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ON COMBINED ASYMPTOTIC EXPANSIONS IN SINGULAR
PERTURBATIONS

ERIC BENOÎT, ABDALLAH EL HAMIDI, & AUGUSTIN FRUCHARD

Abstract. A structured and synthetic presentation of Vasil’eva’s combined
expansions is proposed. These expansions take into account the limit layer and

the slow motion of solutions of a singularly perturbed differential equation.
An asymptotic formula is established which gives the distance between two
exponentially close solutions. An “input-output” relation around a canard

solution is carried out in the case of turning points. We also study the distance
between two canard values of differential equations with given parameter. We
apply our study to the Liouville equation and to the splitting of energy levels in
the one-dimensional steady Schrödinger equation in the double well symmetric
case. The structured nature of our approach allows us to give effective symbolic
algorithms.

1. Introduction

The main motivation of this work is the study of the real steady Schrödinger
equation

(1.1) ε2ψ̈ = (U(t)− E)ψ ,

where the dot denotes the derivative with respect to the space variable t, the small
parameter ε > 0 is related to the Planck constant (ε = ~/

√
2m), E ∈ R is the

energy, and U is a symmetric non-degenerated double well potential. Precisely, U
is assumed to be a C∞ even function with three critical points: one local maximum
at the origin and two global minima at ±t0, which are supposed to be quadratic.
By a translation on U and E, we may suppose that U vanishes at ±t0. Hence the
potential is of the form U(t) = ϕ(t)2 where ϕ is itself a C∞ even function, and
satisfies furthermore ϕ(0) > 0, ϕ(t0) = 0, ϕ′(t0) 6= 0 and ϕ decreasing on R+. The
simplest example, which has already been studied in [3, 15, 16] is

(1.2) U(t) = (1− t2)2.

The following description contains some statements which will be proven in sub-
section 3.3. The asymptotic behaviour of the solutions in the neighborhood of +∞
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is as follows: there is a one dimensional subspace denoted by V (in the two dimen-
sional space of solutions) of exponentially decaying solutions as t→ +∞; the other
solutions increase exponentially. The situation is similar at −∞.

A natural question is to find the energy values for which these two subspaces
coincide. This is equivalent to the fact that equation (1.1) has nontrivial solutions
in L2(] − ∞,+∞[) which leads to energy quantification. These values of E are
related to the energy levels which correspond to observable solutions of [2].

We consider in this paper only solutions without zero in the neighborhood of ±t0.
This corresponds to the first energy level and this implies that E/ε is infinitely close
to −ϕ′(t0).

It appears that the posed problem has two solutions, denoted by E#(ε) and
E[(ε). They are canard values for the Riccati equation associated to (1.1):

(1.3) εv′ = U(t)− E − v2,

that is to say, values for which (1.3) has solutions with a particular asymptotic
behaviour. Those solutions, denoted by v# and v[, border the slow curve v = −ϕ(t)
on ]−∞, 0[, and the other slow curve v = ϕ(t) on ]0,+∞[. The solution v# (resp.
v[) takes the value v = ∞ (resp. 0) at t = 0 and is a canard solution both at
t = −t0 and at t = t0.
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Figure 1. The solutions v# and v[, and a ”great canard solution”
v\ for the potential (1.2) and ε = 1/10.
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Concerning the potential (1.2), it is proven in [6] that these canard values are
exponentially close to each other; precisely:

(1.4) E#(ε)− E[(ε) = exp
(
− 1
ε

(4
3

+ o(1)
))
, ε→ 0 .

In the general case, the same method yields the analogous result, where the constant
a that plays the role of 4/3 is given by

(1.5) a = 2
∫ t0

0

ϕ(t)dt .

We present in this paper the following result.
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Theorem 1.1. There are a constant C and a real sequence (an)n≥1 such that for
any fixed integer N ≥ 1 one has, as ε→ 0,

(1.6) E#(ε)− E[(ε) = Cε1/2 exp(−a/ε)
(
1 + a1ε+ · · ·+ aN−1ε

N−1 +O(εN )
)
.

Comments: Before giving an idea of proof of this theorem, we describe below some
experimental results and related conjectures.

In the case of the potential (1.2) we found C = 16
√

2√
π

and a1 = − 71
96 , which

were already found in [3] (only a1 has to be replaced by − 71
48 because [3] uses the

potential U(t) = t2(1− t)2). See also [15, 16] for a related work. Using Maple, we
obtained the following terms a2 = − 6299

18432 , a3 = − 2691107
5308416 . Symbolic manipulations

for other potentials led us to guess the following:
Conjecture 1. In the case of potential (1.2), all an are rational.

This conjecture has no particular physical relevance. Moreover it cannot be
generalized to other potentials, since we found several polynomial potentials with
rational coefficients for which the an are not rational, see subsection 3.4.

On the other hand, the conjectures that follow seem to us more interesting. Let
E\ be some parameter value such that the corresponding solution v\ of (1.3) borders
the slow curve v = ϕ(t) from −t0 to +∞, i.e. a great canard. Such a value is defined
up to exponentially small. Precisely, one shows as in (1.4) that, if E = E(ε) is a
given great canard value, then it is the same for E\ if and only if

E(ε)− E\(ε) = O
(

exp
(
− 1
ε

(2a+ o(1))
))
.

We say in this case that E\ is defined within an exponential of type 2a.
Since E[, E# are unique, the differences E# −E\, E\ −E[ are known up to an

exponential of type 2a; as these quantities are exponentials of type a (c.f. [6]), they
are known in relative value up to an exponential of type a. Therefore it is natural
to expect an expansion in powers of ε in the expression of these differences. In any
case, if such an expansion exists, it is necessarily unique, (i.e. independent of the
chosen great canard value E\). Indeed, we obtain as in theorem 1.1 the analogous
formulae:

E#(ε)− E\(ε) = C#ε1/2 exp(−a/ε)
(

1 + a#
1 ε+ · · ·+ a#

N−1ε
N−1 + r#

N (ε)
)
,(1.7)

E\(ε)− E[(ε) = C[ε1/2 exp(−a/ε)
(

1 + a[1ε+ · · ·+ a[N−1ε
N−1 + r[N (ε)

)
,(1.8)

where r#
N (ε) = O(εN ) and r[N (ε) = O(εN ). Using Maple we found a#

n = a[n = an
for n ≤ 4 for several potentials. Hence we are led to the following:
Conjecture 2. With the assumptions on ϕ, we have C# = C[ = C

2 and for all
n ∈ N∗, a#

n = a[n = an.
This result seems to be amazing insofar as the equation has no symmetry ac-

cording to the change of variable u 7→ 1/u. Concerning potential (1.2), in the
approach of [3], this symmetry between the coefficients a# and a[ seems to follow
directly from the fact that U is even. Since this approach may be generalized to
other polynomial symmetric potentials, and due to its formal nature, conjecture 2
is highly believable.

We must point out here that, if the method in [3] may work for polynomial —
possibly analytic – potentials, it is by no means applicable to general C∞ potentials,
as this approach makes a wide use of complex analysis. Furthermore, our approach
seems to be applicable to the case of minima that are not quadratic. On the
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other hand, the technique of [3] allows a deep insight of the analytic structure of
E# and E[, which is out of the range of our “real” methods. Anyway, numerical
computations (see section 3.4 suggest the following:
Conjecture 3. In the case of potential (1.2), the mean value 1

2 (E# + E[) is a great
canard value.

More general conjectures for analytic potentials are available, but need to deal
with the singularities of the potential in the complex plane. As we chose to keep
a real viewpoint in this article, we do not formulate them. A way to show part of
this conjecture would be to prove that the asymptotic expansion 1 +

∑
n≥1 anε

n is
Gevrey-1 as well as the remainder terms, in other words, that there are A,C, ε0 > 0
such that for all n ∈ N∗ and all ε ∈]0, ε0[ one has

(1.9) |an| ≤ ACn n!, |r#
n (ε)| ≤ ACn n! εn, |r[n(ε)| ≤ ACn n! εn,

where r#
n and r[n are defined (within an exponential of type 4/3) by (1.7) and

(1.8). This point seems to be more accessible and allows to prove that the solution
corresponding to 1

2 (E#+E[) borders the slow curve v = 1−t2 on a interval ]α,+∞[
containing 0 (i.e. a canard solution longer than v# and v[).

Actually, the classical results of Gevrey analysis and a study of potential (1.2)
in the complex domain allow to prove that 1

2 (E# + E[) is a great canard value if:

• for all n ∈ N∗, one has a#
n = a[n = an

• The expansion 1 +
∑
n≥1 anε

n as well as the remainders r#
n and r[n are

Gevrey-1 of type 3/4, i.e. for all δ > 0 there is A > 0 such that (1.9) is
satisfied with C = 3

4 + δ.
These questions of Gevrey analysis are beyond the scope of the present article and
will be the topic of another study.

We now return to theorem 1.1. The principle of the proof is to consider an
associated Riccati equation to (1.1) (different from(1.3) for technical reasons). To
each family of exponentially decaying solutions of (1.1) described above correspond
two solutions (analogous to v# and v[) denoted by u# and u[ of the Riccati equation
with E# and E[ as values of the energy.

Using the differential equation satisfied by y = u# − u[ written in a linear form,
we express E# −E[ in terms of integrals containing u[ and u#; see subsection 3.3.
This requires an accurately estimate of u# and u[, not only for the slow motion,
but also for the fast one.

