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Abstract 

NMR spectroscopy is an essential analytical technique in metabolomics and fluxomics 

workflows, owing to its high structural elucidation capabilities combined with its intrinsic 

quantitative nature. However, routine NMR “omic” analytical methods suffer from several 

drawbacks that may have limited its use as a tool of choice, in particular when compared to 

another widely used technique, mass spectrometry. This review describes, in a critical and 

perspective discussion, how some of the most recent developments emerging from the NMR 

community could act as real game changers for metabolomics and fluxomics in the near future. 

Advanced developments to make NMR metabolomics more resolutive, more sensitive and 

more accessible are described, as well as new approaches to improve the identification of 

biomarkers. We hope that this review will convince a broad end-users community of the 

increasing role of NMR in the “omic” world at the beginning of the 2020s. 
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Introduction 

 

In the family of “omic sciences”, metabolomics and fluxomics represent one of the most 

exciting challenges that the analytical chemists ever had to face. Metabolomics deals with the 

measurement (identification and quantification) of the largest possible number of metabolites 

in a broad variety of biological systems, including cells, biofluids and tissues from plant, animal 

or human origin.1 Fluxomics aims at obtaining information on metabolic fluxes, ie. on the rate 

of metabolic conversions in such systems.2 Both metabolomics and fluxomics deal with a great 

diversity of small molecules with molecular weight typically lower than 1000 Da, such as amino 

acids, carboxylic acids, carbohydrates, alcohols, amines, lipids, more complex molecules such 

as specialized metabolites, and even drugs and their degradation products. Since metabolites 

are the final downstream products of genomic, transcriptomic, and/or proteomic perturbations, 

their measurement brings critical insights into systems biology, making it possible to better 

characterize and understand biological mechanisms, but also to identify biomarkers of a 

pathological state or to classify sample groups depending on their origin. 

 

Metabolomics and fluxomics methods actually include several complementary approaches.3 On 

the one hand, untargeted metabolomics focuses on the measurement and comparison of all 

detectable signals in a series of samples from different groups, followed by the assignment of 

relevant signals to metabolite structures, focusing on signals whose variation across sample 

groups is statistically different. On the other hand, targeted methods focus on the accurate and 

precise quantitation of a well-defined set of known metabolites. Between untargeted and 

targeted methods, some approaches are termed “semi-targeted” when they focus on a specific 

compound class, e.g. sugars, polar metabolites, etc. Fluxomics also focuses on small molecules, 

but involves isotopically labeled compounds which are used as tracers to determine the 

fluxome, ie. the complete set of metabolic fluxes in a living organism. The typical fluxomics 

approach consists in introducing a 13C-labeled precursor into the biological system, followed 

by an accurate measurement of the level of incorporation of 13C into metabolites.4 

 

Metabolomics and fluxomics involve well-defined workflows that include successive steps 

requiring complementary scientific expertise. A tailored design of the biological experiment is 

required to accurately answer a given biological question, and this requires the combined 

expertise of biologists and analytical chemists. Generating analytical data on biological samples 



requires the expertise of NMR or MS specialists, while the expertise of biostatisticians is often 

indispensable to exploit the resulting data.  

 

NMR and MS are from far the most widely used methods for metabolomics studies. The 

advantages and drawbacks of the two methods for the study of complex metabolite mixtures 

have been extensively reviewed.5-8 They are often summarized by a better reproducibility and 

a more reliable metabolite structure identification for NMR, versus a much higher sensitivity 

for MS, although this is certainly a reductive judgment from both sides. In fact, the two 

techniques are highly complementary, and an increasing number of metabolomics studies have 

reported the combined used of MS and NMR, either to improve metabolite identification or 

even in combined multi-platform data integration strategies to improve group classification. In 

fluxomics, the complementarity between the two techniques is even stronger. While MS 

provides sensitive information on the fractional enrichment of mass isotopomers, NMR 

provides detailed positional information on isotope enrichments.9 For all these reasons, an 

increasing number of analytical platforms report the joint use of NMR and MS on a routine 

basis.  

 

In spite of this complementarity, the proportion of MS-based experiments in metabolomics has 

increased much faster than the proportion of those relying on NMR, over the last decade.10 

There are certainly multiple and complex reasons explaining this situation, such as the easier 

accessibility to MS instruments, and the higher associated sensitivity. But intriguingly, the last 

20 years have also witnessed tremendous developments in liquid-state NMR spectroscopy, 

which have been little applied to metabolomics and fluxomics, although these fields would 

highly benefit from the new tools that the NMR community has been developing for the analysis 

of mixtures. Indeed, the vast majority of routine NMR metabolomics analyses rely on 1D 1H 

pulse sequences with solvent signal suppression schemes.11 A limited number of 2D 

experiments are also used to help with structural elucidation,12 and also in fluxomics to facilitate 

the measurement of positional 13C isotopic enrichments.13 But most of the recent developments 

which have been driving the small molecule NMR community for the last 20 years (e.g. fast 

2D methods, pure-shift spectroscopy, hyperpolarization, etc.) are not part of the daily arsenal 

in NMR metabolomics. One of the possible reasons lies in the limited connections between the 

historical NMR groups who have been driving the field for 50 years and the large community 

of NMR users who are involved in practical metabolomics studies. Unlike the MS community, 

who has devoted lots of efforts to the development of “omics” sciences, most NMR 



spectroscopy groups have rather been focusing on applications in the fields of structural biology 

or material sciences. And the proportion of presentations on metabolomics and fluxomics is 

still quite low at NMR conferences. 

 

Fortunately, this paradigm seems to be rapidly changing at the beginning of the 2020s. On the 

one hand, NMR methodology groups have realized that metabolomics and fluxomics provide a 

great diversity of complex samples that offer considerable and exciting spectroscopic 

challenges in terms of concentration, dynamic range and peak separation. On the other hand, 

metabolomics and fluxomics groups are increasingly aware of the resolution and sensitivity 

boost offered by new NMR developments. Eventually, an increasing number of research groups 

involve joint expertise of NMR spectroscopists and omics experts. Rather than being a 

comprehensive literature review, the present contribution aims at highlighting how emerging 

NMR methods currently act as a game changer for metabolomics and fluxomics, by being 

capable of meeting the most exciting challenges raised by a demanding end-users community. 

Metabolomics and fluxomics are discussed in parallel rather than separately, since they share a 

number of common features in terms of studied samples and analytical challenges. 

