

LAPTM4B gene polymorphism augments the risk of cancer: Evidence from an updated meta-analysis

Mohammad Hashemi, Gholamreza Bahari, Farhad Tabasi, Jaroslaw Markowski, Andrzej Malecki, Saeid Ghavami, Marek Łos

► To cite this version:

Mohammad Hashemi, Gholamreza Bahari, Farhad Tabasi, Jaroslaw Markowski, Andrzej Malecki, et al.. LAPTM4B gene polymorphism augments the risk of cancer: Evidence from an updated meta-analysis. Journal of Cellular and Molecular Medicine, 2018, 22 (12), pp.6396-6400. 10.1111/jcmm.13896. hal-02506746

HAL Id: hal-02506746 https://hal.science/hal-02506746

Submitted on 12 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SHORT COMMUNICATION

LAPTM4B gene polymorphism augments the risk of cancer: Evidence from an updated meta-analysis

Mohammad Hashemi 1 \bigcirc $ $ Gholamreza Bahari 1 $ $ Farhad Tabasi 2 $ $
Jarosław Markowski ³ Andrzei Małecki ⁴ Saeid Ghavami ⁵ Marek J. Łos ^{6,7}

¹Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran

²Student Research Committee, Zahedan University of Medical Sciences, Zahedan, Iran

³ENT Department, School of Medicine, Medical University of Silesia in Katowice, Katowice, Poland

⁴Faculty of Physiotherapy, The Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland

⁵Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada

⁶Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland

⁷Centre de biophysique moléculaire, UPR4301 CNRS CS80054, Orleans, France

Correspondence

Mohammad Hashemi, Department of Clinical Biochemistry, School of Medical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran. Email: mhd.hashemi@gmail.com

Marek J. Łos, Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland.

Email: mjelos@gmail.com

Funding information

NCN, Grant/Award Number: 2016/21/B/NZ1/02812; H2020 Marie Skłodowska-Curie Actions, Grant/Award Number: 665790

1 | INTRODUCTION AND BACKGROUND

Lysosome-associated protein transmembrane-4 beta (LAPTM4B) has two alleles named as LAPTM4B*1 and LAPTM4B*2 (GenBank No. AY219176 and AY219177). Allele *1 has a single copy of a 19-bp sequence in the 5` untranslated region (5`UTR), but allele *2 contains tandem repeats of 19-bp sequence.¹ LAPTM4B gene is located on long chromosome 8 (8g22.1) and contains seven exons that encodes two isoforms of tetratransmembrane proteins, LAPTM4B-24 and LAPTM4B-35, with molecular weights of 25 kDa and 35 kDa respectively. The LAPTM4B-35's primary structure is formed by 317 amino acid residues, and LAPTM4B-24 comprised 226 amino acids. LAPTM4B, an integral membrane protein, contains several lysosomal-targeting motifs at the C terminus and colocalizes with late endosomal and lysosomal markers. LAPTM4B is a protooncogene, which becomes up-regulated in various cancers. Preceding studies have examined the possible link between LAPTM4B polymorphism and susceptibility to several cancers,¹⁻²⁶ but the findings are still inconsistent. Hence, the present meta-analysis was designed to investigate the impact of LAPTM4B polymorphism on risk of cancer.

2 | METHODS

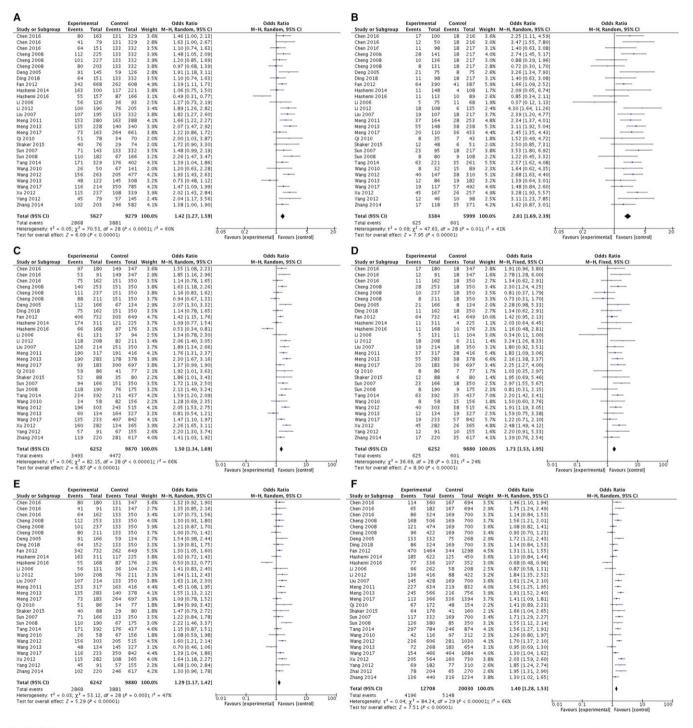
A comprehensive search in Web of Science, PubMed, Scopus, and Google Scholar databases was done for all articles describing an association between LAPTM4B polymorphism and cancer risk published up to April 2018. The search strategy was "cancer, carcinoma, tumor, neoplasms," "LAPTM4B, Lysosome-associated protein transmembrane-4," and "polymorphism, mutation, variant." Relevant studies included the meta-analysis if they met the following inclusion criteria: (a) Original case-control studies that evaluated the LAPTM4B polymorphism and the risk of cancer; (b) studies provided sufficient information of the genotype frequencies of LAPTM4B polymorphism in both cases and controls. The exclusion criteria were: (a) conference abstract, case reports, reviews, duplication data; (b) insufficient genotype information provided.

