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Geometric properties of special orthogonal representations associated to exceptional Lie superalgebras

Introduction

The space of binary cubics, a symplectic representation of the Lie algebra sl(2, k), has particular symplectic properties [START_REF] Eisenstein | Untersuchungen über die cubischen Formen mit zwei Variabeln[END_REF], [START_REF] Slupinski | The special symplectic structure of binary cubics[END_REF]. It admits three covariants, among the Hessien and the discriminant, satisfying remarkable geometric identities [START_REF] Mathews | Relations Between Arithmetical Binary Cubic Forms and Their Hessians[END_REF]. This representation is an example of a larger class of representations sharing these properties: the special -orthogonal representations of colour Lie algebras [START_REF] Slupinski | The geometry of special symplectic representations[END_REF], [START_REF] Meyer | The Kostant invariant and special -orthogonal representations for -quadratic colour Lie algebras[END_REF]. The terminology special comes from their role in symplectic geometry [START_REF] Cahen | Special symplectic connections[END_REF]. A special -orthogonal representation V of a colour Lie algebra g can be extended to define a colour Lie algebra of the form

g = g ⊕ sl(2, k) ⊗ V ⊗ k 2 .
In this way, special symplectic representations of Lie algebras give rise to Lie algebras and special orthogonal representations of Lie algebras give rise to Lie superalgebras.

In this paper, from an octonion algebra O over k, we show that

• a one parameter family of 4-dimensional representations of sl(2, k) × sl(2, k) ;

• the 7-dimensional fundamental representation Im(O) of the Lie algebra Der(O) ;

• the 8-dimensional spinor representation O of the Lie algebra so(Im(O))

are special orthogonal representations and give rise to exceptional Lie superalgebras of type D(2, 1; α), G 3 and F 4 (in the Kac notation [START_REF] Victor | Classification of simple Lie superalgebras[END_REF]). This is similar to various constructions from Sudbery [START_REF] Sudbery | Octonionic description of exceptional Lie superalgebras[END_REF], Kamiya and Okubo [START_REF] Kamiya | Construction of Lie superalgebras D(2, 1; α), G(3) and F (4) from some triple systems[END_REF] and Elduque [START_REF] Elduque | Quaternions, octonions and the forms of the exceptional simple classical Lie superalgebras[END_REF].

We explicitly compute the covariants of these representations. In particular, we give formulae of the moment maps of Im(O) and O and we show that the trilinear covariant of Im(O) is, up to a constant, the associator. The quadrilinear covariant of Im(O) admits a decomposition into a sum of 7 decomposable forms which naturally correspond to the 7 lines of the Fano plane and the two maps of the first Mathews identity are, up to constants, the Hodge duals of the cross-product on Im(O). Then we give a decomposition of the quadrilinear covariant of O into a sum of 14 decomposable forms which naturally correspond to the 14 affine planes of the affine space (Z 2 ) 3 . The two maps of the first Mathews identity are, up to a constant, the Hodge duals of the trilinear covariant of O and the two maps of the second Mathews identity are, up to constants, the Hodge duals of the moment map of O.

For special orthogonal representations associated to basic classical Lie superalgebras and interpretation of their covariants, see the appendix of [START_REF] Meyer | The Kostant invariant and special -orthogonal representations for -quadratic colour Lie algebras[END_REF].

Notation

Let k be a field of characteristic not two or three.

For a finite-dimensional quadratic vector space (V, q) and i ∈ N such that i < char(k) if 0 < char(k), we denote by η : Λ i (V ) → Λ i (V ) * the canonical isomorphism given by the determinant and we consider the quadratic form q Λ (resp. q Λ * ) and the symmetric bilinear form B Λ associated by polarisation (resp. B Λ * ) on Λ i (V ) (resp. Λ i (V ) * ) given by η.

If {e i } is a basis of V , we denote e i1 ∧ . . . ∧ e in by e i1...in .

Lie superalgebras from special orthogonal representations

In this section we explain how to construct a quadratic Lie superalgebra from an orthogonal representation of a quadratic Lie algebra, for details and proofs see [START_REF] Meyer | The Kostant invariant and special -orthogonal representations for -quadratic colour Lie algebras[END_REF]. Let (g, B g ) be a finite-dimensional quadratic Lie algebra, let (V, ( , )) be a finite-dimensional quadratic vector space and let ρ : g → so(V, ( , )) be an orthogonal representation of g.

The moment map of the representation ρ :

g → so(V, ( , )) is the g-equivariant alternating map µ ∈ Alt 2 (V, g) satisfying B g (x, µ(v, w)) = (ρ(x)(v), w) ∀x ∈ g, ∀v, w ∈ V.
The standard example is the moment map of the fundamental representation of so(V, ( , )):

Example 2.1. Suppose that g = so(V, ( , )) and B g (f, g) = -1 2 T r(f g) for all f, g ∈ so(V, ( , )). The corresponding moment map µ can ∈ Alt 2 (V, so(V, ( , ))) satisfies

µ can (u, v)(w) = (u, w)v -(v, w)u ∀u, v, w ∈ V, ( 1 
)
and is a g-equivariant isomorphism between Λ 2 (V ) and so(V, ( , )).

We now define a particular class of orthogonal representations of quadratic Lie algebras:

Definition 2.2. The representation ρ : g → so(V, ( , )) is said to be special orthogonal if

µ(u, v)(w) + µ(u, w)(v) = (u, v)w + (u, w)v -2(v, w)u ∀u, v, w ∈ V. ( 2 
)
Special orthogonal representations can be extended to define Lie superalgebras as follows:

Theorem 2.3. Let ρ : g → so(V, ( , )) be a finite-dimensional orthogonal representation of a finite-dimensional quadratic Lie algebra (g, B g ) and let sl(2, k) → sp(k 2 , ω) be the symplectic fundamental representation of the quadratic Lie algebra (sl(2, k), B s ) where ω is the canonical symplectic form on k 2 and where B s (f, g) = 1 2 T r(f g) for all f, g ∈ sl(2, k). Let g be the super vector space defined by

g := g ⊕ sl(2, k) ⊕ V ⊗ k 2 , and let B g := B g ⊥ B s ⊥ ( , ) ⊗ ω. Then (g, B g, { , }) is a quadratic Lie superalgebra extending the bracket of g ⊕ sl(2, k) and the action of g ⊕ sl(2, k) on V ⊗ k 2 if and only if ρ : g → so(V, ( , )) is a special orthogonal representation.
In addition to the moment map, a trilinear and a quadrilinear alternating multilinear map can be naturally associated to a special orthogonal representation: Definition 2.4. We define the multilinear alternating maps ψ ∈ Alt 3 (V, V ) and Q ∈ Alt 4 (V, k) as follows:

ψ(v 1 , v 2 , v 3 ) = µ(v 1 , v 2 )(v 3 ) + µ(v 3 , v 1 )(v 2 ) + µ(v 2 , v 3 )(v 1 ), Q(v 1 , v 2 , v 3 , v 4 ) = (v 1 , ψ(v 2 , v 3 , v 4 )) -(v 4 , ψ(v 1 , v 2 , v 3 )) + (v 3 , ψ(v 4 , v 1 , v 2 )) -(v 2 , ψ(v 3 , v 4 , v 1 )) for all v 1 , v 2 , v 3 , v 4 ∈ V .
The maps µ, ψ and Q are called the covariants of V .