 

The following challenges –summarized in Figure 1– will be addressed in this review, focusing 

on how recent NMR advances enabled significant improvements for the analysis of 

metabolomics samples: peak overlap, low sensitivity, limited accessibility and difficulty in 

biomarker identification. Challenges pertaining to other parts of the metabolomics and 

fluxomics workflow (i.e., sample preparation, statistical analysis), while equally important, will 

not be addressed in details. Regarding peak overlap, we will describe how recent advances in 

multi-nuclear, multi-pulse and multi-dimensional NMR offer appealing solutions to disentangle 

overlapping peak resonances, thus making the analysis of metabolomics and fluxomics data 

easier, less ambiguous and more accurate. We will also describe solutions based on physical 

and chemical methods to simplify NMR spectra of complex mixtures. We will then discuss how 

recent sensitivity improvements based on higher magnetic fields, better probes, and 

hyperpolarization, have significantly reinforced the role of NMR. The accessibility challenge 

will be discussed in light of the recent advances in the development of benchtop NMR 

hardware, which offers promising performance for profiling applications on complex samples. 

Finally, we will attempt to illustrate how processing developments –alone or combined with 

MS methods– have facilitated the identification of relevant biomarkers from NMR spectra of 

complex metabolomics and fluxomics samples. Note that this review focuses on high-



throughput, in vitro analysis of biological sample collections, and that in vivo analysis is left 

out of the scope of the discussion, although this field will also certainly benefit from the 

developments described here. 

 

 

 
Figure 1. Overview of the current challenges in NMR-based metabolomics and fluxomics, and of the 

main solutions being explored by the research community. 
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Towards a better separation of metabolite signals 

 

Commonly studied samples in metabolomics, such as biofluids and extracts, can be qualified 

as “complex samples” from the analytical point of view. They contain a large diversity of 

metabolites, and although NMR can “only” detect a few hundreds of them, the corresponding 

signals are most often heavily overlapped. The resulting spectral complexity is further 

compounded by the strong solvent peak(s) – which can be efficiently suppressed with 

appropriate methods.14 Overall, the routine metabolomics workflow still suffers from 

ubiquitous peak overlaps that make the identification or quantification of metabolites 

ambiguous. In fluxomics, the overlap between peaks is even further complicated by the 

complexity of 13C isotopic patterns. Signal processing methods have been developed to 

deconvolute overlapping metabolite signals, both in the case of metabolomics15-17 and 

fluxomics.18 However, these approaches often rely on prior information on the metabolite 

resonances, and the corresponding databases are often specific of a given biological matrix. 

Moreover, deconvolution methods may fail when peak overlap is too strong.19  

In order to deal with this drawback, this section highlights how NMR metabolomics and 

fluxomics have recently benefited from emerging NMR methods which have been developed 

to disentangle overlapping resonances in small molecule mixtures, and are now increasingly 

applied to “real-life” omic studies. 

 

Heteronuclear 1D NMR spectroscopy 

A first strategy to deal with overlapping peaks in complex mixtures of metabolites is to rely on 

alternative nuclei. In the case of metabolites, 13C is particularly relevant since it is present in 

virtually all metabolites, and offers a much larger frequency range than 1H, leading to reduced 

overlap. Unfortunately, 13C NMR is also much less sensitive than 1H NMR, owing to its lower 

magnetogyric ratio (ca. ¼ of the proton value) and to a low natural abundance (1.1%). Still, 

metabolomics studies can benefit from direct 13C detection at natural abundance in the case of 

concentrated samples such as in food sciences. For instance, 13C NMR profiling has been 

successfully applied to the classification of coffee beans20 or olive oil.21 The development of 

more sensitive NMR probes also allowed the acquisition of natural abundance 13C spectra on 

biofluids.22, 23 Strategies to enhance the sensitivity of 13C NMR profiling based on polarization 

transfer methods have also been successfully implemented.24 In this case, only relative 

measurements are possible due to the peak-specific coefficient of proportionality between the 



NMR signal and the corresponding metabolite concentration. Another approach to enhance the 

sensitivity of 13C NMR detection is to rely on 13C-enrichment of the biological material. Of 

course, such enrichment forms the basis of 13C Metabolic Flux Analysis (MFA) or fluxomics, 

as it provides crucial information on the incorporation of labeled carbons by biological systems, 

ie. on metabolic pathways.2 

 

Multi-dimensional NMR 

Multi-dimensional NMR methods, and particularly 2D NMR, are often used to facilitate the 

attribution of peaks and to achieve structure elucidation. Indeed, 2D experiments offer the 

advantage of spreading overlapped peaks along two orthogonal dimensions, thus limiting peak 

overlap while providing additional information on chemical structures.25 Moreover, the great 

diversity of multi-dimensional pulse sequences makes it possible to choose the best compromise 

between sensitivity, rapidity and peak separation. The typical 2D NMR experiments used in 

metabolomics are J-resolved spectroscopy, homonuclear 2D correlation experiments such as 

TOCSY (total correlation spectroscopy) or heteronuclear 2D correlation experiments such as 

HSQC (heteronuclear single-quantum correlation).26 However, these experiments are generally 

recorded on a small subset of samples from a given study. Moreover, they are mostly used for 

peak identification and the information on peak volumes is often not exploited. The situation is 

slightly different in fluxomics, where 2D experiments have become part of the daily arsenal to 

determine position-specific isotopic enrichments, from TOCSY or HSQC experiments.13 

The main reason why the use of multi-dimensional NMR is still not as widespread as it could 

be is the long experiment time required to record such spectra with a sufficient resolution and 

sensitivity.27 For instance, 2D experiments typically need the repetition of several hundreds of 

1D experiments, leading to experiment times between a few tens of minutes and several hours. 