We used for this purpose the combined asymptotic expansions introduced by
A.B. Vasil’eva and V.F. Butuzov [13]. In spite of the large use of these expan-
sions in asymptotic analysis, we believe useful to present them in a structured and
simplified version. Indeed, the approach of Vasil’eva and Butuzov is more gen-
eral and therefore with some technical difficulties. Sporadic presentations of these
expansions are done [12], [14], without complete proofs.

The algebraic properties of combined expansions are described in section 2.4.
Among them, are proved general compatibility results with respect to usual op-
erations (algebraic, analytic and differential). Some elementary results related to
exponentially decaying functions, which are used later, are included in section 2.3.

The existence of combined expansions for solutions of singularly perturbed dif-
ferential equations is proved in section 2.5. Next, an application for the estimation
of the difference of two solutions in a slow-fast differential equation is presented.
The case without turning point is illustrated on the Liouville equation in section
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3.1. We briefly describe the turning point case, together with a canard solution,
and the input-output relation [1] is carried out. Section 3.3 is devoted to the proof
of theorem 1.1 and the numerical results mentioned above.

This paper is written in the framework of nonstandard analysis in its IST version,
introduced by Edward Nelson [10]. However, the reader can easily “translate”
all the statements and proofs into standard mathematical language. Notions and
notations related to nonstandard analysis are collected in section 2.

2. Foundations

2.1. Notations. Rd is equipped with the maximum norm. T = [t1, t2] denotes the
standard interval in R, ε > 0 is infinitesimally small, andX denotes the nonstandard
interval X = [0, (t2 − t1)/ε] = {x ∈ R ; t1 + εx ∈ T}.
The symbol £ denotes any finite real number (generally functions of t or of x).
Two occurrences of this symbol have not necessarily the same value.
The symbol � denotes any infinitesimally small quantity.
The symbol @ denotes a positive, finite and non infinitesimally small quantity .
The symbols ∀st and ∃st stand for the expressions “for all standard” and “there is
a standard”.
The notation x ' y means “x− y is infinitesimally small”.
]]a, b] denotes the external set of points in ]a, b] which are not infinitesimally close
to a.

Given a function f of class C1 on an open subset U in Rd, we introduce the
notation

∆if(x;hi) :=

{
1
hi

(f(x1, . . . , xi + hi, . . . , xd)− f(x1, . . . , xd)), if hi 6= 0
∂f
∂xi

(x1, . . . , xd) if hi = 0

We will use the following formula: if x = (xi)i∈{1,...,d} and h = (hi)i∈{1,...,d} are
such that x+ (h1, . . . , hk, 0, . . . , 0) belongs to U , for any k ∈ {1, . . . , d}, then

(2.1) f(x+ h) = f(x) +
d∑
k=1

hk∆̃kf(x, h) ,

with ∆̃kf(x, h) := ∆kf(x+ (h1, . . . , hk−1, 0, . . . , 0);hk).

2.2. Expansion. Given a finite quantity q, we say that q has an ε-expansion if
there is a standard sequence (qn)n∈N such that for all standard integer N ≥ 1, we
have

(2.2) q =
N−1∑
n=0

qnε
n + £εN .

The sequence (qn) is of course unique in this case and we simply write

q ∼
∑
n≥0

qnε
n .

When q is a function defined on an internal or external set E, the relation (2.2)
must be satisfied for every element of E, standard or not. In classical terms, the
expansion in ε-(resp. for every standard element of E) notion corresponds to the
uniform asymptotic expansion (pointwise asymptotic expansion). Uniform expan-
sion on any compact subset of some domain D would correspond to ε-expansion on
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the S-interior of D, which is the external set of limited points of D that are not
i-close to the boundary of D.

Given an integer k and a function f defined on a standard open subset U in Rd

into Rp, we say that f is of class Sk on U if f is of class Ck on U , if f has a shadow
◦f of class Ck on U and if

∀j ≤ k , f (j) is S-continuous and ◦(f (j)) = ( ◦f)(j) .

By “S-continuous” we mean: x ' y ⇒ f(x) ' f(y). This corresponds to “uniformly
S-continuous” in other texts. We recall that the shadow of a function f defined on
a standard set is the only standard function ◦f that takes at any standard x the
standard part of f(x).

We say that a function f : U ⊂ Rd → R
p has a regular ε-expansion in U if f is

of class S∞ on U and if f has an ε-expansion on U as well as all its derivatives of
standard order. Be aware that not only the expansion is “regular”.

It is known [4] that, if f has a regular ε-expansion in U , then the expansion of
f commutes with the derivation: there exists a standard sequence (fn)n∈N of C∞

functions such that

(2.3) ∀x ∈ U ∀stk ∈ N ∀stN ∈ N∗, f (k)(x) =
N−1∑
n=0

f (k)
n (x)εn + £εN .

We will also use the following.
Proposition 2.1. (1) If f and g have regular ε-expansions, then the same

holds for f ′ and
∫
f , for f + g, for fg, for f ◦ g and for ∆f .

(2) If f has a regular ε-expansion, and let y = y(x, c) denote the solution of
the b.v.p.

y′ = f(x, y) , y(x0) = c .

Then y has a regular ε-expansion with respect to x and c.
proof. (1) Since these results are well known for usual ε-expansions, we only check
the property “regular”. For f ′ and

∫
f it is obvious. For fg, use Leibnitz formula.

For f ◦ g, use (f ◦ g)′ = f ′ ◦ g × g′. For ∆f , use ∆f(x;h) = 1
h

∫ h
0
f ′(x + u)du for

dimension 1 and similar formulae for higher dimension.
(2) For x, use the result for f ◦ g: f and y ε-expandable implies that y′ is, too. For
c, the variation equation yields the formula

∂y

∂c
(x, c) = exp

(∫ x

x0

∂f

∂y
(ξ, y(ξ, c))dξ

)
shows that ∂y

∂c has an ε-expansion. It is then clear that expansion w.r.t ε and
derivation w.r.t. c commute. Conclude by induction. � A free Maple package for
these computations is available at http://www.univ-lr.fr/Labo/MATH/DAC.

2.3. Functions with exponential decay and with S-exponential decay. The
Laplace method will be used later in the following form:
Proposition 2.2. Let t1 < 0 < t2 be two standard real numbers and f , g two
S∞ functions admitting a regular ε-expansion in T = [t1, t2]. Assume that f0(0) =
f ′0(0) = 0, a := f ′′0 (0)/2 > 0, for all t ∈ T \ {0}, f0(t) > 0. Then

I =
∫ t2

t1

exp
(−f(t)

ε

)
g(t) dt
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has an η−shadow expansion, with η =
√
ε. Furthermore, If g0(0) 6= 0 we have

I = @η. Namely, I =
√

π
a g(0) η +�η.

Proof. There is a standard k > 0 such that for all t in T one has f0(t) ≥ kt2.
Thus, for every t ∈ T one has f(t) ≥ kt2 − Cε, with C = supt∈T |f1(t)| + 1
for example. Using the change of variable t = ητ and Taylor expansion f0(t) =
at2 +

∑2N+1
i=3 ait

i + £t2N+2, one has, for τ limited,

f0(ητ)/ε = aτ2 +
2N+1∑
i=3

aiτ
iηi−2 + £εN .

When we expand each fn and gn using Taylor’s formula, we find that the function

G(τ) = exp
(
aτ2− f(ητ)

ε

)
g(ητ)

admits an expansion in powers of τ (for limited τ) whose coefficients, denoted
Gn(η), admit an η−shadow expansion with valuation at least n − 2. Indeed, with
the notation fj(t) =

∑
i≥0 aijt

i and gj(t) =
∑
i≥0 bijt

i we have

G(τ) = exp
(
−

2N+1∑
i=3

aiτ
iηi−2 −

N∑
j=1

2(N−j)+1∑
i=0

aijτ
iη2j+i−2

)
×

∑
0≤j≤N−1

0≤i≤2(N−j)−1

bijτ
iη2j+i + η2N£ .

With this notation, the new integrand is η exp(−aτ2)G(τ). Since η exp(−kτ2 +
C)(supt∈T |g0(t)| + 1) bounds this integrand on T̃ := {τ ∈ R ; ητ ∈ T}, the
dominated convergence theorem implies:∫ t2

t1

exp(−f(t)/ε)g(t) dt =
2N∑
n=0

η Gn(η)
∫ ∞
−∞

e−aτ
2
τndτ + £εN .

To conclude this proof, it suffices to rearrange these terms. �

Definition 2.1. Let I = [0, x∗] with x∗ ∈ R+ not necessarily limited. A function
f : I → R is said to have S-exponential decay (notation f(x) = £e−@x) if there are
standard constants c, C > 0 such that

∀x ∈ I, |f(x)| < Ce−cx.

In the case of a standard and bounded function on R+, this notion coincides
of course with the usual exponential decay at infinity. The following properties of
these functions will be used in the article; their proofs are straightforward.