We have the following formulae: Proposition 2.5. If ρ : g → so(V, ( , )) is special orthogonal, then we have

ψ(v 1 , v 2 , v 3 ) = 3(µ(v 1 , v 2 )(v 3 ) -µ can (v 1 , v 2 )(v 3 )), Q(v 1 , v 2 , v 3 , v 4 ) = 4(v 1 , ψ(v 2 , v 3 , v 4 )), for all v 1 , v 2 , v 3 , v 4 ∈ V . For vector spaces E, F, G, H, the exterior product f ∧ φ g ∈ Alt p+q (E, H) of f ∈ Alt p (E, F ) and g ∈ Alt q (E, G) relative to a bilinear map φ : F × G → H is defined by f ∧ φ g(v 1 , . . . , v p+q ) = σ∈S( 1,p , p+1,p+q ) sgn(σ)φ(f (v σ(1) , . . . , v σ(p) ), g(v σ(p+1) , . . . , v σ(p+q) ))
where the sum is over the (p, q)-shuffle permutations in S p+q . If φ is implicit, then we denote f ∧ φ g by f ∧ g.

The composition f • g ∈ Alt pq (G, F ) of f ∈ Alt p (E, F ) and g ∈ Alt q (G, E) is defined by f • g(v 1 , . . . , v pq ) = σ∈S( 1,q ,..., p(q-1)+1,pq ) sgn(σ)f (g(v σ(1) , . . . , v σ(q) ), . . . , g(v σ(p(q-1)+1) , . . . , v σ(pq) ))
where the sum is over the (q, . . . , q)-shuffle permutations in S pq .

Covariants of special orthogonal representations satisfy to the following Mathews identities: Theorem 2.6. Let ρ : g → so(V, ( , )) be a finite-dimensional special orthogonal representation of a finitedimensional quadratic Lie algebra and let µ ∈ Alt 2 (V, g), ψ ∈ Alt 3 (V, V ) and Q ∈ Alt 4 (V, k) be its covariants. We have the following identities:

a) µ ∧ ρ ψ = - 3 2 Q ∧ Id V ∈ Alt 5 (V, V ), (3) b) µ • ψ = 3Q ∧ µ ∈ Alt 6 (V, g), (4) c) ψ • ψ = - 27 2 Q ∧ Q ∧ Id V ∈ Alt 9 (V, V ), (5) d) Q • ψ = -54Q ∧ Q ∧ Q ∈ Alt 12 (V, k). ( 6 
)
3 A one-parameter family of special orthogonal representations of sl(2, k) × sl(2, k)

In this section we show that with respect to a one parameter family of invariant quadratic forms on sl(2, k)×sl(2, k), the tensor product of the two fundamental representations is a special orthogonal representation.

Let (V, ω V ) and (W, ω W ) be two-dimensional symplectic vector spaces. The vector space V ⊗ W is quadratic for the symmetric bilinear form ω V ⊗ ω W given by

ω V ⊗ ω W (v 1 ⊗ w 1 , v 2 ⊗ w 2 ) = -ω V (v 1 , v 2 )ω W (w 1 , w 2 ) ∀v 1 , v 2 ∈ V, ∀w 1 , w 2 ∈ W. Consider the bilinear form K V (resp. K W ) on sp(V, ω V ) (resp. sp(W, ω W )) defined by K V (f, g) = 1 2 T r(f g) (resp. K W (f, g) = 1 2 T r(f g)) for all f, g ∈ sp(V, ω V ) (resp. sp(W, ω W )). For α, β ∈ k * , we now consider the orthogonal representation sp(V, ω V ) × sp(W, ω W ) → so(V ⊗ W, ω V ⊗ ω W ) of the quadratic Lie algebra (sp(V, ω V ) × sp(W, ω W ), 1 α K V ⊥ 1 β K W ). Its moment map µ α,β : Alt 2 (V ⊗ W, sp(V, ω V ) × sp(W, ω W )) satisfies µ α,β (v 1 ⊗ w 1 , v 2 ⊗ w 2 ) = -αµ V (v 1 , v 2 )ω W (w 1 , w 2 ) + βµ W (w 1 , w 2 )ω V (v 1 , v 2 ) ∀v 1 , v 2 ∈ V, ∀w 1 , w 2 ∈ W,
where

µ i : S 2 (V i ) → sp(V i , ω i )
is the canonical symmetric moment map given by

µ i (v 1 , v 2 )(v 3 ) = -ω i (v 1 , v 3 )v 2 -ω i (v 2 , v 3 )v 1 ∀v 1 , v 2 , v 3 ∈ V i . Proposition 3.1. The orthogonal representation sp(V, ω V ) × sp(W, ω W ) → so(V ⊗ W, ω V ⊗ ω W ) of the quadratic Lie algebra (sp(V, ω V ) × sp(W, ω W ), 1 α K V ⊥ 1 β K W ) is a special orthogonal representation if and only if α + β = -1. Proof. Let v 1 ⊗ w 1 , v 2 ⊗ w 2 , v 3 ⊗ w 3 ∈ V ⊗ W .
We want to know under what conditions on α and β do we have

µ α,β (v 1 ⊗ w 1 , v 2 ⊗ w 2 )(v 3 ⊗ w 3 ) + µ α,β (v 1 ⊗ w 1 , v 3 ⊗ w 3 )(v 2 ⊗ w 2 ) = ω V ⊗ ω W (v 1 ⊗ w 1 , v 2 ⊗ w 2 )v 3 ⊗ w 3 + ω V ⊗ ω W (v 1 ⊗ w 1 , v 3 ⊗ w 3 )v 2 ⊗ w 2 -2ω V ⊗ ω W (v 2 ⊗ w 2 , v 3 ⊗ w 3 )v 1 ⊗ w 1 . ( 7 
)
Since V and W are two-dimensional (and after a permutation of v 1 , v 2 , v 3 or w 1 , w 2 , w 3 if necessary) we have v 3 = av 1 + bv 2 and w 3 = cw 1 + dw 2 where a, b, c, d ∈ k. Hence we have

