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Abstract
We introduce Segment Tracing, a new algorithm that accelerates the classical Sphere Tracing method for computing the inter-
section between a ray and an implicit surface. Our approach consists in computing the Lipschitz bound locally over a segment
to improve the marching step computation and accelerate the overall process. We describe the computation of the Lipschitz
bound for different operators and primitives. We demonstrate that our algorithm significantly reduces the number of field func-
tion queries compared to previous methods, without the need for additional accelerating data-structures. Our method can be
applied to a vast variety of implicit models ranging from hierarchical procedural objects built from complex primitives, to
simulation-generated implicit surfaces created from many particles.

1. Introduction

Implicit surfaces are a general tool for representing shapes by us-
ing iso-surfaces of so-called field functions. Hierarchical implicit
surface models are a powerful representation for modeling and an-
imating shapes of arbitrary topology. As compared to other sur-
face representations, implicit surfaces offer many advantages in
terms of performing geometric operations like Boolean operations,
blending, warping and offsets. Implicit surfaces have demonstrated
to be useful for a vast variety of applications including modeling
of blob-shaped and organic objects, surface reconstruction, point-
based modeling, and extraction of smooth surface from fluid simu-
lations. Another interesting aspect of procedurally defined implicit
surfaces is their ability to represent complex shapes in compact rep-
resentation, i.e. with a relatively small memory footprint.

However, visualizing implicit surfaces has always been consid-
ered difficult because of the indirect characterization of the surface.
Broadly, there are two major visualization methods for rendering
implicit surfaces: they may be rendered either indirectly by first
converting them into meshes using polygonization algorithms (we
refer the reader to [DALJ∗15] for a complete overview of existing
techniques), or by directly ray-tracing them. Although polygoniza-
tion converts implicit surfaces into a mesh representation that lends
itself for graphics hardware rendering, they are typically not guar-
anteed: they may not accurately detect the correct topology or miss
detailed parts of the implicit surface unless using a high resolution
grid. This results in a memory intensive data structure to represent
an otherwise compact model, as outlined in [SJNJ19]. In contrast,
Ray tracing directly samples the implicit surface by computing the
intersection point along a ray.

In this paper, we focus on ray-tracing implicit surfaces using the
Sphere Tracing algorithm proposed in [Har96]. This conceptually
simple and general algorithm adaptively marches along the ray to

find the first ray-object intersection. It requires the function to be
Lipschitz, i.e. have a bounded derivative. A good approximation of
the Lipschitz bound is important as the adaptive stepping distance
is inversely proportional to this bound. Its accurate computation
remains an open problem though, and existing techniques rely on
external spatial subdivision techniques, such as octrees or regular
grids, which involve memory consuming data structures and pre-
processing.
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Figure 1: We tackle the problem of computationally intensive
Sphere Tracing by evaluating local Lipschitz bound along the ray
during the ray marching process. Our Segment Tracing method re-
duces the number of field function queries # f and accelerates ray-
object intersection.

A key observation of our work is that hierarchical construc-
tive implicit surface models such as field function representations
[PASS95], the BlobTree [WGG99], or procedurally defined scalar
fields [RMD11] implicitly provide a direct means for computing
an accurate Lipschitz bound. In this paper, we introduce an opti-
mized algorithm that takes advantage of the mathematical proper-
ties provided by the constructive definition of the field function.
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Our algorithm adaptively marches towards the surface, and eval-
uates the local Lipschitz bound along the ray at every step so as
to better adapt the stepping distance (Figure 1). Our method can be
applied to a variety of hierarchical implicit surface models, acceler-
ates ray tracing and does not necessitate additional pre-processing
or accompanying memory intensive data-structure for storing the
local properties of the implicit model. The algorithm is compact,
computationally efficient and easy to implement, and lends itself
for graphics hardware implementation.

More precisely, our contributions are two-fold: 1) we introduce
Segment Tracing, a method that accelerates the Sphere Tracing al-
gorithm by computing local Lipschitz bound; 2) we show how to
practically compute those bounds for a variety of primitives and
operators. Experiments demonstrate that our algorithm reduces the
number of field function queries and therefore speeds-up intersec-
tion computations for different implicit surface models.

2. Related Work

In this section, we review existing techniques for computing the
intersection between a ray and an implicit surface. A broad intro-
duction to implicit surfaces can be found in [BW97].

Analytic techniques aim at computing the piecewise closed form
expression of the field function along the ray. When the func-
tion along the ray is a polynomial equation, solutions and thus
intersections can be solved analytically for low degree polyno-
mials, i.e. quadrics, cubics and quartics, and by Descartes rule of
signs [Han83], Sturm sequences [Wij85], and Laguerre’s method
[WT90] for higher degree polynomials. Nishita et al. [NN94] pro-
posed to express the field function along the ray by Bézier func-
tions and employed Bézier clipping for accelerating the computa-
tion of the intersection; this method was adapted to graphics hard-
ware in [KSN08]. Loop et al. [LB06] implemented ray tracing of
algebraic surfaces on graphics hardware by approximating implicit
forms with piecewise Bernstein polynomials. Sherstyuk [She99]
proposed to approximate the field function along the ray by low
degree polynomials to speed up computation, yet at the expense of
a less accurate intersection computations.

