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1 Introduction

The term Distributed System typically refers to a set of entities, called nodes, connected by point-
to-point communication links. The set of nodes together with the set of links form a network,
which is usually represented by a graph. The term “system” is used to remark that nodes evolve
over time, i.e., they change their internal states according to some local interaction-rule, which
is applied in every time step (i.e. round).

Nowadays, many complex phenomena are studied using models that are de facto (dynamical)
distributed systems. Examples range from physics and biology, where the study of systems of
simple interacting entities (such as particles or bacteria) is an active research area, to modern
social sciences, with their focus on social networks of intelligent agents.

In physics, for example, the investigation of interacting particle systems has played a central
role in establishing statistical mechanics as a fundamental theory connecting the microscopic
behavior of elementary entities (e.g., molecules) to emerging, macroscopic phenomena [Lig12].

In systems biology, many natural processes exhibit complex behavior and can perform non-
trivial information-processing tasks, in many respects behaving as highly robust and adaptive
distributed systems of simple agents [Cha12, BCE+17].

Decades ago, inherently distributed models were introduced in social sciences to describe
emerging social phenomena, such as consensus and opinion formation [DeG74, FJ90]. More
recently, variants of these and other models have been revisited in an algorithmic perspective,
with the general intent of investigating emerging computational properties of social networks
of elementary computing entities [MS10, KMM+13, MNT14]. These algorithmic models pro-
vide powerful metaphors, capable of capturing important traits of emerging, complex social
behaviour. In a number of cases, they afforded a rigorous analysis of the collective ability of
social networks of simple agents to perform non-trivial coordination tasks.

1.1 Algorithmic perspective on emergent complexity

It is common opinion [FK13, NBJ15] that Theoretical Computer Science (TCS) is in a van-
tage point to achieve significant advances in our understanding of key emergent properties in
complex systems. Indeed, interpreting “computational entity” and “communication links” in a
broad sense, the use of the computational lens [Kar11] to investigate the myriad of algorithmic
processes evolved by such dynamical systems, currently represents one of the most significant
challenges in many research areas. In particular, a very interesting and fascinating issue is the
apparent difficulty to provide non-trivial mathematical characterizations of the Complexity From
Simplicity (for short CFS ) phenomenon, namely, the hidden interplay between simple local in-
teractions occurring at a microscopic level and global system evolution, often characterized by
complex and sometimes surprising forms of self-organizing behavior.

Distributed Computing (DC) naturally lends itself to addressing such questions, with its
focus on the design and analysis of systems of computational agents that collectively achieve
some global goal in an efficient and resilient way. If we set an emerging, observed “complex
behaviour” as the global goal of the system, while constraining agents to “simple” communication
and computational primitives that are consistent with the microscopic behaviour of a social or
natural system of interest, we are in fact investigating a form of the Complexity From Simplicity
phenomenon. The above description of the current state of affairs is not wishful thinking. From
programmable matter [DDG+14, CDRR16] to chemical reaction networks [CSWB09, Dot14,
CKW16, Reu16], from sensor networks [AAD+06a, AFJ06] to social insects’ behaviour [FHK14,
FN16], significant research efforts in distributed computing are driven by the pursuit of a theory
analogous to the one developed in statistical mechanics to characterize the behavior of interacting
particle systems, with the latter replaced by (simple) computing agents.
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One possible, algorithmic abstraction of the interplay between the microscopic and the
macroscopic scales of complex phenomena is the notion of Dynamics. In Distributed Com-
puting, the term Dynamics usually refers to simple interaction and computational rules, locally
implemented and applied by the nodes of an anonymous network. Currently, the study of
dynamics, their global properties and their application to perform fully decentralized compu-
tational tasks is an active research area. In a sense, an entire sub-area of Distributed Com-
puting is devoted to the investigation of problems that are inherently related to the CFS phe-
nomenon [AAE08, BCN+16, DGM+11, FHK14, MNT14]. Originally, the study of dynamics
in Distributed Computing was motivated by the quest for novel algorithmic paradigms in the
design of lightweight decentralized algorithms, with the goal of achieving levels of simplicity
comparable to those of interacting particle systems. As an early example, [HP01] analyzed the
famous Voter model [Lig12] (here, Voter dynamics), as a proportionate-consensus dynamics for
distributed systems.

As in other areas, computer simulations alone are unlikely to afford scientific breakthroughs
in the absence of new, robust theories. Distributed computational models can help understand
biological and social distributed systems. However, a long observed fact is that very few such
processes seem amenable to analytical treatment [Wol02]. This naturally raises the question of
whether it is possible to make significant advances towards a rigorous theory of dynamics.

The main goal of this survey is to provide an overview of a rich body of recent results, which
globally provide analytical evidence of important computational and self-organizing properties
of dynamics. In this survey, we mostly focus on results that address crucial aspects of these
distributed processes and in particular:

• Convergence time. If allowed to evolve from an initial configuration, dynamics may or not
converge to a stationary state (also known as steady states and absorbing configurations
[LPW09]). When this is the case, a key question is the time it takes to achieve conver-
gence. From a mathematical perspective, dynamics are typically Markov chains [LPW09].
Thus, in principle, one might leverage advanced techniques in Markov-chain theory and
concentration-of-measure tools, to provide tight bounds on the number of rounds required
by the system to reach a steady state in the absence of external perturbations. Conver-
gence time is a key measure to quantitatively describe the behavior of important epidemic
processes in biological systems and social networks [AAE08, Ald13, FHK15], as well as
to characterize the efficiency of algorithms that solve fundamental tasks in parallel and
distributed computing [BCN+16, BGPS06, DGH+87, DGM+11].

• Computational power. Another crucial and fascinating characterization of dynamics con-
cerns their ability to somehow “compute” and reflect global properties of a starting con-
figuration. This is extremely important, since initial configurations in many cases can be
regarded as a global input, collectively “sensed” from the environment by the nodes of the
system. Typical examples include the ability to efficiently converge to the global median
or to the average of the initial values held by nodes of the system [BGPS06, DGM+11].
Further basic tasks (listed here in increasing order of complexity) include reaching a valid
consensus [AAE08, BCN+16], a proportional (or fair) consensus [HP01] or, finally, plural-
ity consensus (see following sections for formal definitions of these notions). On one hand,
an algorithmic characterization of the properties above can be crucial to explain surpris-
ing forms of synchronization and coordination in agent populations. On the other hand,
decentralized mechanisms performing the aforementioned tasks are fundamental building-
blocks to address key problems, well beyond core primitives traditionally considered in
distributed computing [AW04].
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• Fault-tolerance and self-stabilization. Other interesting properties of dynamics reflect the
ability of many natural systems to achieve stronger or weaker forms of self-stabilization
[AFJ06, DGM+11, Dij74] in the presence of faulty or, even worse, malicious behavior
[DH07]. Informally, a dynamic process is said to be self-stabilizing if, starting from any
possible configuration, the system eventually reaches a legal configuration, i.e., one ex-
hibiting certain properties of interest. This property should be preserved in the presence
of a limited fraction of faulty/malicious nodes that depart from the dynamics’ local rule.
Self-stabilization is a fundamental desideratum in Distributed Computing [Dij74, Dol00a].
While self-stabilizing protocols do exist for specific problems, several impossibility results
have been obtained over the last decades [AAFJ08, BBK11, Dol00a, DKS10]. In this
survey, we discuss a number of examples, highlighting the somewhat surprising ability of
dynamics to achieve “relaxed”, yet effective forms of self-stabilization in important cases.

In the remainder, we consider the behaviour of dynamics under different models of distributed
communication, ranging from asynchronous population protocols [AAFJ08] to synchronous mod-
els, such as the LOCAL model [CKP16, DGM+11, CIG+15].
Disclaimer. This overview is definitely not complete, nor is it “fair”: Rather, it covers recent
contributions that mainly appeared in traditional venues of the Theoretical Computer Science
and Distributed Computing communities. One common trait of the results we discuss here
is the fascination they exerted on the authors of this survey, inducing them to focus on the
investigation of these distributed models over the past five years.

2 Preliminaries

As discussed in the previous section, the past few years have witnessed a surge in the de-
sign and analysis of elementary, yet fundamental synchronization and coordination primitives
in distributed systems, under models that severely constrain communication and computation
[AAE08, BCN+15, DGM+11]. This interest is motivated both from efficiency considerations
and because such models seem to capture key aspects of the way coordination and consensus are
achieved in social networks, biological systems, and other domains of interest in network science
[AAD+06a, AFJ06, DKS10, CKW16, Dot14, FHK14, FPM+02].

The next subsection provides an overview of the computation and communication models
we consider in the remainder of this survey. Subsection 2.2 introduces the notion of dynamics.
Finally, Subsection 2.3 describes the probabilistic notion of almost-stable consensus, which plays
a crucial role in essentially all results selected in this survey.

2.1 Distributed models

In the remainder of this survey, we use the terms agent and node interchangeably.
We assume an anonymous network, whose nodes/agents possess no unique IDs, nor do they

have any static binding of their local link ports (i.e., nodes cannot keep track of who sent what).
Computationally, unless otherwise specified, we assume the most restrictive setting in which
each node only has O(log |Σ|) bits of memory available, where Σ is an alphabet that describes
the set of possible, fundamental states for a node in the network.1 We further assume that
this bound extends to link bandwidth available in each round. In the most restrictive case, we
further assume that communication resources are severely constrained and non-deterministic:

1The meaning and size of Σ depend on the problem under consideration. For example, in consensus problems,
Σ will denote the set of available opinions or colors.
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Every node can communicate with at most a (small) constant number of random neighbors in
each round.

These constraints are well-captured by the uniform-gossip communication model [DGH+87,
KSSV00, KDG03]: In each round, every node can exchange a (short) message (say, Θ(log(|Σ|))
bits) with each of at most h random neighbors, with h a (small) absolute constant2. A more
recent, sequential variant of the uniform-gossip model is the (random) Population Protocol Model
[AAE08, AG15, AR07] where, in each round, a single interaction between a pair of randomly
selected nodes occurs3. In the asynchronous, sequential model, one oriented edge (u, v) of the
underlying graph is selected uniformly at random in each step. Upon selection, node u can “pull”
information from v and perform local computations4. This model is inspired by network scenarios
where a (random) link activation represents an opportunistic meeting that the endpoints can
exploit to interact in a single time step. Observe that this process is sequential, since only
one node can update its state in each round. Moreover, it is asynchronous, since nodes do not
share any global clock. Finally, the system is anonymous: nodes are not aware of theirs or their
neighbors’ identities. This model is also known as the (uniform) Population Protocol Model
[DEM+18].

In the parallel, synchronous model, called (uniform) GOSSIP nodes share a discrete-time
global clock. In each round, one edge is selected for every node, independently and uniformly at
random. Then, every node exchanges one message with its selected partner. Finally, each node
performs a local computation, possibly resulting in an update of its internal state. Communi-
cation can occur in two ways: a node can pull information from its randomly-selected partner,
or it can push information to it. We mostly consider the first variant, also known as the PULL
model.

Finally, we also consider the LOCAL model [Pel00, FKP13], which is intended to capture
the essential traits of locality in distributed computing. In this model, computation proceeds
in fault-free synchronous rounds, during which every agent can exchange messages with each of
its neighbors and perform a computational step. The averaging dynamics described in Section
7 in fact works in the LOCAL model. Though no assumption on the size of messages or
computational power of a single node are implied by the model, the examples we consider in
this survey are consistent with constraints on both.

2.2 Dynamics

Within the field of Distributed Computing, the focus of this work is on a class of distributed
processes that may resemble interacting particles systems in statistical mechanics [LM10, Lig12]:
the class of protocols we consider are simple and lightweight [HP01], their typical behavior
strongly relies on randomness, which constitutes an essential part of the process. Commonly,
they are referred to as dynamics [AAE08, AAB+11, Dot14, MNT14].

As in the case of natural algorithms and complex networks, the notion of dynamics is affected
by a clear discrepancy between the informal consensus about the meaning of the concept within

2In fact, h = 1 in the standard uniform-gossip model. In general, it is easy to see that all results we are
going to present in this survey still hold in this more restricted setting, at the cost of a constant slow-down in
convergence time and local memory size.

3We remark that, in the original definition of Population Protocols [AAD+06b], the sequence of edge-
activations is determined by a scheduler which does not need to be random; however, in this survey we focus on
the uniformly-random scheduler, which has been the standard assumption in the literature concerned with the
convergence time of the protocols.

4In an essentially equivalent continuous-time model, each (oriented) edge has a clock that ticks at random
intervals with a Poisson distribution of average 1; when the clock ticks, the endpoints of the edge become active.
For t larger than n logn, the behavior of the continuous time process for t/n units of time and the behavior of
the discrete-time process for t steps are roughly equivalent.
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the related experts’ community, and the lack of principled attempts at a rigorous definition,
which would be extremely useful, especially to outsiders.

For this reason, the first definition appearing in this survey is an attempt at a first formal-
ization5 of the notion of dynamics as simple, lightweight, natural, local, elementary rules.

Definition 1 (Dynamics). A dynamics is a distributed algorithm characterized by a very simple
structure. In particular, the state of a node at round t only depends on its state and a symmetric
function of the multi-set of states of its neighbors at round t − 1, while the update rule is the
same for every graph and for every node and it does not change over time.

Remark 1. Within the constraints of the previous definition, it may still be possible to come up
with computational rules that appear cumbersome and unnatural. We emphasize that the goal
of Definition 1 is to provide a reference, not to replace reliance of the scientific community on
the real world phenomena the concept is intended to capture. Definition 1 is therefore overtly
provisional and open to replacement by more suitable candidates.