Proposition 2.3. (1) If f has S-exponential decay then, for every standard poly-
nomial P , the product Pf has S-exponential decay too.
(2) Let a be a continuous function on R+, with limited values, and x0 be a non-
negative limited real number such that, for every x > x0, a(x) is appreciably neg-
ative. Let b be a continuous function on R+ with S-exponential decay. If y is a
solution of the differential equation

y′ = a(x)y + b(x)
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with y(0) limited, then y has an S-exponential decay. In other words, if y′ = £y+£
for x ≤ x0, and y′ = −@y+ £e−@x for x > x0 with y(0) = £, then y(x) = £e−@x.
As a consequence, y′ itself has S-exponential decay.

2.4. Combined expansions: Algebraic properties.
Definition 2.2. Consider again T = [t1, t2]. A function ϕ : T → R

d admits a
combined expansion if there are two standard sequences of C∞ functions (ϕn)n∈N,
(ψn)n∈N, ϕn : T → R

d, ψn : R+ → R
d such that

• For all N ∈ N and all t ∈ T ,

(2.4) ϕ(t) =
N−1∑
n=0

(
ϕn(t) + ψn(

t− t1
ε

)
)
εn + £εN

• ψn has exponential decay at infinity.
The sequence (ϕn)n∈N is called the slow part and (ψn)n∈N the fast part of the

combined expansion. The dimension d will allow us in the next sections to consider
two different solutions of an ordinary differential equation as a function on R2 with
a combined expansion. The variable t will be considered itself as a third component.
Proposition 2.4. (1) Combined expansions are unique.

(2) A vector function has a combined expansion if, and only if, each of its
components has.

(3) Let f be a C∞ standard function from an open subset U of Rd to Rp and
ϕ a function from T to Rd having a combined expansion (ϕn, ψn). Suppose
that for all t ∈ T , ϕ0(t) ∈ U and for all x ∈ R+, ϕ0(t1) +ψ0(x) ∈ U . Then
f ◦ ϕ is well defined and has a computable combined expansion.

(4) If ϕ has a combined expansion (ϕn, ψn), then Φ : [t1, t2] → R
d, t 7→∫ t

t1
ϕ(τ)dτ has a combined expansion (Φn,Ψn) given, for every x in X and

t in T , by

Φ0(t) =
∫ t

t1

ϕ0(τ)dτ , Ψ0(x) = 0

and for n ≥ 1:

Φn(t) =
∫ t

t1

ϕn(τ)dτ +
∫ +∞

0

ψn−1(x) dx Ψn(x) = −
∫ +∞

x

ψn−1(ξ) dξ .

In particular, we have∫ t2

t1

ϕ(t)dt ∼
∫ t2

t1

ϕ0(t)dt+
∑
n≥1

(∫ t2

t1

ϕn(t)dt+
∫ +∞

0

ψn−1(x)dx
)
εn.

The word “computable” in statement 3 means that algorithms exist, but are
not described in the present article. They allow to calculate the expansion of
f ◦ ϕ. Actually, the reader may find a free Maple package already mentioned at
http://www.univ-lr.fr/Labo/MATH/DAC, see procedure called subsDAC (only for
f : R→ R).
Proof. (1) By contradiction. If a function admits two different combined expansions,
then their difference is a non trivial combined expansion (ϕn, ψn) of 0. Let n0 be
the first index such that ϕn0 or ψn0 is not the zero function. Using the transfer
principle, n0 is standard. Taking N = n0 +1 and multiplying by ε−n0 , one obtains,
for any t in T , that ϕn0(t) + ψn0

(
t−t1
ε

)
' 0. Since ψn0 has exponential decay, for

any standard t in T \ {t1}, ϕn0(t) ' 0 and consequently ϕn0(t) = 0. By transfer,
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this remains valid for every t in T \ {t1}, and by continuity for t = t1. Now, for a
standard x in R+ one obtains ψn0(x) ' 0, therefore ψn0(x) = 0, and this remains
valid for any real x by transfer. This leads to the contradiction.
(2) This statement is obvious.
(3) Denote by ϕ̂i the components of ϕ̂ :=

∑
n≥0 ϕnε

n (and similarly for ψ̂). Formula
(2.1) yields

f(ϕ̂+ ψ̂) = f(ϕ̂) +
d∑
k=1

∆̃kf(ϕ̂, ψ̂)(ψ̂k).

The first term f(ϕ̂) gives the slow part (fn)n∈N, since the image of an usual asymp-
totic expansion by a C∞ mapping is an asymptotic expansion (expand f at ϕ0(t)
with Taylor formula).

For the fast part, given by the sum
∑d
k=1(ψ̂k)∆̃kf(ϕ̂, ψ̂), one first expands each

function ϕji (t) = ϕji (t1 +εx) up to order (N−1) by Taylor formula. Using the same
Taylor expansion of order (N − 1) to the function ∆̃kf at (ϕ0(t1), ψ0(x)) and mul-
tiplying it by the expansion of (ψ̂k), one obtains an ε-expansion. These coefficients
gn are polynomial in x and ψji (x) and derivatives of ∆̃kf at (ϕ0(t1), ψ0(x)). As ψ0

is bounded on R+, each of these derivatives is a bounded function of x. Moreover,
each of the monomial terms of gn contains at least one term ψji . Therefore, these
functions gn have exponential decay. Concerning the remainder term

RN (x) :=
d∑
k=1

∆̃kf(ϕ̂, ψ̂)(ψ̂k)−
N−1∑
n=0

gn(x)εn,

if each of the former Taylor expansions is written with a remainder term of the
form 1

N !ϕ
j (N)
i (τij)εN , τij ∈ T (similarly for ∆̃kf), we see that RN is polynomial

in x, ε, ϕ
j (N)
i (τij), ψ

j
i (x) and in the differentials of ∆̃kf at some points (α, β)

with α i-close to ϕ0(T ) and β i-close to ψ0(R). Moreover, each monomial term of
RN contains at least one term ψji and a power of ε greater or equal to N . Thus,
RNε

−N has S-exponential decay, hence is limited on T . (4) Formula (2.4) gives:∫ t

t1

ϕ =
∫ t

t1

(N−1∑
n=0

ϕn(τ)εn +
N−1∑
n=0

ψn
(τ − t1

ε

)
εn + £εN

)
dτ

=
N−1∑
n=0

(∫ t

t1

ϕn(τ)dτ εn +
∫ +∞

0

ψn−1(ξ) dξ
)

−
N−1∑
n=0

∫ +∞

t−t1
ε

ψn(ξ) dξ εn+1 + £εN .

Since ψn has exponential decay, Ψn+1(x) := −
∫ +∞
x

ψn(s) ds has exponential decay.
In particular, since t2 is standard, we conclude that

∫ +∞
(t2−t1)/ε

ψn(x)dx = e−@/ε =
£εN . �
Remarks on statement 3. (1) We detail here the computation of these expansions
in the cases of dimensions d and p equal to 1. With f C∞ standard, t = t1 + εx
and ϕ(t) =

∑n
i=0(ϕi(t) + ψi(x))εi + £εn+1, we look for an expression of f ◦ ϕ in
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the form

(2.5) f(ϕ(t)) =
n∑
i=0

(fi(t) + gi(x))εi + £εn+1.

The slow expansion is the usual asymptotic expansion of a composition of two
expansions, given by: f0(t) = f(ϕ0(t)), and for n ≥ 1:

(2.6) fn(t) =
∑

1≤pi≤n, 1≤k≤n p1+···+pk=n

1
k!
f (k)(ϕ0(t))ϕp1(t) . . . ϕpk(t) .

Here and in the sequel, we will use bold letters for multi-indices. We denote by En
the set of finite sequences of positive integers that are smaller than or equal to n,
i.e.

En := ∪+∞
d=0{1, . . . , n}

d.

For p = (p1, . . . , pd) ∈ En, we denote its length by #(p) := d and its size by
|p| := p1 + · · ·+pd. We denote by Φp the product Φp = ϕp1 . . . ϕpk (with the usual
convention Φ∅ = 1). For instance (2.6) becomes, with these notation,

∀n ≥ 0, fn(t) =
∑

p∈En, |p|=n

1
#(p)!

f (#(p))(ϕ0(t))Φp .

For the fast expansion, given some n ∈ N, with the notation ϕ(t) = φ(t) + ψ(x),
ψ :=

∑n
i=0 ψiε

i (hence φ(t) =
∑n
i=0 ϕi(t)ε

i + £εn+1 for all t ∈ T ) we have

(2.7) f(φ(t) + ψ(x)) = f(φ(t)) + ∆f(φ(t);ψ(x))ψ(x) .

The first term f(φ(t)) yields the slow part already calculated, and the second part
(which has S-exponential decay) corresponds to the fast part. We then use the
Taylor formula in the form

(2.8) ∆f(u; v) =
∑
i,j≥0
i+j≤n

∆ij(u0, v0)(u−u0)i(v−v0)j+£(u−u0)n+1 +£(v−v0)n+1

with ∆ij := 1
i!j!

∂i+j

∂ui∂vj ∆f . We apply it to u := φ(t), u0 := ϕ0(t1), v := ψ(x),
v0 := ψ0(x).

Using Taylor formula for φ at point t = t1, we get

u =
n∑
k=0

uk(x)εk + £xn+1εn+1 with uk(x) :=
k∑
j=0

1
j!
ϕ

(j)
k−j(t1)xj

(notice that u0(x) is constant equal to u0 = ϕ0(t1)). In addition, we simplify the
notation

fij(x) := ∆ij(ϕ0(t1), ψ0(x)) .