Interval analysis Guaranteed ray intersection requires extra infor-
mation, which in most cases is produced by the derivative of the
function. Interval analysis finds ray intersections by defining the
function and its derivative on intervals instead of single values.
Mitchell [Mit90] ray traced implicit models by combining recur-
sive Interval Arithmetic to isolate monotonic ray intervals and stan-
dard bisection as a root refinement method. Gamito et al. [GM07]
proposed reduced Affine Arithmetic for ray casting specific im-
plicit displacement surfaces formulated with blended noise func-
tions. Knoll et al. [KHK∗09] addressed the fast implementation of
interval and affine arithmetic for rendering arbitrary implicit sur-
faces. Performance was achieved through low-level hardware opti-
mization and coherent traversal methods.

Ray marching is a general algorithm that progressively marches
along the ray with constant steps and makes no assumptions about
the mathematical properties of the field function along the ray. The

robustness is achieved by setting a low incremental step, which
makes the algorithm extremely computationally intensive. Perlin
et al. [Per89] used ray-marching to render complex objects mod-
eled with noisy functions. Singh et al. [SN10] proposed an adaptive
marching point algorithm for real-time ray tracing of arbitrary im-
plicit surfaces on graphics hardware. In contrast to Sphere Tracing
methods, the accuracy and performance of their technique depend
on a predefined surface dependent marching step size.

Lipschitz techniques were introduced by Kalra et al. [KB89] who
proposed a robust method for ray tracing algebraic and some non-
algebraic surfaces given Lipschitz bounds of the field function and
first derivative. The Lipschitz condition allowed to create an effi-
cient octree partitioning guaranteed to contain the implicit surface,
and to find ray intersections within each cell.

The principles of adaptive ray-marching were first applied to
the rendering of deterministic fractal geometry [HSK89]. Hart
[Har96] introduced Sphere Tracing that marches along the ray to-
ward the first intersection in adaptive steps guaranteed not to pen-
etrate the implicit surface according to the Lipschitz criterion. Un-
like the work of [KB89] it does not require that the evaluated func-
tion should be C2 continuous but only a bound on the magnitude
of the derivative. Over-stepping [KSK∗14] is a Sphere Tracing ac-
celeration heuristic that consists in stepping along the ray slightly
farther than the safe stepping distance, checking that the spheres of
two consecutive marching steps still overlap. A specific accelerated
implementation of Sphere Tracing was proposed in [GGP∗15] to
compute the intersection of a procedural height field defined by a
construction tree and a ray. The algorithm takes advantage of the
hierarchical combination of compactly supported terrain primitives
organized into a tree to compute local Lipschitz constants, which
correspond to the local maximum slope of the terrain, and speed-
up computations.

Recently, Seyb et al. [SJNJ19] proposed a variant of Sphere
Tracing for directly rendering deformed signed distance field to
avoid computationally demanding and complex global Lipschitz
bound overestimates that would reduce performance. The method
steps along a curved ray in the undeformed space according to the
signed distance. They mention that another strategy to accelerate
Sphere Tracing would consist in computing local Lipschitz bounds,
which is the focus of our work.

Acceleration techniques aim at reducing the number of field
function queries, which are the most computationally intensive
part. Hart [Har96] prescribed the use of acceleration data struc-
tures such as grids or octrees for storing local Lipschitz bound,
therefore allowing larger steps and reducing the number of field
function evaluation. [GPP∗10] proposed a specific fitted bounding
volume hierarchy construction to reduce the number of field func-
tion queries for point-based implicit surfaces.

Compared to previous work, our framework relies on an accurate
local Lipschitz bound computation. Contrary to other techniques,
our method does not necessitate additional memory consuming ac-
celeration structures. Instead we rely on the hierarchical structure
of the implicit model to perform acceleration during queries. This
allows for faster field function and gradient evaluations and larger
and safer marching steps without the need for any pre-processing.
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3. Algorithm

An implicit surface is mathematically defined as the set of points in
space p that satisfy the equation f (p) = 0, formally:

S = {p ∈ R3 | f (p) = 0}

Given a ray ∆ and its parametric equation δ(t) = o+ t u with o the
origin of the ray, u the normalized direction and t the distance to the
origin, computing the intersections between the ray and the surface
∆∩S consists in finding the solutions of the equation f ◦δ(t) = 0.

Recall that a function f : R3→R is Lipschitz over Ω if and only
if there exists a positive constant λ such that:

∀(p,q) ∈Ω×Ω, | f (p)− f (q)|6 λ‖p−q‖

The Lipschitz constant λ is the minimum bound satisfying this
equation. In practice, Lipschitz constants are often overestimated
by a bound.

3.1. Sphere tracing

Sphere Tracing consists in marching along the ray ∆ from the
origin o towards the surface by an adaptive increment defined as
s(p) = | f (p)|/λ that is sufficiently small to guarantee that it does
not penetrate the surface (Figure 2). For simplicity, we denote the
field function along the ray as f (t) = f ◦ δ(t). We denote µ the
threshold value from which we consider that we are so close to the
surface that we intersect it. Let λ denote the global Lipschitz bound
of f . The algorithm can be outlined as follows:

1. Compute the intersection between the ray and the domain
[t−, t+] = ∆∩Ω, and initialize t = t−.

2. While t < t+, compute f (t).

2.1 If | f (t)|< µ, then an intersection occurs.
2.2 Otherwise increment t with s(t) = | f (t)|/λ and continue.

While marching adapts to the field function values f (t) along the
ray, the use of a global Lipschitz bound λ over the entire domain
Ω limits the overall efficiency of this otherwise simple and elegant
algorithm.

