, Weak solution, S-topology, Back-
ward stochastic differential equations, LP—viscosity solution for PDEs.

AMS Subject Classification 2010: 60H99; 60H30; 35K61.

1 Introduction

Let D be a C? convex, open and bounded domain in R?, and for (¢,2) € [0,T] x D we

consider the following reflecting stochastic differential equation
Xs==x +/ b(X,)dr +/ o(X,)dW, + K, s € [t,T],
t t

where b : RY — R?, o : RY — R4 gre given measurable functions and K is a bounded
variation process satisfying some minimality conditions. Several authors have studied ap-

proximations of reflected diffusions in such domains. We refer for example to [20] and [35]
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in the case of a convex bounded domain D and with coefficients satisfying Lipschitz con-
ditions. The non-convex case was treated in [17] then extended to reflected diffusions on
non necessary bounded domains in [25]. A general situation of non Lipschitz coefficients
and non convex domain can be found in [28], where the authors studied, in particular, the
existence of a weak solution of the reflected equation, when the coefficients are merely mea-
surable and the diffusion coefficient may degenerate on some subset of the domain. Note
that equation (1) can be used to handle linear PDEs with Neumann Boundary conditions,
see for instance [10, 30, 34].

Our aim in the present work is to construct the solution of a system of semi-linear
partial differential equations (PDEs), with a nonlinear Neumann boundary condition by
penalization. For this purpose, we use the backward stochastic differential equations. This
allows us to provide probabilistic representations for solutions of different type of semilinear
PDEs, see for instance [24] for parabolic equations, [7] for elliptic equations with Dirichlet
boundary condition and [26] for a nonlinear Neumann boundary condition. More references
can be found in [23].

The penalization of nonlinear Neumann boundary problem (3) has been firstly consid-
ered in [4] when the coefficients b, o are uniformly Lipschitz then extended by [2] to the
case where the coefficients b, o are continuous. The main goal of the present paper is
to extend the results of [2], [4] to the situation where the coefficients b and o are merely
measurable and the nonlinearity f is measurable in z.. Our work is motivated by the fact
that in many problems arising in physics. Our method is inspired from that developed in
[2, 4]. The difficulty in our situation is due to the discontinuity of the coefficients which
makes the convergence of the sequence of penalized equations more delicate. Moreover, due
to the non continuity of the coefficients, the classical viscosity solution, which is used in
[2, 4, 26], can not be defined for our PDEs. We therefore use the notion of LP-viscosity
solution introduced in [5] for which we give here a probabilistic interpretation. More details
on this topic can be found in [5] and [6].

To describe our result, we shall recall some notations which will be used in the sequel.

We assume that there exists a function [ € CZ(R?) such that
D={zcR%:I(z) >0}, OD={xecR®:I(z)=0},

and for all z € 9D, VI(x) is the unit normal pointing toward the interior of D. In order to
define the approximation procedure we consider the application  + dist?(x, D), therefore,

this function is C! and convex on R%. On the other hand we can choose [ such that

< Vi(z),6(x) ><0, VzeRY



where §(z) := V (dist?(z, D)) is called the penalization term. We have
1 1 _
55(x) = §V (di8t2(x,D)) =z —7p(x), VzeR?
where 75 is the projection operator. Moreover, ¢ is a Lipschitz function and we have

<z—ux,0x)><0, VzeR? VzeD. (

—_
~—

We consider the following sequence of semi-linear partial differential equations (1 < i <
k,0<t<T,zecR%neN).
ou?

ot

(t,z) + Lul(t,x) + fi(t,x,u"(t, z))
—n < 0(x),Vui(t,z) > —n < d(x), Vi(z) > hi(t,z,u"(t,x)) = 0; (2)
u(T,z) = g(x) .
where L is the infinitesimal generator corresponding to the diffusion part of X, that is
1 d? o)
5 izjw N5 G * 24005,
that (¢,z) belongs to [0,7] x D. Under suitable assumptions on the coefficients f, g and
h, by the mean of the connection between BSDEs and semi-linear PDEs, we prove that the

sequence u"(t, z) converges, as n goes to infinity, to a function u(t, ), which is the solution

in the LP—viscosity sense, of the following PDE with Neumann boundary condition:

Ou
5; (t,2) + Lui(t, ) + fi(t,z,u(t,2) =0, 1 <i <k, (t,z) €[0,T) x D,
wi(T,z) = gi(x), z€D (3)
Ou
8—un(t,x) + hi(t,z,ult,z)) =0, Y(t,z) € [0,T) x 0D .

where % is the outward normal derivative of u on the boundary of the domain and

%ﬁj (t,x) =< Vi(z),Vu;(t,x) > for all x € dD. It turns out that, even when the coef-

ficients are merely measurable, the convergence of 4" to u follows from the uniqueness in
law of the forward part.

Throughout the paper, C([0,T],R?) is the space of R%valued continuous function,
D([0,T],R?) is the space of R%valued cadlag functions and Wp{’lzo . ([0,7] x R?) is the clas-
sical Sobolev space of functions ¢ with values in R such that both ¢ and all the generalized

p

derivatives O, dy¢ and 92, belong to LI ([0,T] x R?). Furthermore, for a sequence of

processes (Y),, Y™ %) Y will denotes the convergence in law with respect to the uni-

form topology and Y % Y is the weak convergence with respect to the S-topology. See
Appendix for a brief presentation of this topology and [11] for more details.



The paper is outlined as follows, in Section 2 we prove the convergence of solutions of
our reflected SDE as well as our penalized SDE. The continuity of the solution with respect
to the initial data is also established for both penalized and reflected SDEs. In Section 3,
the same properties are established for the solutions of the BSDEs parts which is our first
main result. Section 4 gives the application to PDEs with nonlinear Neumann boundary

condition which is the second main result of this paper.