Such durations are often not compatible with the high-throughput character required when 

analyzing large sample collections such as those typically encountered in metabolomics and 

fluxomics studies. Fortunately, the NMR community has developed a great variety of methods 

to accelerate multi-dimensional experiments.28 These methods include fast repetition 

techniques,29 spectral aliasing,30 non-uniform sampling (NUS)31 of the indirect dimension(s) or 

less conventional methods such as Hadamard32 or Ultrafast (UF)33 spectroscopies. It is only 

recently that some of these approaches have reached a sufficient level of maturity to be applied 

to metabolomics studies.25 Not only they are compatible with high-throughput studies, but it 

has been shown –at least in the case of UF NMR– that under certain conditions, fast acquisitions 



offer a higher repeatability than conventional 2D NMR since they are less sensitive to hardware 

instabilities.34 

The following paragraphs describe recent examples highlighting the potential of such rapid 2D 

NMR acquisitions for untargeted and targeted metabolomics, and for fluxomics as well. Figure 

2 illustrates some of these approaches in the case of UF 2D NMR, which has been chosen as an 

example since it has reached a sufficient level of maturity to be applied to these three research 

areas.35 Note that the principles of UF 2D NMR –which relies on a spatial encoding of the 

sample thanks to the combination of chirp pulses with magnetic field gradients– will not be 

described here but have been extensively reviewed in recent literature.35, 36 It is also fair to 

mention that UF 2D NMR suffers from a well-known sensitivity penalty compared to 

conventional NMR,36 which explains why UF 2D NMR is best suited to relatively concentrated 

metabolite samples such as extracts. 

  



 

 

Figure 2. Illustration of the potential of fast 2D NMR methods based on ultrafast 2D NMR (COSY in 

these examples) in metabolomics and fluxomics. (Top) Untargeted lipidomics performed by fast 2D 

COSY (30 min at 700 MHz) on pig lipid serum extracts efficiently separates samples from pigs treated 

with a growth promoter (ractopamine) versus control pigs.37 (Middle) Targeted quantification 

combining fast 2D COSY (5 min at 700 MHz) with a calibration approach accurately determines the 

concentration of metabolites with overlapped peaks in tomato extracts.38 (Bottom) Fast 2D COSY (3 

min at 400 MHz) with 13C-decoupling in the F2 dimension applied to 13C-enriched E. Coli. cell 

extracts makes it possible to measure position-specific isotope enrichments with a 1-2% accuracy.39 

 

 

In the case of untargeted analyses, 2D NMR could in principle be used as routine data 

acquisition tool, in addition to (or in replacement of) 1D spectra. Several studies have now 

demonstrated the input of using 2D NMR in the untargeted metabolomics workflow. One of 

the first papers along this direction was published by Van et al., who reported a higher 

performance of 2D TOCSY with zero-quantum filtering, versus 1D 1H NMR for metabolic 

profiling of urine sample from mice.40 They nicely demonstrated that statistical models obtained 
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from 2D spectra were more efficient than those obtain from 1D data to characterize statistically 

relevant changes in low abundance metabolites. However, the experiment duration associated 

with 2D spectra was extremely long (17 hours per spectrum based on the paper’s experimental 

parameters) and not suited to routine analysis. Later on, two studies demonstrated efficient data 

processing strategies to highlight statistically relevant biomarkers from 2D spectra, either based 

on pattern recognition41 or on image processing methods.42 However, experiments remained 

limited by their long duration, but the situation started to change ten years ago with the use of 

fast acquisition methods. In 2009, Ludwig et al. reported the use of Hadamard spectroscopy for 

untargeted metabolomics of colorectal cancer.43 In 2014, Le Guennec et al. investigated –on 

model samples– the impact of time-saving strategies such as NUS or UF, associated with 

classical bucketing data processing strategies.44 Their results showed that 2D spectra –including 

fast methods– provided a similar group separation compared to 1D data, but a much less 

ambiguous biomarker identification, that was attributed to a better peak separation. Féraud et 

al. reached a similar conclusion on 2D COSY data recorded on human urine samples, showing 

that 2D spectra provided a higher level of clustering after statistical analysis.45 In 2018, 

Marchand et al. applied fast 2D approaches (UF COSY and NUS TOCSY) on pig serum lipid 

extracts, to address chemical food safety issues associated with the administration of a growth 

promoter, ractopamine37 (Figure 2a). The results showed that fast 2D methods provided the 

same quality of clustering as 1D NMR, with no major time penalty. Moreover, 2D spectroscopy 

allowed a less ambiguous identification of biomarkers, again resulting from a better spreading 

of overlapped resonances. These results show that fast 2D NMR methods have reached a 

sufficient level of maturity to be applied in the routine untargeted metabolomics workflow. 

However, there are still limitations to their adoption by a large community, such as the lack of 

automated 2D bucketing tools, or –in the case of UF 2D NMR– the time and expertise needed 

to implement the method on a spectrometer. 

Fast 2D NMR methods also appear to be very promising for targeted quantitative metabolomics. 

When one needs to accurately determine the concentration of targeted analytes in complex 

mixtures, 2D NMR provides an appealing solution to the peak overlap issue. However, 2D 

NMR pulse sequences do not provide immediate quantitative information contrary to 1D NMR. 

Indeed, as in 1D NMR, the signal (peak volume) is proportional to concentration, but the 

coefficient of proportionality is different for each peak, owing to the multi-pulse nature of 2D 

pulse sequences. Several strategies have been considered to circumvent this limitation.46 The 

first one consists in calibrating the response factor of each peak of interest (at least one per 

targeted metabolite) by external calibration or standard additions.47, 48 This procedure can lead 



to accurate quantification (ca. 1-2%), and multiple peaks can be calibrated simultaneously by 

carefully designing a single series of calibration mixtures containing all the targeted analytes in 

known concentration. However, it requires that the analytes are available as commercial 

standards of known purity. This is the case for most primary metabolites, but may be more 

problematic for specialized metabolites. An alternative consists in designing specific 2D NMR 

pulse sequences where the coefficient that correlates the concentration with peak volumes is 

approximately the same for each peak. Such performance has been reached so far for the HSQC 

pulse sequence, thanks to a variety of methods that compensate for the impact of J-couplings 

on peak volumes.49-52 These methods make it possible to quantify multiple analytes from 2D 

spectra using a single internal reference, exactly like in 1D NMR. However, most of them are 

less accurate as they do not compensate for differences in transverse relaxation times between 

analytes. An exception is the HSQC0 method, however it requires long experiment times (3 

spectra for each sample) which are not really compatible with high-throughput metabolomics.52  

These various targeted quantitative approaches have already been successfully applied to a 

broad diversity of samples and studies. In most cases, fast 2D experiments were crucial to 

ensure that the method would be applicable in routine, but also to limit the impact of the 

spectrometer variability in the course of the experiment. In 2012, Martineau et al. applied a 

homonuclear double-quantum experiment with optimized experimental parameters to 

determine the concentration of multiple major metabolites with a standard addition approach.48 

Similar results on the same biological matrix were obtained by Le Guennec et al. with a UF 

COSY experiment. Later on, Jézéquel et al. applied UF COSY with an external calibration 

method to accurately quantify major metabolites in polar extracts of tomato fruit.38 (Figure 2b). 