ω V ⊗ ω W (v 1 ⊗ w 1 , v 2 ⊗ w 2 )v 3 ⊗ w 3 + ω V ⊗ ω W (v 1 ⊗ w 1 , v 3 ⊗ w 3 )v 2 ⊗ w 2 -2ω V ⊗ ω W (v 2 ⊗ w 2 , v 3 ⊗ w 3 )v 1 ⊗ w 1 = ω V (v 1 , v 2 )ω W (w 1 , w 2 ) -av 1 ⊗ dw 2 -bv 2 ⊗ cw 1 -2bv 2 ⊗ dw 2 + av 1 ⊗ cw 1
On the other hand we have

µ α,β (v 1 ⊗ w 1 , v 2 ⊗ w 2 )(v 3 ⊗ w 3 ) + µ α,β (v 1 ⊗ w 1 , v 3 ⊗ w 3 )(v 2 ⊗ w 2 ) = -αµ V (v 1 , v 2 )(v 3 ) ⊗ ω W (w 1 , w 2 )w 3 + βω V (v 1 , v 2 )v 3 ⊗ µ W (w 1 , w 2 )(w 3 ) + αµ V (v 1 , v 3 )(v 2 ) ⊗ ω W (w 1 , w 3 )w 2 + βω V (v 1 , v 3 )v 2 ⊗ µ W (w 1 , w 3 )(w 2 ) = (α + β)ω V (v 1 , v 3 )v 2 ⊗ ω W (w 1 , w 2 )w 3 + (α + β)ω V (v 1 , v 2 )v 3 ⊗ ω W (w 1 , w 3 )w 2 + αω V (v 2 , v 3 )v 1 ⊗ ω W (w 1 , w 2 )w 3 + αω V (v 3 , v 2 )v 1 ⊗ ω W (w 1 , w 3 )w 2 + βω V (v 1 , v 2 )v 3 ⊗ ω W (w 2 , w 3 )w 1 + βω V (v 1 , v 3 )v 2 ⊗ ω W (w 3 , w 2 )w 1 = (α + β)ω V (v 1 , v 2 )bv 2 ⊗ ω W (w 1 , w 2 )cw 1 + (α + β)ω V (v 1 , v 2 )bv 2 ⊗ ω W (w 1 , w 2 )dw 2 + (α + β)ω V (v 1 , v 2 )av 1 ⊗ ω W (w 1 , w 2 )dw 2 + (α + β)ω V (v 1 , v 2 )bv 2 ⊗ ω W (w 1 , w 2 )dw 2 + αω V (v 2 , v 1 )av 1 ⊗ ω W (w 1 , w 2 )cw 1 + αω V (v 2 , v 1 )av 1 ⊗ ω W (w 1 , w 2 )dw 2 + αω V (v 1 , v 2 )av 1 ⊗ ω W (w 1 , w 2 )dw 2 + βω V (v 1 , v 2 )av 1 ⊗ ω W (w 2 , w 1 )cw 1 + βω V (v 1 , v 2 )bv 2 ⊗ ω W (w 2 , w 1 )cw 1 + βω V (v 1 , v 2 )bv 2 ⊗ ω W (w 1 , w 2 )cw 1 = (α + β)ω V (v 1 , v 2 )ω W (w 1 , w 2 ) bv 2 ⊗ cw 1 + 2bv 2 ⊗ dw 2 + av 1 ⊗ dw 2 -av 1 ⊗ cw 1 .
Hence, Equation ( 7) is satisfied if and only if α + β = -1 and so the representation

sp(V, ω V ) × sp(W, ω W ) → so(V ⊗ W, ω V ⊗ ω W ) is special orthogonal if and only if α + β = -1.
Suppose that α + β = -1. By the previous proposition and Theorem 2.3 we have a Lie superalgebra gα of the form gα

= sp(V, ω V ) ⊕ sp(W, ω W ) ⊕ sl(2, k) ⊕ V ⊗ W ⊗ k 2 .
This a simple Lie superalgebra of type D(2, 1; α) which is an exceptional simple Lie superalgebra if α is not equal to -1 2 , -2 or 1.

Remark 3.2. a) In [START_REF] Vera | Classification of simple real Lie superalgebras and symmetric superspaces[END_REF], Serganova shows that there are three families of simple real Lie superalgebras which are real forms of D(2, 1; α) (see also [START_REF] Parker | Classification of real simple Lie superalgebras of classical type[END_REF] for a discussion about the real forms of D(2, 1; α)). If k = R, the family gα defined above corresponds to one these families. b) There is a symmetry exchanging α and β. Hence, the special orthogonal representations sp(V,

ω V ) × sp(W, ω W ) → so(V ⊗ W, ω V ⊗ ω W ) of the quadratic Lie algebras (sp(V, ω V ) × sp(W, ω W ), 1 α K V ⊥ 1 -1-α K W ) and (sp(V, ω V ) × sp(W, ω W ), 1 -1-α K V ⊥ 1 α K W )
give rise to isomorphic Lie superalgebras gα and g-1-α . c) There is a singular case when

α = β = -1 2 . The Lie algebra sp(V, ω V ) × sp(W, ω W ) is isomorphic to so(W 0 , ( , ))
, where (W 0 , ( , )) is a four-dimensional hyperbolic vector space, and under this isomorphism, the quadratic form

1 α K V + 1 α K W of sp(V, ω V ) × sp(W, ω W ) is isometric to the quadratic form -1 2 T r(f g) for all f, g ∈ so(W 0 , ( , )). Hence, we have that g-1 2 is isomorphic to osp(W 0 ⊕ W 1 , ( , ) ⊥ ω) where (W 1 , ω) is a two-dimensional symplectic vector space.
We now study the trilinear covariant and the quadrilinear covariant of the special orthogonal representation sp(V, ω V )×sp(W, ω W ) → so(V ⊗W, ω V ⊗ω W ). Note that the Mathews identities of Theorem 2.6 vanish identically because V ⊗ W is of dimension four.