2 Reflected stochastic differential equations

Throughout the paper T is a fixed strictly positive number and d,d’ € N*. Consider a

stochastic differential equation with reflecting boundary condition of the form

Xt —ak [0 dr+ [ o) dw, + KL
¢ t

Kb = / V(X5 )| K, (4)

S
’Kt’x’[t,s] = /t 1{Xf.’zeé)D}d‘Kt7x‘[t7T]’
where t € [0,T], s € [t,T] and the notation |K**|, 4 stands for the total variation of K"
on the interval [t, s], we will denote this continuous increasing process by kY. In particular

we have i

B — / < VI(XET), dKET > (5)
We say that (2, F,P,{F;}, W, X, K) i; a weak solution of (4) if (2, F, P, {F}) is a stochastic
basis, W is a d'—dimensional Brownian motion with respect to this basis, X is a continuous
adapted process and K is a continuous bounded variation process such that X, € D P—a.s,
Vs € [t,T] and (X, K) satisfies System (4).

We suppose the following assumptions

(A1) b:RY - R? and 0 : R — R¥? are measurable bounded functions,
(A.2) There exists a > 0 such that for all z € R? oo*(x) > a1,

(A.3) The weak uniqueness holds for Equation (4).

The reflecting diffusions with measurable coefficients were considered in [28] and [33]
where the authors have proved some approximations, stability and existence results. It
should be pointed out that in the case of no continuity of coefficients the uniqueness generally
failed. Since the weak uniqueness is crucial to prove our main result, we assume that the

weak uniqueness holds for Equation (4) i.e assumption (A.3).



Remark 1 We assume that one of the following sets of assumptions is satisfied
1. D is a semicompact, the dimension d < 2 and assumptions (A.1) — (A.2) hold.
2. b is measurable bounded, o is continuous bounded and oo™ is uniformly nondegenerate.

Then the weak uniqueness holds for equation (4).
Indeed, let (Q,f,P, {]:t}tzo W, X, K) be a weak solution of (4) and f € C2 ([O,T] X D).
Applying Ité’s formula to f (s, Xy):

Flo X =)+ [ (H L) X i [ (9a 0,0, 90()) dk,
. t t (6)
[V 01X () W),

Since oo* is nondegenerate, we use Krylov’s inequality for reflecting diffusions (see Theorem
5.1 in [15]) to get for every s € [t,T7],
1

E/t (2 cr) o x)
<C </tS/Ddet (co*)~! (% +£f)d+11{5D} alsala:)d+1 =0.

or
Thus, equality (6) becomes

1ix,copydr

f(s,Xs) = f(t,x)+ /S <% + Ef) (r, X;) L{x,epydr + /s (Vaof (1, X,), V(X)) dk,
t t
+/ (Vaf (r, Xy), 0 (X;)dW,) , P-a.s.
t

Therefore

FlsX) = f o) - [ (T es) Xt eppar

is a P-submartingale whenever f € C'1+2 ([O,T] X D) satisfies
(Vof (s,2),Vl(x)) >0,Vx € OD.

Under the first set of assumptions we deduce from Theorem 3 in [12] that the process
(Xs)se[t,T] is unique in law. Under the second set of assumptions we apply Theorem 5.7
in [34] with ¢ =1, v := V¢ and p := 0 we obtain that the solution to the submartingale
problem is unique for each starting point (t,x), therefore our solution process (Xs)se[t,T] 18
unique in law. Moreover, the uniqueness in law of the couple (X, K) follows from Theorem
6 in [8].



We consider the penalized SDEs related to our reflected diffusion X**
Xbon — g 4 / [b(Xf,x") — né(Xf,x")] dr +/ o( XMW, s € [t,T). (7)
¢ t

For n € N fixed, under assumptions (A.1) and (A.2), we can deduce from Krylov’s works, see
[13] and the references therein, that there exists a weak solution of Equation (7). Moreover,
Krylov have also established that it is possible to select a strong Markov weak solution of
Equation (7). In the sequel we shall need to show the continuity of the flow associated to

this equation, for this goal we suppose the following assumption

(A.4) The weak uniqueness holds for Equation (7).

Remark 2 We note that in the case of low dimension, d < 2, and assumptions (A.1)—(A.2)
are in force, the assumption (A.4) holds true, see [12] and [14].

We set for all t € [0, 7]

Kbom = / CnS(XEPMYdr and KL = / < VI(XE), A ) Vs € [t T).
t t

We recall the following classical boundedness result, (see [2]), we have

sup E sup | X527 4 sup E]Kt’x’”]‘[lt 7 <+oo, Vg=1. (8)
n>0  selt,T] n>0 ’

The next proposition shows a convergence result of the penalized equation (7).

Proposition 3 Under the assumptions (A.1) — (A.3). We have:

(Xt,x,ant,x,n) U*U (Xt,ijt,x).
X

Moreover (X% K4%) satisfies system (4).

Proof. By Theorem 2.1 in [33], the process (Xb®" K%™) converges to a solution of

Equation (4). Hence the weak uniqueness gives the result. m

Remark 4 Under assumptions (A.1) — (A.3), by virtue of Theorems 7 and 10 in [8], the

solution X4 of Equation (4) is a Markov process.
We extend the processes (X»*, K»*) and (X" K%") to [0,¢] by denoting
X;’x f— X;’x’n = x7 Kﬁ,l‘ = K;’x’n = O7 VS S [O,t]

Now, by using It6’s formula, the boundedness of b, 0 and D, we obtain a priori estima-

tions for the solutions of (4) .