=⇒ < <

=⇒ =⇒

?

3-Median
dynamics

3-Majority
dynamics

Undecided-state
dynamics

Figure 1: Illustration of the 3-Median dynamics (in which each agent samples two other agents
at random and updates her color with the median of their values and her own), the 3-Majority
(in which each agent samples three other agents at random and update her color with the most
frequent value among those three, breaking ties arbitrarily), and Undecided-State Dynamics (in
which each agent samples another agent, if their values differ she becomes undecided, and if she
is undecided she picks the first color she sees).

Note that Definition 1 implies that the network is anonymous, that is, nodes do not possess
distinguished identities. Examples of dynamics include update rules in which every node updates
its state to the plurality or the median of the states of its neighbors6 (see Figure 1), or which it
updates to the average of the values held by its neighbors7 (see Figure 1).

5The definition has already appeared in [BCN+17b].
6When states correspond to rational values.
7Actually, the averaging rule over rational numbers requires arbitrarily-high numerical precision, which often is
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In contrast, an algorithm that, say, proceeds in two phases, using averaging during the first
10 log n rounds and plurality from round 1+10 log n onward, with n the number of nodes, is not
a dynamics according to our definition, since its update rule depends on the size of the graph.
As another example, an algorithm that starts by having the lexicographically first node elected
as “leader” and then propagates her state to all other nodes again does not meet the definition
of dynamics, since it assigns roles to the nodes and requires them to possess distinguishable
identities.

2.3 Stable almost Consensus

Consensus and Plurality Consensus are simplified models of the way inconsistencies and dis-
agreements are resolved in social networks, biological systems and peer-to-peer systems [Dot14,
FPM+02, MNT14]. In distributed models that severely restrict the way in which nodes commu-
nicate (to model constraints that arise in peer-to-peer systems or in social or biological networks),
upper and lower bounds for Consensus protocols often give insights on how to break symmetry
in distributed networks in the case of balanced initial color configurations.

It is reasonable to claim that the main, initial interest of our scientific community to all
dynamics described in this survey was essentially motivated by their ability to achieve some form
of consensus. Consensus (a.k.a. Agreement) is a fundamental algorithmic problem that has been
studied under all available models of distributed computing. Several variants of this task have
been defined, depending on the underlying communication model, the presence of faults and/or
Byzantine agents, the specific properties required for the final legal system configuration, and
further important aspects. Its original version [Dij74, Dol00b, PSL80, Rab83] can be informally
defined as follows. A collection of agents, each holding a piece of information (an element of a
set Σ), interact with the goal of agreeing on one of the elements of Σ initially held by at least
one agent, possibly in the presence of an adversary that is trying to disrupt the protocol.

As for the Consensus task in the presence of an adversary (a.k.a. Byzantine Agreement)
[PSL80, Rab83], the goal is to design a distributed, local protocol that brings the system into a
configuration that meets the following criteria:

• (Agreement). All non-corrupted nodes support the same color v;

• (Validity). The color v must be a valid one, i.e., a color which was initially declared by
at least one (non-corrupted) node;

• (Termination). Every non-corrupted node can correctly decide to (locally) terminate the
protocol at some point.

The classic notion of Consensus is typically too strong and unrealistic in distributed settings
where dynamics are used as algorithmic models of natural or social phenomena. Self-organization
and other important properties shown by these systems rely on weaker forms of consensus, which
have been deeply investigated [AAE08, AFJ06, BCN+17b, DGM+11]. We thus consider a variant
of the Stable Consensus problem [AFJ06] considered in [AAE08]: There, a solution is required
to converge to a stable regime in which the above three properties are guaranteed in a relaxed,
yet useful form8. We formalize these notions in the paragraphs that follow.

not a reasonable assumption in several applications where agents have limited local memory. Still, we believe this
protocol should be considered a dynamics in the sense defined above, since it matches all properties required in
Definition 1 and well-describes microscopic behavior of many natural and social systems [HK05, OT09, XBK07].

8 These relaxed convergence properties are described in detail in Section 7 of [AAE08].
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We consider a distributed system of n nodes/agents, interacting over an underlying graph
G = (V,E) according to one of the communication models described in Subsection 2.1. In each
round, every node supports a color, i.e. an element i ∈ Σ = {1, 2, . . . , k} (with 2 6 k 6 n).
A configuration of the system is thus a function c : V → Σ. When G is the complete graph
and nodes are anonymous, the state of the system at any round is completely specified by a
color configuration c = 〈c1, . . . , ck〉 (where ci denotes the number of agents supporting color
i ∈ [k]). There can be an initial plurality c1 of agents supporting some plurality color (wlog, we
can assume that color communities are ordered, so that ci > ci+1 for any i 6 k − 1). Initially,
every node only knows its own color. In the remainder, the subset of agents supporting color i
is denoted as Ci.

Definition 2 (Stable almost Consensus). A stabilizing almost (Plurality) Consensus protocol
must ensure the following properties:

• (Almost agreement.) Starting from any initial configuration, in a finite number of rounds,
the system must reach a regime of configurations where all but a negligible “bad” subset
(i.e. having size O(nγ) for constant γ < 1) of the nodes support the same color.

• (Almost validity / Almost plurality). The system is required to converge w.h.p. to an
almost-agreement regime where all but a negligible bad set of nodes keep the same valid
color. In the case of stabilizing Almost Plurality Consensus, the almost-validity property is
replaced by the request to converge to an almost-agreement regime where all but a negligible
bad set of nodes hold the color that was initially supported by the plurality of the nodes,
assuming that there was some initial bias s w.r.t. all the other colors - see below for a
definition of bias.

• (Stability). The convergence toward such a weaker form of agreement is only guaranteed
to hold with high probability (in short, w.h.p.9) and only over a long period (i.e. for
any arbitrarily-large polynomial number of rounds).

Note that the above definition does not require the property of termination. In particular,
in dynamic distributed systems, nodes represent simple and anonymous computing units that
are not necessarily able to detect any global property, let alone termination.

The crucial parameters in the analysis of (Plurality) Consensus processes are the number n
of nodes, the number k of colors, and, in the case of Plurality Consensus, the initial bias towards
the plurality color. The latter is characterized in terms of a parameter that only depends on
the relative magnitude: Typically, this relative magnitude is defined in terms of the absolute
difference or the ratio between c1 and c2. Moreover, several analyses of Consensus processes we
describe in the following sections assume the presence of an F -bounded dynamic adversary that,
in each round, can arbitrarily change the color of any subset of nodes of size at most F . In this
framework, we say that a protocol is F -resilient if it guarantees the properties of Definition 2
even in the presence of F -bounded dynamic adversaries.

3 Voter dynamics

The Voter Model, which for consistency we call here Voter dynamics, is arguably the simplest
nontrivial dynamics: at each round, every node copies tha state of a neighbor sampled uniformly
at random. Here, by nontrivial we mean that the node is updating its state in a meaningful way
with respect to the states of its neighbors.

9 According to the standard definition, we say that a sequence of events En, n = 1, 2, . . . holds with high
probability if P (En) = 1−O(1/nλ) for some positive constant λ > 0.
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More formally, let G(V,E) be a connected graph with node set V (of cardinality n) and edge
set E (of cardinality m). Let Σ be a palette of colors of size n. Let d(u) be the number of
neighbours of u ∈ V .

Definition 3 (Voter dynamics). The Voter Model {Xt}t on G is the discrete time Markov
process where the state space is the set of color functions c : V 7→ Σ and its time evolution is
determined by the following elementary dynamics (denoted as Voter dynamics):

• Each node initially supports a color in Σ;

• In each round one node is selected uniformly at random and it adopts the color of a neigh-
bour sampled uniformly at random.

The asynchronous version of the Voter dynamics, in which at each round only one node
chosen uniformly at random updates its state, has long been studied in statistical mechanics as
a model for consensus formation in population of spinless individuals [KRBN10, Lig12, Ald13].

The study of the synchronous version of the model, in which all nodes update their state,
has been first considered in Distributed Computing in [HP01] as a proportionate agreement
protocol. The Proportionate Agreement problem is defined as follows. Given a network of n
nodes, where each node is initially supporting a color out of a set of k possibilities, we require
the system to eventually reach a configuration in which every node is supporting the same color
and, moreover, the final color should equal i with a probability proportional to the volume10 of
the initial set of nodes supporting i, for each i ∈ [k].

As usual, when the system reaches a configuration in which every node is supporting the
same color, we say that the system has reached Consensus.

The Proportionate Agreement problem is a special case of Consensus, which the further
constraint of a probability distribution on the color the system eventually agrees on.

As discussed in Section 1.1, many fundamental aspects of dynamics are often best described
in the language of Markov chains. In the following sections, we present the fundamental results
on the convergence probability and the convergence time of the Voter dynamics.

3.1 Fundamental results on the Voter dynamics

It is immediate to see that absorbing states11 of the Voter dynamics are the ones in which nodes
have reached consensus, i.e., those corresponding to monochromatic configurations. Probably
the first and most natural question one may ask is with which probability each monochromatic
configuration is reached, as a function of the initial color configuration.

[HP01] answered this question by providing, via an elegant martingale argument, the guaran-
tee for employing the Voter dynamics as a protocol for the Proportionate Agreement problem,
in which we want the system to reach consensus on color i with probability proportional to the
volume of the set of nodes initially supporting color i.

10The volume of a set of nodes S is defined as the sum of the degrees of nodes in S, in formulas vol(S) :=∑
u∈S du. In the general case of weighted graphs, we further have that du equals the sum of the weights of the

edges incidents to u, namely du :=
∑
v∼u w(u, v).

11We remark that the term state is used in quite different ways in theory of Markov chains and in the distributed
computing literature: in distributed computing the term state usually refers to a single node and a full description
of the system at a given time is referred to as configuration (thus, a configuration is often the vector of each node’s
state); on the contrary, the term state in the theory of Markov chains corresponds to that of configuration in
distributed computing. In this survey, for the sake of consistency, we employ the term state in the Markov-chain
sense when referring to absorbing states.
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Theorem 4 (Proportionate Agreement [HP01]). Let i be any color and e(0)i be the volume of

the nodes that support color i at t = 0; formally, e(0)i = {
∑

u:c(0)(u)=i du}. Then, e
(0)
i
2m is the

probability that the Voter dynamics converges to the monochromatic configuration in which all
nodes supports color i.

The next natural question that arises when considering a dynamics such as the Voter
dynamics, is the speed with which consensus is reached. It turns out that also for the latter
question, Voter dynamics is amenable to an elegant mathematical treatment: its convergence
time can be analyzed via a duality with the coalescing random walks process [AF95].

Definition 5. The Coalescing Random Walks process (for short CRW) on G is a discrete time
Markov process defined as follows:

• Each node initially holds one token.

• In each round, each node sends all its tokens to a neighbor chosen uniformly at random.

Figure 2: The diagram represent an instance of the CRW process, from left to right, in which
an edge from u to v means that the token on u -if any- moves to v. In the diagram, after T = 4
rounds the number of random walks in the CWR process reduces to k = 2. The same diagram
represents an instance of the Voter dynamics, from right to left, in which an edge from u to v
means that u pulls v’s color. For the Voter dynamics as well, we see that the number of colors
after T = 4 rounds is also 2. This is no coincidence, given that the two processes share the same
random choices (i.e. black arrows).

The term coalescing in the name of the CRW process refers to the fact that, as soon as too
tokens happen to be located on the same node, they will move together in the following rounds.
Hence, we can imagine that they have “coalesced”.

It is easy to see that, by the process’ definition, all tokens in the CRW process are eventually
located on a single node. The first occurrence of the latter event is thus referred to as the
coalescing time. In fact, the following theorem draws a direct correspondence between the
convergence time of the Voter dynamics and the coalescing time of the CRW process, allowing
to study either of them by investigating the other (for a proof see e.g. Lemma 4 in [BCE+17]).
An intuitive representation of the duality is also depicted in Figure 3.1.
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Theorem 6 (Voter dynamics vs CWR). Let τ be the first round such that the Voter dynamics
reaches consensus and let τ ′ be the first round such that all the tokens of the CWR process are
on the same node. A coupling between the Voter dynamics and the CWR process exists such
that τ = τ ′.

The coalescing time of the CRW process, and thus the corresponding consensus time for the
Voter dynamics, can be studied on a variety of topologies by employing standard tools for the
analysis of stochastic processes [HP01, KMTS19].

As an example, by combining Theorem 6 with the application of drift analysis techniques to
the CWR process, we obtain the following theorem that provides the time after which at most
k colors are still “alive” (for a proof, see e.g. Lemma 3 in [BCE+17]).

Theorem 7 (Color evolution on the complete graph). Let G be the complete graph, where each
node has also a self-loop. Starting from an arbitrary initial configuration c on G, the Voter
dynamics reaches a configuration c′ having at most k remaining colors w.h.p. in O(nk log n)
rounds.

More generally, by combining Theorem 6 with results on the meeting time of random walks
on general graphs [TW93], we obtain the following general bound on the convergence time of
the Voter dynamics.

Theorem 8 (Convergence time on general topologies). Let G be any connected undirected graph.
Starting from an arbitrary initial configuration c on G, the Voter dynamics reaches consensus
w.h.p. in O(n3 log n) rounds.