Altogether, using u− u0 = £xε and v − v0 = £ε, (2.8) gives

(2.9) ∆f(u; v) =
∑

i,j≥0, i+j≤n

fij(x)
( n∑
k=1

uk(x)εk
)i( n∑

l=1

ψlε
l
)j

+ £(1 + xn+1)εn+1

Taking into account the last term ψ(x) in (2.7), whose S-exponential decay implies
that £(1 + xn+1)εn+1ψ(x) = £εn+1 on T , we obtain the coefficients of the fast
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expansion of (2.5):

g0(x) = f(ϕ0(t1) + ψ0(x))− f(ϕ0(t1)) ,

gn(x) :=
∑

fij(x) uk1(x) . . . uki(x) ψl1(x) . . . ψlj (x)ψm(x),

for n ≥ 1, where the summation is taking on i, j,m ≥ 0, 1 ≤ k1, . . . , ki ≤ n,
1 ≤ l1, . . . , lj ≤ n, and k1 + · · ·+ ki + l1 + · · ·+ lj +m = n. More concisely, using
the notation below (2.6),

gn =
∑

k,l∈En, m≥0
|k|+|l|+m=n

f#(k) #(l) uk Ψl ψm .

For the implementation of this formula, we refer the reader to the Maple package
already mentioned.
(2) We insist on the fact that the fast expansion of f ◦ ϕ depends of the slow and
fast expansions of ϕ, whereas the slow expansion of f ◦ ϕ depends only of the slow
expansion of ϕ. Consider, for example, the product of two real combined expansions
ϕ and ϕ̃. Using capital letters for the resulting combined expansion, we have

Φn(t) =
n∑
k=0

ϕk(t)ϕ̃n−k(t) .

To obtain Ψn(x), we consider the other terms,(∑
ν≥0

ϕν(t1 + εx)εν
)(∑

ν≥0

ψ̃ν(x)εν
)

+
(∑
ν≥0

ψν(x)εν
)(∑

ν≥0

ϕ̃ν(t1 + εx)εν
)

+
(∑
ν≥0

ψν(x)εν
)(∑

ν≥0

ψ̃ν(x)εν
)
,

and expand each term ϕν(t1 + εx) with Taylor formula. Then, Ψn(x) will be the
n-th term of the obtained expansion in powers of ε.

2.5. Combined expansions in singular perturbation theory. Consider the
singularly for the perturbed real differential equation

(2.10) εu̇ = f(t, u)

with the following hypotheses.
H1 The function f is S∞ and has a regular ε-expansion in a standard open

subset U of R2.
H2 There is a slow curve u = u0(t) in U defined and C∞ on a standard compact

interval T = [t1, t2] , i.e.

(2.11) ∀t ∈ [t1, t2] , (t, u0(t)) ∈ U and f0(t, u0(t)) = 0 .

Let c0 be such that the segment {t1} × [u0(t1), c0] is in U (in the case
c0 < u0(t1) one may replace [u0(t1), c0] by [c0, u0(t1)] in the sequel).

H3 (attractiveness) The function a(t, u) := ∂f0
∂u (t, u) is bounded above by some

standard negative constant on U .
Notice that for (H3) the following suffices (use compactness and take a smaller U
if necessary):

(2.12) ∀u ∈ [u0(t1), c0], a(t1, u) < 0 and ∀t ∈ [t1, t2], a(t, u0(t)) < 0 .
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In this situation, it is well known [9] that, if the initial condition u(t1) = c is such
that c ' c0, then the solution, after a possible boundary layer at t1, borders the
slow curve until t2.

Figure 2. Here, f(t, u) = −(u + 1/t), t1 = 1, t2 = 3, c = 0, and
ε = 1/7.

u\

u

u0

It is known too that the slow part of u has a unique ε-expansion:

∃st!(un)n∈N ∀t ∈]]t1, t2] ∀stn ∈ N, u(t) =
N−1∑
n=0

un(t)εn + £εN .

This expansion is said to be slow and corresponds to the outer expansion in clas-
sical asymptotics. Moreover, u has a regular expansion on ]]t1, t2], since its k-th
derivative u(k) can be expressed with the derivatives of f and u of order j ≤ k− 1.

It is also possible to consider the inner expansion but we will use another ex-
pansion, see Theorem 2.5 below. The inner expansion may be defined as follows.
In the neighborhood of t1, the change of variables t = t1 + εx yields

(2.13) ũ′(x) = f(t1 + εx, ũ(x))

which is a regular perturbation of u′(x) = f0(t1, u(x)). Every solution of (2.13)
with an initial condition c having an ε-expansion admits an ε-expansion, ũ(x) ∼∑
n≥0 ũn(x)εn. This expansion is said to be fast; the coefficients un are solutions

of

(2.14)
ũ′0 = f0(t1, ũ0), ũ0(0) = c0

ũ′n = ã(x)ũn + Φn(x, ũ0(x), . . . ũn−1(x)), ũn(0) = cn

where fn and cn are the coefficients of the ε-expansions of f and c. The function ã
is given by ã(x) = ∂f0

∂u (t1, ũ0(x)) and Φn is obtained by considering the n−th term
(in ε) of the Taylor expansion of f(t1 + εx, ũ(x)) at the point (t1, ũ0(x)) and by
removing the term containing ũn.

This fast expansion u(t) ∼
∑
n≥0 ũ( t−t1ε )εn is valid a priori for t = t1 + ε£, but

the slow one is valid for t = t1 + @.
Using the permanence principle, the validity domains of these expansions can

be respectively extended to [t1, t3], ((t3 − t1)/ε infinitely large) and [t4, t2], (t4 '
t1). These intervals are disjoint and none of the expansions is valid for certain
intermediate t.

The following theorem shows that the solution u has a combined expansion in
the sense of section 2. It is the sum of the slow expansion (corresponding to the
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slow phase) and the fast expansion (corresponding to the limit layer) and it is valid
in [t1, t2]. This expansion is intrinsically different of the one given by (2.14).
Theorem 2.5. We consider the differential equation (2.10) where the function
f satisfies (H1)–(H3). Then, for every number c ∼

∑
n≥0 cnε

n, the solution u

of (2.10) with the initial condition u(t1) = c is defined and admits a combined
expansion in [t1, t2]

(2.15) u(t) ∼
∑
n≥0

un(t)εn +
∑
n≥0

yn(x)εn , t = t1 + εx .

Proof. To fix ideas we assume that c0 ≥ u0(t1). For simplicity we also reduce to
t1 = 0 and u0(t1) = 0. Denote by K the compact set

K := ({0} × [0, c0]) ∪ {(t, u0(t)) ; 0 ≤ t ≤ t2} .

By (H3) the function a is appreciably negative on K. Therefore the solution u is
defined at least until t2 and the shadow of its graph on [0, t2] is K. The idea is
to compare u with another solution u\ which borders the slow curve on a larger
interval. For this purpose, note that, by continuity, the hypotheses 2 and 3 of
the statement are still valid if t1(= 0) is replaced by −δ (for δ > 0 standard and
sufficiently small). We can then consider u\ as the solution of (1.1) with the initial
condition u\(−δ) = u0(−δ).

The attractiveness of the slow curve implies that this solution is defined and has
a regular ε-expansion in [0, t2], with C∞ coefficients un. This allows to isolate the
slow part of the expansion (2.15). Set ỹ := u− u\; this leads to

(2.16) ε ˙̃y = g(t, ỹ)ỹ ,

where g(t, ỹ) := ∆2f(t, u\(t); ỹ) and ∆2f is defined just above (2.1).
Since u\ has itself a regular expansion, g has, too; we denote by gi its coefficients.

Moreover g remains appreciably negative on a standard neighborhood V of

L := ({0} × [0, c0]) ∪ ([0, t2]× {0}) .

Indeed, the shadow of g, denoted by g0, satisfies g0(t, 0) = a(t, u0(t)) for any t ∈
[0, t2] and g0(0, y) = 1

y

∫ y
0
a(0, v)dv for any y ∈]0, c0]. Let t = εx and y(x) := ỹ(εx).

Then

(2.17) y′(x) = g(εx, y(x))y(x) , y(0) = c− u\(0)

where ′ denotes the derivation with respect to x. It will be shown that this solution
admits an ε-expansion with coefficients yn exponentially decreasing.

First of all, y is decreasing, hence y′ is limited on X := [0, t2/ε]. Therefore y is
S-continuous, hence has a shadow, denoted by y0. This shadow satisfies

(2.18) y′0(x) = g0(0, y0(x)) y0(x) , y0(0) = c0 .

This implies that y0 is decreasing on R+ and has exponential decay at infinity, by
statement 2 of proposition 2.3. By definition one has a priori y(x) ' y0(x) only
for limited values of x, but this remains true for all x ∈ X, as both functions are
i-small for x i-large.

Examining now the formal solutions. We write the coefficients of g in the form

gi(t, y) =
∑
j,k≥0

gjki (x)tj(y − y0(x))k
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with

gjki (x) :=
1
j!k!

∂j+kgi
∂tj∂yk

(0, y0(x)) .

We omit in the sequel the dependance in x of gjki and yl. With these notation, one
has

(2.19)
∑
i≥0

y′iε
i =

∑
i,j,k≥0

gjki x
jεi+j

(∑
ν≥1

yνε
ν
)k∑

l≥0

yl ε
l.