Other recent applications of quantitative 2D NMR with calibration strategies or standard 

additions include the concentration determination of cyclodextrins in blood plasma7 or of 

taurine in energy drinks.53 As for direct quantitative HSQC methods, they have also been 

successfully applied to solve various quantification issues, such as the concentration 

determination of sugar phosphates in plants8 or the quantification of natural products in herbal 

supplements.19 The latter example is particularly interesting, since it provides an example where 

1D peak overlap is so high that deconvolution approaches fail, thus justifying the need for 

quantitative 2D NMR methods. 

Fast 2D NMR methods have also found applications in the field of fluxomics, where 2D NMR 

was already used on a regular basis for the determination of position-specific isotope 

enrichments. Homonuclear UF COSY and UF TOCSY pulse sequences allowed the accurate 

determination of such enrichments in E. Coli extracts within 3 minutes only (versus several 



hours for the conventional experiment).39 A fast heteronuclear J-resolved experiment was also 

designed for the same purpose, both in a conventional54 and ultrafast version.55 Eventually, both 

approaches were combined with a fast 3D acquisition scheme capable of providing an excellent 

separation between overlapped metabolite peaks in an UF 2D COSY plane, while retaining the 

isotope enrichment information in an orthogonal dimension.56 A few minutes only were 

required to record the 3D spectrum, while hours would have been needed to reach the same 

result with conventional acquisition strategies. More recently, a fast repetition 2D HSQC 

method (the ALSOFAST-HSQC) was applied to study the impact of antioxidant gold 

nanoparticles on cancer cells grown on a 13C glucose-enriched medium. Within 30 minutes, a 

highly resolved HSQC spectrum was obtained, showing characteristic isotope patterns for each 

13C position, opening interesting perspectives for fluxomics.57 

The above-mentioned examples highlight the potential of fast 2D NMR acquisition strategies 

in various areas of metabolomics and fluxomics. At the time of writing, these methods are still 

not used on a routine basis in most research laboratories. Communication efforts are necessary 

to make end-users aware of recent methodological advances, as well as efforts to automate the 

acquisition and processing of fast 2D spectra. Finally, developments are still very active in this 

field and one should also pay attention to recently developed alternative fast 2D methods, such 

as absolute minimum sampling, which have not yet been applied to full metabolomics studies 

but have shown promising results on complex mixtures.58 Another interesting time-saving 

strategy was also recently suggested for 1D NMR, which consists in shortening longitudinal 

relaxation times by adding a paramagnetic co-solute.59 This approach could potentially be 

combined with the fast 2D experiments mentioned above. 

 

Pure-shift NMR 

While the methods described so far aimed at improving the separation between overlapped 

peaks, pure-shift NMR methods focus on the removal of homonuclear couplings on 1H spectra 

to turn all multiplets into singlets.60, 61 Different strategies have been described, such as those 

relying on simultaneous spectral and spatial selection, or on BIRD (bilinear rotation 

decoupling) building blocks. Those approaches are applicable both in 1D and 2D NMR and 

have the potential to greatly simplify the assignment and quantification of biomarkers in 

metabolomics. 

However, a major drawback of 1D pure-shift NMR method is that they suffer from low 

sensitivity –a few percent of the one from conventional 1D experiments. A second limitation is 

that they may be hampered by artefacts due to the data chunking mode used during acquisition, 



and also due to imperfect decoupling in the case of strongly coupled systems. This may explain 

why the application of 1D pure-shift NMR to metabolomics has been quite limited so far. 

However, the latter limitation was recently circumvented thanks to the SAPPHIRE-PSYCHE 

approach which is able to deliver “ultraclean” 1D pure-shift 1H spectra almost free of 

artefacts.62 Based on this approach, Lopez et al. recently demonstrated the very first successful 

application of 1D pure-shift NMR to a real metabolomics study on Physalis Peruviana fruit 

extracts from different Andean ecosystems.63 Figure 3 illustrates how this optimized 

SAPPHIRE-PSYCHE method leads to nicely homodecoupled 1H spectra while leading to much 

cleaner spectra than the original PSYCHE method. In this study, the spectra were processed 

with statistical analysis and compared to those obtained from conventional 1D 1H NMR data. 

The PLS separation between sample groups was found comparable between conventional and 

pure-shift 1H NMR, but the biomarker identification based on STOCSY analysis of the NMR 

data was improved with the pure-shift approach, leading to a much less ambiguous 

identification of biomarkers. While the approach is limited in terms of sensitivity, the spectra 

obtained with the SAPPHIRE-PSYCHE method are much less prone to artefacts than other 

pure-shift methods, and this result certainly opens nice perspectives for the application of pure-

shift NMR to metabolomics. Another recent study should be noted, which reports the use of 

PSYCHE NMR with statistical analysis to detect adulteration of honey and to assess the 

geographical origin of tea.64 However, the results were less convincing compared to 

conventional 1D NMR, probably because the pulse sequence did not include the SAPPHIRE 

module, which further justifies the potential impact of this recent methodological advance. 

 

 

Figure 3. Selected expansion regions of 1H NMR (1H), PSYCHE (P), and SAPPHIRE (S) spectra of 

an aqueous extract of Cape gooseberry (Bambamarca I) showing signal assignments. Figure 



reproduced from Ref. 63 under Creative Commons Attribution 4.0 International License 

(http://creativecommons.org/licenses/by/4.0/) 

 

 

While 1D pure-shift NMR experiments are sensitivity-limited, this is not the case of 

heteronuclear 1H-13C 2D experiments where pure-shift spectra can be obtained in the 1H 

dimension at no cost in terms of sensitivity, and with a substantial gain in resolution. Such a 

pure-shift 2D HSQC approach was in fact included in the QUIPU approach, already mentioned 

in the previous section, which was successfully applied to various targeted quantitative 

studies.19, 51, 65 In 2019, Timári et al. suggested that the pure-shift 2D approach could be relevant 

for untargeted metabolomics;66 application to a real untargeted metabolomics study could be 

expected in the near future. Finally, the first application of pure-shift NMR to the field of 

fluxomics has been reported very recently by Sinnaeve et al., who developed a pure-shift 2D 

heteronuclear J-resolved experiment to extract position-specific 13C enrichments in heavily 

overlapped systems.67 

Since all the studies involving pure-shift NMR in metabolomics and fluxomics are less than 2 

years old at the time of writing, one could anticipate that pure-shift NMR will certainly find 

many successful applications in the field, particularly for samples offering sufficient metabolite 

concentrations. Together with the 2D NMR developments mentioned previously, this forms the 

demonstration that pulse sequence NMR developments have much to offer to the field, and that 

metabolomics and fluxomics would highly benefit from stronger interactions with the NMR 

methodology community. 