∆

| f (p) | / λ(e)

Sphere Tracing Segment Tracing

∆

| f (p)| / λ

e
p p

t t
t+ε

S S

Figure 2: Sphere Tracing marches along the ray with adaptive
steps computed from a global Lipschitz bound λ, which results in
small steps and a high number of field function queries. In con-
trast, Segment Tracing evaluates the local Lipschitz bound λ(e) on
candidate segments e which results in fewer, larger yet safe steps.

3.2. Segment tracing

Our approach leverages this limitation by computing local Lip-
schitz bound during the marching process (see accompanying
video). Locally, i.e. in small domains, the gradient of f can be eval-
uated more precisely, which leads to a smaller Lipschitz bound.

This is combined to the fact that the direction of the gradient ∇ f
can be different from the direction of the ray, which again yields
more accurate Lipschitz bound values.

Rather than partitioning the domain into a grid and evaluating
the Lipschitz bound for every voxel, we propose an accelerated
Segment Tracing algorithm adapted to our model and based on the
evaluation of two queries: the field function evaluation at a given
point f (p) local and directional Lipschitz bound λ(e) on a segment
e (Figure 2).
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Figure 3: Overview of the main steps of the algorithm.

At every step i, we try to move forward by a candidate distance εi
and compute the effective stepping distance denoted as s(t,εi). The
candidate distance defines an interval [ t , t+εi ] along the ray corre-
sponding to the segment e(t,εi) = [δ(t),δ(t + εi)]. We compute the
Lipschitz bound λ(e(t,εi)) of the field function over the segment
e(t,εi) to define the adaptive and accurate stepping increment as:

s(t,εi) = min
(
| f (t)|/λ(e(t,εi)),εi

)
The algorithm resembles Sphere Tracing in spirit with the fol-

lowing changes (see Figure 3). First, we need the definition of an
initial step ε0. Then, step 2.2 is modified to take into account the
computation of the local Lipschitz bound. Step 2.3 computes the
effective stepping distance, taking care to ensure that the step is
smaller than the candidate distance εi. Finally, step 2.4 adapts the
next candidate stepping distance εi+1 at every step i. The algorithm
modification may be outlined as follows:

2.2 Compute λ(e(t,εi)).
2.3 Evaluate f (pi) and compute the position pi+1 with the safe

stepping increment s(t,εi).
2.4 Compute the next candidate stepping distance εi+1 =

κs(t,εi).

Step 2.4 of the algorithm repeatedly increases the candidate march-
ing step by multiplying the previous safe stepping distance by a ge-
ometric amplification factor κ to try to move forward along the ray
by larger distances. The computation of s(t,εi) guarantees that the
step length is intersection-safe.

The initial step ε0 does not have a major impact over the over-
all performance of the algorithm. If the value ε0 is too large, then
the Lipschitz bound λ(e(t0,ε0)) is evaluated over a long segment,
thus is likely to be large as well, and consequently the next can-
didate distance ε1 will be probably a small value computed as
ε1 = | f (t0)|/λ0. At the limit, when ε0→∞, the segment e becomes
the entire ray ∆ and λ(e(t0,ε0)) is computed as the Lipschitz bound
of f along the ray ∆, which is an upper bound. Conversely, if ε0 is
small, then the Lipschitz bound is evaluated on a reduced domain,
and the next steps are likely to increase geometrically by a factor κ.
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Figure 4: Number of field function evaluations for Segment Trac-
ing two different implicit models.

The amplification factor κ > 1 defines the next candidate march-
ing step εi+1 according to the previous stepping distance s(ti,εi).
Small values tend to preserve the locality of the computation of the
Lipschitz bound during the overall process, whereas larger values
increase the candidate marching step when marching away from the
surface, thus resulting in fewer steps. Note that when κ→∞, the
computed λ(e) is actually the Lipschitz bound of the entire ray ∆.
Our experiments show that in practice, the acceleration coefficient
should be κ≈ 2 as illustrated in Figure 4.

Because the evaluation of λ is local to a segment, the underly-
ing implicit model should provide a query way to evaluate it. An
efficient implementation should include a simultaneous computa-
tion of both f (t) and λ(e(t,ε)) so that common calculations should
be factored and performed only once (Section 4). The overhead in-
troduced by these computations is compensated by the larger steps
obtained with more accurate Lipschitz bound (Section 5).

4. Local Lipschitz bound computation

Here we consider an implicit model defined as a hierarchical con-
struction tree [WGG99]; note that our work adapts to other hierar-
chical function representations such as procedurally defined scalar
fields [RMD11] or function representations [PASS95]. The leaves
of the tree are compactly supported skeletal primitives, whereas
the nodes are operators that combine and aggregate their sub-trees
(Figure 5). The field function computation f (p) requires the traver-
sal of the tree and the result depends on the evaluation of the com-
bination of the primitives. Similarly, the computation of λ(e) is ob-
tained by traversing the tree. The structure implicitly implements a
bounding volume hierarchy that allows for efficient pruning during
the evaluation.