Proposition 5 Under assumption (A.1). We have for all ¢ > 1

supE sup |[X!"*"|% < oo, supE|K™™|L < . (9)
n>1  s€[0,T] n>1

We have the following continuity result with respect to the initial data for the solution of

the penalized equations (7).

Proposition 6 Under assumptions (A.1), (A.2) and (A.4). The application [0,T] x R? >

(t,r) — (Xb®n KL s continuous in law.

Proof. Let (ty,,zm) — (¢, ), arguing as in Corollary 2 in [27], (see also [13]), using the
weak uniqueness we find
Xtmamn _* o ytan
U Y

and we deduce that

Ktmyl'myn * 3 Kt,:&n'
U

This ends the proof. m
We now state a continuity in law with respect to the initial data for the solution of

equation (4), which is a slight generalization of Lemma 3.8 in [2].

Proposition 7 We suppose that (A.1) — (A.3) are in force. Then the map [0,T] x D >

(t,r) — (X4, K4) is continuous in law.
Proof. Let (t,x) € [0,T] x D be fixed and (t,,z,) — (¢,), as n — +o0o. We set
(X0, KE) = (X2 KD,

We will prove that the family (X" K™) is tight as family of C([0,T],R? x R%)—valued

random variables. By Itd’s formula applied to X7 — X

», where 7 is fixed and s > r we

deduce:
Y 4
E| X! — XT’,‘]8 < Cls— 7‘]4 + CE ( sup / < X =X, o(X;)dW)} >‘>
velr,s] |Jr
s 2
< Cls—r[*+CE (/ X" — X;‘|2|0(X£‘)|2du>

< Cls—r[*+C|s —r|* < Cmax{]s — r[*,|s — r|?}.
Concerning K™, we have:

K?— K7 = (X7~ XP) — / b(XT)du — / o (X)W

7



Hence,

s 8
EIK! - K'® < CE|X!-X!®+CE </ \b(X{})\du) +CE ( sup

8
ve(r,s] )
Then (X5*, K*) is tight on C([0,T],R? x RY) with respect to the initial data (¢,z). By

Prokhorov’s theorem, see Chap I in [23], there exists a subsequence still denoted by (X™, K™)
such that

/ o (X)W

< Cmax{|s —r|® |s —r|°}.

(X" K™ —— (X, K).
X

We will proceed to the identification of the limits X "W Xt and K ' Kt By the Skoro-
hod’s theorem, we can choose a probability space (Q,]:", ]f”), (X", K", W") and (X, K, W)
defined on this probability space such that

(X" K™ W) 'Y (xm KW, (XK, W) 'Y (X, KW

and (X", K", W") — (X,K,W) P-as, as n — oo, where (W",]:Wn’f(n) and (W,]:WX)

are Brownian motions. We now define

- $+/ b(f(ﬁ)dr—i—/ (X" dWm,
t t

Ve = x4+ / b(X,)dr + / o (X, )dW,. (10)
t t

Since the processes X™ and X have finite moments (uniformly in n) of any order, o is non
degenerate and the coefficients b, o are bounded, then using Skorokhod’s representation

theorem ([31] p. 32) and Krylov’s estimate, one can show that:

/b(Xﬁ)drM/ b(X,)dr as n — 400,
t t

/J(Xﬁ)dePr—m>/ o(X,)dW,, as n — +oo.
t t

Since b and ¢ are bounded we deduce by the Lebesgue dominated theorem that the

following convergence holds in L4(f2) for each ¢ > 1,

q
— 0, as n— +oo.

A

E sup
s€(t,T)

V-V

We consider . .
Viii=x —I—/ b(X,")dr —I—/ o(X)dW.
t t



Then X' = V' + K, and we remark that
(X", K™, W, ym) e (X”K”W"V”) on C <[0,T],Rd x RY x RY x Rd)

and
XP=V'+ K" P—a.s.
We pass to the limits we get
Xs=Vi+ Ky, P—as
taking into account of (10), it follows that (X, K) is a solution of Equation (4) with ini-
tial data (t,2). By the weak uniqueness we have (X,K) = (X** K®*). Then (X", K")
converges to (X*, K%*) as n — +o0. This achieves the proof. m

The next technical lemma is a stochastic version of Helly-Bray theorem, see Proposition
3.4 in [36].

Lemma 8 Let (M™,n") : (Q*, F*,P") — C([0,T],R?%) be a sequence of random variables
and (M,n) such that

M™ 0™ —— (M, n).
( ,n)w( .1)

If (n™)y, has bounded variation a.s. and
sup P (|77n|[07T} >a) =0, as a—»o0
n>1

then n has a.s bounded variation and

T T
/ <Mfad77?>*;—>/ < M,,dn,. >, as n — 0.
0 0
We can immediately deduce from the previous lemma the following convergences.

Lemma 9 Assume (A.1) — (A.4). Then we have

kt,x,n * kt,x and k,tn,xn * k/,t,:c‘
U U

*

Proof. In view of the convergence (X4®" KH%:m) W (Xt K%*) and Lemma 8 applied
with (M™,n") = (VI(Xb®"), K1), we get kb&n %) k%®. For the second point, by
the continuity in law with respect to the initial data, (Xtn%n Ktn@n) (;7) (Xbr KL,
again by Lemma 8 applied this time with (M",7n") = (VI(X!%), K"%) we obtain

ktnvxn * N k/,t,:c‘ u
U



3 Backward stochastic differential equations

Consider the functions f, h : [0,T] x R x R¥ — R* and g : R? — R”, satisfying the

following assumptions:

A.5) There exist positive constants Cy, Co, I, and ur € R, 5 < 0 and ¢ > 1 such that
f

Vi, s € [0,T], V (z, 2" y,9y) € (Rd) (R’“)2 we have
) < y/_ymf(t?xay/) _f(twray) >Suf ’y/_y’27
) [ h(t, 2" y') = his,z, )| < In (Jt = s|+ 2" — 2|+ |y —yl),
(i) <y =y ht,z,y) = hit,z,y) >< Bly —yl?,
) |tz y)| + (Rt 2, y)| < Cu L+ [y]),
) lg(z)| < Ca(1 + []7).

g is continuous and f is measurable with respect to x and continuous in (¢,y).