Data extraction was done by two independently authors. From each study, the following data were collected: the first author's name, publication year, country, ethnicity of participants, cancer type, genotyping methods of *LAPTM4B* polymorphism, the sample size, and the genotype and allele frequencies of cases and controls (Table 1).

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

							C	Cases				ပိ	Controls				
					Source of	Genotvninø	Case/		/ *	*2/		}	*1/	10*			
Author	Year	Country	Ethnicity	Cancer type	control	method	-				* *2				,	*2	HWE
Chen	2016	China	Asian	Renal cell carcinoma	PB	PCR	180/347	83	80	17 2	246 114	4 198	8 131	1 18	527	167	0.538
Chen	2016	China	Asian	Bladder cancer	PB	PCR	91/347	38	41	12 1	117 6	65 198	8 131	1 18	527	167	0.538
Chen	2016	China	Asian	B-cell lymphoma	PB	PCR	162/350	87	64	11 2	238 8	86 199	9 133	3 18	531	169	0.549
Cheng	2008	China	Asian	Colon cancer	HB	PCR	253/350	113 1	112 2	28	338 168	8 199	9 133	3 18	531	169	0.538
Cheng	2008	China	Asian	Rectal cancer	HB	PCR	237/350	126 1	101	10	353 121	1 199	9 133	3 18	531	169	0.539
Cheng	2008	China	Asian	Oesophageal cancer	HB	PCR	211/350	123	80	00	326 9	96 199	9 133	3 18	531	169	0.539
Deng	2005	China	Asian	Lung cancer	PB	PCR	166/134	54	91 2	21 1	199 13	133 67	7 59	9	193	75	0.284
Ding	2018	China	Asian	B-cell lymphoma	HB	PCR	162/350	87	64	11 2	238 8	86 199	9 133	3 18	531	169	0.538
Fan	2012	China	Asian	Breast cancer	HB	PCR	732/649	326 3	342 6	64 9	994 47	470 346	6 262	2 41	954	344	0.355
Hashemi	2014	Iran	Asian	Breast cancer	HB	PCR	311/225	137 1	163 1	11 2	437 18	185 104	4 117	7 4	325	125	0.009
Hashemi	2016	Iran	Asian	Prostate cancer	HB	PCR	168/176	102	55	11 2	259 7	77 79	9 87	7 10	245	107	0.025
:	2006	China	Asian	Lung cancer	PB	PCR	131/104	70	56	5	196 6	66 57	7 36	6 11	150	58	0.155
:	2012	China	Asian	Breast cancer	HB	PCR	208/211	90 1	100	18 2	280 13	136 129	9 76	6 6	334	88	0.185
Liu	2007	China	Asian	Gastric cancer	HB	PCR	214/350	88	107 1	19 2	283 14	145 199	9 133	3 18	531	169	0.483
Meng	2011	China	Asian	Cervical cancer	HB	PCR	317/413	127 1	153 3	37 4	407 227	225	5 163	3 28	613	219	0.775
Meng	2013	China	Asian	Endometrial cancer	HB	PCR	283/378	93 1	135 5	55 3	321 24	245 200	0 140	0 38	540	216	0.072
Meng	2017	China	Asian	Papillary thyroid carcinoma	HB	PCR	183/697	60	73 2	20	253 11	113 397	7 264	4 36	1058	336	0.352
Q	2010	China	Asian	Liver cancer	HB	PCR	86/78	27	51	8	105 6	67 36	6 34	4	106	48	0.798
Shaker	2015	Egypt		Breast cancer	HB	PCR	88/80	36	40	12 1	112 6	64 45	5 29	9 6	119	41	0.661
Sun	2007	China	Asian	Lymphoma	HB	PCR	166/350	72	71 2	23 2	215 117	199	9 133	3 18	531	169	0.549
Sun	2008	China	Asian	Liver cancer	PB	PCR	190/175	72 1	110	8	254 12	126 99	9 67	7 9	265	85	0.586
Tang	2014	China	Asian	NSCLC	HB	PCR	392/437	158 1	171 6	63 2	487 297	7 226	6 176	6 35	628	246	0.928
Wang	2010	China	Asian	Pancreatic cancer	HB	PCR	58/156	24	26	8	74 4	42 74	4 67	7 15	215	67	0.976
Wang	2012	China	Asian	Liver cancer	HB	PCR	303/515	107 1	156 4	40	370 23	236 272	2 205	5 38	749	281	0.941
Wang	2013	China	Asian	Nasopharyngeal carcinoma	HB	PCR	134/327	74	48	12 1	196 7	72 163	3 145	5 19	471	183	0.69
Wang	2017	China	Asian	Pancreatic cancer	HB	PCR	233/842	98 1	116 1	19	312 15	154 435	5 350	0 57	1220	464	0.231
Хи	2012	China	Asian	Ovarian cancer	HB	PCR	282/365	122 1	115 4	45	359 2C	205 231	1 108	8 26	570	160	0.009
Yang	2012	China	Asian	Gallbladder cancer	HB	PCR	91/155	34	45	12 1	113 6	69 88	8 57	7 10	233	77	0.850
Zhai	2012	China	Asian	Hepatocellular carcinoma	HB	PCR	102/135	37	52 1	13 1	126 7	78 –	I		205	65	Ι
Zhang	2014	China	Asian	Malignant melanoma	HB	PCR	220/617	101 1	102	17 3	304 13	136 336	6 246	6 35	918	316	0.248


