
HAL Id: hal-02507722
https://hal.science/hal-02507722v1

Submitted on 13 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Fused Pixel and Feature-based View
Reconstructions for Light Fields

Jinglei Shi, Xiaoran Jiang, Christine Guillemot

To cite this version:
Jinglei Shi, Xiaoran Jiang, Christine Guillemot. Learning Fused Pixel and Feature-based View Re-
constructions for Light Fields. CVPR 2020 - IEEE Conference on Computer Vision and Pattern
Recognition, Jun 2020, Seattle, United States. pp.1-10. �hal-02507722�

https://hal.science/hal-02507722v1
https://hal.archives-ouvertes.fr


Learning Fused Pixel and Feature-based View Reconstructions for Light Fields

Jinglei Shi* Xiaoran Jiang* Christine Guillemot
INRIA Rennes - Bretagne Atlantique, France

{firstname.lastname}@inria.fr

Abstract

In this paper, we present a learning-based framework for
light field view synthesis from a subset of input views. Build-
ing upon a light-weight optical flow estimation network to
obtain depth maps, our method employs two reconstruction
modules in pixel and feature domains respectively. For the
pixel-wise reconstruction, occlusions are explicitly handled
by a disparity-dependent interpolation filter, whereas in-
painting on disoccluded areas is learned by convolutional
layers. Due to disparity inconsistencies, the pixel-based re-
construction may lead to blurriness in highly textured areas
as well as on object contours. On the contrary, the feature-
based reconstruction well performs on high frequencies,
making the reconstruction in the two domains complemen-
tary. End-to-end learning is finally performed including a
fusion module merging pixel and feature-based reconstruc-
tions. Experimental results show that our method achieves
state-of-the-art performance on both synthetic and real-
world datasets, moreover, it is even able to extend light
fields’ baseline by extrapolating high quality views without
additional training.

1. Introduction
Light field imaging has recently attracted a lot of atten-

tion due to the emergence of commercial cameras and the
numerous applications, going from computational photog-
raphy to realistic rendering in augmented and virtual real-
ity applications, and field microscopy. Acquisition devices
have been designed either based on camera arrays [1], on
moving gantries[2], or on micro-lens arrays used in plenop-
tic cameras. Single hand-held 2D camera (e.g. cell phones)
paired with pose estimation techniques [3] can enable the
capture of light fields with high spatial resolution but lim-
ited angular resolution (or large baselines).

The problems of enhancing the light field angular res-
olution can be tackled from different perspectives, i.e. as
a problem of light field reconstruction from a subset of
views using signal priors (e.g. sparsity in the continuous
4D Fourier domain [4]), of angular super-resolution [5, 6]

(a) Pixel-based reconstruction (b) Feature-based reconstruction

(c) Fused view (d) Reference view

Figure 1. Visualization of the outputs (both in pixel domain and
frequency domain) at different stages of our framework.

or of view synthesis. While Image Based Rendering (IBR)
techniques have been predominant over the past years in the
field of view synthesis (see e.g. [7, 8]), this field has signif-
icantly evolved thanks to the emergence of learning-based
approaches.

Kalantari et al. [9] have been among the first propos-
ing a learning-based solution for view synthesis, by se-
quentially connecting two convolutional neural networks
(CNNs) dedicated respectively to depth estimation and
color fusion. However, due to imprecision of depth estima-
tion, the method tends to synthesize views with blurriness,
tearing and ghosting effects. In addition, it fails in occluded
regions for sparse light fields (with large baselines). In-
spired by the Multi-Plane Image (MPI) representation[10],
Mildenhall et al. [3] construct a framework that renders
novel views from irregularly sampled views. They apply
a 3D CNN to learn a MPI representation for each input
view from plane sweep volumes (PSVs). The MPIs are
then warped and merged to synthesize the target view. The
approach generates blurry results in the case of depth un-
certainty, and the use of PSV is computationally expensive.
Wu et al. [11] instead reconstruct light fields by fusing a
set of sheared epipolar plane images (EPIs) scored by a
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CNN. Boundary artifacts appear when the target views are
far from the source views.