We assume without loss of generality that the processes (X5™*", Kﬁ’x’")se[mﬂ and (X57, Ké’x)se[tﬂ

are considered on the canonical space. Consider the following generalized BSDEs on [t, T]

T T
Y*St,:c,n — g(X;l:B,n) +/ f(n Xﬁ,x,nyy;ﬂt,x,n) dr — / Uﬁ’x’n dMT‘,thn
s s

+ / ' h(r, Xbon, Yo dghen (11)
s
and
Yst,z: tgc / fr thc th) —/TUf’def(t'x+/Th(r,Xﬁ’x,1ﬁt’x)dkﬁ’m, (12)
s s
where
MéXmm = /8 o(XE"™dW,  and MéXm = /8 o(XE")dW,.. (13)
t t

Under assumption (A.5), there exist (Y&™", Uﬁ’x’")se[tﬂ and (Y&, U;’x)se[t,;p] unique solu-
tions of equations (11) and (12) respectively (see [26]).

Remark 10 We note that one or other assumption (A.5)(it) or (A.5)(iii) is sufficient to
ensure the existence and uniqueness of the solutions to both BSDEs (11) and (12). Con-
dition (A.5)(iii) will be used to establish some estimates in goal to prove the tightness

proprieties and (A.5)(ii) is necessary for the identification of the limit.

The next proposition will be used in order to get the convergence of the solutions of the

sequence of penalized PDEs.

10



Proposition 11 Assume (A.1)-(A.5). The following convergence holds

(Yt,m,n’ Mt,x,n’ Ht,m,n) * (Yt,m’ Mt,x’ Ht,m)
SxSxS

where
° tz,n t ° t t t
M = / UbtrdMXT", P = / h(r, Xp5m, Y00 dkp ™",
t t

ML = / Ub*dMX"" and HY® = / h(r, X5% YET)dEE®. (14)
t t
Moreover, lim Y}*™" =y}*
n—oo

Proof. The solutions satisfy the following estimate

T
supE sup |[Y5H®n)? —I—SupE/ |UL=ne(XE2m)|2ds < 400
n>0  t<s<T n>0 t

for the proof see [4]. To show the tightness property with respect to the S-topology we
compute the conditional variation C'Vr defined in (25) in Appendix. Arguing as in [4], we
can prove that (YH%n MLE FLEM) is tight with respect to the S—topology, so there exists
a subsequence still denoted (Y5#" Mb@n HYT™) and (Y, M, H) in (D([0,T],R¥))3, such
that

*

t t t t t
(X ,x,n’K ,:c,n,Y ,x,nj M ,x,nj H ,:c,n)
UxUxSxSxS

(X4 K5 Y M, H). (15)

Next, we will pass to the limit and show the convergence of each term in BSDE (11).
Let’s start with fsTf(r, Xﬁ’x’",YTt’x’")dr. It should be noted that the function f may be
discontinuous in z, then the mapping (z,y) — fOTf(r,a:(r),y(r))dr from C([0,T],R%) x
D([0,T],R¥) to R* is not necessary continuous. So, to prove the convergence of this term
we proceed as follows: for R > 0let D := {x € R |z| < R} and 7% := inf{r > ¢, | XE" >
Ror|X;"| > RYAT, with convention inf{0} = co and let f,(t,z,vy) = n~%p(x/n)*f(t, z,y),
where ¢ is an infinitely differentiable function such that [ ¢(z)dz = 1.

ThTh B
E / flr, Xpmm Y500 — f(r, X027, Y, )dr| < Ju(n, R,n) + Ja(n, Ryn) + J3(R,n) (16)

where

TNATE
Ji(n,R,n) =E / : Flr, XPEm Yoy — £ (r, X2 Y5 dr

TATE
J2 (TL, R7 77) =K / . fn(ra Xﬁ’w’nv Y;«t’x’n) - fn(T, Xﬁ’m, Yr)dT

T/\T}é B B
Jy(Ron) = E / Folr, X0%,T3) — f(r, X5%, Vo).

11



Since the function f, is continuous with respect to its three arguments, it follows that the
maps (z,y) — fOT Jn(r,x(r),y(r))dr is continuous, we pass to the limit in Ja(n, R,n) as
n — +oo we deduce that Jy(n, R,n) goes to 0. Now, consider Ji(n, R,n) and let M > 0

ThATh
Ji (na Ra 77) < E/g ‘f(n Xﬁ,x,n’ Y;’t7x7n) - fn(rv Xﬁ,x,n, }/rt@m)‘ 1{\}ﬁtz"\>M}dT

TATh
) / | £, X2 Y100 — fo (i, XTS5 1 gy

TATh
S CE/ (1 + |Yr.t’w’n‘)1{|Yrt,x,n|>M}d7’
ST/\TE . .
+E/ sup |f(rv Xr’x’nv y) - fﬁ(rv Xr’x’n7 y)| dr
s {lyl<M}
C T . 9 2 T . %
< M1/2 <E/S (1+ ‘}/;’x’n|) d7’> <E/s ‘Y;’x’n‘dr>

T/\Tg
L E / Gy (£, X5
S

where (,(r,z) = sup |f(r,z,y) — fy(r,z,y)|. Thanks to Krylov’s inequality, there exists
{lyl<m}
a positive constant N (7', R, d) such that

C TNATR . ) % T .
Jiln, Bon) < e (E/S (1+[y5on) dr) (E/S \Yr’x’"\dr>
+N(T7 R7 d)HCnHL‘HQ([O,T]xDR)

D=

passing successively to the limit in n — 0 and M — 400, it follows that J;(n, R,n) tends to
zero for all n € N. Concerning J3(R,n) similar arguments as above prove the convergence
of this term to zero as 7 goes to zero, we note that in the prove of the convergence of this
term, we will need some integrability on the process Y and this is ensured by Lemma A.2
in [16].

