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Abstract

Decision trees and related ensemble methods like random forest are state-of-the-art
tools in the field of machine learning for credit scoring. Although they are shown to
outperform logistic regression, they lack interpretability and this drastically reduces
their use in the credit risk management industry, where decision-makers and regulators
need transparent score functions. This paper proposes to get the best of both worlds,
introducing a new, simple and interpretable credit scoring method which uses informa-
tion from decision trees to improve the performance of logistic regression. Formally,
rules extracted from various short-depth decision trees built with couples of predictive
variables are used as predictors in a penalized or regularized logistic regression. By
modeling such univariate and bivariate threshold effects, we achieve significant im-
provement in model performance for the logistic regression while preserving its simple
interpretation. Applications using simulated and four real credit defaults datasets
show that our new method outperforms traditional logistic regressions. Moreover,
it compares competitively to random forest, while providing an interpretable scoring
function.
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‡Corresponding author, Univ. Orléans, CNRS, LEO (FRE 2014), Rue de Blois, 45067 Orléans. E-mail:
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1 Introduction

Credit scoring is a fairly widespread practice in banking institutions, whose main objective

is to discriminate between borrowers based on their creditworthiness. Borrowers (retails

or corporates) with high scores are qualified as safer and get access to credit, while those

with low scores are rationed or get access to credit in less favorable terms. In a world

with asymmetric information, such practices are used to allocate default risk by avoiding

underpricing (overpricing) bad (good) loans.

The quest for good models that predict credit worthiness is motivated not only by the

analysis of credit scoring economic costs and benefits (see Berger et al., 2005; Stein and

Jordao, 2003; Stein, 2005; Blöchlinger and Leippold, 2006, for example), but also, most

importantly, by its implications for the banking system. Indeed, credit scoring is important

for banks and regulators as the Basel III (Basel Committee on Banking Supervision, 2011)

reinforces capital requirements for the coverage of credit risk. Hence, in absence of perfor-

mant credit scoring models, the true levels of credit risk and hence capital requirements

could be underestimated, which would render the banking system less resilient to financial

crises and more exposed to systemic events if it is not capitalized enough (Engle et al.,

2015; Acharya et al., 2017). On the contrary, banks’ level of capital requirements could be

overstated, hence raising its credit cost and/or decreasing the loan volume (Rochet, 1992)

with further negative effects on the real sector.

Traditionally, borrowers’ default probability is estimated with predictive statistical meth-

ods and regression models such as discriminant analysis (Altman, 1968), proportional haz-

ard or logistic regression models (Steenackers and Goovaerts, 1989; Stepanova and Thomas,

2001), the latter model appearing as the benchmark econometric model, mainly because of

its simplicity and its flexibility in providing sensitivity analysis through marginal effects of

explanatory variables. Machine learning techniques have also been shown to successfully

forecast credit scores. Some early examples are the k -nearest neighbor (Henley and Hand,

1996, 1997), neural networks (Desai et al., 1996; West, 2000; Yobas et al., 2000), decision

trees (Yobas et al., 2000), and support vector machine (Baesens et al., 2003). However, the

empirical results were mixed (Thomas, 2000; Hurlin and Pérignon, 2019). But the big data

revolution renewed interest in some algorithms introduced in the late 1990s1. The two most

widely used ones are Bagging (Breiman, 1996) and Boosting (Schapire et al., 1998), and their

domains of application are rather scattered, including face detection and recognition, genes

selection, medical imaging, weather forecast, fraud detection, etc. Bagging and Boosting

are ensemble (aggregation) methods that aim at improving the predictive performance of a

1See Óskarsdóttir et al. (2019) or Frost et al. (2019) for a general discussion about the value of big
data for credit scoring. In this article, we limit ourselves to the use of machine learning algorithms with
“traditional data” for credit risk analysis without any reference to “new data” (social or communication
networks, digital footprint, etc.) and/or “big data”.
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given statistical or machine learning algorithm (weak learner) by using a linear combination

(through averaging or majority vote) of predictions from many variants of this algorithm

rather than a single prediction. The two methods differ mainly in their aggregation scheme.

For a review of Bagging and Boosting methods, see Hastie et al. (2001) and Bühlmann

(2012).

Applications of such methods to credit scoring can be found in Finlay (2011), Paleologo

et al. (2010), and Lessmann et al. (2015). Finlay (2011) finds that bagging and boosting

methods outperform simple classifiers or models among which the logistic regression. Pa-

leologo et al. (2010) propose an ensemble classification technique called subagging which is

shown in an empirical application on credit scoring to improve significantly the performance

of traditional classifiers. Similar conclusions arise from the benchmarking study proposed

by Lessmann et al. (2015). Relying on various assessment criteria and a large number of

credit-scoring datasets, they found, among others, that random forest, i.e. the randomized

version of bagged decision trees (Breiman, 2001), outperforms logistic regression and seems

to be the benchmark ensemble method in terms of predictive performance both in academia

and credit risk management industry (Grennepois et al., 2018).

Nevertheless, as random forest’s decision rules arise from the aggregation of individual

decision tree rules, they are hardly interpretable. Consequently, although they perform

very well in default prediction, random forests can be less relevant in credit scoring ap-

plications where decision makers and regulators need parsimonious and interpretable rules

(e.g. marginal effects or scorecards) like those based on logistic regression. Recently, many

Model-Agnostic Methods have been proposed to make the “black box” machine learning

models explanaible and/or their decisions interpretable, see Molnar (2019) for a complete

overview2. We can cite here among many others, the Partial Dependencies Plots (PdP),

the global or local surrogate models (such as the LIME for instance) which consist in inter-

pretable models that are trained to approximate the predictions of a black box model, etc.

In the credit scoring industry (see for instance Bracke et al. (2019) or Grennepois and Robin

(2019)), the Shapley value is often used. This method assumes that each feature value of

an individual is a player in a game where the prediction is the payout and distributes the

payout among features (Lundberg and Lee, 2017). Although this method is attractive, get-

ting the Shapley values requires a lot of computing time because the number of coalitions

grows exponentially with the number of predictive variables, and computational shortcuts

that exist are based on coalitions’ sampling that only provides approximate and unstable

solutions. Another approach is the “InTrees” method proposed by Deng (2019). The frame-

work extracts, measures, prunes, selects, and summarizes rules from a tree ensemble, and

calculates frequent variable interactions. This helps detecting simple decision rules from the

forest that are important in predicting the outcome variable. Nevertheless, the algorithms

2In the sequel, we will not distinguish explainability from interpretability.
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underlying the extraction of these rules are not simple to disclose.

Our approach aims to avoid the traditionnal arbitrage between interpretability and fore-

casting performances. We propose here to restrict intrinsic complexity of credit score models,

rather than apply interpretability methods to analyze the model after training. To do so,

we exploit the fact that ensemble methods like random forests consistently outperform lo-

gistic regression because the latter method fails to fit non-linear effects. Indeed, random

forest benefits from the recursive partitioning underlying decision trees and hence, by de-

sign, accommodates unobserved multivariate threshold effects. The trick of our approach

consists in using these algorithms to pre-treat our predictors instead of modeling the default

probability directly with machine learning methods. Thus, our approach takes benefit from

machine learning algorithms for data pre-processing and feature engineering, while keeping

the credit score model fully interpretable, as recommended by the regulators. To the best

of our knowledge, this is the first time that such an approach is applied for credit scoring.