  



Towards more selective NMR experiments 

While the methods described in the previous section aimed at improving the separation between 

signals from all detectable metabolites in a mixture, an alternative is to reduce the number of 

observable analytes in order to yield simpler spectra. This approach may seem paradoxal in 

metabolomics, which by essence aims at detecting a maximum number of signals. However, 

when targeted information is sought, for instance on a specific class of molecules, or on 

molecules with specific properties, selective methods can be an efficient way of discriminating 

certain metabolite classes. While this strategy may be seen as a loss of universality of the NMR 

detector, it actually makes NMR closer to MS, which is by essence a selective method, 

particularly when coupled to chromatography. 

 

Molecule-selective pulse sequences 

A first strategy along this line is to rely on pulse sequence capable of filtering out the signal 

from certain classes of molecules. In the case of biofluids, a widely used method consists in 

using a CPMG (Carr-Purcell-Meiboom-Gill) pulse sequence before detection –possibly 

combined with a water presaturation scheme– so that the signals from large molecules (e.g., 

Proteins) are eliminated through T2 relaxation during the pulse sequence.68 This leads to a flatter 

baseline and enhances the contribution from smaller molecules. On the contrary, diffusion-

based filters make it possible to filter out the signals from fast-diffusing molecules (metabolites) 

while those from slow-diffusing molecules (lipids, proteins) can be observed.69 Recent 

examples in the literature highlight the complementarity of those methods in a variety of 

situations.29, 70 Concerning the diffusion-edited experiment, it is worth highlighting the 2D 

DOSY (diffusion-ordered spectroscopy) experiment, which has the potential to virtually 

separate signals from mixture components based on their diffusion coefficients.71 However, this 

method has been little applied in metabolomics studies, apart from examples where it was used 

for the identification of metabolites with overlapping signals.72, 73 

 

Physical and Chemical methods for spectral simplification 

Several approaches have been described that rely on physical of chemical discrimination of 

metabolite signals. The most obvious approach is to rely on the physical separation of mixture 

components through high-performance liquid chromatography (HPLC) prior to NMR 

detection.74 While regularly used in natural product chemistry for the identification of unknown 

metabolites, this approach has been of limited use in metabolomics, probably because it is not 



compatible with high-throughput analysis, but also because it is a dilutive technique associated 

with solvent gradients which are detrimental to the quality of NMR spectra. 

Other recent developments –mainly driven by the group of Bruschweiler– relies on selective 

interaction between metabolites and charged silica nanoparticles.75 Such nanoparticles are 

added to the NMR sample, and metabolites that bind to the nanoparticles experience strong line 

broadening. This leads to the selective suppression of the NMR signals of metabolites whose 

charge is opposite to the charge of the nanoparticles. Depending on the cationic or anionic 

nature of the nanoparticles, one can finely tune the resulting interaction, leading to the 

extinction of specific signals. Salvia et al. suggested an interesting complementary approach 

which consists in specifically targeting metabolites of interest by coating nanoparticles with 

ligands that would selectively bind to them.76 These “chemosensing” approaches leads to a 

spectral simplification that can be beneficial when spectra are overcrowded. Figure 4 shows 

how this method can significantly simplify 2D HSQC spectra of urine samples. On a side note, 

such nanoparticles can also be used  at the sample preparation stage, prior to the NMR detection, 

to remove the proteins from serum samples.75 While these methods appear promising, their 

application to real case studies in metabolomics or fluxomics has not been demonstrated yet. 

 

Figure 4. 1D 1H and 2D 13C–1H HSQC spectra of 10-compound model mixture (a) without and (b) 

with anionic silica nanoparticles (SNPs). Red and blue squares highlight the cross-peaks that are 

suppressed by the presence of SNPs. Reprinted with permission from Ref. 75. Copyright 2016 

American Chemical Society 



Towards more sensitive NMR metabolomics 

Magnets and probes 

The low sensitivity of NMR is certainly the major bottleneck for its broad application in the 

field of metabolomics, particularly when compared to MS. NMR is inherently affected by the 

weak nuclear polarization. For instance, at a 14 T magnetic field operating at 300 K –the typical 

configuration for metabolomics– the polarization of 1H is only 0.000008. This leads to limits 

of detection in the µM range, which is good enough for the detection of primary metabolites in 

biofluids, but not adapted to the detection of specialized metabolites in plant samples, for 

instance. 

Fortunately, numerous recent developments have paved the way towards more sensitive NMR 

metabolomics and fluxomics, announcing a better complementarity between NMR and MS in 

the near future. A straightforward –but technically challenging– approach consists in increasing 

the magnetic field. Traditional NMR metabolomics experiment are performed at a 1H Larmor 

frequency between 500 and 800 MHz, but commercial magnets are now available at up to 1.2 

GHz,77 whose potential for metabolomics remains to be explored –although preliminary spectra 

on biofluids have been recently reported63. Since the NMR sensitivity scales with B0
3/2, a 

sensitivity gain of ca. 2.8 can be obtained by switching from 600 MHz to 1.2 GHz, which may 

seem useless when considering the price difference (a factor of ca. 15 between the two 

equipments at the time of writing). However, this magnetic field increase would in principle 

translate to a considerable 7.8 gain in experiment time –a game changer for high-throughput 

applications. In addition, higher magnetic fields also come with an improvement in spectral 

dispersion that can help to better separate overlapping signals. The impact of very high 

magnetic fields for routine metabolomics or fluxomics has not been systematically evaluated 

yet, but preliminary data at very high field5 (Figure 5) highlight their potential to detect small 

signals from metabolites in overcrowded regions. 

An alternative technological approach to improve sensitivity is the development of more 

sensitive probes that help maximizing the signal-to-noise ratio (SNR). This is the case of 

cryogenically cooled probes, capable of improving the SNR by a factor of 3 to 4.78 However, 

such probes are not well suited to samples with a high salinity, such as extracts dissolved in a 

buffer, as is often the case in plant metabolomics.79 Alternatively, microprobes have been 

designed to maximize the sensitivity for mass-limited samples. For instance, a 1.5 mm high 

temperature superconducting probe has been developed for 13C NMR metabolomics at natural 

abundance, which was successfully applied to Drosophila melanogaster extracts and mouse 



serum.23 Microprobes have also been developed under HR-MAS (high-resolution magic angle 

spinning) configurations, in order to work on small amounts of tissue samples.80 

Still with the aim to pursue the quest for a sensitive NMR detection of metabolites in mass-

limited samples, recent developments in the field of microfluidics seem particularly promising. 