Symbolic identification yields a linear differential equation for yn; namely

y′n = ε-terms of order n in right-hand of the above equaiton.

The terms in this expression are of the form gjki x
jyν1 . . . yνkyl, νp ≥ 1. Later,

we will write separately those terms containing yn; namely (g00
0 + g01

0 y0)yn. It is
convenient to introduce the following indexed set:

(2.20) Mn :=
n⋃
k=0

{
µ = (i, j, l, ν1, . . . , νk) ∈ {0, . . . , n}k+3 ; νp ≥ 1

}
,

and the notation, for µ = (i, j, l, ν1, . . . , νk) ∈Mn:

(2.21) |µ| := i+ j + l + ν1 + · · ·+ νk and yµ := gjki x
jyν1 . . . yνkyl.

In summary, yn satisfies

(2.22) y′n =
∑

µ∈Mn,|µ|=n

yµ .

We notice that (this will be used later) that, if m < n, then Mn contains Mm. In
other words, one has

(2.23) ∀m < n, y′m =
∑

µ∈Mn,|µ|=m

yµ .

Let us now end up with the formal part of the proof of theorem 2.5. We have to
show that yn has exponential decay on R+. For that purpose, we rewrite (2.22) in
the form

(2.24) y′n = (g00
0 + g01

0 y0)yn +
∑

µ∈M∗n,|µ|=n

yµ .

where M∗n is equal to Mn except the “special terms” (0, 0,m) and (0, 0, 0,m). Re-
mark that the gjki depends on x only though y0(x). In particular, they are standard
and bounded functions on R+. By induction on n, if for all m < n, ym has expo-
nential decay, then it is the same for any yµ, µ ∈ M∗n. As g00

0 + g01
0 y0 is standard

and bounded above by a standard negative constant, statement 2 of proposition 2.3
applies and yields that yn has exponential decay on R+.

Concerning the remainder terms, let us write y = Yn + rnε
n+1 with Yn(x) =∑n

i=0 yi(x)εi. Obviously Yn has S-exponential decay, and we have

(2.25) Yn(x) = y0(x) + £ε ∀x ∈ X = [0,
t2
ε

] ,

as the yi are standard bounded. In particular (εx, Yn(x)) is in the neighborhood
V for any x ∈ X; therefore, g(εx, Yn(x)) is bounded above by a standard negative
constant. The idea is to write the differential equation satisfied by rn in a linear
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form, considering y and Yn as known (we already know that y and Yn are defined
and infinitely close to y0 on X).

We have

Y ′n + r′nε
n+1 =

(
g(εx, Yn) + ∆2g(εx, Yn; y − Yn)rnεn+1

)
(Yn + rnε

n+1),

hence r′n = an(x)rn + bn(x) with

an(x) = g(εx, Yn(x)) + ∆2g(εx, Yn(x); y(x)− Yn(x))y(x),

bn(x) = (g(εx, Yn(x))Yn(x)− Y ′n(x)) /εn+1.

For any x in X, we have an(x) = −@ + e−@x£. It follows that, if x0 is chosen
standard sufficiently large, then an(x) is bounded above by a standard negative
constant for all x ∈ [x0,

t2
ε ].

It thus suffices to show that b has S-exponential decay, then apply again state-
ment 2 of proposition 4 and deduce that rn has S-exponential decay, hence is
bounded. For this purpose, we first write

g(εx, Yn) =
n∑
i=0

gi(εx, Yn)εi + £εn+1 .

Secondly, using Taylor formula at t = εx = 0:

gi(εx, Yn) =
n−i∑
j=0

1
j!

∂jgi
∂tj

(0, Yn)(εx)j + £(εx)n−i+1 .

Finally, the Taylor formula at y = y0 is applied to each function ∂jgi
∂tj , 0 ≤ i <

n, 0 ≤ j < n− i:

1
j!
∂jgi
∂tj

(0, Yn) =
n−i−j∑
k=0

gjki

( n∑
ν=1

yνε
ν
)k

+ £(Yn − y0)n−i−j+1 .

Altogether, we obtain:

g(εx, Yn)Yn =
∑

i,j,k≥0,i+j+k≤n

gjki x
jεi+j

( n∑
ν=1

yνε
ν
)k n∑

l=0

ylε
l

+
(

£ +
n∑
i=0

£xn−i+1 +
∑

i,j≥0,i+j≤n

£xj
(Yn − y0

ε

)n−i−j+1
)
Ynε

n+1 .

By (2.25), the sum, between brackets, multiplying Ynε
n+1 is of the form £ +

£xn+1. Therefore, with the notations (2.20) and (2.21), we obtain

g(εx, Yn)Yn =
∑
µ∈M ′n

yµ ε|µ| + (£ + £xn+1)Ynεn+1

with M ′n = {µ = (i, j, l, n1, . . . , nk) ∈Mn ; i+ j+k ≤ n}. Notice that M ′n contains
all the µ ∈Mn such that |µ| ≤ n.

Moreover, using (2.23), we have

Y ′n =
∑

µ∈Mn,|µ|≤n

yµ ε|µ| .
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Therefore

g(εx, Yn)Yn − Y ′n =
∑

µ∈M ′n,|µ|>n

yµε|µ| + (£ + £xn+1)Ynεn+1 .

Each term yµ = gjki x
jyν1 . . . yνkyl contains at least one factor yl, hence has S-

exponential decay, and Yn has S-exponential decay too. To sum up,

g(εx, Yn)Yn − Y ′n = (£ + £xn+1)e−@xεn+1 = £e−@xεn+1 .

This shows that b has S-exponential decay. �
Remarks: (1) The more general hypothesis “f admits an ε-expansion” instead of
“f standard” is useful for the following:

• This allows to treat problems where the initial instant t1 is not standard
but has only an ε-expansion. Indeed, if ϕ is standard and C∞ — or has an
ε-expansion — and if t1 has an ε-expansion,then ϕ̃ : [0, t2 − t1]→ R

d, s 7→
ϕ(t1 + s) has an ε-expansion and is S∞.

• Furthermore, the Schrödinger equation(we will study) may contain a non-
standard parameter (canard value).

(2) Theorem 2.5 will be applied in more general situations, for instance when the
equation has a turning point in ]t1, t2[, or when the starting point t1 is not standard.
Therefore we present the following result.
Proposition 2.6. (1) Theorem 2.5 remains valid if (H3) is replaced by the following
hypotheses:

(i) There is a S∞ solution of (2.10), close to the slow curve u = u0(t) on a
standard open interval containing [t1, t2].

(ii) For every u ∈ [u0(t1), c0] one has a(t1, u) < 0.
(iii) For every t ∈]t1, t2] one has A0(t) < 0, where A0 is given by (2.26).

(2) Theorem 2.5 remains valid if t1 is only ε-expandable instead of standard.
Proof. (1) Assume that there is already a S∞ canard solution u\ close to the slow
curve on a standard open interval containing [t1, t2]. In that case, the solutions
u and u\ are exponentially close to each other as soon as t is appreciably greater
than t1 and as far as the “accumulated stability” is positive: more precisely, if A0

is given by

(2.26) A0(t) =
∫ t

t1

a(τ, u0(τ))dτ

(recall that a(t, u) = ∂f0
∂u (t, u)). Then

u(t)− u\(t) = exp ((A0(t) +�)/ε) .

As far as A0 is appreciably negative (the “accumulated stability” would be defined
as −A0). Since u\ is S∞ and defined on [t1 − δ, t2 + δ] for some δ > 0 standard,
it admits an ε-expansion on [t1, t2]. Theorem 2.5 applied to [t1, t1 + δ], δ > 0
standard sufficiently small, yields a combined expansion for u on [t1, t1 + δ]. As u
is exponentially close to u\, this combined expansion remains valid on [t1 + δ, t2].
This proves the first part.
(2) Put α = t1 −◦ t1, t = s + α, u(t) = v(s). Then v satisfies εv̇ = g(s, v)
with g(s, v) := f(s + α, v). The function g has a regular e-expansion; hence v has
a combined expansion v(s) =

∑
vn(s)εn +

∑
yn(x)εn, x := (s −◦ t1)/ε. Taylor
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formula shows that
∑
vn(t−α)εn has a regular ε-expansion

∑
un(t)εn. This gives

the slow part. The fast part is the same, since x is also equal to (t− t1)/ε. �

3. Applications

3.1. Towards a transasymptotic expansion. The results of section 2 yield
an estimate of the distance between two slow solutions of a slow-fast differential
equation. In this section, we will study this distance, first for equations with-
out parameter, and then for equations with parameter. Consider again equation
(2.10),εu̇ = f(t, u), with the hypotheses (H1)–H(3) in section 2.5 (f is C∞ and has
a regular ε-expansion and a slow curve u = u0(t); we assume as above that this
slow curve is attractive on a standard compact T = [t1, t2]; the situation with a
turning point will be detailed at the end of this section).

Let u\ be a solution close to the slow curve on a standard open interval containing
[t1, t2] (for example, the solution with initial condition u\(t1−δ) = u0(t1−δ) where
δ > 0 is standard sufficiently small). Consider now an initial condition c# having
an ε-expansion and sufficiently close to the slow curve such that the solution u#,
issuing from c# at t1, has a boundary layer at t1 and borders the slow curve, at
least, until t2 (i.e. hypotheses 2 and 3 in 2.5 for c0 = ◦c#). These two solutions
are exponentially close to each other as soon as t � t1. Namely, it is easy to see
that

u#(t)− u\(t) = exp
(1
ε

(∫ t

t1

∂f0

∂u
(τ, u0(τ))dτ +�

))
.