The Penalized Logit Tree Regression model, hereafter PLTR, is based on a logistic regres-

sion with predictors extracted from decision trees. Formally, these predictors are binary rules

(leafs) outputted by the short-depth decision trees built with couples of original predictive

variables. To handle a possibly large number of such decision tree rules and to proceed to

variables selection, an Adaptive Lasso logistic regression model (Zou, 2006; Friedman et al.,

2010), i.e., a penalized version of the classical logistic regression, is estimated. Firstly, we

propose several Monte Carlo experiments to illustrate the inability of standard paramet-

ric models, i.e. standard logistic regression models with linear specification of the index

or with quadratic and interaction terms, to well-capture the non-linear effects (thresholds

and interactions) which could arise in credit-scoring data. Furthermore, these simulations

allow us to evaluate the relative performance of the PLTR in presence of non-linear effects,

while controlling for the number of predictors. We show that the PLTR clearly outperforms

the traditional logistic regression in terms of forecasting accuracy. Moreover, it compares

competitively to random forest and even surpasses it in some cases, while providing an

interpretable scoring function. Secondly, we apply the PLTR and five other benchmark

credit-scoring methodologies (random forest, linear logistic regression, non-linear logistic

regression, non-linear logistic regression and Adaptative Lasso) on four real datasets. The

empirical results confirm those of the simulations, as the PLTR yields a very good forecasting

performance for all the datasets, unlike other benchmark models. This conclusion is robust

to the various predictive accuracy indicators considered by Lessmann et al. (2015). Finally,

we show that the PLTR also leads to more cost reductions than alternative credit-scoring

models.

Our approach can be viewed as a systematization of a common practice in the de-

ployment of credit scoring solutions that traditionally use logistic regression. Credit risk

managers usually introduce non-linear effects in logistic regression by using ad-hoc or heuris-
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tic preteatments and feature engineering methods such as the discretization of continuous

variables, merger of categories, identification of non-linear effect by cross-product variables,

etc.3 The merit of our contribution is to propose a systematic approach to the modeling of

such unobserved non-linear effects by using short-depth decision trees. Lastly, it is worth

stressing that our contribution differs from those arising from the so-called Logit-Tree mod-

els, i.e., trees that contain logistic regressions at the leaf nodes. Examples are the Logistic

Tree with Unbiased Selection (LOTUS) in Chan and Loh (2004) and the Logistic Model

Tree (LMT) in Landwehr et al. (2005). Moreover, although similar in spirit, our PLTR

method contrasts with the hybrid CART-Logit model of Cardell and Steinberg (1998) too.

Indeed, to introduce multivariate threshold effects in logistic regression, they use a single

non-pruned decision tree. But the large depth of this unique tree complicates the inter-

pretability of the results and may lead to predictors inflation that is not controlled for (e.g.

through penalization as in our case).

The rest of the article is structured as follows. Section 2 analyses the performance of lo-

gistic regression and random forest in the presence of univariate and multivariate threshold

effects through Monte Carlo simulations. In Section 3 we introduce the PLTR credit scoring

method and assess through Monte Carlo simulations its accuracy and interpretability (par-

simony) in the presence of threshold effects. Section 4 is devoted to an empirical application

with a benchmark dataset. Robustness of the results through datasets is explored in Section

5. Section 6 compares the models from an economic point of view, while the last Section

concludes.

2 Threshold effects in logistic regression

2.1 Non-linear effects and logistic regression model

Let (xi, yi), i = 1, ..., n, be a sample of size n of independent and identically distributed

observations where xi ∈ Rp is a p-dimensional vector of predictors and yi ∈ {0, 1} is a

binary variable taking the value one when the i-th borrower defaults and zero otherwise.

The goal of a credit scoring model is to provide an estimate of the posterior probability

Pr (yi = 1 |xi ) that borrower i defaults given his attributes xi. The relevant characteristics

of the borrower vary according to its status: household or company. For corporate credit

risk scoring, the candidate predictive variables xi,j, j = 1, ..., p, may include balance-sheet

financial variables that cover various aspects of the financial strength of the firm, like the

firm’s operational performance, its liquidity, and capital structure (Altman, 1968). For

instance, using a sample of 4, 796 Belgian firms, Bauweraerts (2016) shows the importance of

taking into account the level of liquidity, solvency and profitability of the firm in forecasting

its bankruptcy risk. For small and medium enterprises (SMEs) specific variables related to

3See Hurlin and Pérignon (2019).
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the financial strength of the firm’s owner are also shown to be important (Wang, 2012). For

retail loans, financial variables such as the number and amount of personal loans, normal

repayment frequency of loans, the number of credit cards, the average overdue duration of

credit cards and the amount of housing loans are combined with socio-demographic factors.

A typical example is the FICO score, which is widely used in the US financial industry to

assess the creditworthiness of individual customers.

Regardless of the type of borrower, the conditional probability of default is generally

modeled using a logistic regression with the following specification

Pr (yi = 1|xi) = F (η (xi; β)) =
1

1 + exp (−η (xi; β))
, (1)

with F (.) the logistic cumulative distribution function, and η (xi; β) the so-called index

function defined as

η (xi; β) = β0 +

p∑
j=1

βjxi,j, (2)

where β = (β0, β1, ..., βp) ∈ Rp+1 is an unknown vector of parameters. The estimator β̂ is

obtained by maximizing the convex log-likelihood function

L(yi; β) =
n∑
i=1

{
yi log {F (η (xi; β))}+ (1− yi) log {1− F (η (xi; β))}

}
. (3)

Under some regular weak assumptions, the estimator β̂ is consistent and has a Gaussian

limiting distribution which allows for simple inferential procedures.

The main advantage of the logistic regression model is its simple interpretation. Indeed,

this model searches for a single linear decision boundary in the predictors’ space. The

core assumption for finding it is that the index η (xi; β) is linearly related to the predictive

variables. In this framework, it is easy to evaluate the relative contribution of each predictor

to the probability of default. This is achieved by computing marginal effects as

∂ Pr (yi = 1 |xi )
∂xi,j

= βj
exp (η (xi; β))

[1 + exp (η (xi; β))]2
, (4)

with estimates obtained by replacing β by β̂. Thus, a predictive variable with positive

(negative) significant coefficient has a positive (negative) impact on the borrower’s default

probability.

Obviously, this simplicity comes at a cost when significant non-linear relationships exist

between the default indicator, yi, and the predictive variables, xi. A very common type of

non-linearity can arise from the existence of an univariate threshold effect on a single pre-

dictive variable but it can also be generalized to a combination of such effects (multivariate

threshold effects) across variables. A typical example of the former case in the context of

credit scoring is the income “threshold effect”, which implies the existence of an endogenous

income threshold below (above) which default probability is more (less) prominent. The

6



income threshold effect can obviously interact with other threshold effects, leading to highly

non-linear multivariate threshold effects. The common practice to approximate non-linear

effects in credit scoring applications is to introduce quadratic and interaction terms in the

index function η (xi; β). However, such a practice is not successful when unobserved thresh-

old effects are at stake. Below, we run Monte Carlo simulation experiments to provide more

insight into this issue.

Formally, we first generate p predictive variables xi,j, j = 1, ..., p, i = 1, ..., n, where

the sample size is set to n = 5000. Each predictive variable xi,j is assumed to follow the

standard Gaussian distribution. The index function η (xi; Θ) is simulated as follows

η (xi; Θ) = β0 +

p∑
j=1

βj1 (xi,j ≤ γj) +

p−1∑
j=1

p∑
k=j+1

βj,k1 (xi,j ≤ δj) 1 (xi,k ≤ δk) , (5)

where 1 (.) is the indicator function and Θ = (β0, β1, ..., βp, β1,2, ..., βp−1,p)
′ is the vector

of parameters, with each component randomly drawn from an uniform [−1, 1] distribution,

and (γ1, ..., γp, δ1, ..., δp)
′ are some thresholds parameters, whose values are randomly selected

from the support of each generated predictive variable while excluding data below (above)

the first (last) decile. The default probability is then obtained for each individual by plugging

(5) into (1). Subsequently, the simulated target binary variable yi is obtained as

yi =

{
1 if Pr (yi = 1 |xi ) > π
0 otherwise,

(6)

where π stands for the median value of the generated probabilities.

Our objective is to assess logistic regression’s performance to detect default in presence

of univariate and bivariate threshold effects as introduced in (5). For this, we divide the

simulated sample into two sub-samples of equal size at each replication. The first (second)

sub-sample is labeled as the learning (test) sample. We estimate logistic regression models

on the learning sample and evaluate their forecasting abilities with the test sample.