Proposition 3.3. Suppose that α+β = -1. The trilinear covariant ψ ∈ Alt 3 (V ⊗W, V ⊗W ) and the quadrilinear covariant Q ∈ Alt 4 (V ⊗ W, k) of the special orthogonal representation sp(V, ω V ) × sp(W, ω W ) → so(V ⊗ W, ω V ⊗ ω W ) satisfies: ψ(v 1 ⊗ w 1 , v 2 ⊗ w 2 , v 3 ⊗ w 3 ) =3(2α + 1) ω V (v 1 , v 3 )v 2 ⊗ ω W (w 3 , w 2 )w 1 + ω V (v 2 , v 3 )v 1 ⊗ ω W (w 1 , w 3 )w 2 , Q(v 1 ⊗ w 1 , v 2 ⊗ w 2 , v 3 ⊗ w 3 , v 4 ⊗ w 4 ) = -12(2α + 1) ω V (v 2 , v 4 )ω V (v 1 , v 3 )ω W (w 4 , w 3 )ω W (w 1 , w 2 ) + ω V (v 3 , v 4 )ω V (v 1 , v 2 )ω W (w 2 , w 4 )ω W (w 1 , w 3 ) , for all v 1 , v 2 , v 3 , v 4 ∈ V , w 1 , w 2 , w 3 , w 4 ∈ W . Proof. Let v 1 ⊗ w 1 , v 2 ⊗ w 2 , v 3 ⊗ w 3 ∈ V ⊗ W . Since V and W are two-dimensional (and after a permutation of v 1 , v 2 , v 3 or w 1 , w 2 , w 3 if necessary) we have v 3 = av 1 + bv 2 and w 3 = cw 1 + dw 2 where a, b, c, d ∈ k. We have µ α,β (v 1 ⊗ w 1 , v 2 ⊗ w 2 )(v 3 ⊗ w 3 ) = (α + β)ω V (v 2 , v 3 )v 1 ⊗ ω W (w 3 , w 2 )w 1 + (α + β)ω V (v 1 , v 3 )v 2 ⊗ ω W (w 1 , w 3 )w 2 + (α -β)ω V (v 2 , v 3 )v 1 ⊗ ω W (w 1 , w 3 )w 2 + (α -β)ω V (v 1 , v 3 )v 2 ⊗ ω W (w 3 , w 2 )w 1 , ( 8 
)
µ α,β (v 2 ⊗ w 2 , v 3 ⊗ w 3 )(v 1 ⊗ w 1 ) = (α + β)ω V (v 2 , v 3 )v 1 ⊗ ω W (w 2 , w 3 )w 1 + 2αω V (v 3 , v 1 )v 2 ⊗ ω W (w 2 , w 3 )w 1 + 2βω V (v 2 , v 3 )v 1 ⊗ ω W (w 3 , w 1 )w 2 , ( 9 
)
µ α,β (v 3 ⊗ w 3 , v 1 ⊗ w 1 )(v 2 ⊗ w 2 ) = (α + β)ω V (v 1 , v 3 )v 2 ⊗ ω W (w 3 , w 1 )w 2 + 2αω V (v 3 , v 2 )v 1 ⊗ ω W (w 3 , w 1 )w 2 + 2βω V (v 3 , v 1 )v 2 ⊗ ω W (w 3 , w 2 )w 1 . ( 10 
)
Hence, summing Equations (8), ( 9) and (10), we obtain

ψ(v 1 ⊗ w 1 , v 2 ⊗ w 2 , v 3 ⊗ w 3 ) = 3(α -β) ω V (v 1 , v 3 )v 2 ⊗ ω W (w 3 , w 2 )w 1 + ω V (v 2 , v 3 )v 1 ⊗ ω W (w 1 , w 3 )w 2 .
The formula for Q follows by Proposition 2.5

Remark 3.4. For the singular case α = -1 2 , we have that the covariants ψ and Q vanish identically. It means that the representation sp(V, ω Kostant [Kos99] and then can be extended to define a Lie algebra structure on sp(V, ω V ) ⊕ sp(W, ω W ) ⊕ V ⊗ W . This Lie algebra is isomorphic to the orthogonal Lie algebra so(V ⊗ W ⊕ L, ω V ⊗ ω W ⊥ ( , ) L ) where (L, ( , ) L ) is a one-dimensional quadratic vector space.

V ) × sp(W, ω W ) → so(V ⊗ W, ω V ⊗ ω W ) is of Z 2 -Lie type in the sense of

The fundamental representation of G 2 is special orthogonal

In this section, we show that the irreducible 7-dimensional fundamental representation of an exceptional Lie algebra g of type G 2 is special orthogonal. To do this we realise g as the derivation algebra of an octonion algebra O and use octonionic calculations. We first recall some properties of the octonions, for details and proofs see [START_REF] Schafer | An introduction to nonassociative algebras[END_REF] and [START_REF] Tonny | Octonions, Jordan algebras and exceptional groups[END_REF].

Let O be an octonion (or Cayley) algebra over k. This is a 8-dimensional unital composition algebra, the conjugation ¯satisfies q(u) = uū for all u ∈ O, where q is the norm of O, and we have in the sense that, for i = j, the product between e i and e j is a multiple of e k where k is the third point on the line going through i and j.

O = k ⊕ Im(O),
The commutator and the associator are the alternating maps given by:

[u, v] = uv -vu, (u, v, w) = (uv)w -u(vw)
for all u, v, w ∈ O. The commutator doesn't define a Lie algebra structure on O since the Jacobi tensor J satisfies

J(u, v, w) = [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = -6(u, v, w) ∀u, v, w ∈ O. (11) 
There is a cross-product on O defined by

u × v = 1 2 (vu -ūv) ∀u, v ∈ O,
and we have

q(u × v) = q Λ (u ∧ v) = q(u)q(v) -B(u, v) 2 ∀u, v ∈ O, ( 12 
) u × v = 1 2 [u, v] = uv + B(u, v) ∀u, v, w ∈ Im(O), ( 13 
) u × (v × w) + v × (u × w) = B(v, w)u + B(u, w)v -2B(u, v)w ∀u, v, w ∈ Im(O). ( 14 
)
The associative form φ on Im(O) is the trilinear alternating form defined by

φ(u, v, w) = B(u, v × w) ∀u, v, w ∈ Im(O),
and we have η -1 (φ) = 1 q(e 1 )q(e 2 ) e 123 -1 q(e 1 )q(e 2 )q(e 4 ) e 167 + 1 q(e 1 )q(e 2 )q(e 4 ) e 257 -1 q(e 1 )q(e 2 )q(e 4 ) e 356 + 1 q(e 1 )q(e 4 ) e 145 + 1 q(e 2 )q(e 4 ) e 246 + 1 q(e 1 )q(e 2 )q(e 4 ) e 347 .

(15)

Let ρ : Im(O) → End(O) be the map defined by ρ(u)(x) = ux for u ∈ Im(O) and x ∈ O. We have

ρ(u) 2 = -q(u)Id ∀u ∈ Im(O)
and so ρ extends to the Clifford algebra C(Im(O), -q). The quantisation map

Q : Λ(Im(O)) → C(Im(O), -q) is an O(Im(O), B
)-equivariant isomorphism of vector spaces and then we have

C(Im(O), -q) = i C i (Im(O), -q) where C i (Im(O), -q) = Q(Λ i (Im(O))). The map µ can • Q -1 : C 2 (Im(O), -q) → so(Im(O), q) is an isomorphism of Lie algebras. Let g := {x ∈ C 2 (Im(O), -q) | ρ(x)(1) = 0}.
This is a Lie algebra of type G 2 , the map ρ : g → so(Im(O), q) is its 7-dimensional fundamental representation and ρ(g) is equal to the set of derivations of O. Define the ad-invariant quadratic form B g on g by