In this paper, we propose a novel learning-based frame-
work to synthesize light field views from a sparse set of
input views. We design an end-to-end learning framework
combining two reconstruction strategies, one in the pixel
domain and the other in the feature space. A CNN is first
used to estimate disparity from the input views. Using the
estimated disparity, we project the input color views and
their features to the target view position. The features are
extracted using the lower layers of the VGG19 classification
network [12]. For the pixel-wise reconstruction, occlusions
are explicitly handled by a disparity-dependent interpola-
tion filter, and the target view is predicted based on warped
views using convolutional layers. For the feature-based re-
construction, multi-scale features at the target viewpoint are
successively reconstructed based on warped features from
the input views, and the reconstructed view is inferred from
the feature maps of the finest scale. Finally, a mask is
learned to merge the results of the pixel-wise and feature-
based reconstructions. The entire framework is trained in an
end-to-end fashion. Fig. 1 shows the reconstruction results
at different stages of the network.

Experimental results with both synthetic and real-world
light fields, with a large range of disparities between in-
put views, demonstrate that our proposed framework sig-
nificantly outperforms the state-of-the-art methods. Our ap-
proach gives excellent reconstruction quality on fine tex-
tures and object boundaries, despite the fact that interme-
diate disparity outputs may not be accurate and consistent
across input views. Furthermore, we show that our network
can also achieve competitive performances for light field
view extrapolation without additional training.

2. Related work
View synthesis has been a very active field of research

for many years. The methods have evolved from techniques
making an explicit use of geometry, such as depth image
based rendering (DIBR) techniques [13, 14], towards solu-
tions based on plane sweep volumes (PSV) and not requir-
ing explicit depth information [10]. End-to-end learning
methods have also been considered using depth learned in
an unsupervised manner and specifically for the view syn-
thesis task [9]. More recently, deep neural networks have
been proposed for learning Multi-Plane Images (MPI) rep-
resentations, first for stereo views [10]. The MPIs can be
interpolated for generating novel views by exploiting no-
tions of visibility or transparency with alpha blending maps
[10, 15]. This method has been extended to unstructured
light fields in [3] leading to state-of-the-art view synthesis
results. In parallel, light field reconstruction methods ex-
ploiting signal priors, e.g. sparsity priors in the 4D Fourier
domain [4, 16], sparsity in the shearlet transform domain

[6], smoothness on Epipolar Plane Images (EPI) [5] have
also been proposed for view synthesis. In this section, we
focus on methods that are recent and the most closely re-
lated to the proposed one, i.e. learning-based solutions as
well as those using the concepts of PSV and MPI that are
used as benchmarks in the experimental section.

2.1. Depth image based rendering w/wo learning

Traditional image based rendering techniques proceed in
two steps. They first estimate the geometry (the depth) and
then warp the source views into the target positions. This is
the case for example of [14]. However, the quality of the re-
sults very much depends on the accuracy of the depth maps,
and estimating accurate depth maps remains a challenging
problem especially in presence of transparency, or gloss.

Layered representations decomposing the reflective parts
of a scene into a transmitted and a reflected layer have been
proposed in [17] to cope with the above difficulty. The lay-
ers rendered with their own geometry are then blended us-
ing some opaque mixing. This idea has been further de-
veloped with the concept of PSV constructed by warping
a given image into a target viewpoint using different depth
levels. The PSV, which can be seen as sampling the scene
in the depth direction, leading to depth planes, is now often
used as input of view synthesis algorithms. This is the case
in [8], where the source images are blended per sampled
depth with weights based on consensus and visibility scores
computed for each pixel and depth plane.

Kalantari et al. [9] adapt the conventional DIBR ap-
proach into an end-to-end learning framework. The authors
propose an architecture based on two CNNs, the first esti-
mates depth in each target viewpoint from the input views,
while the second predicts the color. The second CNN,
thanks to end-to-end learning, can correct warping errors
resulting from depth inaccuracies. They train the network
by minimizing the error between the synthesized and the
ground truth views. In the same vein, Srinivasan et al. [18]
propose to synthesize a light field from one single view, us-
ing a 2-stage learning process, estimating geometry first,
and then estimating occluded rays. The two methods above
are however limited to light fields with small baselines.