The first model that we estimate is the classical logistic regression, with linear effects,

whose index is given in (2). The second logistic model we estimate has been designed specif-

ically to capture non-linear effects and for this reason it is very often used in credit scoring

applications. This specification is based on a non-linear index function that incorporates

quadratic and interaction terms

η(nl)
(
xi; Θ(nl)

)
= α0 +

p∑
j=1

αjxi,j +

p∑
j=1

ξjx
2
i,j +

p−1∑
j=1

p∑
k=j+1

ζj,kxi,jxi,k, (7)

where Θ(nl) = (α0, α1, ..., αp, ξ1, ..., ξp, ζ1,2, ..., ζp−1,p)
′ is the unknown vector of parameters.

However, we argue here that both approaches fail to accurately model non-linearity in

presence of univariate and bivariate threshold effects such as those in (5). We evaluate the
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out-of-sample performance of the models by relying on the probability of correct classifica-

tion (PCC) as evaluation criterion.4
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Figure 1: Comparison of performances under univariate and bivariate threshold effects:
linear and non-linear logistic regressions

Figure 1 displays the average value of the PCCs of these two models over 100 simulations

and for different number of predictors p = 4, ..., 20. We observe that the proportion of correct

classification decreases with the number of predictors for both models. This suggests that

in presence of univariate and bivariate threshold effects involving many variables, as in our

DGP, logistic regression with linear index function, eventually augmented with quadratic

and interaction terms, fails to discriminate between good and bad loans. Indeed, in the

case where p = 20 the PCCs are equal to 72.30% and 75.19%, respectively. Hence, adding

quadratic and interaction terms improves the predictive power, but the overall performance

remains low when the number of predictors increases.

2.2 Machine Learning for non-linear effects

In the following we show that ensemble or aggregation methods for decision trees such

as random forests perform much better in a framework with threshold effects. The out-

performance of random forest arises from the non-linear “if-then-else” rules underlying de-

cision trees. Indeed, the latter is a non-parametric supervised learning method based on

a divide and conquer greedy algorithm that recursively partitions the training sample into

smaller subsets, so as to group together as accurately as possible individuals with the same

4Note that all these models give the estimated probabilities of default p̂i for the N individuals. To
compute the PCC, we need the estimated value of yi, i.e., ŷi. This is done by comparing p̂i to an endogenous
threshold π̂. As usual, we set π̂ to a value such that the number of predicted defaults in the learning sample
is equal to the observed number of defaults.
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behaviour, i.e. the same value of the binary target variable “yi”. Formally, for a given tree,

l, the algorithm proceeds as follows. Let Dm,l be the data (sub)set at a given node m of

this tree. We denote by θm,l = (jm,l, tm,l,j) a candidate split, where jm,l = 1, ..., p indicates a

given predictive variable and tm,l,j is a threshold value in the support of this variable. The

algorithm partitions the data Dm,l into two subsets Dm,l,1 (θm,l) and Dm,l,2 (θm,l), with5

Dm,l,1 (θm,l) = (xi, yi) | xi,j < tm,l,j, (8)

Dm,l,2 (θm,l) = (xi, yi) | xi,j ≥ tm,l,j, (9)

where the parameter estimates θ̂m,l satisfy

θ̂m,l = (ĵm,l, t̂m,l,j) = arg max
θm,l

H (Dm,l)−
1

2

(
H(Dm,l,1 (θm,l)) +H(Dm,l,2 (θm,l))

)
, (10)

with H (.) a measure of diversity, e.g. the Gini criterion, applied to the full sample and

averaged across the two sub-samples, respectively. θ̂m,l appears hence as the value of θm,l that

reduces diversity the most within each subset resulting from the split. The splitting process

is repeated until the terminal sub-samples, also known as leaf nodes, contain homogeneous

individuals according to a predefined homogeneity rule. We denote by Ml the total number

of splits in tree l and by |Tl| the corresponding number of leaf nodes.

Figure 2: Example of decision tree for credit scoring

An illustrative example of a decision tree is given below in Figure 2. We observe that

at the first iteration (or split), m = 1, θ̂m,l is defined by (ĵm,l, t̂m,l,1), with ĵm,l the index

of the variable “income” and t̂m,l,1 = 33270.53. The other iterations also include “age”

5To simplify the description of the algorithm we focus only on quantitative predictors. A similar proce-
dure is available for qualitative predictors.
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and “education” for further refinements. The process ends with a total number of 5 splits

and 6 leaf nodes labeled 10, 11, 12, 13, 4 and 7, respectively. Each leaf node Rt, t =

1, ..., |Tl| includes a specific proportion of individuals belonging to each class of borrowers

(1=“default”, 0=“non default”). For instance, leaf node “7” contains 89 individuals, 93.3%

of them having experienced a default event. Note that each of these individuals has an

income lower than 33270.53 and is less than 28.5 years old. The predominant class in each

leaf defines the predicted value of yi for individuals i which belong to that particular leaf.

Formally, we define the predicted default value for the ith individual as

hl(xi; Θ̂l) =

|Tl|∑
t=1

ctRi,t, (11)

where Θl = (θm,l,m = 1, ...,Ml) is the parameter vector for tree l, Ri,t = 1(i∈Rt) indicates

whether individual i belongs to leaf Rt, and ct is the dominant class of borrowers in that leaf

node. For example, in leaf node 7 the “default” class is dominant and hence the predicted

value hl (xi) is equal to 1 for all the individuals that belong to this leaf node. Notice that

this simple tree allows to identify both interactions and theshold effects. For instance, in

the simple example of Figure 2, the predicted value can be viewed as the result of a kind

of linear regression6 on the product of two binary variables that takes a value one if the

income is lower than 33270.53 and the age is less than 28.5.

The random forest method is a bagging procedure that aggregates many non corre-

lated decision trees. It exploits decision trees power to detect univariate and multivariate

threshold effects while reducing their instability. Its superior predictive performance springs

from the variance reduction effect of bootstrap aggregation for non correlated predictions

(Breiman, 1996). Let L trees be constructed from bootstrap samples (with replacement) of

fixed size drawn from the original sample. To insure a low level of correlation among those

trees, the random forest algorithm chooses the candidate variable for each split in every tree,

jm,l with m ∈ {1, . . . ,Ml} and l ∈ {1, . . . , L}, from a restricted number of randomly selected

predictors among the p available ones. The default prediction of the random forest for each

borrower, h (xi), is obtained by the principle of majority vote, that is h (xi) corresponds to

the mode of the empirical distribution of hl(xi; Θ̂l), l = 1, ..., L.

Numerous empirical papers have stressed random forests’ performance in the context

of credit scoring (see Lessmann et al., 2015, among others). We illustrate its relative per-

formance in our Monte Carlo simulations setup. We consider the data generating process

with non-linearity given in Equation (5) and then we estimate random forests based on the

simulated data. The proportion of correct classification for the random forest algorithm,

displayed as a yellow line in Figure 3, is computed over the same test samples of length

2500 as the PCCs of the logistic regressions previously discussed. The optimal number of

6This equivalence is only true in the case of a regression tree when the target variable y is continuous.
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Figure 3: Comparison of performances under univariate and bivariate threshold effects:
linear and non-linear logistic regressions, and Random Forest

trees in the forest, L, is tuned using the out-of-bag error. See Breiman (2001) for more

information on this out-of-sample measure of performance. In presence of non-linear effects,

the random forest outperforms not only the linear logistic regression as expected, but also

the non-linear logistic regression. This result is due to the fact that the non-linear logistic

regression model neglects the threshold effects, while taking into account the interactions

between the predictors. On the contrary, the random forest is able to well-capture both

features. This result is valid whatever the number of predictors, even if the differences in

classification performance of the three models tend to decrease with the number of predic-

tors. As the number of predictors increases, the complexity and the non-linearity of the

DGP also increases, inducing a reduced performance for all the classifiers. For instance, the

PPCs are equal to 99.18% (resp. 84.50%) for the random forest (resp. logistic regression

with quadratic and interaction terms) in the case with 4 predictors, against 81.20% (resp.