A more precise result will be given in this section. As the essential task is to
introduce the notations, the statement will be given after its proof.

If t = t1 + εx, theorem 2.5 provides two combined expansions:

u#(t) ∼
∑
n≥0

(un(t) + y#
n (x))εn, u\(t) ∼

∑
n≥0

un(t)εn ,

where y#
0 is the solution of the differential equation

(3.1) y′0 =
∂f0

∂u
(t1, u0(t1) + y0)y0

with y#
0 (0) = c#0 −u0(t1). Moreover, ỹ := u#−u\ satisfies the differential equation

(2.16) rewritten below in a linear form:

(3.2) ε ˙̃y = a(t)ỹ with a(t) := g(t, u#(t)− u\(t))

with the notation g(t, y) = ∆2f(t, u\(t); y) of 2.5. Hence with c\ = u\(t1) one has:

(3.3) u#(t)− u\(t) = (c# − c\) exp
(1
ε

∫ t

t1

a(τ)dτ
)
.

According to the statement 3 of the proposition 2.4, the function a admits a com-
bined asymptotic expansion a(t) ∼

∑
n≥0(an(t) + bn(x))εn whose first terms are

clarified below

a0(t) =
∂f0

∂u
(t, u0(t)), a1(t) = u1(t)

∂2f0

∂u2
(t, u0(t)) +

∂f1

∂u
(t, u0(t)),(3.4)

b0(x) = ∆2f0(t1, u0(t1); y#
0 (x))− ∂f0

∂u
(t1, u0(t1)),(3.5)
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where y#
0 given by (3.1). According to the statement 4 of this same proposition

2.4, the primitive of a has an ε-expansion

(3.6)
∫ t

t1

a(τ)dτ ∼
∑
n≥0

An(t)εn

for t ∈]]t1, t2], the first terms of which are:

(3.7) A0(t) =
∫ t

t1

a0(τ)dτ , A1(t) =
∫ t

t1

a1(τ)dτ +
∫ +∞

0

b0(ξ)dξ .

Since c#− c\ has also an ε-expansion (its first term is c#0 − c
\
0), formula (3.3) shows

the following result.
Theorem 3.1. With the notation and hypotheses above, there is a standard se-
quence of functions (rn)n∈N∗ such that the difference u# − u\ satisfies for any
t ∈]]t1, t2]:

(3.8)
(
u#(t)− u\(t)

)
exp

(
−A0(t)

ε

)
∼
∑
n≥0

rn(t)εn .

with r0(t) = (c#0 − c
\
0) exp(A1(t)).

Remarks: (1) Concerning values of t close to t1, an analogous formula is available
with combined expansions. We do not mention it for simplicity.
(2) As mentioned in the introduction, the functions rn can explicitly be computed
with an algorithm based on the previous proof (subject to compute the primitives
of the occurring functions). Instead of detailing this algorithm in the general case,
we find it is more useful to illustrate it on the Liouville equation, see below. We
refer to the Maple package already mentioned for the general case.
(3) If a standard t is fixed, formula (3.8) gives immediately an asymptotic expression
of u#(t)−u\(t) with standard constants. If t has an ε-expansion, such an asymptotic
expression is also possible, but one has to expand each term Ai(t), i = 0, 1 and
rj(t), j ≥ 1 with Taylor formula.
(4) As for combined asymptotic expansions in 2.5 (proposition 2.6 of remark 2), this
result remains valid if the slow curve is not attractive on the whole interval [t1, t].
The existence of a solution close the slow curve on an open interval containing
[t1, ◦t] and the assumption that A0 is negative on ]t1, ◦t] are enough.

(5) Formula (3.3) allows to find an ε-expansion of c# from an ε-expansion of t and
u#(t)− u\(t). More precisely, we have the following.
Corollary 3.2. Denote by I =]cmin, cmax[ the set of all numbers c ∈ R which
satisfy hypothesis 3 of subsection 2.5. Let t∗ ∈]t1, t2] ε-expandable with ◦t∗ > t1.
Denote by u# = u#(t, c) the solution of (2.10) with boundary condition u#(t1) = c.
Consider the function

ϕ : I → R, c 7→
(
u#(t∗)− u\(t∗)

)
exp

(
− A0(t∗)

ε

)
,

Then ϕ is an S-diffeomorphism from the S-interior of I to its image. (In classical
terms: ϕ = ϕε is a diffeomorphism from I to ϕ(I) and for any fixed c ∈ I there is
a constant M > 0 independent of ε such that 1

M ≤ ϕ
′
ε(c) ≤M .) As a consequence,

given α ∈ ϕ(I) with c#(α) := ϕ−1(α) ∈]]cmin, cmax[[, if α is ε-expandable, then
c#(α) is ε-expandable and by theorem 2.5, u#(·, c#(α)) has a combined expansion
on [t1, t2].
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Proof. With (3.3) we get

ϕ(c) = (c− c\) exp
(1
ε

∫ t∗

t1

(g(t, ỹ(t, ε))− g0(t, 0))dt
)

with ỹ : (t, c) 7→ u#(t, c)− u\(t), g = ∆2f(·, u\, ·) as before, and g0 is the first term
of the ε-expansion of g. Therefore,

ϕ(c) = (c− c\)M exp(J(c))

with

M := exp
(1
ε

∫ t∗

t1

(g(t, ỹ(t, c))− g(t, 0))dt
)

independent of c, and

(3.9) J(c) :=
1
ε

∫ t∗

t1

(g(t, ỹ(t, c))− g(t, 0))dt .

The function ỹ is the solution of the boundry-value problem εẏ = g(t, y)y, y(t1) =
c− c\, hence is monotonous on [t1, t∗] and can be used as a change of variable. For
convenience we use the notation y∗ := ỹ(t∗, c) (it is an exponentially small number
which depends on c) and t̃ = t̃(y, c) the “inverse” function of ỹ. The change of
variable y = ỹ(t, c) yields dy = 1

εg(t, y)ydt and

J(c) =
∫ y∗

c−c\
ψ(y) dy

with

ψ(y) :=
∆2g(t̃(y, c), 0; y)
g(t̃(y, c), y)

.

This function is not S-continuous, but is continuous and limited on [c − c\, y∗].
Moreover, for y 6' 0, one has

ψ(y) ' ψ0(y) :=
∆2g0(0, 0; y)
g0(0, y)

.

Hence J is S-continuous and its shadow satisfies

◦J : c 7→
∫ 0

c−c\
ψ0(y)dy .

We will show later that J has a regular expansion. This implies that

◦(J ′(c)) = ( ◦J)′(c) = −ψ0(c− c\) =
1

c− c\
( g0(0, 0)
g0(0, c− c\)

− 1
)
.

Since we have ϕ′

ϕ (c) = 1
c−c\ + J ′(c), we deduce that (c − c\)ϕ

′

ϕ (c) ' g0(0,0)
g0(0,c−c\) is

appreciable. Using M = @ and J(c) = £, this gives ϕ′(c) = @ which shows that
ϕ is a S-diffeomorphism. Furthermore ϕ has an ε-expansion (by composition of
the expansion (3.8) and the expansion of t∗). Hence by a well-known result on
classical expansions, ϕ−1 has an ε-expansion, too. The consequence is clear, again
by composition of the expansions of α and ϕ−1.
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It remains to prove that J has a regular expansion. For that purpose, it is better
to use the change of variable t = t1 + εx in (3.9). This gives, with x∗ := (t∗− t1)/ε
(independent of c) and ŷ(x, c) := ỹ(t1 + εx, c):

(3.10) J(c) =
∫ x∗

0

G(x, c)dx

with
G(x, c) := (g(t1 + εx, ŷ(x, c))− g(t1 + εx, 0))

At this scale, the function ŷ has S-exponential decay in x and a regular ε-expansion
ŷ(x, c) ∼

∑
n≥0 yn(x, c)εn with respect to c (see the end of 2.3), where the yn have

exponential decay in x (see the end of 2.3). Hence the same holds for G, and J has
a regular ε-expansion with respect to c.

(5) Using classical results of Gevrey analysis, it is possible to give an exact meaning
to an expression like:

u#(t) ∼
∑
n≥0

un(t)εn + exp
(A0(t)

ε

)
(c#0 − c

\
0) exp(A1(t))

(
1 +

∑
n≥1

rn(t)εn
)
.

This expression may be considered as a start of transasymptotic expansion. The
first expansion

∑
n≥0 un(t)εn is the classical expansion of slow curves, and the expo-

nential term which follows arises from the boundary layer at t1. Thanks to Gevrey
analysis, — under analyticity hypothesis of f according to t and a simple geomet-
rical hypothesis concerning the relief function a : t 7→ ∂f0

∂u (t, u0(t)) — it is possible
to show that the first expansion

∑
n≥0 un(t)εn is defined up to exponentially small

(of type strictly greater than A0(t)). Therefore, a summation ”to the least term”
of both expansions accounts for the boundary layer.
Liouville’s equation. We consider here Liouville’s equation in its singularly per-
turbed form

(3.11) εu̇ = u2 − t.