B g (x, y) = - 1 3 T r(ρ(x)ρ(y)) ∀x, y ∈ g. Proposition 4.1. The moment map µ Im : Λ 2 (Im(O)) → g satisfies µ Im (u, v)(w) = - 1 4 ([w, [u, v]] + 3(u, v, w)) ∀u, v, w ∈ Im(O) Proof. For u, v ∈ Im(O), let D(u, v) ∈ g be such that ρ(D(u, v))(x) = [x, [u, v]] + 3(u, v, x) for all x ∈ Im(O). Let D in g. We want to show that T r(ρ(D)ρ(D(u, v)) = 12B(D(u), v).
Without loss of generality (changing B if necessary) we can assume that u = e 1 and v = e 2 . First of all

T r(ρ(D)ρ(D(u, v))

= ei∈B 1 q(e i ) B(ρ(D)(ρ(D(u, v))(e i )), e i ).
We have 1 q(e 1 ) B(D(D(e 1 , e 2 )(e 1 )), e 1 ) = 4B(D(e 1 ), e 2 ), 1 q(e 1 ) B(D(D(e 1 , e 2 )(e 2 )), e 2 ) = 4B(D(e 1 ), e 2 ), 1 q(e 1 e 2 ) B(D(D(e 1 , e 2 )(e 1 e 2 )), e 1 e 2 ) = 0, 1 q(e 3 ) B(D(D(e 1 , e 2 )(e 3 )), e 3 ) = -2 q(e 3 ) B(D(e 3 ), (e 1 e 2 )e 3 ), 1 q(e 1 e 3 ) B(D(D(e 1 , e 2 )(e 1 e 3 )), e 1 e 3 ) = 2B(D(e 1 ), e 2 ) + 2 q(e 3 ) B(D(e 3 ), (e 1 e 2 )e 3 ), 1 q(e 2 e 3 ) B(D(D(e 1 , e 2 )(e 2 e 3 )), e 2 e 3 ) = 2B(D(e 1 ), e 2 ) + 2 q(e 3 ) B(D(e 3 ), (e 1 e 2 )e 3 ), 1 q((e 1 e 2 )e 3 ) B(D(D(e 1 , e 2 )((e 1 e 2 )e 3 )), (e 1 e 2 )e 3 ) = -2 q(e 3 ) B(D(e 3 ), (e 1 e 2 )e 3 ),

and hence T r(ρ(D)ρ(D(u, v))) = 12B(D(u), v).

Corollary 4.2. For u, v, w ∈ Im(O), we have

a) µ Im (u, v × w) + µ Im (w, u × v) + µ Im (v, w × u) = 0, b) µ Im (u, v)(w) = 3 2 µ can (u, v)(w) + 1 8 [w, [u, v]].
Proof. a) See (3.73) p.78 of [START_REF] Schafer | An introduction to nonassociative algebras[END_REF].

b) Let u, v, w ∈ Im(O). We first show that

- 1 4 [w, [u, v]] - 1 2 (u, v, w) = µ can (u, v)(w). ( 16 
)
Suppose that u and v are anisotropic and orthogonal.

• If w = u then (16) follows from

- 1 4 [w, [u, v]] - 1 2 (u, v, w) = - 1 2 [u, uv] = -u 2 v = q(u)v = µ can (u, v)(u). • If w = uv then (16) is clear since [w, [u, v]] = (u, v, w) = µ can (u, v)(w) = 0.
• If {u, v, uv, w} are orthogonal then we have µ can (u, v)(w) = 0 and

- 1 4 [w, [u, v]] = -w(uv) = (uv)w = 1 2 (u, v, w).
Hence ( 16) is satisfied and this proves the corollary using Proposition 4.1.

We now give the main result of this section. 

µ Im (u, v)(w) + µ Im (u, w)(v) = - 1 4 ([w, [u, v]] + [v, [u, w]]) = -w × (u × v) -v × (u × w) = w × (v × u) + v × (w × u) = B(u, v)w + B(u, w)v -2B(w, v)u.
By Theorems 2.3 and 4.3 we have a Lie superalgebra g of the form

g = g ⊕ sl(2, k) ⊕ Im(O) ⊗ k 2 .
This is an exceptional simple Lie superalgebra of type G 3 .

Remark 4.4. If k = R, Serganova (see [START_REF] Vera | Classification of simple real Lie superalgebras and symmetric superspaces[END_REF]) showed that there are two real forms of G 3 whose even parts are isomorphic to the compact (resp. split) exceptional simple real Lie algebra of type G 2 in direct sum with sl(2, R) and whose odd parts are isomorphic to the tensor product of the fundamental representations. In our construction, if O is the compact (resp. split) octonion algebra, the Lie algebra g is the compact (resp. split) exceptional simple real Lie algebra of type G 2 and both real forms of G 3 are obtained by our construction.

Since the representation g → so(Im(O), B) is special, we calculate its covariants and the Mathews identities they satisfy. Both-sides of Equations ( 5) and (6) vanish identically since Im(O) is of dimension 7. It turns out, that both-sides of Equation (4) also vanish identically. However, both sides of Equation (3) do not vanish identically and, up to constants, Q Im ∧ Id and µ Im ∧ ρ ψ Im ∈ Alt 5 (Im(O), Im(O)) are the Hodge duals of the cross-product × ∈ Alt 2 (Im(O), Im(O)). Proposition 4.5. Let µ Im , ψ Im , Q Im be the covariants of the special orthogonal representation ρ : g → so(Im(O), B). We have

a) ψ Im (v 1 , v 2 , v 3 ) = -3 4 (v 1 , v 2 , v 3 ) for all v 1 , v 2 , v 3 ∈ Im(O), b) Q Im (v 1 , v 2 , v 3 , v 4 ) = -3B(v 1 , (v 2 , v 3 , v 4 )) for all v 1 , v 2 , v 3 , v 4 ∈ Im(O), c) η -1 (Q Im ) =
6 q(e 1 )q(e 2 )q(e 4 ) e 1247 -6 q(e 1 )q(e 2 )q(e 4 ) e 1256 -6 q(e 1 )q(e 2 )q(e 4 ) e 1346 -6 q(e 1 ) 2 q(e 2 )q(e 4 ) e 1357 + 6 q(e 1 )q(e 2 )q(e 4 ) e 2345 -6 q(e 1 )q(e 2 ) 2 q(e 4 ) e 2367 -6 q(e 1 )q(e 2 )q(e 4 ) 2 e 4567 , (17)

d) µ Im • ψ Im = 0 and Q Im ∧ µ Im = 0.
Proof. a) By Proposition 4.1 and by Equation ( 11) we obtain

ψ Im (v 1 , v 2 , v 3 ) = - 1 4 (J(v 1 , v 2 , v 3 ) + 3(v 1 , v 2 , v 3 ) + 3(v 2 , v 3 , v 1 ) + 3(v 3 , v 1 , v 2 )) = - 1 4 (J(v 1 , v 2 , v 3 ) + 9(v 1 , v 2 , v 3 )) = - 3 4 (v 1 , v 2 , v 3 ).
b) Follows from Proposition 2.5.