75.19%) in the case with 20 predictors. Although the difference reduces from 14.68% to

6.01%, the PCC of the random forest is always higher than that of the logistic regression,

confirming the empirical results generally found in the literature (see Lessmann et al., 2015,

for example).

Despite insuring good performance, the aggregation rule (majority vote) underlying ran-

dom forest leads to a prediction rule that lacks interpretation. This opaqueness is harmful

for credit scoring applications, where decision makers and regulators usually need simple

score functions like the linear index function from the logistic regression whose economic

content is transparent.

The key question here is how to find a good trade-off between predictive performance
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and interpretability. To gauge this issue, two lines of research can be explored. First, one

can try to diminish the complexity of the random forest’s aggregation rule by selecting

(via an objective criterion) only some trees or decision rules in the forest.7 Second, we

can preserve the simplicity of logistic regression while improving its predictive performance

with univariate and bivariate endogenous threshold effects. We opt here for the second

line of research and leave the first one for further research. We propose to preserve the

simplicity of logistic regression while improving its predictive performance with univariate

and bivariate endogenous threshold effects. To be more precise, rules extracted from various

short-depth decision trees built from couples of predictive variables are used as predictors

in (regularized) logistic regression. These rules are dummy variables associated to leaf

nodes from the various decision trees, and allow us to endogenously model univariate and

bivariate threshold effects. The next section is devoted to the presentation of the proposed

credit-scoring method.

3 Penalized Logit Tree Regression

3.1 Description of the methodology

In this paper, we propose to build a parsimonious logistic regression model from endogenous

univariate and bivariate threshold effects, that we call “Penalized Logistic Tree Regression”,

henceforth PLTR. Both types of effects are obtained from short decision trees that rely on

each possible couple of predictive variables at a time, where the dependent variable yi

measures borrower’s default status. The algorithm proceeds in two steps.

The objective of the first step is to identify threshold effects from trees with two splits.

For illustration, take income and age to be the jth and kth explanatory variables, and assume

that income is more informative than age in explaining credit default. For each individual

i, the corresponding decision tree will generate three binary variables, each associated to a

terminal node. The first binary variable V(j)
i,1 will account for univariate threshold effects

and could take value one when the income of individual i is higher than an estimated income

threshold, and zero otherwise. The second (third) binary variable V(j,k)
i,2 (V(j,k)

i,3 ), representing

bivariate threshold effects, would be equal to one when the person’s income is lower than

its threshold and at the same time his/her age is lower (higher) than an estimated age

threshold, and zero otherwise.8 Note that this particular form of splitting should arise

when both variables are informative, i.e. each of them is selected in the iterative process of

7Note that this is the approach underlying the so-called “inTrees” method of Deng (2019) who proposes
a methodology to render the outputs of random forest interpretable, by extracting simple rules from a tree
ensemble.

8It is also possible that the univariate threshold variable V(j)
i,1 takes value one when the income is lower

than an estimated income threshold, and zero otherwise. In that case, the bivariate threshold effect V(j,k)
i,2

(V(j,k)
i,3 ) would be equal to one when the individual’s income is higher than its threshold and at the same

time his/her age is lower (higher) than an estimated age threshold, and zero otherwise.
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splitting. If the second variable is non-informative (age), the tree will rely twice on the first

informative variable (income). Figure 4 gives an illustration of the splitting process.

Figure 4: Illustration of the two-stage splitting process

One leaf of each of the two branches originating from the root of the tree is retained

so as to cover both one and two splits, i.e. the first two binary variables V(j)
i,1 and V(j,k)

i,2 in

the example above. We count at most p + q threshold effects for inclusion in our logistic

regression, where p represents the number of predictive variables and q denotes the total

number of couples of predictive variables9. This is the case because the univariate threshold

effects V(j)
i,1 are generated only by the variables retained in the first split irrespective of the

variables retained in the second split. Some predictive variables may be selected in the first

split of several trees, while others may never be retained. The latter do not produce any

univariate threshold effects, while the former deliver identical univariate threshold effects,

V(j)
i,1 , out of which only one will be included in the logistic regression.

Note that one could also go beyond two splits by analyzing triplets or quadruplets of

predictive variables. Such a procedure would allow the inclusion of more complex non-linear

relationships in the logistic regression. Nevertheless, the expected uprise in performance

would come at the cost of increased complexity of the model towards that of random forests

which would plunge its level of interpretability. For this reason, in our PLTR model we use

only short-depth decision trees involving two splits.

In the second step, the endogenous univariate and bivariate threshold effects previously

obtained are plugged in the logistic regression

Pr
(
yi = 1|V(j)

i,1 ,V
(j,k)
i,2 ; Θ

)
=

1

1 + exp
[
−η(V(j)

i,1 ,V
(j,k)
i,2 ; Θ)

] , (12)

9At most, q = p×(p−1)
2 .
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with

η(V(j)
i,1 ,V

(j,k)
i,2 ; Θ) = β0 +

p∑
j=1

βjV(j)
i,1 +

p−1∑
j=1

p∑
k=j+1

γj,kV(j,k)
i,2 (13)

the index and Θ = (β0, β1, ..., βp, γ1,2, ..., γp−1,p)
′ the set of parameters to be estimated. The

corresponding log-likelihood is

L(V(j)
i,1 ,V

(j,k)
i,2 ; Θ) =

1

n

n∑
i=1

[
yi log

[
F
(
η(V(j)

i,1 ,V
(j,k)
i,2 ; Θ)

)]
+ (1− yi) log

[
1− F

(
η(V(j)

i,1 ,V
(j,k)
i,2 ; Θ)

)] ]
,

where F (η(V(j)
i,1 ,V

(j,k)
i,2 ; Θ)) is the logistic CDF (see (1) for its general expression). The

estimate Θ̂ is obtained by maximizing the above log-likelihood with respect to the unknown

parameters Θ. Remark that the length of Θ depends on p, the number of predictive variables

and can be relatively high. For instance, there are 45 couples of variables when p = 10; this

leads to a maximum number of 55 univariate and bivariate threshold effects that play the

role of predictors in our logistic regression.

To prevent overfitting issues in this context with a large number of predictors, a common

approach is to rely on penalization (regularization) for both estimation and variable selec-

tion. Called penalized logistic tree regression in our case, this method consists in adding a

penalty term to the negative value of the log-likelihood function, such that

Lp(V(j)
i,1 ,V

(j,k)
i,2 ; Θ) = −L(V(j)

i,1 ,V
(j,k)
i,2 ; Θ) + λP (Θ), (14)

with P (Θ) the additional penalty term and λ a tuning parameter that controls the intensity

of the regularization and which is selected in such a way that the resulting model minimises

the out of sample error. The optimal value of the tuning parameter λ is usually obtained

by relying on grid-search with cross-validation or by using some information criteria. At

the same time, several penalty terms P (Θ) have been proposed in the related literature

(Tibshirani, 1996; Zou and Hastie, 2005; Zou, 2006), but the most popular one is still the

L1-penalty (P (Θ) =
∑m

j=1 |θj|) of Tibshirani (1996) that corresponds to the Least Absolute

Shrinkage and Selection Operator (Lasso). This method has the advantage of performing

both feature selection and regularization of coefficients while being computationally feasible

in high dimensional data.