For instance, Utz and co-workers recently developed a system that can detect metabolites at 

sub-millimolar concentrations in sample volumes of a few µL only.81 Such methods open very 

promising perspectives for analyses on very small samples –they could even make NMR a tool 

of choice for the emerging domains of single-cell metabolomics and fluxomics.82 

 

 

Figure 5. Demonstration of magnetic field strength and probe specificity on spectral 

resolution of bovine serum recorded with the same parameter set on three spectrometers 

working at 500, 700, and 950 MHz proton frequencies at 25 °C. Figure reproduced from Ref.5 

under Creative Commons Attribution 4.0 International License 

(http://creativecommons.org/licenses/by/4.0/) 

 

 

Hyperpolarization 

While the microprobe and microfluidics strategies mentioned above achieve an impressive 

performance in reducing the sample mass needed for NMR metabolomics and fluxomics, they 

do not act much on the limit of detection in terms of molar concentration. Such a goal could be 

reached in a near future through the application of hyperpolarization methods that can enhance 

the NMR sensitivity by up to 4 orders of magnitude by drastically enhancing the nuclear 

polarization. Among the hyperpolarization methods, two techniques have been recently applied 

to samples with metabolomics or fluxomics relevance. The first approach is the use of para-



hydrogen to transfer the transfer of hyperpolarization from H2 in the para state to the nuclear 

spins of analytes. The most general implementation of this method is the SABRE technique 

(signal amplification by reversible exchange) where an iridium-based metal complex is used to 

transfer the hyperpolarization to the analytes in a reversible fashion.83 While this method is 

limited to metabolites that can bind to this iridum catalyst –although attempts have been made 

to make it more versatile84– it is relatively simple to implement, and the reversible interaction 

makes the approach compatible with the acquisition of multi-dimensional experiments.85 Under 

certain conditions, the SABRE method can even be used for quantitative analysis when 

combined with a standard addition method.86 This approach was successfully applied by Tessari 

et al. to quantify analytes at low micromolar concentrations in natural extracts.87 It should be 

noted that the short lifetimes of SABRE-enhanced signals make the use of multidimensional 

cumbersome, but this drawback can be circumvented by combining it with UF 2D NMR 88, 89 

or by relying on flow or shuttling systems that enable multi-scan experiments.85, 90 

A second approach is the use of dissolution dynamic nuclear polarization (D-DNP), where the 

sample is mixed with free radicals in a solution that forms a glass upon freezing at 1-2 K.91, 92 

Under such a glassy state, the polarization can be transferred from electrons to nuclei by 

irradiating the sample with microwaves. The frozen sample can then be quickly transferred to 

a liquid-state NMR spectrometer where signals enhanced by several orders of magnitude 

compared to a classical NMR experiment can be obtained. This approach is very general, since 

it can in principle enhance the signal of all metabolites in a mixture. However, it is technically 

demanding as it requires specific and expensive hardware in addition to the NMR magnet. 

Moreover, the hyperpolarization decreases according to the apparent longitudinal relaxation 

times while the sample is being transferred, which makes current hardware mainly suited for 

13C NMR spectroscopy. Still, D-DNP has been successfully applied to cancer cell and plant 

extracts at natural 13C abundance93 (Figure 6), and Bornet et al. demonstrated an excellent 

repeatability (ca. 4%) for this method, making it compatible with the precision requirements of 

metabolomics.94 In addition, while D-DNP is an irreversible experiment which is not 

compatible with the time-incremented nature of conventional multi-dimensional NMR, 2D 

spectra can be recorded by relying on UF 2D experiments, as shown by Dumez et al. on 

extracts.93 Apart from this work at natural 13C abundance, Lerche and co-workers have 

developed an elegant approach that relies on the incubation of the targeted biological material 

(eg. cancer cells) prior to the D-DNP experiment.95 This approach has the double advantage 

that it benefits from an enhanced sensitivity thanks to 13C labeling, while providing selective 

information on metabolic pathways through the detection of a limited number of metabolites –



those which have incorporated the initial 13C labels. This strategy opens the way to 

hyperpolarized fluxomics applications.  

Considering the current limitations in terms of sample transfer between the polarizer and the 

liquid-state spectrometer (several seconds), one can anticipate that D-DNP will mainly open 

perspectives to enhance the sensitivity of 13C NMR metabolomics. But the technique is rapidly 

improving,96 and the development of rapid dissolution and transfer systems should make D-

DNP compatible with the detection of hyperpolarized 1H spectra, opening considerable 

perspectives for metabolomics and fluxomics. 

 

 

Figure 6. Quaternary region of 13C NMR spectra of green tomato fruit pericarp extracts. (Top) Single-

scan 13C NMR spectrum of a 20 mg extract (prepared from 20 mg lyophilized ground tissue) recorded 

with a single 90° pulse after D-DNP boosted by cross polarization. Th extract was first dissolved in 

200 μL of a mixture of H2O/D2O/glycerol-d8 (1:4:5) doped with 50 mM TEMPOL, then polarized for 

28 min at 1.2 K and 6.7 T, and finally dissolved with 5 mL of hot D2O and transferred to a 500 MHz 

spectrometer equipped with a cryogenic probe. (Bottom) Conventional spectrum, obtained without 

hyperpolarization, of an identical extract dissolved in 700 μL of D2O, recorded with 1024 scans (11 h 

45 min) at 700 MHz using a cryogenic probe. Adapted with permission from Ref. 94. Copyright 2016 

American Chemical Society. 
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Towards more accessible NMR metabolomics 

In addition to its lower sensitivity, the limited accessibility of NMR is certainly the second 

reason explaining that is it less widespread than MS in metabolomics and fluxomics 

applications. This accessibility arises from complex reasons that combine the cost and 

heaviness of the NMR equipment –often judged as prohibitive even though operating costs are 

much lower than for MS– with its high level of technicity, including the need to handle 

cryogenic fluids to fill superconducting magnets. Therefore, there is a major challenge in 

making NMR more accessible, and several manufacturers have been tackling it since 2013 with 

the development of compact NMR spectrometers.97 Such low-field magnets (1H resonance 

between 40 to 100 MHz) are transportable (<100 kg), low-cost (<100 000 €) and rely on 

permanent magnets that do not require any specific operation (apart from a well-regulated room 

temperature). 