c) The decomposition follows from b) and the fact that for i

1 < i 2 < i 3 < i 4 , then Q Im (e i1 , e i2 , e i3 , e i4 ) is non-zero if and only if (i 1 , i 2 , i 3 , i 4 ) ∈ {(1, 2, 4 , 7), (1, 2, 5, 6), (1, 3, 4, 6), (1, 3, 5, 7), (2, 3, 4, 5), (2, 3, 6, 7), (4, 5, 6, 7)} 
. d) Let v 1 , . . . , v 6 ∈ Im(O). We have µ Im • ψ Im (v 1 , . . . , v 6 ) = σ∈S( 1,3 , 4,6 ) sgn(σ)µ Im (ψ Im (v σ(1) , v σ(2) , v σ(3) ), ψ Im (v σ(4) , v σ(5) , v σ(6) )) = 2 σ∈S sgn(σ)µ Im (ψ Im (v σ(1) , v σ(2) , v σ(3) ), ψ Im (v σ(4) , v σ(5) , v σ(6) )) = 9 8 σ∈S sgn(σ)µ Im ((v σ(1) , v σ(2) , v σ(3) ), (v σ(4) , v σ(5) , v σ(6) ))
where S := {Id, (14), (15), ( 16), ( 24), (25), ( 26), (34), ( 35), (36)}.

Suppose that v i ∈ B for all i ∈ 1, 6 . Since there is no distinguished way to choose 5 different points on the Fano plane, then, without loss of generality, we can assume that v i = e i for all i ∈ 1, 6 . Since (e 1 , e 2 , e 3 ) = (e 1 , e 4 , e 5 ) = (e 2 , e 4 , e 6 ) = (e 3 , e 5 , e 6 ) = 0 then we have where S := {(14), (15), ( 24), (26), (35), (36)}. Hence, we have that µ Im • ψ Im (v 1 , . . . , v 6 ) = -9q(e 1 )q(e 2 )q(e 4 ) µ Im (e 1 e 2 , e 4 ) + µ Im (e 2 e 4 , e 1 ) + µ Im (e 4 e 1 , e 2 ) and so, using a) of Corollary 4.2, we obtain µ Im • ψ Im = 0 and by Theorem 2.6 we have Q Im ∧ µ Im = 0. 

µ Im • ψ Im (v 1 , . . . , v 6 ) = - 9 
α ∧ B * f = B Alt (α, f )φ ∧ Q Im ∀α ∈ Alt i (Im(O), Im(O)).
Proposition 4.7. We have

* × = 147 8 Q Im ∧ Id = - 49 4 µ Im ∧ ρ ψ Im . Proof. Let α ∈ Alt 2 (Im(O), Im(O)). We have B Alt (α, ×)φ ∧ Q Im (e 1 ∧ . . . ∧ e 7 ) = -42 i<j 1 q(e i )q(e j )
B(α(e i , e j ), e i × e j )q(e 1 ) 2 q(e 2 ) 2 q(e 4 ) 2 .

(18)

On the other hand 4) , e σ( 5) , e σ( 6) , e σ( 7) ).

α ∧ B Q Im ∧ Id(e 1 ∧ . . . ∧ e 7 ) = 1 126 σ∈S7 sgn(σ)B(α(e σ(1) , e σ(2) ), e σ(3) )Q Im (e σ(
Since α and Q Im are alternating and using the decomposition of Equation ( 17 

where S = {σ ∈ S 7 | σ(1) < σ(2), (σ(4), σ(5), σ(6), σ(7)) ∈ {(1, 2, 4, 7), . . . , (4, 5, 6, 7)}}.

We have |S| = 21, each summand in (19) correspond to one summand in (18) and so, a straightforward calculation gives α ∧ B Q Im ∧ Id(e 1 ∧ . . . ∧ e 7 ) = -16 7 i<j 1 q(e i )q(e j ) B(α(e i , e j ), e i × e j )q(e 1 ) 2 q(e 2 ) 2 q(e 4 ) 2 and hence

α ∧ B Q Im ∧ Id = 8 147 B Alt (α, ×)φ ∧ Q Im .
Remark 4.8. One can show similarly that, up to constants, the identity is the Hodge dual of φ∧ψ Im , the covariant µ Im is the Hodge dual of φ ∧ µ Im and the covariant ψ Im is the Hodge dual of φ ∧ Id.

5 The spinor representation of a Lie algebra of type so(7) is special orthogonal

In this section, we show that the 8-dimensional spinor representation O of C 2 (Im(O), -q) is special orthogonal. Let e 2 , e 3 , e 5 ∈ Im(O) be such that B = {1, e 2 , e 3 , e 2 e 3 , e 5 , e 2 e 5 , e 3 e 5 , (e 2 e 3 )e 5 } is an orthogonal and anisotropic basis of O and set e 4 := e 2 e 3 , e 6 := e 2 e 5 , e 7 := e 3 e 5 , e 8 := (e 2 e 3 )e 5 .

Remark 5.6. By Proposition 5.3, the representation g → so(W, B h | W ) of the quadratic Lie algebra (g, B h | g ) together with the non-trivial cubic term on W given by a multiple of the cross-product is of Lie type in the sense of Kostant [START_REF] Kostant | A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups[END_REF].

We now give the main result of this section.

Theorem 5.7. The representation ρ : h → so(O, B) of the quadratic Lie algebra (h, B h ) is a special orthogonal representation.

Proof. We want to show Equation (2). Let u, v, w ∈ Im(O). We have

µ O (u, v)(w) + µ O (u, w)(v) = 8 9 (µ Im (u, v)(w) + µ Im (u, w)(v)) + 1 18 (c u×v (w) + c u×w (v)) = - 2 9 ([w, [u, v]] + [v, [u, w]]) + 1 9 ((u × v) × w + (u × w) × v) = - 8 9 (w × (u × v) + v × (u × w)) + 1 9 ((u × v) × w + (u × w) × v) = w × (v × u) + v × (w × u)
and by Equation ( 14), we obtain

µ O (u, v)(w) + µ O (u, w)(v) = B(u, v)w + B(u, w)v -2B(v, w)u
and so (2) is satisfied for u, v, w ∈ Im(O). We have

µ O (u, v)(1) + µ O (u, 1)(v) = 1 18 c u×v (1) + 1 6 c u (v) = B(u, v), µ O (1, v)(w) + µ O (1, w)(v) = - 1 6 (c v (w) + c v (w)) = -2B(v, w),
and so (2) is satisfied whenever two elements u, v or w are in Im(O). Finally, since

2µ O (u, 1)(1) = -2u, µ O (1, u)(1) = u,
then (2) is satisfied whenever u, v or w is in Im(O) and so (2) is satisfied for all u, v, w ∈ O.