Nonetheless, the Lasso estimator does not satisfy the oracle property (Fan and Li, 2001):

the probability to exclude relevant variables and to select irrelevant ones is not zero. For this

reason, we decide to estimate our PLTR model by relying on an extension of the Lasso that

solves the above mentioned pitfall, i.e. the Adaptive Lasso estimator of Zou (2006). Indeed,

the Adaptive Lasso has oracle properties as it penalizes more (less) the coefficients that are

small (big) in magnitude. The corresponding penalty term is P (Θ) =
∑V

v=1 wv|θv| with

wv = |θ̂(0)
v |−ν , where θ̂

(0)
v , v = 1, ..., V , are consistent initial estimators of the parameters,
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and ν is a positive constant. The Adaptive Lasso estimators are obtained as

Θ̂alasso(λ) = arg min
Θ

− L
(
V(j)
i,1 ,V

(j,k)
i,2 ; Θ

)
+ λ

V∑
v=1

wv|θv|. (15)

In practice, we set the parameter ν to 1, the initial estimator θ̂
(0)
j to the value obtained from

the logistic-ridge regression (Hoerl and Kennard, 1970), and the only free tuning parameter,

λ, is found via 10-fold cross-validation. Besides, different estimation algorithms have been

developed in the literature to estimate regression models with the adaptive lasso penalty

(for a given value of λ): the quadratic programming technique (Shewchuk et al., 1994),

the shooting algorithm (Zhang and Lu, 2007), the coordinate-descent algorithm (Friedman

et al., 2010), and the Fisher scoring algorithm (Park and Hastie, 2007). Most of them are

implemented in software like Matlab and R, and we rely here on the algorithm based on

Fisher scoring. See the reference for more details on this optimization algorithm (McIlhagga,

2016).

3.2 PLTR under threshold effects: Monte Carlo evidence

In this subsection we assess the accuracy and interpretability (parsimony) of the PLTR

model relatively to the traditional logistic regression and random forest in the presence of

the threshold effects that were introduced in the Monte Carlo simulation setup of section 2.
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Figure 5: Comparison of performances under univariate and bivariate threshold effects:
linear and non-linear logistic regressions, Random Forest and PLTR

We first assess the forecasting performance of this new credit-scoring method. The purple

curve in Figure 5 represents the proportion of correct classification (PCC) for our PLTR

method computed over the same test samples of length 2500 that were generated with the
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DGP in (5)-(6). The conclusion is clear-cut: the PLTR method significantly outperforms

the two versions of the logistic regression, i.e., with and without quadratic and interaction

terms. When the number of predictors, p, is low, the PCC curve of the PLTR is lower

than that of the random forest algorithm, but as p increases, the performance of the PLTR

approaches and appears to even surpass that of random forest. For example, the PCCs are

equal to 94.81 for our new method and 99.18 for the random forest with p = 4, against 83.65

and 81.20 for p = 20, respectively. In practice, the latter case is more realistic as credit

scoring applications rely on quite a large set of predictors.

Moreover, performance is not the only essential criterion for credit-scoring managers.

The other fundamental characteristic of a good scoring model is interpretability. But learn-

ing interpretable predictive models is challenging because interpretability and accuracy are

generally two competing objectives. The first is favoured by simple models, while the latter

by complex ones. In our case, if the results of the less performing logistic regressions can

be immediately interpreted in terms of marginal effects, elasticities and even transformed

in a transparent scorecard, those of the outperforming random forest are very difficult to

interpret for two reasons. First, the forest relies on many trees, with many splits, which

involve many complicated if-then-else rules. Second, the rules obtained from the trees are

aggregated via the majority vote.

In this context, our PLTR method appears as a parsimonious solution to the tradeoff

between performance and interpretability. Its good performance was emphasized in Figure

5. On top of that, the scoring decisions are simple to interpret through marginal effects (as

well as elasticities and scorecards) similar to those of traditional logistic regression. This is

facilitated by the simple decision rules obtained in the first step of the procedure from short-

depth decision trees. Indeed, the skeleton of our PLTR is actually a logistic regression with

binary indicators that account for endogenous univariate and bivariate threshold effects.

The complete loan-decision process based on the PLTR method is illustrated in Figure 6.

The input of the method includes all the predictive variables from the loan applicant, while

the output is fundamentally the decision to accept or to reject the credit application based

on the default risk of the person. Additionally, the mapping from the inputs to the output

allows one to transform the internal set of rules of the PLTR into transparent feedback

about the weaknesses and strengths of the application.

To give more insights about the interpretability, we compare our PLTR model and the

random forest in the same Monte-Carlo setup as in Section 2 with p fixed to 20. Various

measures to quantify the interpretability of a classifier have been proposed in the literature.

One measure is the size of the set of decision rules needed for prediction. The fewer the

rules, the easier to interpret the results. The size of a given rule in a decision set is a

complementary measure. If the number of predicates in a rule is too large, it will loose

its natural interpretability. Across the 100 simulations, the random forest registers an
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Figure 6: PLTR inference process

average number of 160.85 trees, each with an average number of 410.47 terminal nodes.

This leads to a decision set of 410.47 × 160.85 binary decision variables or rules that can

be used for prediction with this method. Across the same simulations, the average number

of active binary decision variables in our penalized logistic regression is equal to 146.90.10

Moreover, the number of predicates involved in each of these binary decision variables for

our PLTR method varies between 1 and 2 by construction, whereas the maximum number of

predicates in a rule of the random forest is 14.52 on average. Hence, our PLTR outperforms

the random forest. In this sense, it is comparable to the non-linear logistic regression11 in

terms of interpretability.

Furthermore, marginal effects and elasticities can be easily obtained in the PLTR due

to the linearity of the link function in (13) with respect to the parameters. On the one

hand, this greatly simplifies significance testing as well as the implementation of out-of-

sample exercises. On the other hand, this allows credit institutions to easily explain, in a

transparent way, the main reasons behind a loan decision (see the example rules in Figure

6 that guarantee transparent information).

10Notice that for p = 20 predictors, the maximum number of binary variables is equal to 20+ 20×19
2 = 210.

This result illustrates the selection operated through the adaptative lasso regression.
11The major difference between these two methods is the endogenous character of the thresholds that

characterize variable interactions in our framework.
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4 Model performance with a benchmark dataset

One could argue that the Monte Carlo simulations were designed to favor the PLTR method

over the logistic regressions as the first implicitly handles univariate and bivariate threshold

effects. In this section we evaluate the out-of-sample accuracy and interpretability of our

method relative to that of its competitors by using a benchmark credit default dataset.

4.1 Data description and processing

To gauge the out of sample performance and to illustrate the interpretability of the PLTR

method, we use a popular dataset provided by a financial institution for the Kaggle compe-

tition “Give me some credit”, and which is often used in credit scoring applications (Baesens

et al., 2003). The dataset includes several predictive variables and a binary response variable

measuring default. The predictive variables provide information about the customers (age,

monthly income, the number of dependents in family), and the application form (number

of mortgage and real estate loans, the monthly debt payments, the total balance on credit

cards, etc.). The dataset contains 10 quantitative predictors. See Table A.1 in Appendix A

for the description of the variables in the dataset.

The number of instances in the dataset is equal to 150, 000 loans out of which 10, 026

defaults, leading to a prior default rate of 0.067. It is well known that class imbalance

impedes classification: some classifiers may focus too much on the majority class and neglect

the minority group (of interest). They could hence exhibit good overall performance despite

poorly identifying the minority group, i.e. the borrowers that default.12 A common solution

to this issue consists in resampling methods such as undersampling or oversampling (as the

SMOTE for example). Nonetheless, we choose not to resample the datasets as our PLTR

method is designed to be an operational tool for credit-officers, that insures a good balance

between predictive accuracy and interpretability.

Lastly, we need to prepare the raw dataset for use in this empirical application. To

do so, we replace each missing value by the mean of the predictive variable. At the same

time, we discuss data partitioning as it is an important step in our evaluation scheme.

In particular, we use the so-called N × 2-fold cross-validation of Dietterich (1998), which

involves randomly dividing the dataset in two sub-samples of equal size. The first (second)

part is used to build the model, while the second (first) part is used for evaluation. This

procedure is repeated N times and the evaluation metrics are averaged. This method of

evaluation produces more robust results compared to the classical single data partitioning.

We set N = 5 for computational reasons.

12In the worst case, some classifiers could even misclassify all the members of the minority group and still
exhibit good global performance.
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4.2 Statistical measures of performance and interpretability

To evaluate the performance of each classifier we consider five accuracy measures: the

area under the ROC curve (AUC), the Brier Score (BS), the Kolmogorov-Smirnov statistic

(KS), the percentage of correctly classified (PCC) cases, and the Partial Gini Index (PGI).