2.2. View synthesis with learned EPI interpolation

While the above methods are applied on light field views,
there also exist methods operating on epipolar plane im-
ages (EPI), in particular for angular interpolation or super-
resolution [4, 5, 6, 11, 16, 19, 20]. Focusing on learning-
based solutions, Wu et al. [19] model the light field re-
construction as a learning-based detail restoration in the
EPIs. They first apply a bi-cubic angular interpolation on
input EPIs from which spatial high frequencies have been
removed and use a CNN to restore details in the angular
domain of the interpolated EPIs. The spatial details are



then recovered by a non-blind deblur operation. This “blur-
restoration-deblur” framework does not require depth esti-
mation. Wang et al. [20] instead apply 3D convolutions on
EPI-volumes (stacked EPIs along rows or columns of the
light field) to restore high-frequency details, which allows
better using correlation within the light field data. Wu et al.
[11] train a CNN to evaluate sheared EPIs, and output a ref-
erence score which is then used for fusing the sheared EPIs.
However, the methods relying on EPI structures work well
only if the baseline is small.

2.3. View synthesis with learned representations

Using PSVs constructed from warped input views, Flynn
et al. [15] train two parallel CNNs, one for predicting the
color in each depth plane and the second one to predict the
probability that a pixel belongs to a particular depth plane.
The novel view is synthesized by element-wise multiplica-
tion of the outputs of both CNN and then by summing up
over the depth planes. Zhou et al. [10] train a deep network
to predict a MPI representation from a narrow-baseline
stereo image pair. Mildenhall et al. [3] extend this idea
to larger-baseline view interpolation from unstructured light
fields. As MPIs contain 3D information of the scene, it can
be used for view extrapolation as well. This learned MPI-
based solution gives state-of-the-art results in view synthe-
sis, in particular in the difficult case of large baselines and
unstructured light fields. The MPI representation has sim-
ilarity with LDI representation in [21], where the authors
also propose a differentiable interpolation technique based
on disparity values. Choi et al. [22] propose a view ex-
trapolation method with large baselines using learned depth
probability volumes together with an image refinement net-
work. Meng et al. [23] develop a learning framework based
on a two-stage restoration with a 4-dimensional convolu-
tional rsidual network for light field spatio-angular super-
resolution. Yeung et al. [24] follow a two-step approach
based on view synthesis network that first generates the
whole set of novel views, and a view refinement network
that retrieves spatial texture details.

While, in the same vein as [9], the proposed method in-
cludes learning depth information for view synthesis, it sig-
nificantly differs from [9] first by exploiting information of
warped features in addition to warped views, and second
by the methods used for disparity estimation and warping,
which limit the method in [9] to light fields with small base-
lines. Unlike methods extracting structures from EPI for
view interpolation, the proposed method exploits features
extracted from views using VGG19 network [12]. We show
that the warped features bring complementary information
to warped views to better deal with fine textures and with
occluded regions.

3. Methodology
3.1. Overview

Let us denote a light field by a 4-dimensional func-
tion L(x, y, u, v), where (x, y) ∈ J1;XK × J1;Y K and
(u, v) ∈ J1;UK × J1;V K are respectively spatial and an-
gular coordinates. The sub-aperture image L(x, y, ui, vi) at
the angular position i = (ui, vi) is referred to as Li.

We aim at reconstructing the novel view at the target po-
sition t from a set of input views I = {Li1 , ..., LiN}. In this
work, the set I contains sparsely sampled 2× 2 views. For
convenience, these views are also denoted by Ltl (top left),
Ltr (top right), Lbl (bottom left) and Lbr (bottom right).