4 Median dynamics

If we consider an ordered color set 〈Σ,6〉, then a simple consensus dynamics is the Min dynamics:
every node pulls a random neighbor (or a few of them) and then it recolors itself with the minimal
color it sees.

Let us consider the synchronous PULL model on a connected graph G(V,E) and assume
that the dynamics starts with any color configuration with one node u having the minimal
value min.12 Then it is not hard to see that the resulting process is equivalent to the popular
single-source broadcast on the PULL model which has been widely studied in algorithm theory
[CLP11, CCD+16, Gia16]: For instance if the graph is regular and it has high conductance13,
the Min dynamics turns out to be fast, i.e. O(log n) [CLP10].

However, this dynamics is not reliable in network scenarios where the state of some, few nodes
can be corrupted by an adversary. Indeed, to just get a simple intution about this breakable
behaviour, let us consider the time the system has reached the monochromatic configuration in
which all nodes support the initial minimal value. Then it suffices that the adversary corrupts
the state of just one node by setting its value to a smaller value than min and this small change
immediatly causes the system to start a new process where all nodes will change the state again.
If the adversary makes this small change frequently, it is clear that the system will never stays
over an (almost-)stable regime.

In [DGM+11], Doerr et al proposed another natural dynamics on the synchronous PULL
model that works on any ordered color set: the Median dynamics. Its local updating rule is

12Notice that if the minimal value is initially supported by more nodes, then, clearly, the process will be
stochastically not slower than the the single-source process.

13Informally speaking, the conductance of a connected graph is a fundamental parameter φ ∈ (0, 1] which is
large for highly-connected graphs (such as the complete graphs), while it is small when the graph contains some
bottleneck.
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very simple: at every round, every node u pulls the colors x(v) and x(w) of 2 neighbors chosen
independently and uniformly at random; then, the color of node u at the next round will be
the median among x(u), x(v), and x(w). Notice that, differently from getting the average of the
values, the median rule does not introduce new values, i.e. values that were not supported by
any node in the previous round.

Doerr et al provide an analysis of the Median dynamics on the complete graph for both
the fault-free model and in presence of an F -bounded adversary that can corrupt the state of at
most F nodes at every round.

The first result essentially shows that, if no node of the complete graph is ever corrupted,
then the Median dynamics let the median value to spread fast over the network, as the minimal
one in the Min dynamics.

Theorem 9 (Median rule in the fault-free case [DGM+11]). Starting from any color configura-
tion of the complete graph, w.h.p., the Median dynamics guarantees the following properties:

• (Convergence time.) It takes O(log n) rounds to converge to a stable monochromatic con-
figuration.

• (Median computation.) The system converges to the configuration where all nodes support
the median value.

As remarked above, however, the main interest on this dynamics, lies in its tolerance w.r.t.
node corruptions.

Doerr et al show that the Median dynamics is in fact a natural and efficient almost-
stabilizing consensus protocol against O(

√
n)-bounded adversary on the complete graph (see

Definition 2). More precisely, they prove the following results.

Theorem 10 (Median rule vs Byzantine nodes [DGM+11]). Let the Median dynamics start
from any color configuration of the complete graph. Assume there is an F -bounded adversary
with F = O(

√
n). Then, the following properties hold:

• (Almost stability.) The system converges to an almost-stable regime where all but at most
O(F ) nodes agree on some legal color j ∈ Σ and this regime lasts for any poly(n) many
rounds, w.h.p.

• (Convergence time.) The time to reach this almost-stable regime is bounded by O(log |Σ| ·
log log n+ log n), w.h.p.

• (Median computation.) The legal value j “computed” by the system in the almost-stable
regime is between the (n/2−c

√
n log n)-largest value and the (n/2+c

√
n log n)-largest value

of the initial values, w.h.p, for a suitable constant c > 0.

Key-ingredients of the analysis. The analysis of the Median dynamics proposed in [DGM+11]
considers two main cases.

They first consider the binary case, i.e., Σ = {0, 1}. Notice that, in this setting, the update
rule of the Median dynamics turns out to be equivalent to the majority rule: every node
takes the most frequent value he sees among its own value and the values of the two randomly-
selected neighbors (notice that there cannot be ties). In this case, the analysis works in 3 phases
depending on the magnitude of the bias s = |c0− c1| of the starting configuration (recall that ci
is the number of nodes supporting color i).
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(Case 1.) If s > n/4, then the size of the minimal color is proved to decrease at a double-
exponential rate, w.h.p.: this implies that after O(log log n) rounds the minimal color will dis-
appear, w.h.p.
(Case 2.) If the bias s is such that Ω(

√
n log n) 6 s 6 n/4, then the analysis focuses on the

evolution of the random variable s over a logarithmic time-window. Indeed, it is proved that,
at every round, the bias increases by a constant factor, w.h.p. and, thus, after O(log n) rounds,
the system falls into the range of Case 1. In both Cases 1 and 2, the analysis essentially relies on
a strong expected drift towards the majority color and some standard concentration arguments
(i.e. Chernoff’s bounds).
(Case 3.) If the system starts from some configuration having bias s <

√
n log n then the analysis

requires different arguments since the drift of the bias is too weak for applying any step-by-step
concentration argument. When s 6

√
n, they essentially prove that, thanks to the variance of

the process, at the next round there is constant probability that the bias reaches a magnitude
of γ
√
n for some suitable constant γ > 0. Once the system reaches a bias s > γ

√
n, then s is

likely to increase at the next round. However, differently from the previous two cases, this event
cannot be guaranteed to hold w.h.p. at every round and an amortized, more complex argument
is required. To this aim, the authors make use of a useful bound on the hitting time on a
Markov chain Zt (t = 1, 2, . . .) defined on a finite set of integers {0, 1, . . . , q} which have some
drift properties towards increasing values (see Claim 2.9 in [DGM+11] for a formal statement
of the bound). Setting Zt := bs/(γ

√
n)c and q = b(n/2)/γ

√
nc, the bound on the hitting time

implies that after O(log n) rounds, the Markov chain hits a state j such that j > α log q, for
some suitable constant α > 0. We thus have that the bias reached by the system after O(log n)
rounds turns out to be Ω(

√
n log n), w.h.p. which let the analysis go back to Case 2 above.

The analysis of the multivalued case (i.e. |Σ| > 3) relies on some arguments which signif-
icantly depart from the binary case. It is important to observe that in the multivalued case,
the Median dynamics has a local rule which is different from the majority one and it is not
symmetric w.r.t. to the color values. Indeed, by definition, the median value plays a preferential
role among the colors. Informally speaking, the analysis introduces a sort of rank of the colors:
the more the color is close to the median, the more this rank is high and it is maximum for the
median value. Then, it is shown that the dynamic makes colors with highest rank to increase
their own supporters at every round. This process is then proved to converge within O(log n)
time to a configuration with at most only two “median” colors and, thus, the analysis can go
back to the binary case. The presence of the adversary further complicates the process analysis
and it requires the additive factor log |Σ| · log log n in the obtained convergence time claimed in
Theorem 10.
On the validity property. It is important to investigate the kind of agreement which is
guaranteed by Theorem 10 for the Median dynamics. The property of validity which is required
in the standard definition of Consensus against Byzantine nodes (i.e. the Byzantine Agreement)
is that the system must converge to an almost-stable configuration where all but a small fraction
of node support a valid color, i.e., a color which was supported by at least one non-corrupted node
in the initial configuration. Unfortunately, the analysis in [DGM+11] leading to Theorem 10
does not guarantee this validity property: in particular, it is an interesting open issue to establish
a bound on the fault tolerance parameter F for which the Median dynamics guarantees this
stronger, classic validity property. We believe the real bound needs to be small, much smaller
than F = O(

√
n). To motivate our intuition here, we invite the reader to think about the

starting configuration with n/2 nodes colored with value 0 and n/2 nodes colored with value
2. Then, the adversary takes m = Θ(polylog (n)) nodes at every round and it colors them
with value 1. Non-rigorous, “mean-field” arguments lead us to guess that, with non-negligible
probability, the non-valid, “median” value 1 will spread faster than any possible growth of the
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other two valid colors, thus forcing the system to converge to the non valid color 1.
The Median dynamics over non-complete topologies. We are not aware of rigorous
analysis of the Median dynamics that works over non-complete graphs. However, in the binary
case, the Median dynamics turns out to be equivalent to the popular majority dynamics known
as 2-Choices (see Section 5.1) and the latter has been recently analyzed over regular expander
graphs.

5 Majority dynamics

The Median dynamics protocol fully relies on the presence of some total ordering on the color
set Σ. In some scenario, such as the ones inspired by biological systems, this assumption might
be not reasonable: Particles and bio-inspired agents may have no ordering on the possible states
they can assume. Moreover, as remarked in the previous section, it is unknown (and, in our
opinion, unlike) whether Median dynamics can guarantee the important validity property, with
high probability.

A class of natural dynamics, requiring no color ordering, are those based on majority rules.
In the synchronous PULL model, h-Majority dynamics works as follows:

Definition 11 (h-Majority dynamics). At every round, every node u samples h > 1 neighbors,
independently and uniformly at random.
Then, u gets the plurality color among those in the sample; if there is no plurality in the sample,
u gets the first sampled color.14

An important instance of the h-Majority dynamics is the 3-Majority dynamics. The
reason of its relevance is essentially that a sample of size 3 is the minimal one to hope for a
different behaviour from the Voter dynamics seen in Section 3. Indeed, looking at only two
random nodes and breaking ties uniformly at random would yield a coloring process equivalent
to the Voter dynamics, and the latter it is known to converge to a minority color with constant
probability even in the case of 2-color initial configurations having a large initial bias (see Section
3).

Another popular majority rule is the 2-Choices. It differs from the 3-Majority dynamics
on the fact that node u samples the colors of (only) two random neighbors. Then, it applies the
plurality rule (like 3-Majority dynamics) among such two random colors and its own color.
So, in the 2-Choices, the updating rule deterministically depends on the current state of the
node while 3-Majority dynamics gives no special role to the current state of the node. As we
will see later in Subsection 5.3, even though the expected behaviours of 3-Majority dynamics
and 2-Choices are equivalent, their “real” behaviours turn out to be significantly different when
the number k of the initial colors is large.

5.1 2-Choices dynamics

It is easy to see that, in the binary case (i.e. |Σ| = 2), Median dynamics turns out to be
equivalent to 2-Choices. As for the latter, we thus have the following immediate consequences
of the results [DGM+11] shown in the previous section.

Corollary 12 (Two colors, [DGM+11]). Let Σ = {0, 1}. Let the system start from any color
configuration and assume there is an F -bounded adversary with F = O(

√
n). Then, 2-Choices

is a stabilizing almost (Plurality) Consensus protocol. In more detail, it guarantees the following
properties:

14Or, equivalently, a randomly chosen one among those in the sample.
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• (Almost Stability.) The system converges to an almost-stable regime where all but at most
O(F ) nodes agree on some valid color j ∈ Σ and this regime lasts for any poly(n) many
rounds, w.h.p.

• (Convergence Time.) The time to reach this almost-stable regime is bounded by O(log n),
w.h.p.

• (Plurality Consensus.) Assume the initial configuration has bias s towards a plurality color
such that s > c

√
n log n, for some constant c > 0. Then, the color the system converges to

in the almost-stable regime is the plurality one, w.h.p.

As we will also see in further results described in this survey about dynamics for Plurality
Consensus, the bias threshold

√
n log n will show up rather often. Informally speaking, this is

due to the fact that the standard deviation (in the binary case) of the studied process is order of√
n. This implies that if the system starts from bias “too” close to the magnitude of the standard

deviation, some anti-concentration bounds say us that the system can change plurality color in
one round, with non-negligible probability. Thus, in order to preserve the initial plurality and
to get results in concentration, the system must start from a bias Ω(

√
n log n).

The multi-color case. A deep analysis of this dynamics for k = O (nε) has been recently
presented by Elsässer et Al in [EFK+17]. They consider initial configurations c = (c1, c2, . . . , ck)
having some initial bias s = c1 − c2 and show that this dynamics is an efficient, fault-tolerant
protocol for Plurality Consensus.

Theorem 13 (More colors, biased initial configurations, [EFK+17]). Let Σ = {1, 2, . . . , k}
with k = O (nε) where ε is a sufficiently small constant15. Then 2-Choices is a stabilizing
almost Plurality Consensus protocol. In detail, let the system start from any color configuration
c = (c1, c2, . . . , ck) with bias s > γ

√
n log n where γ > 0 is some positive constant and assume

there is an F -bounded adversary with F 6 c1(c1 − c2)/(8n). Then,

• (Almost Stability.) The system converges to an almost-stable regime where all but at most
o(n) nodes agree on some valid color j ∈ Σ and this regime lasts for any poly(n) many
rounds, w.h.p.

• (Convergence Time.) The time to reach this almost-stable regime is bounded by O((n/c1) log n),
w.h.p. Notice that, since it always holds that c1 > n/k, then the latter bound also implies
the bound O(k log n).

• (Plurality Consensus.) The color the system converges to in the almost-stable regime is the
plurality one, w.h.p.

Moreover, if the initial configuration c is such that s > γ
√
n log n and cj = c2 for j = 3, . . . , k,

then the expected time required to converge to the almost-stable regime is Ω(n/c1 + log n).