By Theorems 2.3 and 5.7 we have a Lie superalgebra f of the form

f := h ⊕ sl(2, k) ⊕ O ⊗ k 2 .
This is an exceptional simple Lie superalgebra of type F 4 in the Kac notation.

Remark 5.8. If k = R, Serganova (see [START_REF] Vera | Classification of simple real Lie superalgebras and symmetric superspaces[END_REF]) showed that there are four real forms of F 4 . In particular, two of them have an even part isomorphic to so(7) ⊕ sl(2, R) (resp. so(4, 3) ⊕ sl(2, R)) and an odd part isomorphic to the tensor product of the spinor representation of so(7) (resp. so(4, 3)) and R 2 . In our construction, if O is the compact or the split octonion algebra, both real forms of F 4 are obtained by our construction.

Since the representation h → so(O, B) is special, we calculate its covariants ψ O , Q O and the Mathews identities they satisfy. Since O is of dimension 8, both-sides of Equations ( 5) and (6) vanish identically. However, both sides of the identities (3) and (4) do no vanish identically. 

ρ : h → so(O, B). We have a) ψ O (v 1 , v 2 , v 3 ) = -1 2 (v 1 , v 2 , v 3 ) + φ(v 1 , v 2 , v 3 ) and ψ O (v 1 , v 2 , 1) = -v 1 × v 2 for all v 1 , v 2 , v 3 ∈ Im(O). 13 b) Q O (v 1 , v 2 , v 3 , v 4 ) = 2 3 Q Im (v 1 , v 2 , v 3 , v 4 ) and Q O (v 1 , v 2 , v 3 , 1) = -4φ(v 1 , v 2 , v 3 ) for all v 1 , v 2 , v 3 , v 4 ∈ Im(O). c) η -1 (Q O ) =
4 q(e 2 )q(e 3 ) e 1234 -4 q(e 2 )q(e 3 )q(e 5 ) e 1278 + 4 q(e 2 )q(e 3 )q(e 5 ) e 1368 -4 q(e 2 )q(e 3 )q(e 5 ) e 1467 + 4 q(e 2 )q(e 5 ) e 1256 + 4 q(e 3 )q(e 5 ) e 1357 + 4 q(e 2 )q(e 3 )q(e 5 ) e 1458 + 4 q(e 2 )q(e 3 )q(e 5 ) e 2358 -4 q(e 2 )q(e 3 )q(e 5 ) e 2367 -4 q(e 2 )q(e 3 )q(e 5 ) e 2457 -4 q(e 2 ) 2 q(e 3 )q(e 5 ) e 2468 + 4 q(e 2 )q(e 3 )q(e 5 ) e 3456 -4 q(e 2 )q(e 3 ) 2 q(e 5 ) e 3478 -4 q(e 2 )q(e 3 )q(e 5 ) 2 e 5678 .

(

) 23 
Proof. a) By Propositions 5.3 and 4.5, we have

ψ O (v 1 , v 2 , v 3 ) = 8 9 ψ Im (v 1 , v 2 , v 3 ) + 1 18 (c v1×v2 (v 3 ) + c v2×v3 (v 1 ) + c v3×v1 (v 1 )) = - 2 3 (v 1 , v 2 , v 3 ) + 1 9 ((v 1 × v 2 ) × v 3 + (v 2 × v 3 ) × v 1 + (v 3 × v 1 ) × v 2 ) + φ(v 1 , v 2 , v 3 ).
Using Equations ( 13) and (11), we have

(v 1 × v 2 ) × v 3 + (v 2 × v 3 ) × v 1 + (v 3 × v 1 ) × v 2 = - 1 4 J(v 1 , v 2 , v 3 ) = 3 2 (v 1 , v 2 , v 3 ) and so ψ O (v 1 , v 2 , v 3 ) = - 1 2 (v 1 , v 2 , v 3 ) + φ(v 1 , v 2 , v 3 ).
We also have

ψ O (v 1 , v 2 , 1) = 1 18 c v1×v2 (1) + 1 6 c v2 (v 1 ) - 1 6 c v1 (v 2 ) = - 1 3 v 1 × v 2 + 1 3 v 2 × v 1 - 1 3 v 1 × v 2 = -v 1 × v 2 .
b) Follows from a) and Propositions 2.5 and 4.5. q(e i )q(e j )q(e k ) B(α(e i , e j , e k ), ψ O (e i , e j , e k ))q(e 2 ) 2 q(e 3 ) 2 q(e 5 ) 2 . We have |S| = 56 and each summand in (24) correspond to one summand in (25). A straightforward calculation gives α ∧ B Q O ∧ Id(e 1 ∧ . . . ∧ e 8 ) = 4 i<j<k 1 q(e i )q(e j )q(e k ) B(α(e i , e j , e k ), ψ O (e i , e j , e k ))q(e 2 ) 2 q(e 3 ) 2 q(e 5 ) 2 and so

α ∧ B Q O ∧ Id = - 1 56 B Alt(O,O) (α, ψ O )Q O ∧ Q O . b) Let α ∈ Alt 2 (O, h).
We have

B Alt(O,h) (α, µ O )Q O ∧ Q O (e 1 ∧ .
. . ∧ e 8 ) = -224 i<j 1 q(e i )q(e j ) B h (α(e i , e j ), µ O (e i , e j ))q(e 2 ) 2 q(e 3 ) 2 q(e 5 ) 2 .

On the other hand 

α ∧ B h Q O ∧ µ O (

  where Im(O) = {u ∈ O | ū = -u}. Denote B the symmetric bilinear form associated by polarisation to q. Let e 1 , e 2 , e 4 ∈ Im(O) be such that B = {e 1 , e 2 , e 1 e 2 , e 4 , e 1 e 4 , e 2 e 4 , (e 1 e 2 )e 4 } is an orthogonal and anisotropic basis of Im(O) and set e 3 := e 1 e 2 , e 5 := e 1 e 4 , e 6 := e 2 e 4 , e 7 := (e 1 e 2 )e 4 . This basis is related to the Fano plane:

Theorem 4. 3 .