Fig. 2 shows our learning-based framework. First, a
lightweight disparity estimator module (in blue) estimates
one disparity map for each input view. Two parallel re-
construction schemes are then applied. The target view is
synthesized either by PixRNet (Pixel-wise Reconstruction
Network) or FeatRNet (Feature-based Reconstruction Net-
work). For the pixel-wise scheme, given the disparity es-
timates, the input views are first projected to the target po-
sition by applying forward warping. PixRNet takes as in-
put the projected views as well as their occlusion masks to
synthesize the novel view. PixRNet provides accurate pixel
values in lowly textured areas. However, due to inconsisten-
cies between disparity values estimated for the different in-
put views, a simple fusion in the pixel space of the projected
views may lead to blurriness in highly textured areas as well
as on object contours. FeatRNet is thus designed to com-
pensate for this drawback. In FeatRNet, the reconstruction
is based on low-level features inferred for the novel view-
point. Extracted from lower layers of VGG19-Net [12], the
features of the input views are warped to the target position
at different resolution scales to generate the corresponding
target view features, from which the decoder reconstructs
the color view. Finally, a learned combination mask merges
the outputs of both PixRNet and FeatRNet.

3.2. Disparity estimation

Commonly, disparity refers to the distance between two
corresponding points in the left and right view of a stereo
pair. Assuming the light field views are well rectified and
regularly spaced, it is convenient to use “disparity” to refer
to pixel-wise distance between views (by abuse of language,
two points in a vertical image pair are separated by “vertical
disparity”).

Thus, given the input set I = {Ltl, Ltr, Lbl, Lbr}, two
disparity maps can be computed at each input viewpoint.
Let us take the view on the top left Ltl as an example, dis-
parity can be computed either between the horizontal pair
(Ltl, Ltr) or between the vertical pair (Ltl, Lbl) as

d1 = DNet(Ltl, Ltr), (1)

d2 = R−1 ◦ DNet(R(Ltl),R(Lbl)). (2)



Figure 2. Overview of our end-to-end framework. Given the corner views {Ltl, Ltr, Lbl, Lbr} as input, the depth estimator (blue) predicts
depths {dtl, dtr, dbl, dbr}. PixRNet (orange) reconstructs the target view L̂Pix

t based on the warped views {L̃tl
t , L̃

tr
t , L̃bl

t , L̃
br
t }. Parallelly,

FeatRNet (purple) infers the features of the target view based on warped multi-scale input features, extracted from bottom layers of VGG
network. The view L̂Feat

t is then reconstructed. Finally, L̂Pix
t and L̂Feat

t are merged by a learned mask M in the fusion module (green).

DNet is a convolutional neural network which estimates dis-
parity between two stereo views. In this work, we employ
a pre-trained PWC-Net model which is then finetuned by
light field image pairs on the same row. The symbols R(·)
andR−1(·) are counterclockwise and clockwise rotation of
90◦, which enables to treat vertical pairs in the same way as
horizontal ones.

A better map can be obtained by applying a simple pixel-
wise fusion of d1 and d2. Using either d1 or d2, Ltr, Lbl

and Lbr are projected to the top left position (the position
of Ltl). The corresponding warping error e1 (warping using
d1) or e2 (warping using d2), is computed by summing on
the three RGB color channels of the three warped views.
Finally, for each pixel p, the disparity value is selected as:

k′ = argmin
k

ek(p), d(p) = dk′(p). (3)

This part of the work has been inspired from Jiang et al.
[25], which uses FlowNet2 [26] as disparity estimation
module for corner views. Instead, we use the lightweight
PWC-Net architecture which makes possible the end-to-end
learning including other modules.

3.3. Pixel-wise reconstruction

The pixel-wise reconstruction module (PixRNet) follows
the conventional DIBR approach to generate novel views.
In particular, based on the estimated disparity maps, input
views are warped to the target position and then fused to
generate the final view. Similar design can be found in [9].
Apart from the fact that [9] first infers the disparity map
at the target position and then employs backward projec-
tion, and our scheme applies forward projection, the main
advantage of our scheme is the use of disparity-dependent
interpolation which handles occlusion.
Interpolation with occlusion handling. Let us project the
pixel p = (xp, yp) from the input viewpoint i to the target

viewpoint t, at a position with non-integer coordinates p̃ =
(xp̃, yp̃), with the disparity value di(p):

p̃ = p+ (t− i)di(p). (4)

The pixel value L̃t(q) at integer coordinates q = (xq, yq)
is interpolated from nearby values Li(p) as