The proof of the above theorem relies on the following arguments. By using Chernoff bounds,
Elsässer et al. show that the number of nodes which change their color to 1 is larger than the
number of nodes which switch to color 2. From the lower bound on the initial bias s assumed by
the above theorem, the bias increases by some positive factor in the next round w.h.p, and using
a union bound over an O((n/c1) log n) sequence of rounds, they get the claimed upper bound on
the convergence time. The main technical issue lies in bounding the number of nodes moving to
color 1 and 2. Indeed, just applying a Chernoff bound to every single color community would

15The current analysis in [EFK+17] does not give an explicit value on ε.
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lead to much weaker results. Instead, they carefully aggregate colors when considering the nodes
moving to one color to the other. Intuitively, the difficulty lies in the sheer number of initial
colors the new analysis allows. Their total support may significantly exceed c1.
Starting from unbiased configurations. A natural issue on 2-Choices concerns its be-
haviour when starting from balanced configurations, i.e., whenever s turns out to be relatively
small, say s = o(

√
n).

This setting has been analyzed in a recent work by Ghaffari et Al in [GL18]. They provide
a tight bound on the convergence time starting from any configuration with a polynomially-
bounded number of colors, i.e., k = O(

√
n/ log n).

Theorem 14 (More colors, balanced intial configurations [GL18]). Let Σ = {1, 2, . . . , k} with
some k = O(

√
n/ log n). Then, 2-Choices is a stabilizing almost Consensus protocol. In more

detail, let the system start from any color configuration c and assume there is an F -bounded
adversary with F = O(

√
n/k1.5). Then,

• (Almost stability.) The system converges to an almost-stable regime where all but at most
o(n) nodes agree on some valid color j ∈ Σ and this regime lasts for any poly(n) many
rounds, w.h.p.

• (Convergence time.) The time to reach this almost-stable regime is bounded by Θ(k log n),
w.h.p.

The analysis in [GL18] uses and improves an approach which has been previously introduced
by Becchetti et Al in [BCN+16] to analyze 3-Majority dynamics in a similar setting (see
Subsection 5.2). When the process starts from an (almost-)balanced configuration, any first-
moment analysis of the expected values of the color size is almost useless: in average, the system
stays in the same (almost-)balanced configuration. On the other hand, the real process starts
to jump randomly over several (almost-)balanced configurations thanks to its variance until the
symmetry among the color sizes is broken: we can then observe the birth of some plurality color
that starts to increase rapidly. It thus follows that a non-standard second-moment analysis is
required that makes use of anti-concentration bounds for multinomial distributions.
Analysis over non-complete topologies. In [CER14], Cooper et al. analyze, for the first
time, the random process yielded by applying 2-Choices over d-regular graphs. They consider
the binary case and give different bounds on the convergence time depending on several input
parameters, such as node degree d, initial bias s, and on which class of regular graphs the process
runs on. We give here two of the bounds mentioned above.

The first result concerns a graph which is sampled uniformly at random from the class of
d-regular graphs of n nodes.

Theorem 15 (Binary case on sparse random graphs [CER14]). Let G be a d-regular random
graph with d 6

√
n and assume the initial color configuration has bias s > γn/

√
d, for a large

enough constant γ > 0. Then, with probability 1 − o(1), 2-Choices converges to the initial
majority within O(log n) rounds.

The second results provided in [CER14] concerns (deterministic) regular graphs having good
expansion properties. A graph G is said to be an (edge) ε-expander if, for any node subset S of
size not larger than n/2, it holds e(S, V − S) > ε|S|, where e(S, V − S) denotes the number of
edges in the cut E, V −S). The expansion properties of the underlying d-regular graph G(V,E)
can be expressed in terms of the spectral gap λ1−λ2, where λ1 and λ2 are respectively the largest
and the second-largest (in absolute value) eigenvalue of the transition matrix P = (1/d) ·A of G
(A denotes the symmetric adjacency matrix og G - see also Section 7.2 for further useful concepts
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in spectral graph theory). If G is connected and not bipartite then it holds that λ1 = 1, λ2 < 1
and |λi| > 1, for every i = 1, . . . , n. Roughly speaking, the larger is the spectral gap the larger is
the (edge) expansion of the graph. This fact is formalized by the well-known Expander Mixing
lemma which is a key-ingredient in Cooper et al.’s analysis:

Lemma 16 (Expander mixing lemma [AC88]). Let G be a connected, non-bipartite d-regular
graph, then, for any S, T ⊂ V , it holds∣∣∣∣e(S, T )− d|S| · |T |

n

∣∣∣∣ 6 λ2d
√
|S| · |T | .

Theorem 17 (Binary case on expander graphs [CER14]). Let G be a d-regular graph with
d 6

√
n and second largest eigenvalue 0 < λ2 < 1, and assume the initial color configuration

has bias s > γλ2n, for a large enough absolute constant γ > 0. Then, with probability 1− o(1),
2-Choices converges to the initial majority within O(log n) rounds.

We first notice that the success probability guaranteed in the above theorems is weaker than
that defined in the standard notion “w.h.p.” we adopt in this paper.

Roughly, the proofs of the above two bounds on the convergence time of the 2-Choices
process rely on the following key-ingredients. Let us look at the color configuration of G at a
generic round t > 0 and consider the sizes c1 and c2 of subsets C1 and C2 of nodes that support
the majority color and the minority one, respectively. Let us also define the two random variables
∆12 and ∆21 which count the number of 1-colored (2-colored) nodes that will get color 2 (1), at
round t + 1. A first simple but crucial fact is that, if a 2-colored node changes its color at the
next round, then, according to the 2-Choices, it must have sampled the other color twice from
its neighborhood, i.e., from some neighbors that must belong to C1. Then, it is easy to verify
that that the expected number E [∆21] of nodes that makes this change is an increasing function
of the expansion of subset C2, i.e., of the size e(C2, V −C2 = C1). A symmetric argument clearly
holds for E [∆12]. Now, if G is a good expander, say λ2 < 1/3, their analysis shows that Lemma
16 implies a positive drift for the expectation E [∆12 −∆21]. This analysis is organized in few
consecutive phases that depend on the range the random variable c1 (and, thus, c2) currently
lies on during the process. Several technical issues are neglected by our informal description
above which are essentially due to get concentration bounds even when the considered random
variables takes small values.

Further analysis of the 2-Choices dynamics on non-complete graphs consider the binary
case over non-regular expander graphs [CER+15] and the multi-color case on regular expander
graphs [CRRS17]. The techniques introduced in these works are combined in [CNS19] with the
community-sensitive labeling scheme introduced in [BCN+17c] (see Section 7 for further details
on the latter), in order to use the 2-Choices dynamics to perform community detection.

Finally, the 2-Choices has also been proposed in recent work by Cruciani et al. [CNNS18]
as a natural, simplistic model of competition among opinions in social networks having core-
periphery topologies. The author consider a network model where a densely-connected subset
of agents, the core, holds a different opinion from the rest of the network, the periphery. Then,
depending on the strength of the cut between the core and the periphery, they provide analytical
evidence of the existence of a phase-transition phenomenon: Either the core’s opinion rapidly
spreads among the rest of the network, or a metastability phase takes place, in which both
opinions coexist in the network for superpolynomial time. This result sheds light on the influence
of the core on the rest of the network, as a function of the core’s expansion over the latter.
Moreover, this represents the first analytical result which shows a heterogeneous behavior of a
“pure” majority dynamics as a function of structural parameters of the network; similar behaviour
have been previously proved for averaging dynamics only, that is, when opinions admit numerical
operations (see Section 5).
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5.2 The 3-Majority dynamics

From an historical point of view, the study of the 3-Majority dynamics started on the ground
of the results obtained for the Median dynamics by Doerr et Al in [DGM+11] that we have
described in Section 4. Indeed, as discussed in that section, the Median dynamics is a fault-
tolerant, efficient dynamics which, however, does not guarantee to reach a valid consensus (see
the discussion at the end of Section 4). This fact naturally leads researchers to look for efficient
dynamics having this further fundamental property.

3-Majority dynamics for Plurality Consensus

The 3-Majority dynamics was the first dynamics which has been proved to be a fault-
tolerant protocol for (valid) Plurality Consensus. Such results were proved by Becchetti et
Al in [BCN+17a].

Theorem 18 (Plurality Consensus [BCN+17a]). Let Σ = {1, 2, . . . , k} with any with k 6 n.
Then, 3-Majority dynamics is a stabilizing almost Plurality Consensus protocol. In details,
let λ be any value such that λ < 3

√
n, and let c be any initial color configuration, with c1 > n/λ

and s > 72
√

2λn log n. Assume there is an F -bounded adversary with F = o(s/k). Then, the
3-Majority dynamics guarantees the following properties:

• (Almost-stable Plurality Consensus.) The system converges to an almost-stable regime
where all but at most o(n) nodes agree on the ( valid) initial plurality color and this regime
lasts for any poly(n) many rounds, w.h.p.

• (Convergence time.) The system converges to the plurality color within O (λ log n) time,
w.h.p.

The analysis achieving the theorem above is accurate enough to get an interesting form of
the upper bound that does not depend on k. Indeed, when the initial plurality size c1 is larger
than n/λ(n) for any function λ(n) such that 1 6 λ(n) < 3

√
n and s > 72

√
2λ(n)n log n, the

process converges within time O (λ(n) log n), w.h.p., no matter how large k is. Hence, when
c1 > n/polylog (n) and s >

√
n polylog (n), the convergence time is polylogaritmic.

Becchetti et Al [BCN+17a] show that the upper bound on the convergence time in Theorem
18 is tight for a wide range of the input parameters. When k 6 (n/ log n)1/4, they in fact
prove a lower bound Ω(k log n) on the convergence time when the 3-Majority dynamics starts
from some configurations with bias s 6 (n/k)1−ε, for an arbitrarily small constant ε > 0.
Observe that this range largely includes the initial bias required by the upper bound whenever
k 6 (n/ log n)1/4. So, the linear-in-k dependence of the convergence time cannot be removed
for a wide range of the parameter k.

The analysis also provides a clear picture of the process yielded by the 3-Majority dynam-
ics. Informally speaking, the larger the initial value of c1 is (w.r.t. n), the smaller the required
initial bias s and the faster the convergence time are. On the other hand, the lower-bound
argument shows, as a by-product, that, from balanced configurations, the initial plurality size
c1 needs Ω(k log n) rounds just to increase from n/k + o(n/k) to 2n/k.

Another natural issue is to analyze the process under weaker assumptions on the initial bias.
Becchetti et Al [BCN+17a] show that there are initial configurations with bias s = O(

√
kn)

for which the bias decreases in a single round with constant probability. This implies that the
assumption on the magnitude of the initial bias is in a sense (almost) tight if one wants to prove
a monotonic increase of the bias in every round with high probability, as they did in proving the
upper bound on the convergence time.
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Analysis over non-complete topologies. Very recently [KR19], the 3-Majority dynamics
was analyzed over a class of dense graphs with minimum degree d = Ω(nα), where Ω((log log n)−1) 6
α 6 1, and starting from random, biased binary configurations . In more detail, [KR19] prove
that if initially each vertex chooses red with probability greater than 1/2 + δ, and blue other-
wise, where δ > (log d)−β , for some β > 0, then the dynamic solves Plurality Consensus within
O(log log n+ log(δ−1)) rounds, w.h.p.

3-Majority dynamics for Consensus

In [BCN+16], Becchetti et al extend the analysis of 3-Majority dynamics in the multi-color
case from any (even balanced) initial configuration in the presence of an adaptive F -dynamic
adversary and of the F -static adversary (in the latter, the adversary looks at the initial configu-
ration, then changes the opinion of up to F nodes and, after that, no further adversary’s actions
are allowed).

Theorem 19 (Consensus [BCN+16]). Let k 6 nα for some constant α < 1 and F = β
√
n/(k

5
2 log n)

for some constant β > 0. Starting from any initial configuration having k valid opinions, 3-
Majority dynamics reaches a stabilizing almost-consensus in the presence of any F -dynamic
adversary within O((k2

√
log n+ k log n)(k + log n)) rounds, w.h.p.

Moreover, the same bound on the convergence time holds in the presence of any F -static adver-
sary with a larger bound on F , i.e., F = n/k −

√
kn log n.

Not assuming a large initial bias of the plurality opinion considerably complicates the anal-
ysis. Indeed, the major open issue here is the analysis from (almost) uniform configurations,
where the system needs to break the initial symmetry in the absence of significant drifts towards
any of the initial opinions. Notice that the phase before symmetry breaking is the one in which
the adversary has more chances to cause undesired behaviours: Long delays and/or convergence
towards non-valid opinions. Let us consider the non-adversarial case. When the configuration
is (approximately) uniform, the process exhibits no significant drift toward any fixed opinion.
Interestingly, things change if we consider the random variable c(t)m , indicating the smallest opin-
ion support at round t. Let j 6 k be the number of active opinions in a given round t, it is first
proved that the expected value of c(t)m always exhibits a non-negligible negative drift:

E
[
c(t+1)
m

| c(t) = ĉ
]
6 cm − ε

√
n

j3/2
, for some constant ε > 0 . (1)

The analysis then proceeds along consecutive phases, each consisting of a suitable number
of consecutive rounds. If the number of active opinions at the beginning of the generic phase is
j, it is shown that, with positive constant probability, c(t)m vanishes within the end of the phase,
so that the next phase begins with (at most) j − 1 active opinions.
Clearly a good bound is needed on the length of a phase beginning with at most j opinions.
To this aim, the authors derive a new upper bound on the hitting time of stochastic processes
with expected drift that are defined by finite-state Markov chains [LPW09]. Thanks to this
result, they can use the negative drift in (1) to prove that, from any configuration with j 6 k

active opinions, c(t)m drops below the threshold n/j −
√
jn log n within O(poly(j, log n)) rounds,

with constant positive probability: This “hitting” event represents the exit condition from the
symmetry-breaking stage of the phase. Indeed, once it occurs, we can consider any fixed active
opinion i having support size ci below the above threshold (thanks to the previous stage, we
know that there is a good chance this opinion exists): It is then shown that ci has a negative
drift of order Ω(ci/j). This allows to prove that ci drops from n/j −

√
jn log n to zero within

19



O(poly(j, log n)) further rounds, with positive constant probability. This interval of rounds is
the dropping stage of the phase.
Ideally, the process proceeds along k consecutive phases, indexed as j = k, k − 1, . . . , 2, such
that we are left with at most j − 1 active opinions at the end of Phase j. In practice, there
is only a constant probability that at least one opinion disappears during Phase j. However,
using standard probabilistic arguments, it is proved that, w.h.p., for every j, the transition
from j to j − 1 active opinions takes a constant (amortized) number of phases, each requiring
O(poly(j, log n)) rounds.