We rely on these indicators because they are the most popular evaluation metrics used

in many empirical applications evaluating statistical models for credit scoring (Lessmann

et al., 2015). Moreover, they are related to different facets of the predictive performance of

scorecards, namely the accuracy of the scores as measured by the BS statistics, the quality

of classification given by the PCC and KS statistics, and the discriminatory power assessed

through the AUC and the PGI statistics. By using several statistics instead of a single one,

we expect to obtain a robust and complete evaluation of the relative performances of the

competing models.

The AUC tool evaluates the overall discriminatory performance of each model or classi-

fier. It is a measure of the link between the False Positive Rate (FPR) and the True Positive

Rate (TPR), each computed for every threshold between 0 and 1. The FPR (TPR) is the

percentage of non-defaulted (defaulted) loans misclassified as defaulted (non-defaulted).

Thus, the AUC reflects the probability that the occurrence of a randomly chosen bad loan

is higher than the occurrence of a randomly chosen good loan.

The Gini Index is equal to twice the area between the ROC curve and the diagonal.

Hence, like the AUC, it evaluates the discriminatory power of a classifier across several

thresholds, with values close to one corresponding to perfect classifications. However, in

credit scoring applications it is not realistic to study all possible thresholds. Informative

thresholds are those located in the lower tail of the distribution of default probabilities

(Hand, 2005). Indeed, only applications below a threshold in the lower tail could be granted

a credit, which excludes high thresholds. The Partial Gini Index solves this issue by focusing

on thresholds in the lower tail (Pundir and Seshadri, 2012). With x denoting a given

threshold and L(x) the function describing the ROC curve, the PGI is then defined as13

PGI =
2
∫ b
a
L(x)dx

(a+ b)(b− a)
− 1. (16)

The PCC is the proportion of loans that are correctly classified by the model. Its

computation requires a discretization of the continuous variable of estimated probabilities of

default. Formally, we need to choose a threshold π above (below) which a loan is classified

as bad (good). In practice, the threshold π is fixed based on the cost of rejecting good

customers/granting credits to bad customers. Since we do not have such information, we

set this threshold to a value such that the predicted number of defaults in the learning

sample is equal to the observed number of defaults.

13PGI within bounds a = 0 and b = 1 is equivalent to Gini Index. In the empirical applications, we
evaluate the PGI within the (0, 0.4) bounds as in Lessmann et al. (2015).
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As for the Kolmogorov-Smirnov statistic, it is generally defined as the maximum distance

between the estimated cumulative distribution functions of two random variables. In credit

scoring applications, these two random variables measure the scores of good loans and bad

loans, respectively (Thomas et al., 2002).

Lastly, the Brier Score (Brier, 1950) is defined as

BS =
1

n

n∑
i=1

(P̂r(yi = 1|xi)− yi)2, (17)

where P̂r(yi = 1|xi) is the estimated probability of default and yi is the target binary default

variable. Note that it is the equivalent of the mean-squared error but it is designed for the

case of discrete-choice models. All in all, the higher these indicators are the better the model

is, except for the Brier Score for which a small value is better.

Regarding the interpretability of the scoring models, the size of the decision set and the

average size of rules in a decision set are the criteria retained, as discussed in Subsection

3.2, to compare the interpretability of the PLTR and the random forest.

4.3 Statistical evaluation results

Table 1 presents the average value of each statistic across the 5 × 2 cross-validation test

samples. We compare the performance of the PLTR to those of the traditional logistic

regressions and random forest. Three different versions of the logistic regression are im-

plemented: the simple linear logistic regression, its non-linear version which includes as

additional variables, quadratic and interaction terms,14 and a penalized version of this last

model to avoid overfitting due to the large number of predictors. We use the adaptive Lasso

penalty as described above.

Table 1: Average values of Statistical performance indicators: Kaggle dataset

Methods AUC PGI PCC KS BS
Linear Logistic Regression 0.6983 0.3964 0.9082 0.3168 0.0576

Non-Linear Logistic Regression 0.7660 0.5255 0.9127 0.4173 0.0649
Non-Linear Logistic Regression + ALasso 0.8062 0.6102 0.9208 0.4751 0.0535

Random Forest 0.8529 0.6990 0.9260 0.5563 0.0500
PLTR 0.8568 0.7076 0.9247 0.5647 0.0496

Note: The non-linear logistic regression includes linear, quadratic and interaction terms. The method

labelled “Non-Linear Logistic Regression + ALasso” corresponds to a penalized version of the non-linear

logistic regression with the adaptive Lasso penalty.

The results displayed in Table 1 show that random forest performs better than the three

versions of the logistic regression, and this holds for all statistical measures considered. This

14As already stressed, this non-linear model is the one that is generally used to capture non-linear effects
in the framework of logistic regression.
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is expected given that random forest is the benchmark method in terms of performance for

credit scoring applications (Lessmann et al., 2015). In particular, the differences are more

pronounced for the AUC, PGI and KS statistics. Most importantly, our PLTR method also

outperforms the three versions of the logistic regression irrespective of the performance mea-

sure. This is particularly the case of AUC, PGI and KS metrics for which the dominance is

stronger. This stylized fact is important as it suggests that our method has better predictive

abilities compared to the benchmark models currently used by firms. The main message

here is that combining decision trees with a standard model like logistic regression provides

a valuable statistical modeling solution for credit scoring. In other words, the non-linearity

captured by univariate and bivariate threshold effects obtained from short-depth decision

trees can improve the out-of-sample performance of the traditional logistic regression.

The results in Table 1 also show that our method compares competitively to random

forest. All statistical performance measures are of the same order or slightly better for our

method. The main conclusion to draw from this illustration is hence that one should use

our method instead of random forest, at least for this dataset. The rational of this assertion

springs from the performance of the PLTR together with its parsimony that contrasts with

the complexity underlying the prediction rule of random forest. Indeed, the average number

of trees in the random forest across the 5 × 2 cross-validation test samples is equal to

173.9. These trees have on average 5, 571.1 terminal nodes, with a total of 5, 571.1× 173.9

binary variables for prediction (via the majority vote). By contrast, the average number

of bivariate threshold effects selected by our penalized logistic regression is only equal to

40. More importantly, these bivariate threshold effects are easily interpretable because they

arise from short-depth decision trees. In addition, the PLTR rules are built from only 2

predicates at most, whereas the rules from random forest are built from an average number

of 32.15 predicates at most. These differences in terms of size of the decision set and size of

the rules are the cost to pay in order to catch more non-linear effects, although such effects

do not seem to play a significant role in this dataset.

It is worth stressing that the results above emphasize the importance of using different

measures of performance when comparing several credit scoring methods. The conclusions

may be slightly different according to the evaluation approach that is used. For example, if

the unique objective is to obtain accurate probabilities of default (measured by Brier’s score),

the methods are almost equivalent. Nonetheless, the performance of the three versions of

the logistic regression is much inferior in terms of discriminatory ability (measured by both

AUC and PGI).

Lastly, in order to highlight the advantages of our method, especially in terms of in-

terpretability, we report in Table 2 the 10 most important decision rules from the short-

depth decision trees, which are selected by the Adaptive Lasso in the implementation of our

PLTR method. These decision rules are those associated with the largest absolute values
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of the marginal effects (averaged across individuals). A positive (negative) value of a given

marginal effect provides information about the strength of increase (decrease) of the prob-

ability of default. We observe that three univariate threshold variables are selected, i.e.,

“NumberOfTime60-89DaysPastDueNotWorse < 0.5”, “NumberOfTimes90DaysLate<0.5”

and “RevolvingUtilizationOfUnsecuredLines<0.69814”, the first one appearing as the most

important in term of marginal effect. Referring to the description of this variable in Table

A.1, we are able to infer that the probability of defaulting is 3.92% less important when the

number of times a borrower has been between 60 and 89 days past due (but not worse in

the last 2 years) is lower than 0.5 compared to the reference case when this number is higher

than 0.5. Moreover, seven bivariate threshold effects are selected by the models as being

important in explaining credit default. This kind of analysis that helps measuring through

marginal effects the importance of the decision rules from the short-depth decision trees is

an important added value of our PLTR model in term of interpretability.