L̃t(q) =

∑
p Li(p)W (p,q)∑

pW (p,q)
. (5)

The computation of the weights W (p,q) is crucial for end-
to-end learning performance. Three concerns should be
addressed: 1/-the weight computation should be differen-
tiable; 2/-as in traditional interpolation, the distance sep-
arating two pixels should be reflected in the weight; 3/-
occlusions should be handled. Therefore, we propose

W (p,q) = wD(p,q)wd(p) (6)

with wD being a coordinate distance metrics

wD(p,q) = l(xp̃, xq)l(yp̃, yq) (7)

where

l(x1, x2) =

{
(1− |x1 −x2|) if |x1 −x2| < 1

0 otherwise,
(8)

and wd a term handling occlusions defined as

wd(p) = exp(−λd∗i (p)). (9)

The disparity map di is normalized between 0 and 1 to be-
come d∗i . By taking the exponential function,wd gives more
importance to the foreground pixels (small normalized dis-
parity values) rather than background ones (large normal-
ized disparity values). Disparity normalization also avoids
weight saturation at large disparity values.



Disocclusion handling. We concatenate thereby four
warped views {L̃tl

t , L̃
tr
t , L̃

bl
t , L̃

br
t } and the corresponding

disocclusion masks {mtl
t ,m

tr
t ,m

bl
t ,m

br
t }. The detection

of the disocclusion mask is straightforward with forward
warping, which identifies spatial positions having no pro-
jected pixels in their neighborhood, i.e. Eq.(7) equals to
zero for all p. The inpainting on the disoccluded areas is
then handled by a small network of 4 convolutional layers
to obtain the reconstructed view L̂Pix

t . The loss function is
computed as the mean of absolute differences (MAD) be-
tween the reconstructed view and the ground truth:

L1 = MAD(L̂Pix
t , Lt). (10)

3.4. Feature-based reconstruction

Due to inconsistencies between disparity estimates for
the different input views, a simple fusion of the projected
views in the pixel space may lead to blurriness in highly
textured zones as well as on object contours. Thus, we pro-
pose the feature-based reconstruction module (FeatRNet) as
a complementary module of PixRNet.

For each input view Li, we extract low-level features:

∀Li ∈ I, {f1i , f2i , f3i } = FeatExt(Li) (11)

with FeatExt(·) being the operator that extracts features
from the layers relu1 2,relu2 2 and relu3 4 of a pre-trained
VGG19-Net, and fsi being feature volumes at scale s (the
resolution of the feature maps in fs+1

i is half of that in fsi ).
These features are then warped to the target position in a
similar manner as described in Section 3.3 for the pixels:

∀i,∀s, {f̃ i,st ,mi,s
t } = Warp(fsi , t). (12)

The warped features are input to convolutional layers to in-
fer a feature volume of the target view at each scale s:

f̂st =

{
Conv({f̃ i,st ,mi,s

t ,∀i}) if s = 3

Conv({f̃ i,st ,mi,s
t ,∀i}, ↑ f̂s+1

t ) if s = 1, 2.
(13)

At scale s=1 and 2, the inferred features at the previous
scale s + 1 are upsampled by 2 and fed into the network
as well. The upsampling operator ↑ is implemented by a
deconvolution layer. Finally, the target view L̂Feat

t is recon-
structed based on features at the finest scale f̂1t . The recon-
struction is supervised both in color and feature space by
computing

L2 = MAD(L̂Feat
t , Lt) +

3∑
s=1

γiMAD(f̂st , f
s
t ), (14)

where the second term in Eq.(14) represents the difference
between the inferred features and those of the ground truth
target view.

Note that the use of features has been exploited in re-
cent works for light field reconstruction. However, in most
of these works [3, 10], the reconstruction is supervised by
a perceptual loss minimizing the distance between features
computed on the reconstructed view and those of the refer-
ence view. Here, we propose instead a bottom-up approach.
We first compute the target view features by warping the
warped source view VGG features. The target view is then
inferred from the generated target view features. This is
motivated by the intuition that VGG features optimized for
object recognition can be good texture generative models.