Twist

Segments

Blend

Disc

Spheres

Union

Figure 5: Example of a hierarchical implicit surface model and its
construction tree.

Evaluating λ(e) may be very complex for some primitives or de-
formation operators. In those cases, our strategy consists in using
coarser bounds that are simpler or more efficient to compute. Let
e a segment, S ⊃ e its bounding sphere and ∆ ⊃ e its supporting

ray. We denote λ(∆) and λ(S) the Lipschitz bound of f over the
entire ray ∆ and the sphere S respectively, we have λ(e) ≤ λ(∆)
and λ(e) ≤ λ(S). Since f is built from a hierarchical combination
of compactly supported primitives, the local Lipschitz bound are
significantly smaller than the global bound λ, which reduces the
number of queries, denoted as # f , and accelerates Segment Trac-
ing. In the next sections we describe the computation of λ for differ-
ent primitives (Section 4.1), binary operators such as Boolean and
blending (Section 4.2), affine transformations (Section 4.3) and de-
formations (Section 4.4).

4.1. Primitives

Skeletal primitives are defined as a combination of a compactly
supported falloff filter [SM09] function g : R→ R with the Eu-
clidean distance to a skeleton d: f = g◦d. Different types of skele-
tons can be used: points, line segments, discs, circles [WGG99],
or even volumetric shapes such as spheres, cylinders or cones
[BG04]. The field function along the ray may be written as:

f (t) = g◦d ◦δ(t)

The derivative of the field function along the ray is defined as:

f ′(t) = g′ ◦d ◦δ(t)∇d ◦δ(t) ·δ′(t)

Recall that δ
′(t) = u where u is the unit vector of the direction of

the ray. We need to evaluate the bound of the derivative of | f ′| over
the segment e, which is bounded by the product of two terms:

λ(e)≤ |g′ ◦d ◦δ(e)|‖∇d ◦δ(e) ·u‖

The term |g′ ◦d ◦δ(e)| represents the Lipschitz bound of g applied
to the image of the distance of the segment d ◦δ(e), whereas ‖∇d ◦
δ(e) ·u‖ represents the bound of the dot product of gradient of the
field function times with the unit direction u.

∇d ○ δ(t+ε)
∇d ○ δ(t)

∇d ○ δ ⋅ u

∆

u t
t+ε

e

t t+ε

∇d ○ δ ⋅ u (e)

c

Figure 6: Exact computation of the image of |∇d ◦ δ · u(e)|
for a point primitive: for this segment it is equal to the interval
[|∇d ◦ δ(t) ·u|, |∇d ◦ δ(t + ε) ·u|] where ∇d is the gradient of the
Euclidean distance to the point c.

Gradient bound In the general case, a simple yet not accu-
rate bound can be obtained as follows. Recall that |∇d ◦ δ · u| ≤
‖∇d‖‖u‖, where u is a unit vector and d represents the Euclidean
distance to a skeleton. In fact ‖∇d∂Ω‖ = 1 holds for all open do-
mains, and indeed d∂Ω is 1-Lipschitz; therefore:

|∇d ◦δ ·u| ≤ 1

We propose to improve this bound for some primitives such as
points, spheres, or line segments, for which it is possible to com-
pute the closed form expression of ∇d ◦ δ · u and obtain a tighter
bound over e. A typical example is the point primitive: let c the
center, ∇d(p) = (p− c)/‖p− c‖ and it is possible to compute the
image of∇d ◦δ ·u for any segment e (Figure 6).
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Computing such a tight bound is effective for the parts of the
ray that tend to be orthogonal to the gradient∇ f (p); in those cases
|∇d ◦ δ · u(e)| � 1. During the adaptive marching process, those
cases occur in particular whenever the ray ∆ gets close to the im-
plicit surface, especially at grazing angles. Those cases are compu-
tationally intensive for Sphere Tracing as the radius of the spheres,
defined as f (t)/λ becomes smaller as f (t) drops to 0 near the sur-
face. In contrast, our method computes a better Lipschitz bound for
those segments and allows to step over longer distances f (t)/λ(e)
near the surface (Figure 7).

Object Global λ Local λ

Figure 7: Our method accelerates ray tracing for rays passing
close to the surface by increasing the marching steps, which re-
duces the number of iterations compared to Sphere Tracing that
necessitates many smaller steps.

Falloff bound For simplicity, we note δ(e) = δ([t, t+ε]). The term
|g′ ◦d ◦δ(e)| can be bounded by evaluating the distance interval to
the skeleton d◦δ(e) and then computing the bound of g′ by Interval
Analysis. This involves the computation of the derivative of the
falloff filter function (Figure 8), which is detailed in Appendix A.
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Figure 8: Example of some falloff filter functions: Wyvill’s C1 sex-
tic in green [WMW86], Wyvill’s C2 sextic in orange [WGG99],
and a C1 quartic in blue.

Computing the interval image of the Euclidean distance to a
skeleton d ◦δ(e) may be difficult for some complex primitives such
as curves or volumetric skeletons including cones and cylinders.
Our solution consists in approximating it by finding an enclosing
interval. We have the following inclusion property: since the dis-
tance is 1-Lipschitz, then d ◦ δ(e) ⊂ [d(c)− r,d(c)+ r] where c is
the center of e, and r = ‖e‖/2 its half length. This provides us with
a means to bound |g′ ◦d ◦δ| over the segment e.