Since 7 is increasing to infinity as R tends to infinity, then for R large enough T'A7p; =
T. Finally,

Iim E

n——+00

T
/ fr, XEEn yheny — f(t, X5 Y, )dr| = 0.
S

Concerning the term fST h(r, XP5" V5™ dkE™™, we use the Lipschitz continuity of &, the
week convergence of k4%™ to kb* with respect to the uniform topology, together with Lemma,

3.3 in [4], we get that there exists a countable set @ C [0,7") such that, for any s € [0, T]\Q,

T T
Y, = g(X,fF’w)—l—/ f(r,Xﬁ’x,K)dr—(MT—Ms)+/ h(r, X", Y,)dkb".

12



Since the processes Y, M and H are cadlag, the previous equality holds true for all s € [t, T].

Moreover, Lemma A.1 in [16], ensures that the process M is a FX""V:M _martingale. We

shall now show that MX"" is a th’xy’M—martingale. Let 95 be a bounded continuous
mapping form C ([t, s],R%) x D (It, s],Rk)2, Y E Cgo(Rd) and

1
L=— * bi(
LSO i+ S0
be the infinitesimal generator of the diffusion part of the process X**. By Ito’s formula we

obtain that
S S
P — pla) = [ Loxtemydr — [ Tp(xpm R
¢ ¢
isa .FXt'x'"—martingale. For any t < 51 < s9 <T and for each n € N, we have
52
E [%1 (xhen yhen prhen) (@(Xﬁf’") — (X5 — / Lo(Xp™")dr

S1
s2
-/ vgp(ngvn)ngw)] 0.

S1

Moreover,
52

11H1E|:T,Z)51 (thn thn thn)( (Xtmn)_ (thn)_

n—oo

:E[¢31(Xtvx,Y,M) <<,0(th — (X" - /ﬁ(pth ﬂ

zﬂxﬁ%“)m)}

In fact, we will only show the convergence of the term 1, (Xt o ytan ke, ”) f82 Lo( Xy X" Ydr

E ¢, (Xbom, yhon pbon) / T Lo(XEPM)dr — by, (X7, Y, 5) / * Lo(XE)dr

<E‘[¢31(Xtmn thn Mtxn) ¢81 (thYM / ﬁ(,Dthn)dT‘

+E

Vs, (XMWY, M [/ Lo(XEE™)dr /cng” }
= Bi(n) + Ba(n)

in view of (15), the continuity of ¢ and the boundedness of b, o, ¢, 8“0 and ax 81, we obtain

13



lim Bj(n) = 0. Concerning Ba(n)

n—-+00

_ 52 52
By(n) = E|v¢s, (Xt’””,Y,M) [/ ﬁcp(Xf,’x’”)dr—/ ﬁcp(XfJ””)dr]
S1 S1

52
< CE / [Cp(XEmm) — Lp(XE") | dr
S1
< CZ / thn (thn)_b(Xtm)a(p(th) dr
- Ox;
+ C’Z / oo (xtem) TP xtany (g (xtey) TP (xra g,
0 Oix; " Qg "

7]

using the boundedness of b, o, g—fi and %@ﬂp combined with Krylov’s estimate, we proceed

as in (16) to conclude that 11141_1 By(n) = 0. On the other side, using (15), the boundedness
n—-+0o0

of 1, Vy and estimation in (8) together with Lemma 8 we obtain

52

n—o0 s
—E [%1 (X" Y, M) / N V@(Xﬁ’m)dKﬁ’m] :
Hence, 1
B b (X7 700) (008 - x5 - [ o - [T vptxmant=) | <o
1t6’s formula gives rise 1 1
E [1/;51 (X, Y, M) / ” V@(Xﬁ’m)dM,Xt’z} =0
then, MX"" ig g FXTYM_ martingale. Since Y% and U%* are ]-"Xt’x—adapted, Mb* =

e tx . tx v N . . N .
ft UprSdMX"" is also FX"Y>"M _ martingale. Therefore, using It6’s formula, assumptions

on f and h, and a generalized Gronwall lemma (see Lemma 12 in [18]), we obtain
Y =Y and M"" = M.
For the second claim, By Lemma 3.3 in [4] applied with time T', we have
/T h(r, XLom ybom)gphon =, /T h(r, XL*, Y27 )dkE"
t t

Since M%®" %) Mb® | using Remark 2.4 in [11], we get My™" — My" in law. We now

pass to the limit in

T
Y;t,x,n _ g(X%:c,n)_i_/ f(T,Xﬁ’m’n,Y:’m’n)dT—M;—:x’n
t
T
s [ e,
t

14



we deduce that
Y;t,x _ tm / f r th Yt x) o M;,x

+ / h(r, XE%, V1) dRte.
t

Which ends the proof m
We extend (Y%, U5%) and MX"" to [0,t) as follows

Yhe =Y, Ut =0 and MX"":=0, Vs e [0,t)
We now state a continuity property of the mappings (¢,z) — Y%,

Proposition 12 Assume (A.1) — (A.3) and (A.5). For a sequence (ty,xy,) converging to