3.5. End-to-end learning with fusion

End-to-end learning is finally performed including a fu-
sion module to merge L̂Pix

t and L̂Feat
t , making the final re-

construction L̂t well perform in both highly textured and
textureless areas. The fusion module learns a mask M
with values between 0 and 1 (forced by sigmoid activation),
which minimizes the pixel-wise reconstruction error:

L = MAD(L̂t, Lt) (15)

with
L̂t =ML̂Pix

t + (1−M)L̂Feat
t . (16)

4. Training details
We provide in the supplementary materials the structure

details for layers of PixRNet, FeatRNet and the fusion mod-
ule. The structure of PWC-Net, which is used as the dispar-
ity estimation module, can be found in [27].
Training schedule. End-to-end learning from scratch for
such a network containing multiple modules can be in-
tractable. In order to make sure that each module converges
well and the final view inference is correctly learned, we
follow a specific training schedule. We first finetune a pre-
trained PWC-Net with stereo pairs of light field views to
make it adapt to disparity estimation. Then, PixRNet and
FeatRNet are trained separately using the loss functions of
Eq.(10) and Eq.(14) respectively. At this stage, the weights
of PWC-Net are fixed for two reasons. The first is to ac-
celerate model convergence. The second reason is that, to
reduce the size of the complete model, we constrain the
two reconstruction schemes to use the same disparity. Fi-
nally, an end-to-end training including PWC-Net, PixRNet,
FeatRNet and the fusion module is performed. Note that
at this final stage, as our purpose is to minimize the pixel-
wise reconstruction error (Eq.(15)), the training is no longer
supervised by the feature-level reconstruction errors.

Our training data includes 94 synthetic light field scenes
[28, 29] and 100 real world scenes captured by a Lytro Il-
lum camera [9]. The model is first trained on synthetic light
fields, and then further finetuned with real ones. For both
training and finetuning, we work on light field patches of



size 160×160 and the batch size is 5. The model is trained
with a fixed learning rate of 0.00001 and the hyperparame-
ters are set as λ = 10, γ1 = 1/64, γ2 = 1/32, γ3 = 1/4.
The training takes approximately 5 days on a GPU Tesla
V100 with 32GB of memory. Our work is implemented
with the tensorflow package.

5. Experimental results

5.1. Synthetic data

We evaluate our framework with test light fields from
several synthetic datasets [28, 29, 30]. Our approach is
compared against four state-of-the-art view synthesis meth-
ods for light fields which represent well the recent trend in
the domain: conventional DIBR in a deep learning frame-
work (DeepBW [9]), synthesis via multi-layer scene rep-
resentation with learning (LLFF [3]) or without learning
(Soft3D [8]), and view interpolation based on learned EPI
structure (EPI [11]).

All reference methods except LLFF take 2 × 2 corner
views to generate intermediate views. The released model
of LLFF requires at least 5 input views. Thus, for com-
parison purposes, LLFF is tested with 2× 2 views together
with a fifth view which is the horizontal immediate neigh-
bor to the view Ltl. As the performance of learning-based
methods can be highly impacted by the training data, for
a fair comparison, all the pre-trained models are finetuned
with the same datasets that our model is trained on. We also
replace the estimated camera poses required by LLFF with
ground truth ones, in order to make sure that the error is
merely due to the reconstruction pipeline.

Table 1 compares the reconstruction quality of the center
view in terms of PSNR. The vanilla version of our model is
named FPFR. FPFR* refers to “test-time augmentation” of
our model: the test scene is rotated and flipped before being
processed by the network, and the final reconstructed im-
age is computed as the average of eight reconstructed views
(after inverse rotation and flipping operation) based on dif-
ferent versions of the same scene. Note that for comparison
purposes, PixRNet and FeatRNet can be trained separately
with the disparity estimation module to become two fully
independent view synthesis models on their own. We de-
note these two models “PurePix” and “PureFeat”, which
are also trained in an end-to-end fashion. Test light fields
are arranged according to their disparity range (from dense
to sparse). On average, our method (FPFR and FPFR*) sig-
nificantly outperforms other methods: a gain of nearly 2dB
is observed against the best reference method. Our method
performs especially well for highly textured scenes e.g. stil-
llife. Reconstruction error maps are shown in Fig. 3. One
can observe that our method generates less error on the ob-
ject contours and thin structures in textured regions (e.g. the
tablecloth in stilllife and the wallpaper in sideboard).