4.2. Binary operators

Binary operators include Boolean, i.e. union, intersection and dif-
ference, and blending operators. Recall that blending is defined as
f = fA + fB, and that union and intersection can be defined as
fU = max( fA, fB) and fI = min( fA, fB) respectively. Thus, for
every type of operator, the global Lipschitz bound can be com-
puted according to the bounds λA and λB of its sub-trees A and

B as prescribed in [Har96]. Recall that the global Lipschitz bound
λ of a blending node is defined as λ = λA+λB, and the bounds for
Boolean operators are defined as: λ = max(λA,λB).

Local Lipschitz bounds are computed similarly by recursively
querying the sub-trees according to the segment parameter e:

λ(e) = λA(e)+λB(e) λ(e) = max(λA(e),λB(e))

Similar results may be obtained for other binary operators.
Pasko et al. [PASS95] introduced a class of functions for comput-
ing Boolean operations, for instance union may be computed as:

fU = fA+ fB+
√

f 2
A+ f 2

B

By computing the gradient of f , we obtain the bound:

λ(e) = 2(λA(e)+λB(e))

4.3. Affine transformations

Let D denote an affine transformation node, a : R3 → R3 the cor-
responding transformation, and N its sub-tree. The corresponding
field function is defined as fD = fN ◦ a. Computing the Lipschitz
bound for affine transformations, i.e. rotation, translation and scal-
ing, is easy to handle since they transform a segment e into another
segment ẽ= a−1(e). Translations and rotations are 1-Lipschitz, i.e.,
λD(e) = λN (ẽ), and λD(e) = 1/α λN (ẽ) for a scaling of factor α.

4.4. Deformations

Traditionally in implicit surface modeling, non-linear deformations
operators are unary nodes, denoted asW , characterized by a warp-
ing function ω : R3→ R3 that deforms space or a region of space
and thus the scalar field of the underlying sub-tree N . Their corre-
sponding field function is defined as fW = fN ◦ω

−1. The gradient
of the deformationW is defined as:

∇ fW =∇( fN ◦ω
−1) =∇ fN ◦ω

−1 ·Jω−1

We evaluate the Lipschitz bound by bounding the gradient of the
field function and the Euclidean norm of the Jacobian matrix:
‖∇( fN ◦ω

−1)‖ ≤ ‖∇ fN ◦ω
−1‖‖Jω−1‖. Thus, for a given in-

put segment e, two local bounds need to be computed: the bound
of the norm of the gradient ‖∇( fN ◦ω

−1)(e)‖ of the transformed
segment, and the bound of the norm of the Jacobian ‖Jω−1(e)‖.

Object Global λ Local λ

Figure 9: Our Segment Tracing algorithm reduces the number of
field function queries for non-linear deformations. In this example,
the stem was created by combining two successive tapering opera-
tors in the construction tree.

The complexity stems from the fact that we need to evaluate
the bound of the gradient of the transformed segment ẽ = ω

−1(e),
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Figure 10: Different models used for gathering ray tracing statistics.

which is a curve, and the bound of the norm of the Jacobian over the
segment ‖Jω−1(e)‖. Seyb et al. [SJNJ19] recently addressed the
construction of the transformed ray ω(∆) into curve for a restricted
class of deformations. This strategy cannot be applied in our con-
text however, since we need to compute the inverse transformed
segment ω

−1(e) at every step of the Sphere Tracing algorithm, re-
cursively traversing the construction tree, and possibly traversing
other deformation operators. Instead, we proceed as follows.

Ωω

∆

ω   (∆)−1

e =ω   (e)−1
S(ω   (c),||e||/2)−1

∼

Figure 11: The gradient along the deformed segment ẽ is bounded
by the gradient of the bounding sphere S.

Gradient For every deformation, we compute a bounding sphere
S such that S⊃ ω

−1(e). This allows us to bound ‖∇ fN ◦ω
−1(e)‖

by recursively querying the sub-tree of the implicit surface model
to evaluate ‖∇ fN (S)‖, simpler to compute although less accurate
bound (Figure 11). Let λ denote a global Lipschitz bound of ω

−1,
and let c denote the center of the segment, we have the following
inclusion property:

ω
−1(e)⊂ S(ω−1(c),λ‖e‖/2)

Thus, we can compute an upper bound by traversing the warping
node and bounding the norm of the gradient over the sphere:

sup‖∇ fN ◦ω
−1(e)‖ ≤ sup‖∇ fN (S)‖

Jacobian Recall that the Euclidean norm of a matrix A can be de-
fined as the square root of the spectral radius of AA?, where A?

denotes the transpose of the matrix. Thus, we compute the norm of

the Jacobian:

‖Jω−1‖=
√

ρ(Jω−1 J?
ω−1)

Closed form expressions can be computed for some kinds of defor-
mations, in particular tapering [Bar84] (see Figure 9 and Appendix
for details). In the general case however, the spectral norm may
be difficult to compute. For vector spaces of finite dimension, all
norms are equivalent, and in particular ‖Jω−1‖ ≤ ‖Jω−1‖F where
‖Jω−1‖F denotes the Frobenius norm, defined as the squared root
of all squared matrix elements. Therefore, in those cases, we rely
on a less accurate but easier to compute Frobenius norm instead.