This equation has a repulsive river u\ which is asymptotic to
√
t. Consider a solution

u[ that borders this river, on an appreciable interval, and join the attractive river.
We will give an estimate of u[− u\ before the limit layer of u[. The first two terms
r1 and r2 will be explicit.

To set the ideas, we assume that u[ links both rivers through 0 rather than
infinity. Choosing adequately the parameter ε and doing linear change of variables
of u and t, we can suppose that u[(1) = 0. Given t fixed and standard in ]0, 1[, we
want to compute an ε-expansion of u[(t)−u\(t). The first terms of the ε-expansion
are

u\(t) =
√
t+

1
4
t−1ε− 5

32
t−5/2ε2 +

15
64
t−4ε3 + £ε5 .

The funtion y(x) := u[(1 + εx)− u\(1 + εx), already introduced satisfies the differ-
ential equation

y′ = (2u\(1 + εx) + y)y ,
approximated by

y′ =
(

2 + (x+
1
2

)ε− (
x2

4
+
x

2
+

5
16

)ε2 + (
x3

8
+
x2

2
+

25x
32

+
15
32

)ε3 + £ε4 − y
)
y

with the initial condition y(0) = −u\(1) = −1− 1
4ε+ 5

32ε
2 − 15

64ε
3 + £ε4.
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We then deduce the beginning of the ε-expansion y(x) ∼
∑
n≥0 yn(x)εn of y:

y′0 = (2 + y0)y0 , y0(0) = −1,

hence y0(x) = −1− tanhx,

y′1 = a(x)y1 + (x+
1
2

)y0 , y1(0) = −1
4

with a(x) = 2 + 2y0(x) = −2 tanhx, hence exp
( ∫ x

u
a
)

= cosh2 u
cosh2 x

; this gives

y1(x) =
−1

4 cosh2 x

(
1 +

∫ x

0

(2u+ 1)
(
e2u + 1

)
du
)

=
−1

4 cosh2 x

(
1 + x+ x2 + x e2x

)
.

Using the symbolic manipulation language Maple, we found It is possible to prove
that yn is of the form yn(x) = Pn(x,ex)

e2x+1 . We do not explicit the rather long expression
y2 because we need only the value of the integrals In :=

∫ −∞
0

yn(x)dx. One finds
for the first terms:

I0 = ln 2 , I1 =
1
4
, I2 =

1
32
.

We remark that, despite the complexity of the functions yn, their integrals on R−

are very simple. In particular, it is possible to show (using the associated linear
Airy equation) that these numbers are rational for all n ≥ 1.

Then, u[(t)− u\(t) =
(
u[(1)− u\(1)

)
exp(A(t)

ε ) with

u[(1)− u\(1) = −u\(1) = −1− ε

4
+

5
32
ε2 − 15

64
ε3 + £ε4,

A(t) =
∫ t

1

(
u\(τ) + u[(τ)

)
dτ

= 2
∫ t

1

u\(τ)dτ + ε

∫ t−1
ε

0

y(x)dx

= 2
3∑

n=0

(∫ t

1

un(τ)dτ
)
εn +

2∑
n=0

(∫ −∞
0

yn(x)dx
)
εn+1 + £ε4

=
4
3

(
t3/2 − 1

)
+
(

1
2

ln t
)
ε+

5
24

(
t−3/2 − 1

)
ε2 +

5
32
(
1− t−3

)
ε3

+ε ln 2 +
1
4
ε2 +

1
32
ε3 + £ε4

Hence, we deduce exp
(
A(t)
ε

)
and obtain finally:

u\(t)− u[(t) = exp
{

4
3ε

(
t3/2 − 1

)}
2
√
t

[
1 +

1
24

(
5t−3/2 + 7

)
ε

+
1

1152

(
49 + 70 t−3/2 − 155 t−3

)
ε2 + £ε3

]
.

Remark. This formula is valid only for t appreciable, but for Liouville equation, a
formula can be given for t infinitely small, for example for t = 0. Indeed, only the
computation of the integral

∫ t
1
u\(τ)dτ of A(t) poses a problem. But here, u\ is

linked to the logarithmic derivative of the Airy function. This yields an answer to
the following natural question.
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Consider the Liouville equation

(3.12) U ′ = U2 − T

and its unique solution asymptotic to
√
T at +∞ given by U \(T ) = −Ai′(T )/Ai(T ).

Consider another solution U [ with the initial condition U [(0) = U \(0)−δ, 0 < δ ' 0.
This solution vanishes only at an infinitely large value ω. What is the asymptotic
relation between δ and ω?

The change of variables T = ωt, U =
√
ω u, with ε = ω−3/2 leads to the previous

equation (3.12). We deduce that exp
(

1
ε

∫ 1

0
u\(τ)dτ

)
=
(Ai(ω)

Ai(0)

)2 with ω = ε−2/3

(and Ai(0) = 3−2/3/Γ(2/3)). The asymptotic expansion of Ai implies:

δ =
1

2πAi(0)2
exp

(
− 4ω3/2

3
)(

1 + α1ω
−3/2 + · · ·+ αnε

n + £ω−3(n+1)/2
)

with α1 = 7
24 and α2 = − 49

1152 .
As mentioned above, concerning the associated Riccati equations to classical

linear equations, it is more judicious to solve the problem directly with the linear
equation. Nevertheless the method presented here can be applied to other types of
equations. Liouville’s equation is here only for illustration.

3.2. The situation with a turning point. Consider equation(2.10), εu̇ = f(t, u),
with the hypotheses (H4) and (H5) below:

H4 The function f is S∞ and has a regular ε-expansion in an open subset U
of R2 (cf. 2.2).

H5 There is a C∞slow curve u = u0(t) in U on a standard compact interval
T = [t1, t2], i.e.

(3.13) ∀t ∈ [t1, t2] , (t, u0(t)) ∈ U andf0(t, u0(t)) = 0 .

Now, the slow curve u = u0(t) is assumed to be attractive for t1 ≤ t < t0 and
repulsive for t0 < t ≤ t2, where t0 is some standard point in ]t1, t2[ called turning
point:

H6 The function a(t, u) := ∂f0
∂u (t, u) satisfies

(3.14) ∀t ∈ [t1, t0[ , a(t, u0(t)) < 0 , ∀t ∈]t0, t2] , a(t, u0(t)) > 0 .

Moreover, we assume that there is a canard solution u\ that border the slow curve
from t1 to t2. We are interested in the input-output relation about this canard
solution.

Let te and ts be the input and output instants respectively such that t1 < ◦te <
t0 <

◦ts < t2. Let ue and us be the input and output values which are appreciably
different respectively from u\(te) and u\(ts), then

(3.15) ∀u ∈ [u0(te), ue], a(te, u) < 0 and ∀u ∈ [u0(ts), us], a(ts, u) > 0 .

We assume that there is a solution u# of (2.10) with u#(te) = ue, u
#(ts) = us. In

this case, it is known [1] that the input-output relation is given by

(3.16)
∫ ◦ts

◦te

a(t, u0(t))dt = 0 .

Proposition 3.3. With the above notation and hypotheses (H4)–(H6), if three of
the four quantities te, ts, ue, us have an ε-expansion, then the fourth one has, and
this expansion can be computed modulo an inversion of diffeomorphism.
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Proof. The quantities te, ts, ue, us are linked by the relation

us − u\(ts) = (ue − u\(te)) exp
{1
ε

∫ ts

te

∆2f
(
t, u\(t);u#(t)− u\(t)

)
dt
}
.

The solution u# presents two limit layers. First, we split this integral in two parts,
for example at t0. For each limit layer, we use the combined asymptotic expansions,
more especially proposition 2.6.

When the three quantities te, ts and ue have an ε-expansion, proposition 2.6
shows that u#(t0) − u\(t0) is of the form exp

(
A0
ε + b

)
where A0 is standard and

b has an ε-expansion. Hence, by corollary 3.2, us has an ε-expansion. The case
where the three given quantities are te, ts and us is similar.

If the three quantities are te, ue and us, then the previous case is used as follows:
we set the change of variable ts = ◦ts+εxs, where ◦ts is given by the input-output
relation (3.16). When te and ue are fixed, the previous case shows that us is of the
form us = ϕ(ts) where ϕ is S∞ and has an ε-expansion. Moreover, we have

ϕ′(xs) =
d

dx
u#( ◦ts + εxs) = f( ◦ts + εxs, u

#( ◦ts + εxs)) = f(ts, us) ,

which is appreciable thanks to (3.15), to f(ts, u\(ts)) ' 0 and to us 6' u\(ts). Thus,
ϕ is a S-diffeomorphism (i.e. its shadow is a diffeomorphism) and its inverse is S∞

and has an ε-expansion. We conclude that ts = ϕ−1(xs) has an ε-expansion. �

3.3. Equations with parameter. Here, we prove theorem 1.1. It is classical [2]
to consider the associated Riccati equation by setting v = εψ̇

ψ . This leads to

(3.17) εv̇ = U(t)− E − v2 .

Recall that the solutions of a Riccati equation are naturally considered on the
cylinder R×(R∪{∞}), whose variable v is one chart among others. In particular, it
is natural to consider solutions with poles: the passage through infinity is perfectly
regular.