The upper bound in Theorem 19 was later improved in [GL18], using a more refined analysis
that does not require k consecutive phases (see Theorem 14 and the discussion below it).

5.3 2-Choices vs 3-Majority dynamics

The results described in the previous two subsections naturally lead to investigating the main
differences between the 2-Choices and the 3-Majority dynamics. This issue has been recently
addressed by Berenbrink et Al in [BCE+17].

We notice that Theorem 14 provides an upper bound on the convergence time for the 2-
Choices for a limited number of colors (i.e. k = O(

√
n/ log n)). On the other hand, when k is

almost linear in n, the behaviour of the 2-Choices turns out to be rather “lazy”, as stated by
the following result.

Theorem 20 (2-Choices: Many colors, balanced initial configurations [BCE+17]). Let Σ =
{1, 2, . . . , k} with some k = Ω(n/ log n). Let the system start from any color configuration
c = (c1, c2, . . . , ck) such that c1 = O(log n), then, the 2-Choices needs Ω(n/ log n) rounds to
converge to a monochromatic configuration, w.h.p.

The proof of the above theorem shows that, when started from an almost balanced config-
uration, the convergence time is dominated by the time it takes for one of the colors to gain a
community of supporters of size ω(log n). The analysis adopts the following line of reasoning.
If the system lies in an almost-balanced configuration with an almost linear number of colors,
then most nodes are likely to see two different colors in their respective 2 randomly-selected
neighbors. This implies that, according to the 2-Choices updating rule, such nodes will keep
their own color for several rounds. In other words, under this setting, the variance of the process
is relatively low.

Does the 3-Majority dynamics show the same “lazy” behaviour when it starts from many-
colors, unbiased configurations? The answer to the above question is given by the following
result.

Theorem 21 (3-Majority dynamics: Many colors, balanced initial configurations [BCE+17]).
Let Σ = {1, 2, . . . , k} with any k 6 n. Starting from an arbitrary configuration, the 3-Majority
dynamics converges to a monochromatic configuration within O(n3/4 log7/8 n) rounds, w.h.p.

Theorems 20 and 21 together show that there can be a polynomial gap between the conver-
gence time of 2-Choices and 3-Majority dynamics: one should note that this gap is in stark
contrast not only to the expected behavior of both processes (which is identical - see for instance
[BCN+17a, BCE+17]) but also to the setting when k = O(nε) (for some ε < 1) and a good bias
towards one color: essentially, we have seen in the previous subsections that, in that case, both
processes exhibit the same asymptotic runtime O(k · log n).

Interestingly enough, the proof of Theorem 21 introduces (and exploits) a new coupling
between the 3-Majority dynamics and the Voter dynamics (see Section 3). Berenbrink et
al. show that the time needed by 3-Majority dynamics to reduce the number of colors to
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a fixed value is stochastically dominated by the time Voter dynamics needs for this. This,
finally, allows to upper bound the time needed by 3-Majority dynamics to go from Θ(n) to
Θ(n1/4) colors by the time Voter needs for this (which, in turn, they bound by O(n/k) - see
[BCE+17, Lemma 2 and 3]). The authors also observe that, for a large number of colors, a node
executing 3-Majority dynamics behaves like a node performing Voter dynamics. Thus, it is
relatively tight to bound 3-Majority dynamics by Voter dynamics in this parameter regime.
The coupling works for a wide class of processes which are essentially defined by an update rule
that causes each node to adopt any color i with the same probability αi that depends only on the
current frequency of colors (see [BCE+17] for a more formal description of this general result).

5.4 Further results on majority dynamics

Majority over larger random samples. In Subsection 5.2, we observed that the 3-Majority
dynamics takes Θ(k log n) time steps w.h.p. to converge in the worst case: the linear-in-k
dependence of the convergence time cannot be removed for a large range of k [BCN+17a].

A natural question thus arises: using h-Majority dynamics, with h slightly larger than 3
(say with a sample of size h = log n), is it possible to significantly (say exponentially w.r.t. to
k) speed-up the process?

Becchetti et al. [BCN+17a] show this is not the case. Indeed, assuming k/h = O(n(1−ε)/4),
they prove that, for any j ∈ [k] such that cj 6 2n/k, the probability that, at the next round, cj
increases by a factor (1+Θ(h2/k)) is exponentially small. This technical result is then exploited
to derive the following lower bound on the convergence time of h-Majority dynamics.

Theorem 22 (A lower bound for h-Majority dynamics [BCN+17a]). Let k/h = O(n(1−ε)/4)
for some constant ε > 0 and let h-Majority dynamics starts from any initial configuration
c = (c1, c2, . . . , ck) such that c1 6 3

2 ·
n
k . Then, the convergence time is Ω(k/h2), w.h.p.

Dynamics studied here, and more generally, any scalable and efficient protocol must yield
low communication complexity and small node congestion at every time step. These properties
are guaranteed by the h-Majority dynamics only if h is small, say h = O(polylog (n)): in
this case, the above lower bound says that the resulting speed-up is only polylogarithmic with
respect to the 3-Majority dynamics.
Negative results for other 3-inputs dynamics. A further natural question on Plurality
Consensus is whether there are simple (and efficient) mechanisms, not based on majority rules,
that can achieve plurality consensus. In [BCN+17a], Becchetti et al. show there is no dynamics
with at most 3 inputs (but the majority one) that w.h.p. converges to plurality consensus
starting from any initial bias s such that s = o(n). In other words, not only there is no hope to
find a 3-input dynamics that is asymptotically faster than k log n but the 3-majority dynamics
is the only one preserving the initial plurality, no matter in how much time.

6 Dynamics using extra states

In the Voter dynamics a node just gets the color it sees. This “social” behaviour is often too
simplistic to model opinion dynamics. Moreover, the results of Section 3 show that Voter
dynamics does not achieve fast consensus. The local function of the majority dynamics we
discussed in Section 5 have three ore more inputs (each of size dlog |Σ|e) and, thus, nodes
requires at least dlog |Σ|e3 states to implement them. A natural and important question is
whether dynamics with a smaller number of states can achieve fast (Plurality) Consensus.

The issue above leads to consider a dynamics having just one extra state, called Undecided-
State dynamics: let nodes stay “undecided” whenever they see a different color from their own
current belief.
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Updating rule of the Undecided-State dynamics. Let us assume that the set of possible
colors a node can support is [k] and assume that, at a given round, the generic node u samples
a random node v. Then if the color of v differs from that of u, the latter enters the undecided
state, an extra state that an agent can support. When an agent is in the undecided state and
pulls a color, it gets that color. Finally, an agent that pulls either the undecided color or its own
color remains in its current state (see Table 1).

u
∖
v undecided color i color j

undecided undecided i j

i i i undecided
j j undecided j

Table 1: The update rule of the Undecided-State dynamics where i, j ∈ [k] and i 6= j are the
colors a node can support.

We remark that, differently from majority rules we described in the previous section, this
rule is not symmetric w.r.t. colors (i.e. states). As we will see this difference is a key-ingredient
for fast convergence and for other important features of the Undecided-State dynamics.

We remark that this dynamics only requires k+1 states for the nodes. Moreover, the interest
for the Undecided-State dynamics touches areas beyond the borders of computer science and
it appears to play a major role in important biological processes modelled as so-called chemical
reaction networks [CCN12, Dot14].

6.1 Two colors in the random sequential model

In [AAE08], Angluin et al study the Undecided-State dynamics on the complete graph of n
nodes by adopting the asynchronous, sequential model16 where, at every round, one oriented
edge (u, v) is chosen uniformly at random and then node u applies the local rule of the dynamics
by pulling the state of v (according to Table 1).

The authors provide an unconditional analysis for the binary case (i.e. |Σ| = 2) when the
process starts from any possible color configuration, also including undecided nodes. Since
the system is anonymous and the graph is complete, the configuration (or global state) of the
process can be represented by a triple (c0, c1, q) where ci is the number of nodes supporting
color i (i = 0, 1) and q is the number of undecided nodes. We call C the set of all possible
configurations.

It is easy to verify that the process yielded by Undecided-State dynamics is a reversible
finite Markov chain which admits 3 absorbing monochromatic states: (n, 0, 0), (0, n, 0), (0, 0, n).
Then, standard arguments on Markov chains shows that, starting from any configuration, with
probability 1, the system converges to one of these absorbing states in finite time.

Notice that, in the sequential model, such absorbing states also represent valid consensus.
Indeed, since at most one node can change state in 1 round, if the initial configuration has no
undecided nodes, then the process converges to a colored configuration.

The study of Angluin et al. addresses the three main issues which characterized this survey.
The worst-case convergence time: starting from any fixed configuration how long does the system
take to reach an absorbing state, i.e., to reach consensus? The plurality-preserving property:
Assuming the system starts with a sufficiently large bias towards one of the two colors, say color
1, then does the system converge to the monochromatic configuration (0, 1, 0), w.h.p.? The
fault-tolerance of the protocol, or its self-stabilization properties: assuming at every round there

16In particular, they adopted the (uniform) Population-Protocols model [AAFJ08].
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is a “small” set of Byzantine nodes which can behave adversarily w.r.t. the protocol, then does
the system stabilize to an almost, valid consensus (i.e. to a configuration where n− o(n) nodes
support the same valid color), w.h.p.?

The analysis in [AAE08] consider the configuration space C as a 2-dimensional triangle and
define a partition into four main subregions: each of the three corner regions is characterized
by a “large” fraction of nodes supporting one of the three possible states while the fourth region
is a large “central” one which is characterized by a balanced number of nodes assuming each
possibile state.

The complex evolution of Undecided-State dynamics is essentially due to the fact that its
random behaviour is qualitatively different in different regions of the conguration space. In order
to get the good intuitions here, we observe that when the system lies in configurations with a large
bias s = |c1−c0| and q = Θ(n), then s increases, in average. On the other hand, when the system
lies in almost balanced configurations with a large q = Θ(n), then the evolution is very close to a
double, almost-independent information-spreading process of the two colors. Finally, when the
system lies in almost balanced configurations where no color predominates, the process works
like a random walk with an increasing drift toward configurations having a relatively large bias.
The main technical contribution of [AAE08] is the definition of a suitable potential function over
the set C which well-represents the critical region-transitions of the process evolution. On the
other hand, they show that the random process defined by this potential function is essentially
a sub-martingale and, thus, it is possible to bound its convergence time.

This important analysis provides rigorous and tight answers to all the three main issues
discussed above.

Theorem 23 (Sequential Undecided-State dynamics [AAE08]). Assume the
Undecided-State dynamics starts from an arbitrary configuration17 c 6= (0, 0, n). Then the
following claims hold.

• Convergence Time. After O(n log n) rounds (i.e. edge activations), the Undecided-
State dynamics converges to a valid monochromatic configuration c̄ 6= (0, 0, n), w.h.p.

• Plurality-Preserving Property. If the initial configuration c has bias s = ω(
√
n log n), then

the Undecided-State dynamics converges to the initial plurality color, w.h.p.

• Fault-Tolerance. If the number of Byzantine nodes is o(
√
n), then, the two claims above

still hold w.h.p.: the Undecided-State dynamics reaches valid consensus and it preserves
the initial plurality provided that s = ω(

√
n log n).

As an important consequence of the above theorem, the Undecided-State dynamics turns
out to be a fault-tolerant protocol that achieves binary consensus and plurality consensus with
a logarithmic work per node. So, similarly to the 3-Majority dynamics or to the 2-Choices
dynamics, it yields an exponential speed-up w.r.t. Voter dynamics at the cost of just one extra
state the nodes can assume.

Analysis for non-complete topologies

Recently, [MNRS16] provides an analysis of the Undecided-State dynamics over arbitrary
connected graph G starting from binary configurations. The first result concerns the case in
which the initial configuration is chosen randomly.

17If the process starts with all nodes in the undecided state, then it clearly stays on this configuration forever.
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Theorem 24 (Sequential Undecided-State dynamics on general graphs - random initializa-
tion [MNRS16]). Let G(V,E) be any connected graph and assume each node chooses its initial
color from Σ = {0, 1} randomly according to any fixed distribution. Then, Undecided-State
dynamics converges to the initial majority with probability at least 1/2.

The proof of the above result makes use of a classic result in extremal combinatorics (in
particular, on the Hall’s marriage Theorem) and gives no interesting bounds on the completion
time.

Mertzios et al [MNRS16] also consider special classes of graphs and initial configurations
which are chosen in some adversarial way in order to show very strong negative results.