5. Results and discussion

We implemented the implicit surface model and our algorithm in
C++. All examples in this paper were created on a desktop com-
puter equipped with Intel R© Core i7, clocked at 3GHz with 16GB
of RAM. A standalone application using graphics hardware was
coded using OpenGL 4.3 and timings clocked on an nVidia R©

GeForce 2070.

5.1. Performance

We compared our Segment Tracing algorithm to Sphere Tracing on
different types of models (Figure 10). Table 1 and Table 2 report
the corresponding number of field function queries # f and the ren-
dering time respectively for primary ray-object intersection com-
putation. 512×512 images were rendered on the CPU without any
parallel implementation.

In each table, we report the statistics for the standard Sphere
Tracing algorithm (global λ) and three variations of our method.
Segment is the full Segment Tracing algorithm with the most accu-
rate Lipschitz bound λ(e) evaluation. Sphere computes a less accu-
rate bound λ(S) associated to the embedding sphere of segment e
and evaluates this bound for every increment. This algorithm can
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Sphere Ours

Object Tracing Segment Sphere Ray

Chandelier 22.87 0.09 0.22 0.67
Molecule 463.06 0.26 1.61 18.52
Fluid 704.13 0.16 1.25 48.11
Temple 19.74 0.33 2.88 3.25
Geode 11.44 0.31 1.68 1.39
King 1.30 0.17 0.26 0.30
Mechanic 7.73 0.27 0.28 0.50
Quadric 9.34 0.23 1.17 3.28
Cluster 461.31 0.12 0.74 4.06
Amphora 0.83 0.09 0.14 0.26

Table 1: Number of field function queries # f in millions for differ-
ent objects (primary rays).

lead to better computation times because the intersection tests are
easier to compute, while keeping a local Lipschitz bound. Finally,
Ray evaluates the Lipschitz bound along the entire ray λ(∆) and
then performs standard Sphere Tracing tracing using this bound
(Figure 12). In our framework, this is equivalent to computing λ(e)
with an infinite segment (see Section 3) and in general λ(e)� λ

where λ is the Lipschitz bound of the entire object. This simplified
version of our method can be efficient for specific configurations.

Object

Global λ

λ(S) λ(e)

λ(∆)

Figure 12: Number of field function evaluation for Sphere Tracing
and our method using different local Lipschitz bound computation.

Number of field function queries The first observation is that
Segment Tracing always yields the smallest number of field func-
tion queries for primary ray-object intersections. This is the direct
consequence of the local Lipschitz bound computation, which opti-
mizes the marching step, and thus reduces the number of field func-
tion queries # f by a factor depending on the number, complexity
and spatial distribution of primitives. Table 1 shows that # f can be
reduced by one to two order of magnitudes for models composed
of a few dozens of complex primitives, such as the Chandelier or
the Temple. The number of field function queries is even further re-
duced for large models featuring thousands of simple primitives, as
exemplified by the Molecule or Cluster models.

Secondary ray-object intersections used for global illumination,

Sphere Ours

Object Tracing Segment Sphere Ray

Chandelier 0.85 0.05 0.05 0.06
Molecule 35.42 1.43 1.14 2.20
Fluid 32.93 5.47 5.82 5.08
Temple 2.04 0.39 0.86 0.49
Geode 0.89 0.19 0.67 0.21
King 0.09 0.07 0.05 0.04
Mechanic 0.61 0.10 0.08 0.07
Cluster 23.18 0.25 0.29 0.44
Quadric 1.35 0.14 0.40 0.65
Amphora 0.25 0.09 0.08 0.11

Table 2: Rendering time (in seconds) for ray tracing different mod-
els (primary rays).

shadow computation or effects such as reflection or refraction, are
also accelerated by our method. We observed similar acceleration
factors for secondary rays which demonstrates the effectiveness of
the local Lipschitz bound computation combined with the acceler-
ation coefficient κ used for updating the candidate stepping length.

Timings Any variation of our method, i.e. Segment, Ray or Sphere,
improves rendering time compared to Sphere Tracing. The largest
gains are observed either for complex objects composed of thou-
sands of primitives (Cluster, Molecule, Fluid) or created with com-
plex primitives with computationally demanding field functions,
for instance cubic or quadric curve primitives, or volumetric prim-
itives such as cylinders or cones.

Reducing the number of field function queries does not neces-
sarily improve computation time. The accurate Lipschitz bound
computation comes at the price of more computationally intensive
queries, in particular the overhead introduced by the evaluation of
λ(e). The Ray algorithm requires one Lipschitz bound λ(∆) com-
putation for the entire ray, and multiple field function evaluations
(at every step), whereas the Sphere and Segment algorithms require
multiple queries to evaluate f (p) and λ(e) at every step. Exper-
iments show that when the implicit objects have an almost uni-
form distribution of primitives and a uniform Lipschitz bound over
their support Ω, the benefit is limited or negative in terms of speed
(Chess king, Amphora, or Mechanic). In those cases, it is preferable
to employ the Ray or Sphere versions of our algorithms.