(t,x), there exists a subsequence (tn,,Tn, )ken such that Y'meny —§—> ybe,

Proof. We denote (Yin@n Xtnon flnon) = (Y7 X" k™). We have for all t € [0,7]

T
E sup \Y"]2+E/ |UPo(X™)|?ds < C, Vn €N,
0<s<

E sup Y, +E / |Uso(Xs)|2ds < C,
0<s<T 0

where C'is a constant independent of and n, see [26]. We compute the conditional variation

defined by (25) in Appendix, we get

sup <CVT(Y”) +E sup |Y]'|+E sup |M?|+CVp(H")+E sup ]Hg[) < 00.
n>0 0<s<T 0<s<T 0<s<T

Then, (Y™, M™ H™) is tight with respect to the S—topology. So there exists a subsequence
still denoted by (Y™, M™, H") and (Y, M, H) in (D([0,T],R¥))3, such that

(Xt Rtnwn YoM HY) —— s (XY K Y M H).
UxUxSxSxS

The same arguments used in the proof of Proposition 11 ensure that for all s € [t, T

T

Y, = g(X?x)Jr/

s

T
Lo f(r, X", Yy )dr — (Mp — M) + / hr, Xp®, Y, )dky®

and
YH* =Y and M =M.
Which ends the proof m
The next result will be employed in the sequel.
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Proposition 13 Under assumptions (A.1)-(A.5). The functions u™ : (t,z) € [0,T] x R -
u(t,x) =Y and w: (t,x) € [0,T) x D u(t,z) :=Y}"" are continuous.
Proof. We will show only that the function w is continuous. Let (t,,z,) — (¢, z), as

n — 4o00. From the proof of Proposition 12, we can extract a subsequence still denoted

(tn,xn), such that

*

tn7 n tn, n tn, n tn, n
(Xt Ktotn Y inedn gty
UxUxSxS

(Xt,m Kt,m Yt,x Mt,m)
By Lemma 3.3 in [4] applied for t = T, we have
T T
/0 h(?", Xﬁnyxn’ }/Ttnvxn)dk;znyxn _i_> /0\ h("", Xf,’x, }/Tt’x)dkf,’x

Since Mt#n y MtT using Remark 2.4 in [11], we get Mi™ — ME*. By virtue of
3 T T

Krylov’s inequality for reflected diffusions, we can show that fOT L, f (7, X Yf"’x”)dr —
fOT Ly f(r, Xbr ﬁ’m)dr in law . We now pass to the limit in

T
) = Y™ = ¥ = g 4 [y X Vi 0t

T
+ / h(r, Ximon, Y i) dkimtn.
0
Exactly as in the proof of the Proposition 12, we deduce that the limit of w(t,,z,), as

n — +00 18

T
ut,z) =Y = V) = g(Xp") +/0 Vo f(r, X050 ) dr — Mg

T
v / h(r, XE2, Y1) ARt
0

Which is the desired result. m

4 Application to nonlinear Neumann boundary value prob-

lems

The coefficients of our PDEs are not continuous this why we cannot define the solutions
in the classical viscosity sense. We then adopt the LP—viscosity solution introduced in [5].
This notion of solutions is used to study nonlinear PDEs with measurable coefficients. We
first recall the definition of the LP—viscosity solution for PDEs (2). For simplicity, we adopt
the following notations

Loy = Lo—n<d(.),Ve>

foryzyy) = f(ryz,y) —n < Vi(z),0(x) > h(r,z,y).

16



Definition 14 Let p be an integer such that p > d + 2.

1. A function u € C([0,T] x R R¥) is a LP—wviscosity sub-solution of the PDEs system
(2), if for every x € RY, uy(T,z) < g;(z), 1 <i <k, and for every p € W;ic([O,T] X

RY) and (t,#) € (0,T] x R? at which u; — ¢ has a local mazimum, one has

ess liminf {—8—(p(t,x) — Lpp(t,z) — fi(t,x,u(t,x))} <O0.
(t,z)—(i,2) ot
2. A function u € C([0,T] x R%, RF) is a LP—viscosity super-solution of the PDEs (2), if
for every x € RY w;(T,x) > g;i(z), 1 <14 < k, and for every ¢ € W;7}2OC([O,T] x R%)
and (t,2) € (0,T] x R* at which u; — ¢ has a local minimum, one has

0 _

ess limsup {——(p(t,x) — Lyp(t,x) — fi(t,x,u(t,x))} > 0.
(ta)—(a) L OF

3. A function u € C([0,T] x RY, R¥) is a LP—wiscosity solution if it is both a LP—viscosity

sub-solution and super-solution.

Remark 15 Assertion (1) means that for everye > 0, r > 0, there exists a set A C B,(t, %)
of positive measure

—g—f“@ — Loo(t,z) — filt,z,u(t,x)) <e, V()€ A.

