

The OXNIT density law in CRISTAL package

An easy way to predict the composition of dissolved oxide in nitrate solutions

N. Leclaire, F. Fernex, A. Bardelay

A. Coulaud, A. Poisson

CONTENTS

1. Context

2. Users' needs

- 3. Density law in the LATEC workbench
- 4. Programming of the law in LATEC workbench
- 5. Use and validation of the law

Context

Reprocessing of fuel

- \parallel UO₂ and UO₂-PuO₂ fuel rods sheared in small 5-cm pieces
 - Sent into nitric acid in the rotary dissolver
 - Separation of oxide pellets, Zircaloy claddings and non fissile elements
 - Uranium and plutonium move to uranyl and plutonium nitrate
 - Coexistence of nitrate and oxide
- Criticality calculations performed with both chemical forms
 - Assess criticality safety margins w.r.t dissolution kinetics
 - Optimization of dissolution process for high plutonium content
- Need for specific density laws called "OXNIT"

Users' needs

- **7** Established in collaboration with ORANO Projects
 - Dissolution of pellets or fragments of pellets in continuous process (with a continuous addition of acid)
 - Dissolution of pellets or fragments of pellets in discontinuous process (addition of acid per batch)
 - Dissolution of oxide powder
 - Presence of residues (low solubility) in the dissolution solution

Modelled as a regular array of oxide pellets in dissolution solution

Users' needs (2)

Established in collaboration with ORANO Projects

- UPuO₂ modeled as a powder or a crystal
- Various Pu/UPu ratios
 - Kinetics of dissolution of uranium and plutonium may be different
 - Consider separate Pu/UPu ratio in oxide and nitrate

Different isotopic vectors

- In continuous loading process of the oxide (no renewal of acid), fragment of oxide arriving in the dissolver have not the same isotopic vector as the uranyl/plutonium nitrate solution (BWR with axial enrichment heterogeneities)
- Calculations with bounding isotopic vector

Poison

- Necessary to keep a constant dissolution rhythm in sub-critical conditions (e.g. dissolution residues with a high content in Pu)
 - Small quantities defined in the density law

Density laws in the LATEC workbench

Density laws, why?

- Knowledge of fissile and moderator concentrations is required to assess NCS
 - The density of a solution generally not known
 - Need to study the behavior (k_{eff} vs H/X) in terms of criticality on the whole moderation range
 - Associated with a bounding fissile medium: <u>conservatism</u>
- Mathematical relationship: $\rho=f(C(X), H^+, C(poison), T...)$

LATEC workbench

- Interface that drives criticality calculations
- Generates input deck for CRISTAL package codes
 - Determination of composition of fissile mixtures using density laws
- Geometry of modeling (1D, 2D and 3D)
- Variables for parametric study
- Launches calculations and manages results
- Verification mode

Use of the OXNIT density law

Definition of the oxide

Density of crystal calculation

Nature of moderator

Not taken into account

Use of the OXNIT density law

Use of the OXNIT density law

Powder density

Programming of the OXNIT density law

- Volume addition principle
 - Addition of the volume of the oxide (crystal/powder) and the nitrate solution
 - Two phases: oxide and nitrate solution
- Density of the nitrate solution determined using the "isopiestic" density law (see Leclaire & al ICNC2015, Charlotte)
 - Need to split a mixture of several nitrate compound in "binary" solutions
 (1 nitrate + water) having the same water activity a_w

•
$$a_w = \frac{p_{H2O}}{p_{H2O}^{St}}$$
, standard: pure, 1atm, 25°C (1)

$$\bullet \ \rho = \sum_{\substack{C_i \\ C_i^{bi}}} \times \rho_i^{bi}$$
 (2)

 Knowledge of the "binary" solutions characteristics having same water activity looping on equation

Programming of the OXNIT density law

Туре	CRYSTAL			
Moderation of oxide in the mixture	C(X) in g/cm ³		H/X	
Moderation of nitrate solution	C(Y) in g/cm³	H/Y	C(Y) in g/cm ³	H/Y
Туре	POWDER			
Moderation of oxide in the mixture	C(X)		H/X $\left(\frac{H}{X} < \left(\frac{H}{X}\right)_{\text{plateau}} \text{else crysal resolution}\right)$	
Moderation of nitrate solution	C(Y)	H/Y	C(Y)	H/Y

Use and validation of the law

Automated validation tool

Creation of tests

- Cover all options (crystal/powder, moderation of the oxide expressed in moderation ratio H/X, moderation in the nitrate solution expressed in H/Y...)
- Easy addition and checking of consistency with reference compositions (EXCEL sheets)

Isotopes	Concentrations LATEC	Ecarts relatif %	
Isotopes	(at./(barn.cm))	Vérification expert	code CIGALES
H1_H2O	1.03522E-02	-1.49E-04	-
H1_ZRH	6.06320E-02	-4.13E-03	-
H2_H2O	1.19064E-06	-1.49E-04	-
H2_ZRH	6.97348E-06	-4.13E-03	-
O16	5.16411E-03	-1.49E-04	-
017	1.96714E-06	-1.49E-04	-
O18	1.06122E-05	-1.49E-04	-
U235	2.09181E-04	-2.63E-04	-
U238	8.26157E-04	-1.20E-04	-
Zr90	1.56000E-02	2.68E-04	-
Zr91	3.40199E-03	2.68E-04	-
Zr92	5.20001E-03	2.68E-04	-
Zr94	5.26975E-03	2.68E-04	-
Zr96	8.48982E-04	2.68E-04	-

♦ More than 100 tests

Use and validation of the law

Criticality standards with CRISTAL V2.0.3 package

APOLLO2-S_n 20 groups, calculation

• Target $k_{eff} = 0.95$

	Oxide	Nitrate	
	PuO ₂ crystal	Uranyl/Plutonium nitrate	
Isotopics	71/17/11/1 (%)	Pu (71/17/11/1), U _{natural,} Pu/UPu = 12.5 %	
Concentration	Variable (H/Pu)	400 g/L in the solution	
C(Gd)		Variable, in the solution	

Conclusion

- The OXNIT density law was developed to cover maximal application domains and meet CRISTAL V2 user requests
- Possible to differentiate isotopic vectors for the oxide and the nitrate
- Uranium/plutonium ratios can differ between the oxide and the nitrate
- The oxide can be defined as a powder or a crystal
- Extensive validation with automated tool has been performed
- Further release
 - Definition of the nitrate concentration after dissolution of the oxide in the mixture

Thanks for your attention!