Graphics hardware implementation We implemented and com-
pared our algorithm to the classical Sphere Tracing on the GPU
(see accompanying video). The acceleration factor, close to an or-
der of magnitude, is similar to the CPU version: about 6 Hz for
the standard Sphere Tracing versus 67 Hz for our Segment Tracing
method. We did not focus on the optimization of the shader which
was beyond the scope of this study: more primitives and operators
could be adapted and optimized, allowing for interactive rendering
of more complex objects.
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5.2. Comparison with other methods

The computation of the ray-implicit surface intersections is penal-
ized by the regions of space where the gradient magnitude is the
greatest. Accelerating data structures, such as regular voxel grids
or adaptive octrees, can speed-up intersections computation, at the
expense of a pre processing step and an increased storage cost.

Octrees We compared our Segment Tracing algorithm to Sphere
Tracing combined with an octree as described by [Har96]. The
cells C store a local Lipschitz bound which is computed using the
query λ(S) where S ⊃ C denotes the bounding sphere of the cu-
bic cell. Cells that do not straddle the implicit surface, i.e. empty
or completely inside the object, are detected by using the Lips-
chitz criterion, which further accelerates the ray-surface intersec-
tion computation. Figure 13 reports the relative performance be-
tween our method and an accelerating octree structure for several
implicit models.

Timings
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Figure 13: Relative comparison between our method and Sphere
Tracing optimized with an octree storing the Lipschitz bounds in its
cells; statistics are reported as a function of the octree depth, and
the black line refers to our method.

Experiments show that octrees perform better than Segment
Tracing if their depth δ is larger than 7, which corresponds to an av-
erage extra memory cost of 1 to 4Mb depending on the geometry
of the implicit model. For dense models with complex primitives
combined together such as the Temple, the octree becomes compet-
itive only for depths δ≥ 9. This can be explained as the λ(e) takes
into account the direction of the segment and is more accurate than
the bounds λ(S) stored in the cells. For sparse models such as the
Chandelier, the octree prunes empty space and generally perform
slightly faster than our method, even at octree depths δ≈ 5. More-
over, field function queries are performed for all the intersections
between the ray ∆ and the cells, whereas the Segment Tracing algo-
rithm is not affected by this phenomenon. In contrast, our method
preserves the compact format of hierarchical implicit surface mod-
els and compares favorably in terms of memory as the accelerating
data structure becomes memory demanding.

Binary search methods recursively subdivide an interval, i.e., a
segment, into two sub-intervals until either an intersection is de-
tected, or a rejection criterion is satisfied. A complete comparison
between Lipschitz techniques and interval analysis using Interval
Affine [Mit90] or Affine Arithmetic [GM07] is beyond the scope
of this paper. Still, binary search methods clearly benefit from our
local Lipschitz bound to exclude intervals earlier in the recursive
bisection process. Let e = [a,b] a segment and c its center, e does
not intersect the surface if | f (c)|/λ(e)> ‖e‖.

Moreover, the computation of λ(e) can improve bisection
by discarding some parts of the interval where the Lips-
chitz criterion guarantees that no intersection should occur.

S

∆

∼a

a

b

f 

ba ∼b
∼c t

Figure 14: Optimized bisection
with refined sub-intervals using
the local Lipschitz bound λ(e).

Instead of cutting the seg-
ment e in two equal parts,
we shrink the interval e
into [ã, b̃] where ã = a +
| f (a)|/λ(e) and b̃ = b −
| f (b)|/λ(e) (Figure 14). We
implemented this optimized
binary search using local
Lipschitz bounds with im-
proved bisection. We ob-
served similar field function
query reduction as for Seg-
ment Tracing, and the corre-
sponding timing speed-ups,

when compared to standard binary search, which demonstrates the
effectiveness of our accurate Lipschitz bound computation.

Enhanced Sphere Tracing method [KSK∗14] consists in over
stepping along the ray slightly farther than the safe stepping dis-
tance o(p) = (1+σ)| f (p)|/λ, where σ ∈ [0,1] represents the over-
stepping factor (Figure 15), checking that the spheres of two con-
secutive marching steps still overlap, and with possible failure cases
defaulting to conventional Sphere Tracing.

∆
Sphere tracing Over stepping

∆

p p

s(p)=| f (p)| / λ o(p)=(1+σ)| f (p)| / λ

Figure 15: Over stepping is a heuristic that increases the safe
stepping distance by a fixed factor σ.

In practice, σ ≈ 1.2 which consequently reduces the number of
field function queries by ×1.2, and directly speeds-up computa-
tion time by the same factor. In contrast, our method performs an
accurate evaluation of the Lipschitz bound along the candidate seg-
ment, which reduces the number of field functions queries by up to
three order or magnitude, which in turn result in accelerations of up
to ×10 because of the extra computational cost of Lipschitz bound
queries. Over stepping is not directly compatible with our approach
as it is strongly based on the definition of a global bound λ.

5.3. Discussion

Computing the local Lipschitz bound allows to adapt the march-
ing distance s(t,ε) according to the field value f (p) and the bound
of the norm of the local gradient. It is no surprise that the number
of field function queries # f should decrease using our method: we
take advantage of some important information about the local be-
havior of f and, more importantly, its variation in the direction of
the ray. For complex field functions or models composed of many
primitives, timings demonstrate that the extra effort needed to eval-
uate the local Lipschitz bound is negligible compared to the accel-
eration provided by larger steps.
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Those improvements come at the expense of a prior analysis of
the primitives and operators however. While Sphere Tracing only
necessitates the implementation of the field function f and a global
Lipschitz bound (which is often guessed and prescribed by the
user), our method requires that every node should implement sev-
eral complex queries, in particular the computation of the Lipschitz
bound over a segment λ(e), and over a sphere λ(S).