TABLE 1 Characteristics of all studies included in the meta-analysis

6398 WILEY

Meta-analysis was carried out using Revman 5.3 software (Copenhagen: The Cochrane Collaboration, 2014, The Nordic Cochrane Centre) and STATA 14.1 software (Stata Corporation, College Station, TX, USA). For each study, Hardy-Weinberg equilibrium (HWE) was determined by the chi-squared test, in order to verify the representativeness of the study population.

The association between LAPTM4B polymorphism in relation to cancer risk was evaluated by pooled odds ratios (ORs) and their 95%

confidence intervals (CIs). Pooled ORs and their 95% CIs for codominant, dominant, recessive, overdominant and the allelic comparison genetic inheritance models were calculated. The significance of the pooled OR was assessed by the *Z* test, and *P* < 0.05 was considered statistically significant. The choice of using fixed or random effects model was determined by the results of the between-study heterogeneity test, which was measured using the Q test and I^2 statistic. If the test result was $I^2 \ge 50\%$ or $P_Q < 0.1$, indicating the presence of

FIGURE 1 The pooled ORs and 95% CIs for the association between LAPTM4B polymorphism and cancer susceptibility. The forest plot for relationship between LAPTM4B polymorphism and cancer susceptibility for *2/2 vs *1/1 (A), *2/2 vs *1/1 (B), *1/2 + *2/2 vs *1/1 (C), *2/2 vs *1/2 + *1/1 (D), *1/2 vs *1/1 + *2/2 (E), and *2 vs *1 (F)

heterogeneity, the random effect model was selected; otherwise, the fixed-effects model was chosen.

The funnel plot was used to estimate the publication bias. The degree of asymmetry was measured using Egger's test; P < 0.05 was considered significant publication bias. To measure the potential influence of each study on the overall effect size, sensitivity analysis was performed.

3 | RESULTS

The characteristics and relevant data of the included studies are shown in Table 1. The results of the meta-analysis revealed a significant association between *LAPTM4B* polymorphism and cancer susceptibility cancer in codominant (OR = 1.42, 95% CI = 1.27-1.59, P < 0.00001, *1/2 vs *1/1; OR = 2.01, 95% CI = 1.69-2.39, P < 0.00001, *2/2 vs *1/1), dominant (OR = 1.50, 95% CI = 1.34-1.69, P < 0.00001, *1/2 + *2/2 vs *1/1), recessive (OR = 1.73, 95% CI = 1.53-1.95, P < 0.00001, *2/2 vs *1/1), recessive (OR = 1.73, 95% CI = 1.53-1.95, P < 0.00001, *2/2 vs *1/1 + *1/2), overdominant (OR = 1.28, 95% CI = 1.17-1.41, P < 0.00001, *1/2 vs *1/1 + *2/2), and allele (OR = 1.40, 95% CI = 1.28-1.53, P < 0.00001, *2 vs *1) inheritance model tested (Figure 1).