Furthermore, Fig. 4(a) shows that FPFR consistently
generates high quality views across different viewpoints,
whereas the reconstruction quality decreases for other meth-
ods when the target view is distant from the input views.

Note that the single mode schemes PurePix and PureFeat
also obtain competitive results in Table 1. In the same vein
as DeepBW [9], PurePix is on average 3.7dB better than
DeepBW, especially for sparse scenes. We believe that it
is mainly due to the occlusion and disocclusion handling in
our PixRNet design.

5.2. Real-world data

For real-world experiments, we use the same training
and test sets as used in [9]. For a fair comparison, all
learning-based models are finetuned with the same dataset.
Table 2 shows that our approach achieves the highest
PSNRs. Note that a gain of 4.5dB is obtained for the scene
leaves. As for synthetic data, similar observations can be
made in Fig. 3 for real-world scenes: we obtain more accu-
rate contours and well preserved textures.

5.3. Ablation study

Pixel vs. feature To put in evidence the different tasks
the pixel-wise and feature-based reconstruction carry out,
in Fig. 5 we show examples of feature maps taken from
the last layers in PixRNet and FeatRNet, from which the
color view is reconstructed. We observe highly enhanced
textures and clear line structures in FeatRNet feature maps,
whereas PixRNet feature maps can provide information
such as brightness, color and contrast, etc.
Feature-based reconstruction vs. perceptual loss A com-
mon practice to optimize the view reconstruction quality via
the feature space is to apply the so-called perceptual loss
[32] when performing end-to-end learning. To valid our
concept of merging the pixel-wise reconstruction with the
feature-based one, we compare FPFR with the single mode
scheme PurePix learned end-to-end with a perceptual loss.
In experiments, we observe that FPFR is about 0.7dB better.
Fusion vs. single mode With Fig. 6, we first analyse the
convergence behavior at different stages of the network (the
output of PixRNet L̂Pix

t in cyan, that of FeatRNet L̂Feat
t in

red, and the final output L̂t in blue). The fusion pushes
each mode to excel in its domain: the image L̂Pix

t is more
accurate on colors and low frequencies, whereas L̂Feat

t con-
tains a higher level of texture than the reference image (this
explains the clear degradation of the PSNR for L̂Feat

t during
training). Therefore, the final image L̂t (blue curve) obtains
better quality both in low and high frequencies (see Fig. 1).

In Fig. 6, we also compare FPFR with single mode
schemes PurePix (in green) and PureFeat (in yellow). A
clear advantage is observed for FPFR.
Single-scale vs. multi-scale A single-scale architecture
(s = 1) for feature-based reconstruction is compared with



LFs Disparity range DeepBW[9] Soft3D[8] LLFF[3] EPI[11] PurePix PureFeat FPFR FPFR*
mona† [-5,5] (10) 38.90 40.92 41.20 37.54 39.90 40.35 42.47 42.86

butterfly† [-6,8] (14) 40.68 42.75 41.35 39.61 41.64 39.33 42.69 42.96
buddha† [-10,6] (16) 41.08 41.86 40.66 40.05 41.24 40.99 42.78 43.06
cotton? [-9,9] (18) 47.24 48.95 47.07 47.97 48.18 46.45 48.58 48.76
boxes? [-7,13] (20) 33.64 32.14 34.97 31.65 33.44 33.90 33.86 34.46
dino? [-10,10] (20) 38.41 41.69 41.26 38.44 40.63 39.38 42.66 42.98

sideboard? [-10,12] (22) 30.91 30.23 32.33 27.30 29.43 30.79 31.85 32.18
Toy bricks� [-1,22] (23) 28.90 36.58 37.98 31.46 36.55 36.01 38.84 39.35