Theorem 25 (Sequential Undecided-State dynamics - worst-case settings [MNRS16]). Some
infinite families of connected graphs together with some (adversarial) initial color configurations
exist such that the Undecided-State dynamics converges to the initial minority color with
high probability. The result holds even starting with a very large bias, i.e. for s = n−Θ(log n).
Moreover, some infinite families of connected graphs together with some (adversarial) initial color
configurations exist where the expected time of the Undecided-State dynamics is exponential
in n.

The negative results above essentially relies on the good fault-tolerance the Undecided-
State dynamics exhibits over the complete graphs. Informally, the authors consider a lollipop
topology where the core is a small clique with one of its nodes connected to a long path. If the
clique is initialized with the minority color and the path with the majority one then they prove
there is a high probability that the former will win.

A four-states dynamics over non-complete topologies

It is perhaps not surprising that there is no one-extra-state dynamics that have “better” per-
formances than the Undecided-State dynamics; this result has been formally proved in
[MNRS16]. What about using two extra-states (i.e., four states for the binary case)? This
issue has been investigated in a sequence of works that we summarize in this subsection.

A dynamics was introduced by Bénézit et al. in [BTV09], in which they study its properties
for reaching some forms of consensus. The convergence time for the binary case was first ana-
lyzed in [DV12]. According to [DV12], the dynamics will be denoted as Interval-Consensus
dynamics. The set of possible states is Σ = {0, 0.5−, 0.5+, 1} and the following order relation on
this set is introduced: 0 < 0.5− < 0.5+ < 1. Since we are in the random sequential model, the
states held by the nodes are updated at random pairwise contacts between nodes sharing a link
of the supporting graph.

The idea is to “simulate” a local quantized averaging process between any two interact-
ing nodes so that the total “mass” is preserved and swapped. Formally, the updating rule of
Interval-Consensus dynamics is described below [DV12].

Interval-Consensus dynamics.

A. If a node in state 0 and a node in state 1 interact, they update their states to
state 0.5+ and state 0.5−, respectively.

B. If a node in state 0.5− and a node in state 1 interact, they update their states
to state 1 and state 0.5+, respectively.

C. If a node in state 0.5+ and a node in state 0 interact, they update their states
to state 0 and state 0.5−, respectively.
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D. If a node in state 0.5− and a node in state 0 interact, they update their states
to state 0 and 0.5−, respectively.

E. If a node in state 0.5+ and a node in state 1 interact, they update their states to
state 1 and state 0.5+, respectively.

F. If a node in state 0.5− and a node in state 0.5+ interact, they update their states
to state 0.5− and state 0.5+, respectively.

For any other possible pair of states the two interacting nodes can assume, their states at
the next round remain unchanged18.

In [BTV09], Bénézit et al provide a first important property about this dynamics.

Theorem 26 (Interval-Consensus dynamics I [BTV09]). Let G(V,E) be any connected graph
and assume each node starts with a color (state) in {0, 1} such that there is some bias s > 1
towards color 0. Then with probability 1− o(1), the Interval-Consensus dynamics converges
to a regime of configurations where every node is either in state 0 or in state 0.5−. A symmetric
claim holds if the initial bias is toward color 1.

More recently, Draief et al [DV12] analyzed its convergence time over general connected
graphs and derive an upper bound which depends on the initial bias and the spectral properties
of some matrices associated to the Markov chain induced by the process. The statement of this
general result requires to introduce a set of notions which are far-beyond the scope of this survey,
so we invite the interested reader to look at the original paper [DV12]. We instead here report
the obtained bound for complete graphs.

Theorem 27 (Interval-Consensus dynamics II [DV12]). Let us assume each node of the n-
node complete graph starts with a state in {0, 1} such that there is some bias s > 1 towards one
of the two colors. Then, the expected convergence time of the Interval-Consensus dynamics
is bounded by

log n

2α− 1
(1 + o(1)),

where α = (1/2)(1 + s/n) > 1/2 denotes the fraction of nodes supporting the initial majority.

We observe that, on the positive side, the above results show that the Interval-Consensus
dynamics somewhat computes the initial majority in any connected graph and starting from any
initial bias s > 0. On the negative side, these results show a form of majority consensus which is
not monochromatic and it is not guaranteed with high probability. Finally, the analysis leading
to the two theorems above strongly rely on the fact that any fixed node, at any round, can
interact with at most one of its neighbors. This makes any attempt to adapt this analysis
for parallel synchronous interaction models (such as the PULL one) an interesting open issue.
We conclude by observing that the Interval-Consensus dynamics has been independently
re-discovered and analyzed also in [MNRS14].

6.2 Memory lower bounds for Majority and k-Plurality Consensus

As we mentioned in the previous section, [MNRS16] proved that no 3-state protocol can solve the
majority consensus problem exactly. In this section we discuss further related work concerned
with exact solutions the problem19.

18For a possible instance of this process over a simple graph of 4 nodes, the reader may look at [BTV09].
19Even though some of the results mentioned in the following hold for the more general fair scheduler, here by

"exactly" we mean with probability 1 under the random scheduler.
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With respect to the Majority Consensus Problem, a recent line of research such as [AGV15,
AAE+17, AAG18], investigates trade-offs between the convergence time and number of states
which are necessary in order to solve the problem. Interestingly, the Average&Conquer they
consider is a discretized version of the averaging process that we discuss in Section 7; their
discretization of the process into a set of quantized levels is performed in order to reduce the
number of states employed by the algorithm.

As for the more general k-Plurality Consensus Problem in the Population Protocol Model,
following up their work on the Interval-Consensus dynamics, in [BTV11] Benezit et al.
investigate the k-Plurality Consensus Problem (which they call Multiple Voting Problem with k
colors). They proposed a 15-state protocol for the 3-color case and a 100-state protocol for the
4-color case, and left open the problem of determining the minimum number of states to solve
(exactly) the general k-Plurality Consensus Problem.

In [SSNG15], the authors propose a O(k2k) Plurality Consensus protocol and conjecture
that such number of states is optimal. The conjecture was later disproved in [RN19], where a
O(k11)-state exact Plurality Consensus protocol is provided, together with a Ω(k2)-state lower
bound for the problem.

6.3 The parallel synchronous setting

If we run the Undecided-State dynamics on the parallel PULL model, then at every round all
nodes update their own state. Even though it is easy to verify that the dynamics still achieves
consensus (with high probability), the evolution of the parallel process significantly departs from
the sequential one described in the previous subsection.

To get just one immediate evidence of this difference, observe that, in the former model,
the system can converge to the (non-valid) configuration where all nodes are undecided even
if starting from a “fully-colored” configuration20 (where all nodes are not undecided). As we
observed in the previous section, it is easy to see that this evolution cannot happen in the
sequential setting.

A deeper, crucial difference lies in the random number of nodes that may change color at
every round: In the sequential model, this is at most one21, while in the parallel one, all nodes
may change state in one shot and indeed, for most phases of the process, the expected number of
changes is linear in n. This crucial difference in the evolution of the two processes above is one
of the main reasons why no general techniques are currently available which allow to extend any
quantitative analysis for the sequential process to the corresponding parallel one (and viceversa):
The latter turned out to be a non-reversible Markov chain having a state-transition di-graph of
very large degree.

The analysis in [AAE08] strongly uses the fact that only one node can change state in one
state to define a suitable supermartingale argument to obtain a bound on the stopping time of
the process. So, the analysis of [AAE08] fully covers the case of sequential interaction models,
but it is not helpful to understand the evolution of the Undecided-State dynamics process on
any interaction model in which the number of nodes that may change state in one round is not
bounded by some absolute constant.

Recently, an unconditional analysis of the Undecided-State dynamics on the parallel
PULL model has been presented by Clementi et Al in [CGPS17, CGG+17] and its main conse-
quences are stated below.

20This happens if every colored node pulls the other color.
21This number becomes 2 if the sequential communication model activate a random edge per round, rather

than one single node [AAE08].
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Theorem 28 (Parallel Undecided-State Dynamics [CGPS17, CGG+17]). Let the Undecided-
State dynamics start from any configuration c ∈ C. Then, the following claims hold.

• Convergence Time. The process converges to a (valid) monochromatic configuration within
O(log n) rounds, w.h.p. Furthermore, if the initial configuration has at least one colored
node (i.e. q 6 n − 1), then the process converges to a valid monochromatic configuration
c̄ 6= (0, 0, n), w.h.p.

• Plurality-Preserving Property. If the initial configuration c has bias s = Ω(
√
n log n),

then the process converges to the plurality color, w.h.p. Furthermore, the result is almost
tight in a twofold sense: (i) An initial configuration exists, with s = Ω(

√
n log n), such

that the process requires Ω(log n) rounds to converge w.h.p., and (ii) there is an initial
configuration with s = Θ(

√
n) such that the process converges to the minority color with

constant probability.

The major technical issues arise from the analysis of balanced initial configurations where
the system “needs” to break symmetry without having a strong expected drift towards any color.
Essentially, previous analysis of this phase consider either sequential processes of interacting
particles that can be modeled as birth-and-death chains (such as that discussed in the previous
section for the sequential version of the Undecided-State dynamics [AAE08]) or as parallel
processes whose local rule is fully symmetric w.r.t. the states/colors of the nodes (such as
majority rules)[BCN+16, DGM+11]. The parallel Undecided-State dynamics process falls
neither in the former nor in the latter scenario: it works in parallel rounds and the role of
the undecided nodes makes the local rule not symmetric. Informally speaking, Clementi et
al show an “efficient” way to reduce all “critical” almost-balanced starting of the process to a
specific regime along which the system keeps a number q of undecided nodes which is some
suitable constant fraction of n until the bias s has reached an Ω(

√
n log n) magnitude: in other

words, during this regime, with very high probability the system never jumps to almost-balanced
configurations having either too many or too few undecided nodes. This fact is crucial essentially
because of two reasons: along this regime, (i) the variance of the bias s is large (i.e. Θ(n)) and
(ii) whenever the bias s gets Ω(

√
n), its drift turns out to be exponential with non-negligible,

increasing probability (w.r.t. s itself). Then, by devising a coupling to a “simplified” pruning
process, the analysis in [CGPS17, CGG+17] makes use of (a suitable version) of a general lemma
[DGM+11] (see Claim 9.2 in [DGM+11]) that provides a logarithmic bound on the hitting time
of some Markov chains that have Properties (i) and (ii) above.

The symmetry-breaking phase terminates when the Undecided-State dynamics reaches
some configuration having a bias s = Ω(

√
n log n). Then it is proved that, starting from any

configuration having that bias, the process reaches consensus within O(log n) rounds, w.h.p.
This part still must cope with some non-monotone behaviour of the key random variables (such
as the bias and the number of undecided nodes at the next round): again, this is due to the
non-symmetric role played by the undecided nodes. The refined analysis shows that, during this
majority phase, the winning color never changes and, thus, the Undecided-State dynamics
also ensures Plurality Consensus in logarithmic time whenever the initial bias is s = Ω(

√
n log n).

The analysis in [CGPS17, CGG+17] does not consider any kind of faults, so the fault-
tolerance of this dynamics in the parallel model is still an open issue. However, we believe that
the protocol can tolerate any adaptive, dynamic adversary that corrupts at most o(

√
n) nodes

at every round.
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6.4 Dealing with more colors

The results given in the previous subsections on the Undecided-State dynamics concern the
binary case. When the colors a node can support is larger, then the process become significantly
more complex and, up to now, there are no unconditional analysis available for this general
setting.

In [BCN+16], Becchetti et Al provide an analysis of the Undecided-State dynamics for
the multi-color case on the complete graph by assuming a certain initial bias toward a plurality
color. This subsection gives a short overview of this work.

As described in the previous subsections, the performance of this dynamics on the complete
graph has been evaluated w.r.t. the following parameters: the number n of nodes and the initial
bias towards the plurality color, with the latter characterized in terms of a parameter that only
depends on the relative magnitude22 of c̄1 and c̄2.

However, when k > 2, any such measure of the initial bias is not sensitive enough to ac-
curately capture the convergence time of a plurality protocol: a global measure is needed, i.e.,
one that reflects the whole initial color configuration. To better appreciate this issue, consider
the two configurations c̄ and c̄′ in Fig. 3. Whether the absolute difference or the relative ratio
is used to measure the initial bias, the color configuration c̄′ appears to be not “worse” than c̄.
Still, computer simulations and intuitive arguments suggest that, under any “natural” plurality
protocol, the almost-uniform color distribution c̄′ can result in much larger convergence times
than the highly-concentrated color configuration c̄. We remark that the impact of the whole
initial color configuration on the speed of convergence of plurality protocols has never been
analyzed before.

Figure 3: Two different color configurations having the same bias s = s(c1, c2)

As a first step, Becchetti et al introduce a suitable distance d(·, ·) on the set C of all color
configurations. It naturally induces a function md(·), called the monochromatic distance, which
equals the distance between any configuration c and the target configuration:

md(c) =
k∑
i=1

(
ci
c1

)2

They use md to characterize the bias of the initial configuration. In particular, note that
md(c̄) measures the extent to which c̄ is “uniform”: Indeed, the higher the extent of the bias
towards a small subset of the colors (including the plurality one), the smaller the value of md(c̄).

22Typically, this relative magnitude is defined in terms of the absolute difference or the ratio.
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As an example, in Fig. 3, md(c̄) can be substantially smaller than md(c̄′). At the extremes,
when there are only O(1) color communities of size Θ(c̄1), we have md(c̄) = Θ(1) while, when
Θ(k) color communities have size Θ(n/k), we have md(c̄) = Θ(k).