Writing about such magnets –which have been initially developed for teaching and 

reaction/process monitoring purposes– may seem in contradiction with the resolution and 

sensitivity limitations of NMR metabolomics and fluxomics. Indeed, a 60 MHz magnet is –

regardless of probe homogeneity considerations– more than 30 times less sensitive than a 600 

MHz one, and peaks are much more overlapped owing to the limited frequency range (10 ppm 

corresponds to 600 Hz on a 60 MHz spectrometer, versus 6000 Hz on a 600 MHz spectrometer). 

Therefore, there is little chance that such compact spectrometers could replace high-field NMR 

instruments for the discovery of new biomarkers. However, when considering untargeted 

approaches which aim at separating sample groups for classification purposes (diagnosis, 

authentication…), fingerprinting strategies relying on the bucketing of the 1H NMR fingerprint 

could contain enough information to provide the expected group separation. This is particularly 

the case when sample amount is not limited, such as in extracts, food matrices or even urine 

samples.  

Such metabolomics classification approaches using benchtop NMR instruments have already 

been reported in the recent literature. An impressive study was published in 2018 by Percival 

et al., showing how a 60 MHz benchtop spectrometer could detect and quantify a dozen of 

metabolites in urine and serum, with limits of detection of ca. 25 µM.98 Incorporated within a 

classical metabolomics workflow, the benchtop method led to a very efficient group separation 

between urine samples from type 2 diabetic patients and healthy controls. Other illustrations of 

the potential of benchtop NMR metabolomics were reported in the so-called “foodomics” field, 

such as the discrimination between beef versus horse meat99 or the detection of adulteration of 



perilla oil with soybean oil.100 An application to the quality control of diesel fuel was also 

recently reported.101 Although not belonging to metabolomics in the strictest sense of the word, 

these profiling applications are very interesting, because they illustrate the potential of benchtop 

NMR to make metabolomics approaches accessible to fields of science and industry where 

NMR is not traditionally used. 

The potential of benchtop NMR for metabolomics is still unexplored, and all the applications 

mentioned above are less than 2 years old. Moreover, these applications relied on basic 1D 1H 

NMR experiments, thus not taking advantage of the full pulse sequence programming 

capabilities of NMR spectroscopy. In the last few years, the emergence of pulse programming 

capabilities on benchtop instruments, associated with the implementation of gradient coils –a 

basic ingredient of all modern pulse sequences– has made it possible to accelerate the 

implementation of classical high-field tools for the characterization of complex mixtures. The 

first UF 2D NMR spectra on a benchtop spectrometer were published by Gouilleux et al.,102 

then the first DOSY and pure-shift experiments at low field were also reported.103 The 

implementation of a gradient coil also allowed the implementation of advanced solvent 

suppression methods.104 The combination of benchtop NMR with SABRE hyperpolarization 

also opens promising perspectives to alleviate the sensitivity limitation of benchtop 

instruments.105 Such tools have the potential to maximize the potential of benchtop NMR 

metabolomics, and considering that their implementation is extremely recent, many interesting 

stories remain to be written. Along this line, Gouilleux et al. demonstrated that UF 2D COSY 

spectra of edible oils, recorded in 2.4 min on a 43 MHz benchtop spectrometer and processed 

with multivariate analysis, provided a much better discrimination of the botanical origin of 

edible oils than 1D spectra recorded in the same duration106 (Figure 7). This improved 

performance of fast 2D NMR was attributed to the better separation of overlapping lipid 

resonances. This result highlights the need for advanced pulse sequences to maximize the 

capabilities of benchtop instruments for metabolomics. 

 

 

 

 

 



 

Figure 7. Illustration of the potential of 2D experiments for the profiling of food samples with 

benchtop NMR spectroscopy. (Top) Ultrafast 2D COSY spectrum recorded in 2.4 min on a sunflower 

oil sample in non-deuterated chloroform. (Middle) PCA analysis obtained with such UF 2D NMR 

experiments on 23 edible oil samples from different botanical origins. (Bottom) PCA on the same 

sample set with standard 1D experiments and a variable bucketing approach. Reprinted from Ref. 106 

with permission from Elsevier. 
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Towards an improved identification of biomarkers 

The identification of known and unknown biomarkers in biological samples is one of the major 

challenges that both MS and NMR have to face in metabolomics. In MS, the challenge arises 

from the huge number of features that can be detected –up to 30,000 in blood for instance107 

and to the fact that a given feature does not correspond to a unique metabolite. In NMR, the 

main bottleneck is to identify peaks that belong to the same compound within complex and 

overlapped spectra patterns. Lots of efforts have recently been devoted to address this 

challenge.6 They include the development of dedicated 1D and 2D NMR methods combined 

with databases, as well as statistical methods based on correlations or ratio analysis. 

 

NMR methods and databases 

Most of the methods to better extract individual sub-spectra from mixtures rely on the 

combination of dedicated 1D and 2D pulse sequences with spiking experiments (when 

standards are available) and databases. In 1D NMR, selective TOCSY approaches have been 

developed to make the identification and quantification of individual metabolites easier, by 

helping to connect peaks which are part of the same spin system.108 This approach can even be 

combined with HPLC fractionation to help identifying unknown compounds in the case of very 

complex mixtures.109 But most identification approaches also rely on 2D NMR pulse sequences, 

among which TOCSY and 1H-13C HSQC are the most popular. 2D spectra are increasingly 

available in databases such as HMDB (Human Metabolome Database),110 BMRB (Biological 

Magnetic Resonance Data Bank),111 MMCD (Madison Metabolomics Consortium Database)112 

and PRIMe (Platform for RIKEN Metabolomics).113 Bruschweiler and co-workers proposed an 

improved algorithm named COLMAR (Complex Mixture Analysis by NMR) which has been 

made available on a web server and helps to identify metabolites from a database relying on 

HSQC, TOCSY and HSQC-TOCSY spectra.114 In parallel of these approaches, complementary 

efforts have focused on the use of 13C labeling to circumvent the sensitivity limitation of 13C 

NMR in these identification workflows. For instance, the DemixC method is based on the 

covariance processing of 13C-13C TOCSY spectra.115 

 

Using the above mentioned strategies combining 1D and 2D spectra with spiking experiments 

and databases, the NMR metabolomics community has obtained impressive results in terms of 

identification. For instance, Gowda and Raftery identified nearly 70 metabolites in human blood 

samples, 1/3 of which had not been previously reported.116 Wishart and co-workers managed 



to identify 209 metabolites in human urine relying on the combined use of NMR and 

databases.117 These impressive results highlight the performance of NMR as an essential 

identification tool in metabolomics, and such approaches will certainly benefit from the 

tremendous current advances in machine learning. 