We now define the LP—viscosity solution for system (3), which can be seen as a natural
extension of the notion of viscosity solution of PDEs with nonlinear Neumann boundary

condition, to the case of PDEs with measurable coefficients.
Definition 16 Let p be an integer such that p > d + 2

(i.) u € C([0,T] x D,R¥) is called a LP—viscosity subsolution of System (3) if u;(T,z) <

gi(r), x € D, 1 <i <k, and moreover for any 1 <i <k, ¢ € W;’Iic([O,T] x D), and

(t,#) € (0,T] x D at which u; — ¢ has a local mazimum, one has

ess liminf {—6—(’0(15,:17) — Lo(t,x) — fi(t,x,u(t,x))} <0, if €D,
(ta)—Ez) | Ot

ess liminf min <_a—“”(t,x) ~ Lot ) — fi(t,z, ult, ),
(t,2) = (E,2) ot
dy R
—8—n(t,x) — hi(t,z,u(t,z)) ) <0, ifzedD.
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(ii.) uw € C([0,T] x D,RF) is called a LP—viscosity super-solution of (3) if u;(T,x) > gi(x),
x €D, 1<i<k, and moreover for any 1 < i < k, ¢ € Wpl’lic([O,T] x D), and
(t,#) € (0,T] x D at which u; — ¢ has a local minimum, one has

ess limsup {—aa—f(t,a;) — Lo(t,x) — fi(t,x,u(t,x))} >0, o €D,

(t,x)—(,3)

ess limsup max <—%—(’D(t,x) — Lo(t,x) — fi(t,x,u(t,x)),
(t,2) = (5,2) t

—%(t,x) — hi(t,a:,u(t,a:))> >0, ifzedD.
(iii.) u € C([0,T) x D,R¥) is called a LP—wviscosity solution of System (3) if it is both a

LP—wiscosity sub- and super-solution.

Remark 17 We remark that if the ingredients in the definition above are continuous we
recover the classical viscosity solution of PDEs with Neumann boundary condition defined
in [26].

We are now able to state and prove our main result.

Theorem 18 Under assumptions (A.1)—(A.5), forp > d+2 the functions u™ : [0, T]xR? —
R* and v : [0,T] x D — R¥ are LP—wviscosity solutions respectively for systems (2) and (3).
Moreover

lim u"(t,7) = u(t,x), V(t,z)€[0,T]x D,

n—o0

where u™ and u are defined in Proposition 13.

We divide the proof of Theorem 15 in two lemmas and the convergence is ensured by

Proposition 10.
Lemma 19 The function u™ is a LP—wviscosity solution of system (2).

Proof. The proof will follow the techniques used in Proposition 5.1 in [1]. Let ¢ €
Wpl,f)c ([0, 7] x R?), let (£,2) € [0,T] x R be a point which is a local maximum of uf — ¢.
Since p > d + 2, then ¢ admits a continuous version which we consider from now on. We

assume without loss of generality that

i.2) = o(i, ). (17)



We will argue by contradiction. Assume that there exists ¢, @ > 0 such that

aa—(’:(t,:n) + Lpo(t,x) + filt,z,u™(t,z)) < —¢, X —a.ein Ba(f,i) (18)

where A denote the Lebesgue measure and B, (£, ) is the ball of centre (,#) and radius
. Since (£,2) is a local maximum of ul' — ¢, we find a positive number o/ (which we can

suppose equal to «) such that
ul(t,z) < p(t,x) for all (t, ) in B(t, ). (19)
Define the stopping time
7 = inf{s > £; |X§””" — 2 >a}A(E+a)
Since X%®™ is a Markov diffusion, one can show, as in [9], that for every r € [t,f + af,

Yo = u™(r, Xf’f’"). Hence, the process (Ys,Us) := <Yst’j’n’ia Lo T}Uﬁ’f’n’i) ol solves
’ set,t+a

the BSDE for every s € [f,1 + o

. i+a B . . i+a B P
¥, =l (r, XEEm) 4 / o) Fi(r, XEPM i (r, XEE7)) / 0, X" (20)

On the other hand, by It6-Krylov’s formula (see Chap. 2 Sec. 2 and 3 [13]), the process

(Y, Us)se[i,i-i-a} defined by
T t,2,n t,.&n
( S7US) = <<,0(S AT, XS/\T )7 ]‘[O,T]V('ID(S?XS ))
satisfies
. PR t+a 8(’0 PR o £@.n
Y, = (,0(7', X.I;’x’n) — / 1[0,7] <6_ +»Cn<,0> (7, Xﬁ’x’n) dr — UrdMSb o
S T S

By the choice of 7, (T, Xﬁx") € B, (t,#), then ul(r, Xﬁm") < (T, Xﬁx")
Consider the set

A= {(t,x) € By(t, 1), <g—f + Lo + fil, - u" (., ))> (t,x) < —¢}

and A®:= B,(t,4)\A is the complement of A. By assumption (18) we get A\(A°) = 0. Since
the process Xtan js nodegenerate, Krylov’s inequality (see Chap. 2 Sec. 2 and 3 [13])

implies that 1ae(r, X2™™) = 0 dr x P — a.e. It follows that

f—i—a ~ _ ~ . oA
0<Blr-0e<E [l | (54 Lue) (X 4 Rl X0 X5 ar
t
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This implies that

0 t,@n r t.én . n t,&n
ooy | (5 + L ) (. XE) 4 Fr X5, 0 x5 | >0

on a set of dt x dP—positive measure. Therefore, the comparison theorem in Remark 2.5 in

[22] shows that Y; > Y;, that is o(f, &) > u?(f, &), which contradicts assumption (17). m

Lemma 20 The function u is a LP—wviscosity solution of system (3) in the sense of Defi-

nition 16.