The equation (3.17) is of slow-fast type and usual techniques are applied. For any
infinitesimal value of E, we have two repulsive rivers; the first one is close to −ϕ(t)
for t→ −∞ and the second one is close to ϕ(t) for t→ +∞ (here, repulsiveness does
not take into account the direction of t). For each river, there is a unique solution,
called ”exceptional” which borders it and all other solutions join the attractive river
(ϕ(t) for t → −∞, −ϕ(t) for t → +∞). Moreover, the formula ψ = exp(

∫
v/ε)

shows that to each solution bordering an attractive river corresponds a subspace
of solutions of the corresponding linear equation with exponential growth. The
subspace associated to an exceptional solution is constituted by solutions with
exponential decay.

For E fixed, the symmetry of the equation shows that if v is a solution of (3.17),
then ṽ : t 7→ −v(−t) is. Hence, a solution bordering both repulsive rivers is neces-
sarily an odd function. The posed problem has two solutions, denoted by (E#, v#)
and (E[, v[) with v#(0) = ∞, v[(0) = 0, which are canard solutions. It is more
convenient to work in another chart. We therefore turn the Riccati cylinder by a
quarter of turn.

The change of the unknown u := v−1
v+1 leads to

εu̇ =
1
2

(U(t)− E − 1)(1 + u2)− (U(t)− E + 1)u,
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with u#(0) = 1, u[(0) = −1 (and respectively with the values E# and E[ for E).
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Figure 3. The solutions u#, u[ and u\ for the potential (1.2) and
ε = 1

10 . Φ+ := ϕ−1
ϕ+1 , Φ− := −ϕ−1

−ϕ+1 .

Φ+ u# u#

u[
u\

Φ+

u[

u\

Φ+ Φ− u# Φ−

The difference y := u# − u[ satisfies the equation

εẏ = A(t)y −B(t)(E# − E[) , y(+∞) = 0

with

A(t) =
1
2

(U(t)− E[ − 1)(u# + u[)− (U(t)− E[ + 1), B(t) =
1
2

(1− u#)2 .

Here occurs a technical difficulty which does not appear in theory if ones uses the
Riccati cylinder, but in practice the cylindrical coordinates are difficult to use. The
difficulty comes form A and B possibly having poles with u# and u[, for some
values of t near t∗ that satisfies ϕ(t∗) = −1. Therefore, we consider some standard
t1 > t0 close enough to t0 such that A and B are limited on [0, t1], and we apply
the variation of constant formula between 0 and t1, in the form

(3.18) y(0) = y(t1) exp
(1
ε

∫ 0

t1

A
)
− E# − E[

ε

∫ 0

t1

B(t) exp
(

1
ε

∫ 0

t

A

)
dt .

Notice that, if t ∈]]0, t1], then A(t) ' 1
2

(
ϕ(t)2 − 1

)
2ϕ(t)−1
ϕ(t)+1 −

(
ϕ(t)2 + 1

)
= −2ϕ(t).

Furthermore, u# and u[ admit combined expansions and E[ has an ε-expansion
which is the ε-expansion of every canard value. Therefore A, B and the primitive
of A have also combined expansions. and the ε-expansion of

∫ 0

t0
A begins with a

given by (1.5). Notice also that y(t1) = £
(
E# − E[

)
by item 2 of proposition 2.3

in section 2.3. Since we already know that E#−E[ is exponentially small of order
a, and since

∫ 0

t1
A�

∫ 0

t0
A ' a, the first term of (3.18), namely y(t1) exp

(
1
ε

∫ 0

t1
A
)

,

is exponentially small (of order
∫ t1
t0

(−2ϕ)). With y(0) = 2, formula (3.18) then
yields:

E# − E[ = 2ε
(∫ t1

0

B(t) exp
(
− 1
ε

∫ t

0

A
)
dt
)−1 (

1 + £e−@/ε
)
,
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which can be rewritten as

E# − E[ =2ε exp
(
− a

ε

)
exp

(1
ε

∫ t0

0

(A− 2ϕ)
)

×
(∫ t1

0

B(t) exp
(
− 1
ε

∫ t

t0

A
)
dt
)−1(

1 + £e−@/ε
)
.

Now Laplace method (proposition 2.3 in section 2.3) shows that the integral∫ t1

0

B(t) exp
(
− 1
ε

∫ t

t0

A
)
dt

has an expansion in powers of
√
ε with a non-zero first term, i.e. is of order

√
ε

since B(t0) ' 1
2 . This completes the proof of theorem 1.1.

3.4. Symbolic and numerical results. Using the Maple package at
http://www.univ-lr.fr/Labo/MATH/DAC, we studied the expansion (1.6) for sev-
eral symmetric potentials. For instance, the potential U(t) = (2 cosh(t) − 5/2)2

yields

E# − E[ =
35/2

√
2π
ε1/2 exp

(
−1
ε

(5 ln 2− 3)
)

×
(

1− 793
324

ε− 534959
209952

ε2 − 2490060889
204073344

ε3 +O
(
ε4
))

.

The polynomial potential with rational coefficients U(t) = (1 − t4)2 yields an ε-
expansion with irrational coefficients:

E# − E[ =
64eπ/2√

π

√
εe−8/5ε

(
1 +

(
− 131

64
− 3

32
π
)
ε

+
(
− 5923

8192
− 57

2048
π +

9
2048

π2
)
ε2 +O(ε3)

)
.

Concerning the potential (1.2), numerical simulations give the following results:

• a# is given by the relation E# − E[ = 16
√

2ε√
π

exp (−4
3ε )a#,

• ã# = 1 − 71
96ε −

6299
18432ε

2 − 2691107
5308416ε

3 is the same parameter value obtained
by symbolic manipulations with three terms in the asymptotic expansion,
• ∆E = E#+E[

2 − E\ is expected to be of order exp(− 8
3ε ).

1/ε E# a# ã# a# − ã#

2 1.04614053857975 0.55129173 0.48140379 6.98879402e-02
4 0.47412601902887 0.77628568 0.78582414 -9.5384546e-03
6 0.31849701709428 0.86337190 0.864896269 -1.52436242e-03
8 0.24157410341774 0.90083691 0.90122221 -3.85297223e-04
10 0.19467902372582 0.92197555 0.92211728 -1.41734313e-04
12 0.16301207073454 0.93563721 0.93570146 -6.42491620e-05
14 0.14019322986821 0.94521099 0.94524428 -3.32946274e-05
16 0.12297222653846 0.95229836 0.95231734 -1.91678736e-05
18 0.10951599390792 0.95775964 0.95777035 -1.57096142e-05
20 0.09871245541601 0.96211977 0.96210310 -1.11318467e-05
22 0.08984800332140 0.96677395 0.96562888 6.41511616e-04
24 0.08244380009277 0.98149952 0.96855405 1.59136097e-03
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1/ε E\ (E# + E[)/2 ∆E −(3ε/8) ln{∆E}
2 0.72722933436087 0.87324733697904 1.46018002e-01 3.60754754e-01
4 0.46065652094628 0.46216455343306 1.50803248e-03 6.09089012e-01
6 0.31773469668930 0.31774227863839 7.58194908e-06 7.36858765e-01
8 0.24152668022043 0.24152671668585 3.64654158e-08 8.02823509e-01
10 0.19467600946049 0.19467600963480 1.74309428e-10 8.42632090e-01
12 0.16301187671876 0.16301187671959 8.31751334e-13 8.69226339e-01
14 0.14019321725968 0.14019321725968 4.38538094e-15 8.85549104e-01
16 0.12297222571282 0.12297222571282 -8.88178419e-16 8.12281852e-01
18 0.10951599385352 0.10951599385352 -9.71445146e-17 7.68131915e-01
20 0.09871245541241 0.09871245541241 2.77555756e-17 7.14808029e-01
22 0.08984800332116 0.08984800332116 1.24900090e-16 6.24187798e-01
24 0.08244380009275 0.08244380009275 -1.66533453e-16 5.67677116e-01

We can observe that a# − ã# has approximatively the same order as ε4, except
for ε ≤ 1/20. The results of the second table are in accordance with our third
conjecture: The last column seems to tend to 1 (as we ask an exponential order
2 a, which is twice than for E# − E[, only the upper half of the table is relevant).

To determine E[, we initialize E := 2ε and compare the values of the solutions
v+ and v−, at t = 1, of the following Cauchy’s problems

(3.19)
εv̇+ = (t2 − 1)2 − E − v2

+

v+(0) = 0

and

(3.20)
εv̇− = (t2 − 1)2 − E − v2

−

v−(2) = −(22 − 1) = −3.

For this purpose, we used an adaptative fourth Runge-Kutta method such that the
computations are valid for ε ≥ 1/20.

If we denote by ζ(E) = v+(1)− v−(1), the computation of E[ consists in finding
the zero of ζ. This computation was performed with the secant method. To com-
pute E\, we consider the problems (3.19) and (3.20) respectively with the initial
conditions v+(−0.95) = ϕ(−0.95) and v−(2) = ϕ(2). Concerning the computation
of E#, the initial condition v(0) = ∞ is replaced by w(0) = 0, where w = 1/v.
This change of chart produces a pole (for w) in the neighborhood of t = 1, thus
we return to the first chart at, for example, t = 1/2, with the initial condition
v+(1/2) = 1/w(1/2). We compare finally the values of v+(1) to v−(1) where v− is
the solution of (3.20) with the initial condition v−(2) = ϕ(2).
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