Notice that, in the restricted, binary case, the complex dependence of the dynamics’ evolution
on the overall shape of the initial color configuration is not exhibited.

The analysis introduced by Becchetti et al in [BCN+16] allows to establish the following
relationship between the convergence time and the monochromatic distance.

Theorem 29 ([BCN+16]). let k = k(n) be any function such that k = O((n/ log n)1/3), and
consider any initial configuration c̄ ∈ S such that c̄1 > (1 +α)c̄2 where α > 0 is any arbitrarily-
small constant23. Then, the following claims hold.

• Convergence towards plurality. The Undecided-State dynamics converges within
O(md(c̄) log n) rounds towards the plurality color, w.h.p.

• Tightness. This result is almost-tight in a strong sense. In particular, for k = O((n/ log n)1/6)
and for any initial k-colors configurations c̄, the convergence time of the
Undecided-State dynamics is linear in the monochromatic distance md(c̄) w.h.p.

Comparison with the 3-Majority dynamics. We emphasize that, when k is some root of
n, the above result implies that the Undecided-State dynamics is exponentially faster than the
best protocol that uses polylogarithmic bounded memory [BCN+17a] on a large class of initial
color configurations. In particular, as described in Section 5, in [BCN+17a] the authors analyze
the 3-Majority dynamics and, when the initial bias is s = Ω(

√
kn log n), we have seen that the

3-Majority dynamics converges within Θ(min{k, n1/3} log n) rounds using Θ(log k) memory
and message size. Notice that the convergence times of the 3-Majority dynamics become
polylogarithmic only if c̄1 > n/polylog (n), thus they are not polylogarithmic whenever k =
ω(polylog (n)) and c̄1 = o(n/polylog (n)). This is the parameter range where Theorem 29 shows
that the Undecided-State dynamics leads to an exponential speed up w.r.t. the convergence
time of the 3-Majority dynamics. For example, consider an initial “oligarchic” scenario where
k = n1/4 and a subset L = {1, 2, ..., polylog (n)}, such that for any i ∈ L, c̄i ∼ n/

√
k, and for

any i ∈ [k] \L, c̄i ∼ n/k. Clearly, 1, 2 ∈ L and the resulting monochromatic distance is md(c̄) =
polylog (n). Assuming c̄1 > (1 + α)c̄2 for some α > 0 our upper bound implies that, starting
from any such configuration, the Undecided-State dynamics converges in polylogarithmic
time, whereas the 3-Majority dynamics converges in Θ(k log n) time [BCN+17a].

On the other hand, the upper bound on the convergence time for the 3-Majority dynamics
(see Theorem 18) does not require the condition on the multiplicative bias in Theorem 29,
Moreover, we note that the Undecided-State dynamics may fail to reach plurality consensus
when k = ω(

√
n). Indeed, for such parameter range there are initial configurations in which the

Undecided-State dynamics makes the plurality color disappear after one round with constant
probability (see, e.g., Section 3 in [BCN+15]).

7 Averaging dynamics

In this section, we discuss the interesting and at first sight surprising properties of a family
of elementary network processes. At a high level, each node of an underlying graph G initially
holds a possibly random value. Then, in each consecutive step, every node updates to a (possibly

23in the multi-color case this is a weak-bias condition that ensures the convergence of the process towards the
plurality color.
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weighted) average of its current value and of the current values held by one or more of its
neighbours. For the scenarios of interest in this section, nodes follow a very simple random rule
to initialize their values. We remark that different schemes are possible, or initialization might
be the outcome of an exogenous process.

Averaging may come in different flavours, depending on the underlying communication model.
In Subsection 7.1, we describe two specific algorithms that fulfill the general idea given above,
respectively in the LOCAL and in the random sequential communication models. We always use
the phrase Averaging dynamics in the remainder of this section, whereas the specific algorithm
we are referring to each time should be clear from context.

7.1 Averaging dynamics

In the LOCAL communication model, the averaging dynamics can be defined as follows.

Definition 30 (Averaging dynamics on LOCAL). • (Initialization). At round t = 0 ev-
ery node v ∈ V independently samples its value from {−1,+1} uniformly at random;

• (Updating rule). In each subsequent round t > 1, every node u ∈ V updates its value xu
to the average of the values of its neighbors at the end of the previous round.

In the random sequential case, a node performs some action whenever it is one of the end-
points of the edge selected for communication in the current step.

Definition 31 (Averaging(δ) on the random sequential model). Let δ ∈ (0, 1) be the parameter
measuring the weight given to the neighbor’s value.

• (Initialization). If it is the first time u is active, then pick xu ∈ {−1,+1} u.a.r.

• (Updating rule). Send xu to the other endpoint of the active edge and then update
xu := (1− δ)xu + δr, where r is the value received from the other endpoint.

Notation and preliminaries We use the following notation in the remainder of this section.
Whatever the communication model, we denote by x(t) the global state of the Averaging
dynamics at time t, i.e., the vector of values held by the nodes at time t. In particular, we
let x(0) = x for simplicity. Unless otherwise specified, the norm of a vector x is its `2 norm
‖x‖ :=

√∑
i(x(i))2 and the norm of a matrix M is its spectral norm ‖M‖ := supx:‖x‖=1 ‖Mx‖.

For a diagonal matrix, this is the largest diagonal entry in absolute value. Finally, given an n×n
matrix M , we denote by λ1(M) > . . . > λn(M) its eigenvalues. For the rest of this section, we
refer to an undirected graph G = (V,E) with n nodes. We denote by d(v) v’s degree and we let
m =

∑
v d(v).

We next discuss the behaviour of the Averaging dynamics in both LOCAL and random
sequential models. One of the most interesting aspects is the versatility and algorithmic potential
of the resulting process when considered at different time scales.

7.2 Averaging dynamics, random walks and Consensus

In this section, we discuss relationships between the Averaging dynamics and random walks
on undirected graphs. We further discuss their behaviour with respect to consensus. Finally, we
highlight connections between convergence of the Averaging dynamics and spectral properties
of the underlying topology, which in turn are crucial for clustering.
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Random walks and Consensus. In the LOCAL model, the Averaging dynamics is per-
haps one of the simplest, yet most interesting examples of a linear dynamics. In the first place,
it always converges when the underlying graph G is connected and not bipartite. In more detail,
it converges to the global average of the initial values if the graph is regular and to a weighted
global average if it isn’t, the weight of each node/value being the corresponding entry of the
main left eigenvector of G’s transition matrix [BGPS06, Sha09]. Seeing this is relatively simple
if we consider that a single step of the Averaging dynamics amounts to applying the transition
matrix P of G to the current global state.24 P operates as the random walk process on G by left
multiplication, and as the Averaging dynamics by right multiplication. So, the global state of
the system after t steps of the Averaging dynamics is

x(t) = Px(t−1) = · · · = P tx(0).

If G is undirected and non-bipartite very interesting properties hold: i) the Markov chain de-
scribed by P is ergodic; ii) as a consequence, as t → ∞, P t converges to a rank one matrix,
whose rows are copies of P ’s main left eigenvector; iii) the mixing time of this Markov chain
crucially depends on λ2(P ).25 In more detail, the following results holds:

Theorem 32 (Convergence, see Section 1 of [L+93]). The random walk on G is ergodic, when-
ever G is not bipartite. Moreover, the corresponding stationary distribution is given by the vector
π defined as:

π(v) =
d(v)

2m
,∀v ∈ V.

While proving ergodicity requires some (small) extra work, one can immediately check that
π above is a stationary distribution for P , i.e., it satisfies πTP = πT , which in turn implies that
π is a left eigenvector of P , with λ1(P ) = 1 as the associated eigenvalue. On the other hand,
the vector 1 = (1, . . . , 1)T is a trivial, right eigenvector of P associated to λ1(P ) = 1. These two
facts imply that, whenever G is not bipartite, P T converges to πT1 as t→∞.26 As a result, for
every x ∈ Rn, P tx converges to α1, where α =

∑
v π(v)x(v). Hence, the Averaging dynamics

achieves consensus on the (generally weighted) average of the values they initially hold.27

As for the speed of convergence, this crucially depends on the spectrum of P . Note that, for
every t, P tuv is the probability that a random walk started at u is at node v after t steps. The
following result hold:

Theorem 33 (Convergence time, see Theorem 5.1 of [L+93]). Let λ = max{|λ2(P )|, |λn(P )|}.
For every u, v ∈ V and for every t > 0 we have:

|P tuv − π(v)| 6

√
d(v)

d(v)
λt.

Unless G is bipartite, λ < 1. In particular, this implies exponential convergence speed,
whenever λ is bounded away from 1 by a (possibly small) constant.

24Recall that, if G = (V,E) is an undirected graph (possibly with multiple edges and self loops), A its adjacency
matrix and di the degree of node i, the transition matrix of (the random walk on) G is the matrix P = D−1A,
where D is the diagonal matrix such that Di,i = di. Pi,j = (1/di) ·Ai,j is thus the probability of going from i to
j in one-step of the random walk on G.

25The results we are about to state almost seamlessly extend to weighted graphs.
26The algebraic argument is relatively easy, but beyond the scope of this survey.
27We stress that this is not a valid consensus in the sense considered elsewhere in this survey, since the final,

common value in general is not among those initially held by the nodes, i.e., it not one of the components of x.
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The picture changes completely in process over the random sequential model described in
Definition 30. Here, the global state x(t) at time t depends on the global state at time t − 1
according to a non-homogeneous Markov chain. In more detail, we have:

x(t) = W (t)x(t−1),

where W (t) is a matrix that corresponds to the averaging between the end nodes of the edge
that is selected for communication in the t-th step. In more detail,28 it is easy to see [BGPS06]
that, if edge (i, j) is selected for communication in the t-step we have:

W (t) = I − (ei − ej)(ei − ej)
T

2
, (2)

where I is the identiy matrix and eh denotes the h-th canonical vector. As a result we have:

x(t) = W (t)W (t− 1) · · ·W (1)x(0), (3)

where each W (i) has the form (2) and corresponds to the edge sampled in the i-th step. We let
W (t) = W (t)W (t− 1) · · ·W (1) in the remainder.

A few remarks are in order: i) theW (t)’s are independent and identically distributed random
variables,29 their distribution corresponding to the one over the edges that defines the random
sequential process; ii) each W (t) is a doubly stochastic matrix; iii) it is easy to see that W (t) is
a (doubly) stochastic matrix that defines a non-homogeneous Markov chain.

The expectation E [W (t)] = W of course does not depend on t, while it depends on G’s
transition matrix in a simple way, namely:

W = I − 1

2n
D̄ +

P + P T

2n
. (4)

Here, D̄ is the diagonal matrix such that D̄ii =
∑n

j=1(Pij + Pji). If G is a regular graph, the
above expressione simplifies to

W =

(
1− 1

n

)
I +

1

n
P. (5)

One first question is whether the stochastic process defined by x(t) converges as t → ∞.
Loosely speaking, in [BGPS06] the authors prove that the process defined by the Averaging
dynamics converges to the constant vector x̄1, where x̄ =

∑
u x

(0)
u /n, i.e., to the vector that

assigns the average of the initial values to each node of the graph. More formally, let T̄ (ε) be
defined as:

supx(0)inf

{
t : P

(
‖x(t) − x̄1‖
‖x(0)‖

> ε

)
6 ε

}
.

Then the following result holds:

Theorem 34 (Convergence time in the random sequential model [BGPS06]).

T̄ (ε) 6
3 log ε−1

log λ2(W )−1
,

T̄ (ε) >
0.5 log ε−1

log λ2(W )−1
.

28We remind the reader that we focus on the case δ = 1/2.
29If edges are selected independently across different time steps as we assume.
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Second eigenvalue and graph topology. Theorem 34 entails an implicit dependance of
convergence on the underlying graph topology, which we briefly discuss below. For the sake of
simplicity, we consider regular graphs. In this case we have from (5):

λ2(W ) = 1− 1

n
+
λ2(P )

n
= 1− 1− λ2(P )

n
.

From this, as a corollary of Theorem 34, simple manipulations allow us to conclude that

T̄ (ε) = Θ

(
n

1− λ2(P )
log

1

ε

)
.

On the other hand, λ2(P ) is related to the expansion properties of G: loosely speaking, a value
of λ2(P ) close to 1 denotes the presence of (at least) one sparse cut with low conductance. This
dependence is quantitatively characterized by the well-known Cheeger’s inequality and can be
generalized to provide a characterization of the cluster structure of a graph [LGT14]. Keeping
this in mind, the above expression allows to quantitatively assess the intuition that convergence
of the Averaging dynamics to the global average in the random sequential model is negatively
affected by the clustering properties of the underlying graph G, in particular the presence of a
sparse cut in G. This intuition is at the core of the section that follows.

7.3 Clustering properties of the Averaging dynamics

The remarks at the end of the previous section suggest that, whatever the model of communi-
cation, the evolution of the process resulting from the the Averaging dynamics might provide
information about the structure of the underlying graph. To be more specific, suppose that G
exhibits a community structure, which in the simplest case consists of two equal-sized expanders
(the two “communities” of the graph) connected by a sparse cut. Assume further that we run
our averaging process starting, for example, from an initial ±1 random global state. One might
reasonably expect the following high-level pattern in the evolution of the Averaging dynamics:
i) a faster convergence toward a local average within each community; ii) a slower convergence
toward the global average over the entire graph; iii) a transient phase in which the values held
by nodes within each community are close to the local average, whereas local averages of the
two communities will in general exhibit a certain gap that depends on the initial values.