 3 The representation ρ : g → so(Im(O), B) of the quadratic Lie algebra (g, B g ) is a special orthogonal representation. Proof. Let u, v, w ∈ Im(O). Using Proposition 4.1 and (14) we have

8 σ∈Sµµ

 8 Im ((e σ(1) , e σ(2) , e σ(3) ), (e σ(4) , e σ(5) , e σ(6) Im ((e σ(1) e σ(2) )e σ(3) , (e σ(4) e σ(5) )e σ(6) )

  have φ ∧ Q Im (e 1 ∧ . . . ∧ e 7 ) = -42q(e 1 ) 2 q(e 2 ) 2 q(e 4 ) 2 .If char(k)= 7, then φ ∧ Q Im defines an orientation on Im(O) b) In the decomposition (15) (resp. (17)), the seven quadruples of indices {i 1 , i 2 , i 3 , i 4 } appearing are exactly (resp. the complements of) the seven lines of the Fano plane. Suppose that char(k) = 0 or char(k) > 7. Define a quadratic form B Alt on Alt i (Im(O), Im(O)) ∼ = Λ i (Im(O)) * ⊗ Im(O) to be the tensor product of B Λ * and B. For f ∈ Alt i (Im(O), Im(O)) define its Hodge dual * f ∈ Alt 7-i (Im(O), Im(O)) to be the unique element which satisfies

  ), we have α ∧ B Q Im ∧ Id(e 1 ∧ . . . ∧ e 7 ) = 8 21 σ∈S sgn(σ)B(α(e σ(1) , e σ(2) ), e σ(3) )Q Im (e σ(4) , e σ(5) , e σ(6) , e σ(7) )

  More precisely, up to constants, µ O ∧ ρ ψ O and Q O ∧ Id O ∈ Alt 5 (O, O) are the Hodge duals of the trilinear covariant ψ O ∈ Alt 3 (O, O) and µ O • ψ O and Q O ∧ µ O ∈ Alt 6 (O, h) are the Hodge duals of the moment map µ O ∈ Alt 2 (O, h). Proposition 5.9. Let µ O , ψ O , Q O be the covariants of the special orthogonal representation

c)

  Using b), the decomposition of Q O follows from the decompositions (17) and (15). Remark 5.10. a) We haveQ O ∧ Q O (e 1 ∧ . . . ∧ e 8 ) = -224q(e 2 ) 2 q(e 3 ) 2 q(e 5 ) 2 . If char(k) = 7, then Q O ∧ Q O defines an orientation on O b)In the decomposition (23), there are fourteen 4-vectors of the form e i1 ∧e i2 ∧e i3 ∧e i4 . The fourteen quadruples of indices {i 1 , i 2 , i 3 , i 4 } appearing are not arbitrary. There is a numbering of the eight points of the affine space (Z 2 ) 3 such that each quadruple corresponds to one of the fourteen affine planes. char(k) = 0 or char(k) > 7. Define a quadratic formB Alt(O,O) (resp. B Alt(O,h) ) on Alt i (O, O) ∼ = Λ i (O) * ⊗ O (resp. Alt i (O, h) ∼ = Λ i (O) * ⊗ h) to be the tensor product of B Λ * and B (resp. B h ). For f ∈ Alt i (O, O) define its Hodge dual * f ∈ Alt 8-i (O, O) to be the unique element which satisfies α ∧ B * f = B Alt(O,O) (α, f )Q O ∧ Q O ∀α ∈ Alt i (O, O)and for f ∈ Alt i (O, h) define its Hodge dual * f ∈ Alt 8-i (O, h) to be the unique element which satisfiesα ∧ B h * f = B Alt(O,h) (α, f )Q O ∧ Q O ∀α ∈ Alt i (O, h).Proposition 5.11. We havea) * ψ O = -56Q O ∧ Id = 112 3 µ O ∧ ρ ψ O , b) * µ O = -56Q O ∧ µ O = -56 3 µ O • ψ O . Proof.a) Let α ∈ Alt 3 (O, O). We have B Alt(O,O) (α, ψ O )Q O ∧Q O (e 1 ∧. . .∧e 8 ) = -224 i<j<k 1

  hand α ∧ B Q O ∧ Id(e 1 ∧ . . . ∧ e 8 ) = 1 144 σ∈S8 sgn(σ)B(α(e σ(1) , e σ(2) , e σ(3) ), e σ(4) )Q O (e σ(5) , e σ(6) , e σ(7) , e σ(8) ).Since α and Q O are alternating and using the decomposition of Equation (23), we haveα ∧ B Q O ∧ Id(e 1 ∧ . . . ∧ e 8 ) = σ∈S sgn(σ)B(α(e σ(1) , e σ(2) , e σ(3) ), e σ(4) )Q O (e σ(5) , e σ(6) , e σ(7) , e σ(8) )(25)where S = {σ ∈ S 8 | σ(1) < σ(2) < σ(3), (σ(5), σ(6), σ(7), σ(8)) ∈ {(1, 2, 3, 4), . . . , (5, 6, 7, 8)}}.

  e 1 ∧ . . . ∧ e 8 ) = 1 96 σ∈S8 sgn(σ)B h (α(e σ(1) , e σ(2) ), µ O (e σ(3) , e σ(4) ))Q O (e σ(5) , e σ(6) , e σ(7) , e σ(8) ).Since α, µ O and Q O are alternating and using the decomposition of Equation (23), we haveα ∧ B h Q O ∧ µ O (e 1 ∧ . . . ∧ e 8 ) = σ∈S sgn(σ)B h (α(e σ(1) , e σ(2) ), µ O (e σ(3) , e σ(4) ))Q O (e σ(5) , e σ(6) , e σ(7) , e σ(8) )
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Since the Clifford algebra C(Im(O), -q) is Z 2 -graded, it is a Lie superalgebra for the bracket given by {c, d} := cd -(-1) |c||d| dc ∀c, d ∈ C

where |c| and |d| denotes the parity of homogeneous elements c and d. Let h := C 2 (Im(O), -q) and define the ad-invariant quadratic form B h on h by

The subspace W acts on O as follows.

Proposition 5.2. Let u, v ∈ Im(O). We have

Proof. Using (15), we obtain

and so

Using (13), we have

Now, we can express the moment map of O in terms of the moment map of Im(O) and W :

Proof. We first need the following lemma:

Proof. Let w ∈ Im(O). We have

The linearisation of (12) gives

and so

We also have

If u and v are orthogonal, without loss of generality (changing B if necessary), we can assume that u = e 2 and v = e 3 . Hence

A straightforward calculation shows that g and W are orthogonal.

Let D ∈ g. We have

and, using the previous lemma, we also have

and so

Since ρ(D)(1) = 0, then we have B h (D, µ O (u, 1)) = 0. Moreover,

and so

The counterpart of a) of Corollary 4.2 is the following property about the moment map of h:

Corollary 5.5. We have

Proof. Using a) of Corollary 4.2, we have

Since, using (11), we have

then we obtain

where 4), (σ(5), σ(6), σ(7), σ(8)) ∈ {(1, 2, 3, 4), . . . , (5, 6, 7, 8)}}.

We have |S| = 84 and, using Equation ( 22), a straightforward calculation gives

. . ∧ e 8 ) = 4 i<j 1 q(e i )q(e j ) B h (α(e i , e j ), µ O (e i , e j ))q(e 2 ) 2 q(e 3 ) 2 q(e 5 ) 2 , and so

Remark 5.12. One can show similarly that, up to a constant, the identity is the Hodge dual of