5 Robustness across datasets

In this section, we evaluate the robustness of the above empirical results across datasets. To

this end, we consider three popular additional datasets. The first one, named “Housing”,

is available in a SAS library and has been used by many authors for illustrative examples

(Matignon, 2007). The second one labeled “Australian dataset” concerns credit card ap-

plications and is a UCI (University of California at Irvine) dataset provided by Quinlan,

and one of the Credit Approval Databases which were used in the Statlog project.15 Lastly,

the third dataset labeled “Taiwan dataset” is also a UCI dataset that collects information

about default payments in Taiwan.

The Housing dataset includes 5, 960 loans, 1, 189 of which had defaulted. Therefore, the

prior default rate is 19.95%. In the Australian (Taiwan) dataset there are 690 (30, 000) in-

stances out of which 307 (6, 636) defaults, leading to a prior default rate of 44.49% (22.12%).

In the Housing dataset, there are 12 explanatory variables, two out of which are nominal.

The Australian dataset includes 6 numerical and 8 nominal predictors. As for the Taiwan

dataset, there are 23 predictors, nine out of which are nominal. Tables A.2 and A.3 display

the list of the predictive variables for the Housing and the Taiwan datasets, respectively.

We do not provide this information for the Australian dataset, as all attribute names and

values have been changed to meaningless symbols to respect the confidentiality of the data.

We rely on the same (N × 2) comparison setup used for the benchmark Kaggle dataset,

with N = 5. Table 3 displays the values of the five statistics retained for the comparison of

the alternative models. For the Australian dataset, we remark that the two best performing

15The StatLog is an international project, which involves comparing the performances of machine learning,
statistical, and neural network algorithms on data sets from real-world industrial areas including medicine,
finance, image analysis, and engineering design.
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models are the PLTR and the random forest, with similar values for all the five statistics16.

This stylized fact confirms once again the relevance of our approach that leads to a perfor-

mant model which inherits the ease of interpretation of the logistic regression. The same

picture is observed for the Taiwan dataset with the PLTR model appearing as efficient as

the random forest.

Lastly, for the Housing dataset, random forest and our PLTR method appear once

again as the best performing models. However, in contrast to the results obtained for the

other datasets, it now appears that random forest outperforms our method. But since

our method is based on a compromise between statistical performance and interpretability,

the previous mixed result is not so detrimental. Indeed, using the same arguments as

above, the average number of active variables (univariate and bivariate threshold effects) in

our penalized logistic regression is equal to 47.60, while random forest relies on average on

343.8×110.5 binary variables for prediction.17 Hence, the PLTR is much more parsimonious.

Other results, available upon request, show that by relaxing the constraint of parsimony

via the inclusion of tri-variate and quadri-variate threshold effects, the performance of our

penalized logistic regression increases and reaches that of random forest. This suggests that

complex non-linear relationships that go beyond univariate and bi-variate threshold effects

are at stake in this dataset. In view of this result, it is important to stress that our article

offers a highly flexible framework to credit risk managers, as they can tune their model

according to the desired level of parsimony. The predictive performance can be significantly

improved but at the cost of less interpretable results.

6 Economic evaluation

In the previous section we found that random forest and the PLTR introduced in this article

have better statistical performances than logistic regressions and that out of the two, the

PLTR also remains easily interpretable. A valuable key question for a credit risk manager is

to what extent these statistical performance gains have a positive impact at a financial level

for a credit company. The best way to evaluate these economic consequences is to calculate

the amount of regulatory capital from the estimated default probability series. A similar

comparison approach has been proposed by Hurlin et al. (2018) for LGD models. However,

this task requires computing other parameters like the loss given default (LGD) and the

exposure at default (EAD), and hence needs specific information about the consumers and

16For the Non-Linear Logistic Regression, we find that all fitted probabilities are higher than 0.6. There-
fore, as we compute the PGI within (0, 0.4), this statistic cannot be computed. Unlikely to happen in
practice, this bad performance can also be observed through the high value of the BS statistic compared to
those of the other methods.

17In this dataset we identify on average 110.5 trees in the forest, with an average number of terminal
nodes equal to 343.8 for each tree. Furthermore, at most 18.82 predicates are used on average in the rules
of the random forest against 2 at most for the PLTR model.
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Table 3: Average values of Statistical performance indicators: Three datasets

Methods AUC PGI PCC KS BS
Australian dataset

Linear Logistic Regression 0.8998 0.5664 0.8374 0.7135 0.1186
Non-Linear Logistic Regression 0.6090 0.6067 0.2266 0.3921

Non-Linear Logistic Regression + Alasso 0.8866 0.5092 0.8214 0.6816 0.1333
Random Forest 0.9344 0.6246 0.8603 0.7523 0.0999

PLTR 0.9299 0.6370 0.8606 0.7425 0.1029
Taiwan dataset

Linear Logistic Regression 0.6310 0.2099 0.7586 0.2506 0.2344
Non-Linear Logistic Regression 0.5963 0.0984 0.7035 0.1927 0.2965

Non-Linear Logistic Regression + Alasso 0.7596 0.5029 0.7871 0.3926 0.1447
Random Forest 0.7722 0.4924 0.8102 0.4177 0.1362

PLTR 0.7780 0.5156 0.7959 0.4257 0.1352
Housing dataset

Linear Logistic Regression 0.7904 0.5508 0.8103 0.4450 0.1228
Non-Linear Logistic Regression 0.7965 0.5425 0.8239 0.4650 0.1199

Non-Linear Logistic Regression + Alasso 0.8113 0.5754 0.8217 0.4815 0.1125
Random Forest 0.9387 0.8157 0.9036 0.7455 0.0736

PLTR 0.9011 0.7341 0.8818 0.6694 0.0844

Note: The non-linear logistic regression includes linear, quadratic and interaction terms. The method

labelled “Non-Linear Logistic Regression + ALasso” corresponds to a penalized version of the non-linear

logistic regression with the Adaptive Lasso penalty.

the terms of the loans, which are not publicly available. Consequently, we compute another

measure largely accepted in the literature, i.e. the misclassification cost (see Viaene and

Dedene, 2004). This cost is estimated from Type 1 and Type 2 errors weighted by their

probability of occurrence.

Formally, let CFN be the cost associated to Type 1 error (the cost of granting credit

to a bad customer) and CFP the one for Type 2 error (e.g., the cost of rejecting a good

customer). Thus, the misclassification error cost is defined as

MC = CFPFPR + CFNFNR, (18)

with FPR the False Positive Rate and FNR the False Negative Rate. There is no consensus

in the literature about how to best determine CFN and CFP . Two alternatives have been

proposed. The first method fixes these costs based on previous studies (Akkoc, 2012).

For example, West (2000) sets CFN to 5 and CFP to 1. The second method evaluates

misclassification costs for different values of CFN so as to test as many scenarios as possible

(Lessmann et al., 2015). Even though there is no consensus on how to determine these

costs, it is well known and accepted that the cost of granting a credit to a bad customer

is higher than the opportunity cost of rejecting a good customer (see Thomas et al., 2002;

West, 2000; Baesens et al., 2003, among others). We chose to follow the second approach
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in order to assess the performance of the competing models. We fix CFP at 1 without loss

of generality (Hernandez-Orallo et al., 2011) and consider values of CFN between 2 and 50.

Once these misclassification costs are computed18, we set the linear logistic regression as

benchmark and compute the financial gains or cost reduction (in percentage) generated by

using a given method (the two versions of the non-linear logistic regression, random forest,

PLTR) instead of the benchmark. This will enable us to assess the relative performance of

our PLTR method from an economic point of view.

Figures A.1-A.4 in Appendix A display the cost reduction or financial gains for the four

datasets considered above. First, except for the Taiwan and the Australian datasets for

which the non-linear logistic regression leads to negative values for the cost reduction, all

methods deliver positive cost reductions. This means that financial institutions relying on

each of these methods rather than on the benchmark linear logistic regression should save the

cost of rejecting (accepting) good (bad) applicants. In view of the large number of credits in

bank credit portfolios, these gains could represent substantial savings for credit institutions.