Proof. We shall prove that u is a LP—viscosity subsolution. Let ¢ € I/Vp1 ’1200([0,T ] x D)
and let (£,#) € [0,T] x D be a point which is a local maximum of u; — ¢. We consider a

continuous version of ¢ and we assume without loss of generality that

We skip the proof in the case & € D because of its similitude with that of «™ in the previous

lemma. We consider the case & € 0D, we suppose that

ess liminf min <—8—(’0(t,:p) — Lo(t,x) — fi(t,z,u(t,x)),
(t.2)—(E,2) ot
9y
—8—n(t,x) - hl(t,x,u(t,x))> > 0.
It follows that there exist &, « > 0 such that
dp
E(t,x) + Lo(t,z) + fi(t,x,u(t,z)) < —e and (22)
g—(’p(t,x) + hi(t,z,u(t,r)) < —e A—a.e in Ba(t,2).
n

Since (t,#) is a local maximum of u; — ¢ we have
ui(t,z) < @(t,x) in  Ba(t, 1)

Define
7:=inf{s > t: \Xﬁm—a?\ >a} A (t+ )

Since X** is a Markov process, we have Vr € [t,t + oz],Yrt’i = u(r, Xﬁx) Moreover, the

process (Y, Us) := (ﬁg/’\%i, 1[077}(3)U£’j’i) for s € [t,f + a] solves the equation
B . t+a . . i+a _ ia
Y, = u(r, X5") +/ Lo, fi(r, X% ur, Xﬁ’x))dr—/ U.dMX"
S S
i+a . . .
+/ hi(r, XE% u(r, XE5))dEL®.
S
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On the other hand, by It6-Krylov’s formula, see for example Corollary 3.6 in [3], the process
(Ys,Us) i= (p(s AT, X2, 1[07T}V<,0(3,X§’i)) solves the following BSDE

SAT
- i 4 i+a 8(’0 ‘s t+a ey
Yo = ()0(7—7 X7—7m) - / 1[0,7’} (T) <a + ﬁ(p) (Ta Xr’w)dr - UTer
t+a a(p . .
[ tom G X
We consider the set
- 0
A={(t,2) € Ball,) : SE(t,2) + Lo(t,a) + filt,,ult,2)) < —e}

then A(A°) = 0, where A€ is the complement set of A. By Krylov’s inequality (see [3], [19]
and [27]) we get 14¢(r, X2%) =0 dr x dP — a.e, it follows that
f—l—a 8(,0 . . . N
E/ _1[0,7} (7") [(a + £<,0)(7", Xﬁ’x) + fi(rv Xf*7m7 u(rv ijm)) dr > E(T o t)€ > 0.
i
Then

9 t,& t,& i
Lo (r) (7 + Lo K1) > Loy (r) filr, X1F u(r, X1P))

on a set of dr x dP positive measure. Furthermore, by Theorem 1.4 in [26] we get }A/; > 375,

which contradicts our assumption (21). =

Appendix

The S-topology on the space D([0, 7], R%) was introduced by Jakubowski [11]. Tt is weaker
than the Skorokhod topology but stronger than the Meyer-Zheng one in [21]. We recall here
some relevant results about the S-topology in the case of real paths but they can be extend

easily to the case of finite dimensional space R?. We have the following propositions.

Proposition 21
(i.) K C D([0,T],R) is relatively S-compact if and only if

sup sup |x¢| < 400 (23)
r€K t€[0,T]

and for all a,b € R such that a <b

sup N°(z) < 400 (24)
zeK

where N is the usual number of up-crossings given levels a < b, that is, N**(x) > k if
one can find numbers 0 < t; <ty < ... <top_1 < top < T such that xy,, , < a and x,, > b,
1=1,2,... k.
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(ii.) ™ converges to x in the S-topology if and only if (z™) satisfies (23), (24) and for every
subsequence (ny), one can find a further subsequence (ny,) and a countable subset Q C [0,T]
such that z," — x, t € [0, T)\Q.

Corollary 22 If (z™) is relatively S-compact and there exists a countable subset Q@ such

that for every t € [0,T\Q, x} — x, then (z™) converges to x.

We now recall that a sequence of processes (X™),, converges weakly to X in the S-topology,
Xn —§—> X, if for every subsequence (X"*), we can find a further subsequence (X"*) and
a stochastic processes (Y;) and Y defined on ([0, 1], Bjg 1, A), such that the laws of ¥; and
X" are the same, [ € N, for each w € [0,1] ¥;(w) converges to Y (w) in the S-topology, and
for each £ > 0, there exists an S-compact subset K. C D([0,T],R) such that

A{we [0,1] : V(w) € K., 1=1,2,...}) > 1 —e.

Proposition 23 The following two properties are equivalent

(i.) (X™) is S-tight.

b

(ii.) (X™) is relatively compact with respect to the convergence ” %)

Proposition 24 If (X™) is S-tight and there exists a countable subset Q@ C [0,T] such that
for every j € N and every ti,ts,....,t; € [0,T\Q

(Xtri7Xt27 7Xt7;) i> (Xt17Xt27 '”7th)
where X is a process with trajectories in D([0,T],R). Then X" %) X.

On a probability space (€2, F,P) with a filtration F;, let X be an adapted process with paths
a.s in D([0,T],R). If X; is integrable for all ¢ € [0, 7], we define the conditional variation
of X by

CVT(X) = SEFPZE HE[Xti+1 - Xti|]:ti] ] > (25)

i=1
where the supremum is taken over all subdivisions 7 of the interval [0,T]. If CVp(X) <oo
then the process X is called a quasi-martingale. Notice that for martingales X the quantity
CVp(X)=0.
We have the following criterion, for the proof we refer for example to [16] and the references

therein.
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Theorem 25 Let (X"),>1 be a family of stochastic process in D([0,T],R). If

sup \X?!D < oo, (26)
0<s<T

then the sequence (X™), ., is S-tight and there exists a subsequence (X" ), <, of (X™), >,

n>1

sup (CVT(X") +E

a process X belonging to D([0,T],R), and a countable subset Q C [0,T) such that for every
Jj > 1 and for any finite subset {t1,...,t;} of [0,T]\ Q the following convergence is true:

(ngxgk> S (X, X)) ask — o0,

Remark 26 Note that T is not in the countable subset Q. More precisely the projection
mr : D([0,T],R) — R, which assigns to x the value x(T), is continuous with respect to the
S-topology (cfr Remark 2.4. p.8 in [11]).
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