Elec devices� [-10,17] (27) 34.09 36.24 36.76 31.55 35.53 34.87 37.63 38.03
stilllife† [-16,16] (32) 26.29 34.73 32.73 32.02 33.96 32.77 36.39 37.05
Lion� [-5,29] (34) 28.05 35.18 35.22 33.91 35.10 34.99 35.47 35.59

Two vases� [-5,39] (44) 25.65 32.49 35.82 29.09 33.46 34.78 35.56 35.99
Sculpture� [-26,34] (60) 22.31 29.15 29.68 26.22 28.56 29.51 30.09 30.30

Bear� [-38,53] (91) 18.36 28.00 33.22 23.40 29.00 32.64 31.87 33.84
Average - 32.49 36.49 36.43 33.59 36.19 36.20 37.92 38.39

Table 1. Quantitative results (PSNR) for the reconstructed central view on the synthetic test light fields. The corresponding datasets are
indicated by symbols: ? [28], � [29] and † [30].

Light field view DeepBW [9] Soft3D [8] LLFF [3] EPI [11] FPFR

Figure 3. Visual comparison of reconstruction error maps for different methods.

LFs DeepBW[9] Soft3D[8] LLFF[3] EPI[11] FPFR*
Cars 31.53 27.68 29.06 28.17 32.25

Flower1 33.13 30.29 30.00 30.44 34.49
Flower2 31.95 30.52 28.90 29.26 34.19

Rock 34.32 32.67 32.60 32.46 36.75
Leaves 27.97 27.34 27.74 26.48 32.53

Seahorse 32.03 30.41 28.50 26.62 34.97
Average 31.82 29.82 29.47 28.90 33.91

Table 2. Quantitative results (PSNR) for the reconstructed view
(5,5) on the real-world data (8× 8 views) [9].

its multi-scale counterparts (s = 1, 2, 3). In experiments, a
gain of about 0.5dB is observed in favor of the multi-scale
architecture.

5.4. Extrapolation
Extrapolation of light fields with plausible disocclusions

can be a more difficult task than interpolation, since less in-
formation of the target view is known in the input views.
In Fig. 4(c), we evaluate the inherent capacity of our frame-
work to extrapolate against two reference methods FDL[31]



(a) PSNR for interpolated viewpoints (b) View indices (c) PSNR for extrapolated viewpoints

Figure 4. Average PSNR over 8 synthetic scenes ([28, 30]) for each novel viewpoint. (a) Interpolation. (c) Extrapolation. (b) View indices
for interpolation and extrapolation. 4 input views (red slash) are used for FPFR, DeepBW[9], EPI[11] or FDL[31], whereas 5 input views
(grey) are used for LLFF[3].

Figure 5. Feature maps taken from the last latent layers of PixRNet
and FeatRNet.

Figure 6. Learning curves of different end-to-end schemes (FPFR,
PurePix and PureFeat). For FPFR, the curves for intermediate out-
puts (L̂Pix

t and L̂Feat
t ) are also shown.

and LLFF [3]. As input, our method and FDL take 4 cor-

ner views (red slashes in Fig. 4(b)) of a subset of 3 × 3
views with narrow baseline. Since LLFF requires at least 5
views, the central view is also included in input views (grey
in Fig. 4(b)). The output is an extended light field with 9×9
views (4× baseline). One can observe that our method out-
performs reference methods by a large margin. Wider the
extended baseline, more important is our gain. Note that
both LLFF and our model are trained for interpolation tasks,
here we evaluate the inherent capacity to extrapolate with-
out any further training.

5.5. Limitations
Relying on disparity estimation, our method can be sub-

ject to errors for non-Lambertian surfaces. Moreover, even
though our method is demonstrated to be efficient for struc-
tured light fields, for unstructured ones, future works would
be needed by coupling the method with appropriate pose
estimation methods.

6. Conclusion
We have presented a novel learning-based model for

light field view synthesis. In order to obtain high quality
reconstruction both in low and high frequencies, end-to-end
learning is performed including a pixel-wise reconstruction
module and a feature-based reconstruction module. Experi-
ments have demonstrated that the proposed model achieves
state-of-the-art performance both for synthetic and real-
world light fields.
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