The fact that the non-linear logistic regression leads to an increase in costs compared to

the linear logistic regression comes from the relatively high number of variables in the two

datasets (14 and 23 in the Australian and Taiwan datasets, respectively). This leads to

a proliferation of predictors (squares of the variables, cross-products of the variables), and

therefore to overfitting. The penalized version of the non-linear logistic regression succeeds

in dealing with this issue, which is materialized by positive values of the cost reductions in

all cases, except for the Australian dataset.

Second, across all datasets, our PLTR method is among the most efficient in terms of

cost reduction. Indeed, it appears to be the best on the Kaggle dataset. Precisely, the cost

reduction relative to the linear logistic regression is on average equal to 18.06% for the PLTR

method. This result also holds in the Taiwan dataset, with an average cost reduction equal

to 22.29% for PLTR. Remark that random forest leads to lower cost reduction for these two

datasets, with an average cost reduction of 13.09% (11.51%) for the Kaggle (Taiwan) one.

This means that although random forest has high global predictive accuracy, as given by the

proportion of correct classification (see Tables 1 and 3), it fails to some extent to detect bad

customers, which leads to a relative increase in costs due to more false negatives. For the

other two datasets (Australian and Housing) random forest is the best performing model,

followed by our PLTR method. With the Australian dataset, the average cost reduction of

random forest (PLTR) method is equal to 22.71% (14.89%). As for the Housing dataset, the

average values are equal to 44.56% and 38.69% for random forest and PLTR, respectively.

To conclude, the results show that our credit-scoring method compares favourably to

the state-of-the-art random forest algorithm not only on the statistical side, but also from

an economic viewpoint. Indeed, the cost reduction engendered by the PLTR is higher than

18The misclassification costs are computed from tests samples.
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the one of random forest for two datasets. For the other two datasets, the random forest is

better. Remember, however, that PLTR is more parsimonious than random forest, allowing

for simple interpretation of results. The results for these last two datasets hence highlight

the cost of PLTR’s interpretability in terms of performance (relatively to random forest).

Note also that for all models and datasets, the cost reductions are highly stable across the

different values of CFN .

7 Conclusion

The benchmark credit scoring model is still the logistic regression, which by design leads to

conclusions that are easy to disclose and hence interpretable for clients, credit risk managers,

and regulators. Since the Big Data revolution and the renewed interest in statistics and

machine learning, several papers advocate the use of sophisticated ensemble methods like

random forest, that are shown to outperform the traditional logistic regression. Nevertheless,

the prediction rule underlying random forests lacks parsimony and can be less relevant in

credit scoring applications where decision makers need simple and interpretable forecasting

rules.

Recognizing that traditional logistic regression underperforms random forest due to its

pitfalls in modeling non-linear (threshold and interaction) effects, this article introduces a

penalized logistic tree regression (PLTR) with predictive variables given by easy-to-interpret

endogenous univariate and bivariate threshold effects. These effects are quantified by dummy

variables associated to leaf nodes of short-depth decision trees built with couples of the

original predictive variables. Our main objective is to combine decision tree (from the field

of machine learning) and logistic regression (from the field of econometrics) to get the best

of both worlds: a performing and interpretable credit scoring model.

We show through Monte Carlo simulations and four empirical applications that the

PLTR has good predictive power while remaining easily interpretable. More precisely, using

several metrics to evaluate both the accuracy and the interpretability of credit models, we

show that our new method outperforms traditional linear and non-linear logistic regression

while being competitive compared to the difficult to interpret random forest. We also evalu-

ate the economic benefit of using our PLTR method through the so-called misclassification

costs analysis. We find that beyond parsimony, our method leads to significant reduction in

misclassification costs compared to the benchmark logistic regression while being compet-

itive with respect to the state-of-the-art random forest algorithm. Relying on an efficient

trade-off between performance and interpretability, the PLTR method introduced in this

article hence proves to be a useful tool for credit risk managers.
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A Appendix A: Additional Figures and Tables
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Figure A.1: Economic Evaluation for the Kaggle dataset
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Figure A.2: Economic Evaluation for the Taiwan dataset
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Figure A.3: Economic Evaluation for the Australian dataset
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Figure A.4: Economic Evaluation for the Housing dataset
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Table A.1: Description of the variables in the Kaggle dataset “Give me some credit”

Variable Type Description
SeriousDlqin2yrs Binary The person experienced 90 days

past due delinquency or worse
(Yes/No)

RevolvingUtilizationOfUnsecuredLines Percentage Total balance on credit cards and
personal lines of credit except
real estate and no installment
debt like car loans divided by
the sum of credit limits

Age Interval Age of the borrower (in years)
NumberOfTime30-59DaysPastDueNotWorse Interval Number of times a borrower has

been between 30 and 59 days
past due but not worse in the
last 2 years

DebtRatio Percentage Monthly debt payments, alimony
and living costs over the monthly
gross income

MonthlyIncome Interval Monthly Income
NumberOfOpenCreditLinesAndLoans Interval Number of open loans (like car

loan or mortgage) and credit
lines (credit cards)

NumberOfTimes90DaysLate Interval Number of times a borrower has
been 90 days or more past due

NumberRealEstateLoansOrLines Interval Number of mortgage and real
estate loans including home
equity lines of credit

NumberOfTimes60-89DaysPastDueNotWorse Interval Number of times a borrower has
been between 60 and 89 days
past due but not worse in the
last 2 years

NumberOfDependents Interval Number of dependents in family
excluding themselves (spouse,
children, etc...)
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Table A.2: Description of the variables in the Housing dataset

Variable Type Description
Bad Binary Whether the consummer had a default on the loan (1) or not (0)
Clage Interval Age of the oldest trade (in months)
Clno Interval Number of trades
Debtinc Interval Ratio of debt to income
Delinq Interval Number of neglectful trades
Derog Interval Number of major derogatory reports
Job Nominal Professional categories
Loan Interval Amount of the loan
Mortdue Interval Amount due on the mortgage
Ninq Interval Number of recent credits inquired
Reason Binary Whether the loan is for debt consolidation (DebtCon) or home

improvement (HomeImp)
Value Interval Current property value
Yoj Interval Number of years at the present job

Table A.3: Description of the variables in the Taiwan dataset

Variable Type Description
Y Binary default payment (Yes = 1, No = 0)
X1 Quantitative Amount of the given credit (NT dollar)
X2 Binary Gender (1 = male; 2 = female)
X3 Nominal Education (1 = graduate school; 2 = university; 3 = high school;

4 = others)
X4 Nominal Marital status (1 = married; 2 = single; 3 = others)
X5 Quantitative Age (year)

X6-X11 Nominal X6 - X11: History of past payment. We tracked the past monthly
payment records (from April to September, 2005) as follows:
X6 = the repayment status in September, 2005; X7 = the
repayment status in August, 2005; . . .;X11 = the repayment
status in April, 2005. The measurement scale for the
repayment status is: -1 = pay duly; 1 = payment delay for one
month; 2 = payment delay for two months; . . .; 8 = payment
delay for eight months; 9 = payment delay for nine months and above

X12-X17 Quantitative Amount of bill statement (NT dollar). X12 = amount of bill statement
in September, 2005; X13 = amount of bill statement in August, 2005;
. . .; X17 = amount of bill statement in April, 2005

X18-X23 Quantitative Amount of previous payment (NT dollar). X18 = amount paid in
September, 2005; X19 = amount paid in August, 2005; . . .;
X23 = amount paid in April, 2005
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Blöchlinger, A. and Leippold, M. (2006). Economic benefit of powerful credit scoring.

Journal of Banking and Finance, 30:851–873.

Bracke, P., Datta, A., Jung, C., and Sen, S. (2019). Machine learning explainability in

finance: an application to default risk analysis.

Breiman, L. (1996). Bagging predictors. Machine Learning, 26:123–140.

Breiman, L. (2001). Random forest. Machine Learning, 45:5–32.

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly

weather review, 78(1).
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