Object #f #f

Figure 16: Example of an object composed of primitives imple-
menting local Lipschitz bound queries, and non optimized prim-
itives. Our method can accelerate ray tracing wherever possible,
and defaults to slower marching for the parts of the object where
only a global Lipschitz bound is known (outlined as a disc).

Still, our algorithm is general and easy to extend with more prim-
itives and operators. Moreover, our method automatically reverts to
the standard Sphere Tracing framework locally should the compu-
tation of local bounds be too complex or computationally intensive
for a given operator or primitive.

Figure 16 illustrates this property by showing an object com-
posed of some curve primitives implementing an optimized Lips-
chitz bound query, and a high frequency noise-based primitive for
which the local queries λ(e) and λ(S) were only approximated us-
ing a coarse global bound over its region of influence.

6. Conclusion

We have presented Segment Tracing, an efficient algorithm for ray
tracing hierarchical skeletal implicit surfaces. By computing the lo-
cal Lipschitz bound along the ray, we adapt the marching distance
to the scalar field and its local gradient. Our algorithm improves
Sphere Tracing, significantly reduces the number of field function
queries, speeds up computations, without the need for any accel-
erating data structure such as voxel grids or octrees for storing the
local Lipschitz bound. We also demonstrated that our method can
be implemented on graphics hardware, at the expense of the im-
plementation of extra functions, i.e. the computation the Lipschitz
bound over a segment, a ray or a spherical domain, that increase the
overall complexity of the shader.

Accelerating the direct rendering of compact procedurally de-
fined implicit surfaces opens several interesting research directions
for the future. Better algorithms for performing all the fundamen-
tal queries and improving the performance of the different kinds of
primitives, blending and warping operators, would be worth inves-
tigating. Another avenue for future work consists in enriching the
implicit surface model with new primitives and deformations op-
erators that would lend themselves for efficient local field function
and gradient computations. Finally, a more complete GPU imple-
mentation of the method would allow for interactive modeling of
complex scenes featuring many primitives of different types.
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Appendix A: Falloff filter function analysis

The evaluation of the Lipschitz bound for skeletal primitives re-
quires the evaluation of the maximum of the absolute value of the
derivative of the function g′(x) on an interval [a,b]. This involves
finding the zeroes of the second-order derivative g′′(x) = 0. In
their normalized expression, falloff filter functions are smoothly de-
creasing (monotonic) functions g : [0,1]→ [0,1] such that g′′(x) =
0 has only one root, denoted as x0. The bound of g′([a,b]) is com-
puted as follows:

λ = 0 if a≥ 1
λ = |g′(x0)| if x0 ∈ [a,b]
λ = max(|g′(a)|, |g′(b)|) otherwise

Wyvill function. The C2 falloff filter function is defined as:

g(x) = (1− x2)3 if x < 1 0 otherwise

Derivatives are:

g′(x) =−6x (1− x2)
2

g′′(x) =−6(1− x2)(1−5x2)

The second-order derivative has one positive vanishing value x0 =
1/
√

5 in unit interval [0,1]. The maximum absolute value of g′(x)
is obtained by evaluating g′

(
1/
√

5
)
, thus λ0 = 96

√
5/125≤ 1.72.

Quadric function. The quadric C 1 function is defined as:

g(x) = (1− x2)2 if x < 1 0 otherwise

Derivatives are:

g′(x) =−4x (1− x2) g′′(x) =−4(1−3x2)

The second-order derivative has one vanishing value x0 = 1/
√

3
in [0,1], and the maximum absolute value is λ0 = 8

√
3/9≤ 1.54.

The falloff filter function for Blobs described in [WMW86] is

built from the previous quadric and modified to satisfy the bound-
ary conditions g′(0) = g′(1) = 0 and g(1/2) = 1/2:

g(x) =−4/9x6 +17/9x4−22/9x2 +1 = (1− x2)2 (9−4x2)/9

Derivatives are:

g′(x) =−4/9x(6x4−17x2 +11) =−4/9x (x2−1)(6x2−11)

g′′(x) =−4/9(30x4−51x2 +11)

The second-order derivative has one root in [0,1]: x0 =√
51−

√
1281/2

√
15, and the maximum derivative is:

λ0 = (17
√

1281+453)
√

17/2278125−
√

1281/6834375≤ 1.59

Appendix B: Bound of the norm of the Jacobian

Tapering can be defined as the transformation ω
−1(p) =

(α(z)x,α(z)y,z) where α(z) defines the tapering coefficient along
the vertical axis. Let β = α

′, the Jacobian matrix is symmetric and
defined as:

Jω−1 =

α 0 β

0 α 0
β 0 1


The roots of the characteristic polynomial are α

2 and 1/2(α2 +

2β
2 + 1± (1+α)

√
α2−2α+4β2 +1). Since β

2 ≥ 0, the largest
root, thus the Euclidean norm, is:

‖Jω−1‖= 1/
√

2

√
α2 +2β2 +1+(1+α)

√
α2−2α+4β2 +1

Thus for a given input interval e, ‖Jω−1(e)‖ can be obtained by
developing the equation or by interval analysis.