 

Correlation and ratio analysis methods 

Correlation methods form an impressive set of approaches capable of identifying peaks that 

belong to the same metabolite, and they have also contributed to maximize the potential of 

NMR for the identification of metabolites in complex mixtures. The most widely used method 

is the STOCSY (statistical correlation spectroscopy) which correlates the intensity variables in 

a set of 1D spectra to generate a pseudo-two-dimensional NMR spectrum that displays the 

correlation among the peak intensities across the whole sample.118 Metabolites can be identified 

based on peaks showing the highest level of correlations. Research along this line is still very 

active, with the recent development of several variants.119, 120 

A slightly different approach has been recently published, that resembles the molecular network 

approach which is increasingly popular in the analysis of MS metabolomics data.121 In their so-

called « maximal clique » method, Li et al. developed an automated algorithm to analyse 

TOCSY spectra by representing peak connectivities as a mathematical graph, in which each 

subgraph can be assigned to an individual spin system.122 This original method offers a way to 

easily extract critical spin system information from 2D spectra. 

A last family of approaches relying on ratio analysis were recently developed by Raftery and 

co-workers to automate the extraction of relevant information from a set of NMR metabolomics 

spectra. The initial method, called RANSY (ratio analysis of nuclear magnetic resonance 

spectroscopy), identifies the peaks of individual metabolites by relying on the principles that 

the intensity ratios from a given metabolite are fixed.123 It first requires defining a « driving » 

peak belonging the compound of interest. Peak ratios derived from a set of NMR spectra are 

then divided by the ratios’ standard deviations across a sample set to generate the individual 

RANSY spectrum. Very recently, a derived version of this approach was described, called E-

RANSY (extractive ratio analysis NMR spectroscopy).124 In this approach, the NMR spectra of 

metabolic extracts obtained at different pH conditions from the same biological sample are 

compared through the ratio approach. Ratio methods (RANSY and E-RANSY) were shown to 

be significantly more efficient than the correlation approaches. Figure 8 illustrate the potential 

of such ratio methods in the case of urine. 

 



 

 

Figure 8. Comparison of the results of ratio analysis and correlation analysis of either extracted urine 

or intact urine spectra using the driving peak as indicated by the asterisk (*). The spectra shown are (a) 

E-RANSY, (b) RANSY, (c) E-STOCSY, (d) STOCSY, and (e) the intact urine 1D 1H NMR spectrum. 

The inset shows the structure of 4-hydroxyphenylacetic acid identified on the basis of E-RANSY. 

Peaks in the E-RANSY spectrum are labeled with the corresponding protons as labeled in the structure 

of the metabolite. For RANSY and STOCSY, intact urine NMR spectra were used; for E-RANSY and 

E-STOCSY, ethyl acetate extracted urine NMR spectra were used. Reproduced with permission from 

Ref. 124. Copyright 2019 Americal Chemical Society. 

 

 

Combined NMR/MS strategies 

The ultimate approach to an efficient identification of biomarkers would most likely rely on the 

combination of several analytical techniques, typically NMR and MS, to maximize the 

accessible structural information. In particular, accurate mass determination by MS can 

significantly improve the structure elucidation process by NMR. That being said, there are not 

many studies where both techniques have been employed synergystically, in particular due to 

the difficulty to extract information from specific metabolites without relying on purification 

steps. Some multivariate statistical analysis methods have been introduced that integrate NMR 

and MS, but they do not provide molecular structures.125, 126 

Significant efforts along this direction have been made by Bruschweiler and co-workers to 

efficiently combine both analytical methods for an easier identification of metabolites. For the 



identification of known metabolites (ie. those which are already present in databases), an 

NMR/MS translator has been developed127 which first identifies candidate structures from 1D 

and 2D NMR spectra associated with a database query, followed by the determination of the 

m/z ratio for the possible ions, adducts and fragments for these candidates. The calculated m/z 

ratios are then compared with the real mass spectrum to identify the structure of known 

metabolites. When signals from unknown metabolites are highlighted, a second approach to 

identify them is the SUMMIT MS/NMR approach, which works the other way around.128 The 

SUMMIT method first identifies the possible chemical formulas for all mixture components 

from accurate masses obtained by MS, and generates consistent candidate chemical structures 

corresponding to these formulas. Then, the NMR spectra of these candidates are predicted and 

compared with the experimental NMR spectra of the complex mixture to identify the structures 

matching the information obtained from both analytical methods. 

 

  



Conclusion 

The take home message of this review is that liquid-state NMR of complex mixtures is currently 

experiencing tremendous developments which have the potential to bring back NMR in the 

foreground of metabolomics and fluxomics. Most of these developments aim at making NMR 

more resolutive (fast 2D methods, pure-shift…), more sensitive (probes, hyperpolarization…), 

but also to maximize the structure elucidation capabilities of NMR. Still, these advanced 

methodological developments often come with a loss of the intrinsic characteristics of 1D 

NMR, such as its absolute quantitative properties or its non-destructive character. But NMR 

spectroscopists have shown great ability to deal with these drawbacks by suggesting clever 

analytical approaches. Eventually, readers should also keep an eye on the rapidly evolving field 

of benchtop NMR, since those portable instruments could make NMR profiling much more 

broadly accessible within the next decade.  

An additional message lies in the high complementarity between MS and NMR. While this 

complementarity was highlighted in the structure elucidation section of this review, other 

promising studies also recently highlighted such complementarity for the quantitative analysis 

of samples with metabolomics relevance.129, 130 In untargeted metabolomics, multiple studies 

have been showing the complementarity of the MS and NMR to solve specific biological 

questions.3, 131 But even more promising results arise from the recent development of advanced 

statistical approaches dedicated to the integration of analytical data from multiple platforms.132, 

133 While NMR has a lot to bring to metabolomics and fluxomics, these recent works certainly 

predict a bright future for multi-technique analytical workflows in the field. 
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