If this were the case, the global state during the transient phase would be correlated with
the indicator of the cut between the two communities. This intuition suggests a main question,
which we present below as it is formulated in [BCN+17c, BCM+18]:

Is there a phase in which the global state carries information about community structure? If so,
how strong is the corresponding “signal”? Finally, can nodes leverage local history to uncover the
underlying community structure?

In the remainder, we analyze the clustering properties of the Averaging dynamics with
respect to an important benchmark in the theory of clustering algorithms, namely, the block
reconstruction problem. Let G = ((V1, V2), E) be a graph with V1 ∩ V2 = ∅. A weak (block)
reconstruction is a two-coloring of the nodes that separates V1 and V2 up to a small fraction of
the nodes. Formally, we define an ε-weak reconstruction as a map f : V1 ∪ V2 → {red, blue}
such that there are two subsets W1 ⊆ V1 and W2 ⊆ V2 with |W1 ∪ W2| > (1 − ε)|V1 ∪ V2|
and f(W1) ∩ f(W2) = ∅. When ε = 0 we say that f is a strong reconstruction. Given a graph
G = ((V1, V2), E), the block reconstruction problem requires computing an ε-reconstruction of G.
The underlying, hidden partition we intend to uncover can be described by an indicator vector.
In more detail, for i = 1, 2, define 1Vi , as the |V |-dimensional vector, whose j-th component is
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1 if j ∈ Vi, it is 0 otherwise. If (V1, V2) is a bipartition of the nodes with |V1| = |V2| = n, we
define the partition indicator vector χ = 1V1 − 1V2 .

In general, the reconstruction problem has been studied extensively using a multiplicity of
techniques, which include combinatorial algorithms [DF89], belief propagation [DKMZ11] and
variants of it [MNS14], spectral-based techniques [McS01, CO10], Metropolis approaches [JS98],
and semidefinite programming [ABH14], among others. The contributions we discuss below show
that the transient behaviour of an elementary and fully decentralized process as the Averaging
dynamics carries information about the cluster structure of G, which in important cases can be
effectively recovered.

7.3.1 Clustering properties in the LOCAL model

In [BCN+17b], the authors propose the following distributed protocol for block reconstruction.
It is based on the Averaging dynamics and produces a coloring of the nodes at the end of every
round. The authors show that, within O(log n) rounds, the coloring computed by the algorithm
achieves strong reconstruction of the two blocks in the case of clustered regular graphs and weak
reconstruction for a large family of clustered, non-regular graphs that with high probability
includes those generated from the stochastic block model [MNS14].

Averaging protocol:

Rademacher initialization: At round t = 0 every node v ∈ V independently samples its
value from {−1,+1} uniformly at random;

Updating rule: At each subsequent round t > 1, every node v ∈ V

1. (Averaging dynamics) Updates its value x(t)(v) to the average of the values of its
neighbors at the end of the previous round,

2. (Coloring) If x(t)(v) > x(t−1)(v) then v sets color(t)(v) = blue otherwise v sets
color(t)(v) = red.

Algorithm 1: Overall clustering algorithm for a node u in the LOCAL model of commu-
nication.

The choice of the above coloring rule will be motivated in the paragraphs that follow. Here,
we note that the algorithm is a dynamics in the strictest sense of Definition 1. In particular, it is
completely oblivious to time. Namely, after initialization the protocol iterates over and over at
every node. The resulting coloring eventually stabilizes to a (possibly weak) reconstruction. This
is a property of the protocol, of which nodes are not aware, it is an event that eventually occurs
with high probability when certain assumptions hold (Theorems 36 and [BCN+17b, Theorems
4.1 and 4.2]). Moreover, the clustering criterion is completely local, in the sense that a decision
is individually and independently made by each node in each round, only on the basis of its state
in the current and previous rounds. This may seem counter-intuitive at first, but closer scrutiny
shows that the clustering criterion implicitly leverages spectral properties of P to uncover the
underlying community structure, as we outline in the paragraphs that follow.
Remark. We briefly note that, although Algorithm 1 is well-defined regardless of graph size
and, as such, it meets the standards of Definition 1, the minimum amount of local memory
required at each node for the results of Theorems 36 and [BCN+17b, Theorems 4.1 and 4.2] to
hold might indeed depend on properties of the graph, in particular its maximum degree. The
reason is in the averaging operation itself, which is a relatively complex primitive and requires
each node to receive (and, therefore, temporarily store) the values held by its neighbours at the
end of the previous round.
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Averaging dynamics and clustering. Recall that, from Section 7.2, the behavior of the
Averaging dynamics on a graph G is closely related to the behavior of random walks in G.
Namely, if x is the initial vector of values, after t rounds of the Averaging dynamics the vector
of values at time t is x(t) = P tx. The product of the power of a matrix by a vector is best
understood in terms of the spectrum of the matrix, which is what we explore in the next section.
In the remainder, we denote by λ the largest, in absolute value, among all but the first two
eigenvalues of P , namely, λ = max {|λi(P )| : i = 3, 4, . . . , n}.30

Strong reconstruction for regular graphs. The simple, yet non-obvious intuition behind
the Averaging protocol and its analysis is best captured by the case of regular graphs. Specif-
ically, we consider the following, “well” clustered family or regular graphs.

Definition 35 (Clustered Regular Graph). A (n, d, b)-clustered regular graph G = ((V1, V2), E)
is a graph over vertex set V1 ∪ V2, with |V1| = |V2| = n/2 and such that:31 (i) Every node has
degree d and (ii) Every node in cluster V1 has b neighbors in cluster V2 and every node in V2
has b neighbors in V1.

The next result shows that, for this graph class, the Averaging protocol achieves strong
reconstruction with high probability.

Theorem 36 (Strong reconstruction [BCN+17b]). Let G = ((V1, V2), E) be a connected (2n, d, b)-
clustered regular graph with 1 − 2b/d > (1 + δ)λ for an arbitrarily-small constant δ > 0. Then
the Averaging protocol produces a strong reconstruction within O(log n) rounds, w.h.p.

The intuition behind the above result is best described by an outline of the main arguments
used in the proof of Theorem 36. When G is d-regular, P = (1/d)A is a real symmetric matrix
and P and A have the same set of eigenvectors. We know that 1 is an eigenvector of P with
eigenvalue 1, and it is easy to see that the partition indicator vector χ is an eigenvector of P
with eigenvalue 1 − 2b/d. We denote by v1 = (1/

√
2n)1,v2, . . . ,v2n a basis of orthonormal

eigenvectors, where each vi is the eigenvector associated to eigenvalue λi(P ). Then, we can
write a vector x as a linear combination x =

∑
i αivi and we have:

P tx =
∑
i

λtiαivi =
1

2n

(∑
i

x(i)

)
1 +

2n∑
i=2

λtiαivi, (6)

which implies that x(t) = P tx tends to α1v1 as t tends to infinity, i.e., it converges to the vector
that has the average of x in every coordinate. If 1− 2b/d happens to be the second eigenvalue,
after t rounds of the Averaging dynamics, the configuration x(t) is close to a linear combination
of 1 and χ. Formally, if λ < 1 − 2b/d, it is possible to prove that there are reals α1, α2 such
that for every t:

x(t) = α11 + α2(λ2(P ))tχ + e(t), (7)

where
∥∥e(t)∥∥∞ 6 λt

√
2n.

The equation above naturally suggests a coloring rule in the Averaging protocol, as soon
as one considers the difference between consecutive values at any node u, i.e.,

x(t−1)(u)− x(t)(u) (8)

30Recall that, since P is a stochastic matrix we have λ1(P ) = 1 and λn(P ) > −1, moreover for all graphs that
are connected and not bipartite it holds that λ2(P ) < 1 and λn(P ) > −1.

31We assume n even for simplicity.
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= α2λ
t−1
2 (1− λ2)χ(u) + e(t−1)(u)− e(t)(u) . (9)

If λ is sufficiently small,
∥∥e(t)∥∥∞ eventually becomes negligible in (7), so that, after a short initial

phase, the sign of x(t−1)(u)− x(t)(u) is essentially determined by χ(u), thus by the community
u belongs to. This happens w.h.p. over the randomness of x(0) = x.

Weak reconstruction for non-regular graphs. If G is non-regular, P = D−1A is not
symmetric in general and the analysis based on (7) has to be significantly revisited.32

On the other hand, one might argue that, if G is not too “distant” from an (n, d, b)-clustered
regular graph, a weaker version of Theorem 36 might still hold. To quantitatively formalize this
intuition, [BCN+17b] introduces a relaxed notion of (n, d, b)-clustered regular graph. For this
graph family, which with high probability includes realizations of the stochastic block model,
[BCN+17b] proves that, under reasonable assumptions, the Averaging dynamics achieves weak
reconstruction within O(log n) rounds w.h.p. The authors further provide a tighter analysis for
the specific case of the stochastic block model. We refer the reader to Section 4 and in particular
Theorems 4.1 and 4.2 of [BCN+17b] for formal statements of these results.

7.3.2 Clustering properties in the random sequential model.

The clustering properties of the Averaging(δ) dynamics in the random sequential model were
investigated in [BCN+17c, BCM+18] and are considerably harder to analyze. The obvious reason
is that the evolution of the global state in this case follows a non-homogeneous process (3). On
the other hand, intuition suggests that the process resulting from the Averaging dynamics in
the random sequential model might be a “sparsified” version of the one we obtain in the LOCAL
model, at least in expectation. This intuition turns out to be correct and we briefly show why
this is the case in the paragraphs that follow. On the other hand, achieving provable performance
seems considerably more challenging, for reasons that we briefly explain in the remainder.

First moment analysis. We next discuss the expected evolution of x(t) under the action of
the Averaging(δ) dynamics. For simplicity of exposition, in the remainder we assume G is
regular. Again, we set x(0) = x, with x realized according to the initialization step in Algorithm
31. When G is regular, we have

E
[
x(t)
]

= W tx,

with W given from (5). This implies that P and W share the same eigenvectors and that the
i-th largest eigenvalues of P and W are related as follows:

λi(W ) = 1− 1− λi(P )

n
. (10)

Moreover, if G is (n, d, b)-clustered regular, χ happens to be an eigenvector of W . This again
follows from (5), since in this case χ is an eigenvector of P , as we remarked in the previous
section. Hence, the evolution of E

[
x(t)
]
is dictated by an equation that has the same form as

(7), with λ2(W ) replacing λ2(P ). Proceeding like in the LOCAL case, with some work it is
possible to draw the following conclusions:

Monotonicity in expectation. If λ (defined as in the previous section) is sufficiently small,
after an initial phase of length O(n log n), the sign of E

[
x(t−1)(u)− x(t)(u)

]
does not change

32In a nutshell, this happens for two reasons: i) P no longer admits an orthonormal eigenvector basis; ii) while
1 is always the main right eigenvector of any stochastic matrix, χ is not an eigenvector in general, even in regular
graphs that are not (n, d, b)-clustered.
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(hence monotonicity) and it is essentially determined by χ(u), i.e., by the community u belongs
to. This happens w.h.p. over the randomness of x(0) = x.

Second moment analysis for (n, d, b)-clustered regular graphs. Designing heuristics for
block reconstruction in the random sequential setting using the insights from the first moment
analysis outlined above poses significant technical challenges. The main reason is that, despite
the “nice” behaviour of E

[
x(t)
]
described above, ‖x(t) − E

[
x(t)
]
‖ might change significantly

over time. On the other hand, analyzing the evolution of ‖x(t) − E
[
x(t)
]
‖ (or, equivalently,

E
[
‖x(t) −E

[
x(t)
]
‖2
]
) entails characterizing the concentration of a product of independent,

identically distributed random matrices. Unfortunately, while a theory of the concentration
properties of the sum of independent, identically distributed random matrices is well-established
by now [Tro12], the same cannot be said for their products, for which very little is known.
Achieving this turns out to be technically challenging even when G is (n, d, b)-clustered regular.

In [BCN+17c, BCM+18], the authors propose two clustering heuristics with provable guar-
antees in the case of (n, d, b)-clustered regular graphs, both of which rely on Algorithm 30 as
a basic building block. Though Algorithm 30 is a dynamics, the proposed clustering criteria
only apply within a suitable time window, which in turn depends on the underlying graph’s
size. For this reason, the overall resulting clustering algorithms are not dynamics in the sense
of Definition 1 and we refer the interested reader to the above references for details.

Extensions and generalizations. While the first moment analysis sketched above can be ex-
tended to more general topologies than (n, d, b)-clustered regular graphs considered in [BCN+17c,
BCM+18], extending their second moment analysis seems more challenging. We would like to
mention that recently, an important step in this direction was taken in [MTMM18]. There, the
authors considered a distributed version of Oja’s centralized method for eigenvector approxi-
mation [Oja82], which works in the random sequential model of communication. The authors
considered an averaging scheme that is very similar to the one of [BCN+17c, BCM+18]. They
were able to show that their decentralized scheme can compute approximations of the k main
eigenvectors of matrices derived from the (possibly weighted) matrix from which edges are sam-
pled in every step, including its Laplacian. This way, they were able to prove both weak and
strong reconstruction for the stochastic block model. Though, strictly speaking, the eigenvector
computation and community detection algorithms proposed in [MTMM18] are not dynamics in
the sense of Definition 1,33 the basic building block is an averaging dynamics, close to Algorithm
31.
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