Stratifying according to cancer types proposed that LAPTM4B polymorphism significantly increased the risk of breast cancer, gastrointestinal cancer, gynaecological cancer, liver cancer, lung cancer, and lymphoma (data not shown).

The potential publication bias was evaluated using a Begg's funnel plot and Egger's test and the analysis suggested no publication bias for this meta-analysis of the heterozygous codominant, dominant, recessive, overdominanat, and allele model (all *P*-values for bias >0.05). We executed sensitivity analysis by neglecting a single study each time to reflect the influence of the individual data set to the pooled OR. The results indicated that the significance of pooled ORs for LAPTM4B polymorphism was not extremely influenced, suggesting the stability and reliability of the results in this meta-analysis.

4 | DISCUSSION

In the current study, we performed a meta-analysis to find out the exact role of LAPTM4B polymorphism on risk of cancer. The results revealed that LAPTM4B polymorphism significantly increased the risk of cancer in codominant, dominant, overdominant, and allele genetic inheritance models. Stratification by cancer types suggested that LAPTM4B polymorphism is associated with the risk of breast cancer, gynaecological cancer, gastrointestinal cancer, liver cancer, lung cancer, and lymphoma. LAPTM4B is a proto-oncogene that is overexpressed in various types of cancers. It has been proposed that overexpression of LAPTM4B-35 promote proliferation, invasion, and migration. Its up-regulation might be caused by gene amplification as well as transcriptional up-regulation. LAPTM4B alleles have the same sequence except for one 19-bp fragment for LAPTM4B *1 and two

tight tandem fragments for LAPTM4B *2 in the 5'UTR of exon 1.²³ The 19-bp alteration in 5'UTR of the first exon of the LAPTM4B gene can shift the open reading frame (ORF), resulting in two alternate protein isoforms, LAPTM4B-35 and LAPTM4B-40. In conclusion, the finding of this meta-analysis illustrated that LAPTM4B polymorphism may affect the risk of development of cancers.

ACKNOWLEDGEMENTS

SG was supported by the operating grant from CHRIM, general operating grant from Health Science Foundation, and Research Manitoba New Investigator operating grant. MJŁ acknowledges the support from NCN grant #: 2016/21/B/NZ1/02812, by LE STUDIUM Institute for Advanced Studies (region Centre-Val de Loire, France) through its Smart Loire Valley General Program, cofunded by the Marie Skłodowska-Curie Actions, grant #: 665790.

CONFLICT OF INTEREST

The authors declare no competing of interests.

ORCID

Mohammad Hashemi D http://orcid.org/0000-0002-6074-7101 Marek J. Łos D http://orcid.org/0000-0001-9518-1411

REFERENCES

- 1. Hashemi M, Amininia S, Ebrahimi M, et al. Association between LAPTM4B gene polymorphism and breast cancer susceptibility in an Iranian population. *Med Oncol.* 2014;31:111.
- Xu Y, Liu Y, Zhou R, et al. LAPTM4B polymorphisms is associated with ovarian cancer susceptibility and its prognosis. Jpn J Clin Oncol. 2012;42:413-419.
- Fan M, Liu Y, Zhou R, Zhang Q. Association of LAPTM4B gene polymorphism with breast cancer susceptibility. *Cancer Epidemiol*. 2012;36:364-368.
- Li X, Kong X, Chen X, et al. LAPTM4B allele *2 is associated with breast cancer susceptibility and prognosis. *PLoS ONE*. 2012;7: e44916.
- Yang H, Zhai G, Ji X, Xiong F, Su J, McNutt MA. Correlation of LAPTM4B polymorphisms with gallbladder carcinoma susceptibility in Chinese patients. *Med Oncol.* 2012;29:2809-2813.
- Liu Y, Zhang QY, Qian N, Zhou RL. Relationship between LAPTM4B gene polymorphism and susceptibility of gastric cancer. Ann Oncol. 2007;18:311-316.
- Cheng XJ, Xu W, Zhang QY, Zhou RL. Relationship between LAPTM4B gene polymorphism and susceptibility of colorectal and esophageal cancers. Ann Oncol. 2008;19:527-532.
- Wang B, Xu J, Zhou R, Zhang Q. Association of LAPTM4B gene polymorphism with nasopharyngeal carcinoma susceptibility in a Chinese population. *Med Oncol.* 2013;30:470.
- Li C, Zhou Q, Wang Y, Chen X, Yang X. Zhu D [Relationship between LAPTM4B gene polymorphism and susceptibility of lung cancer]. *Zhongguo Fei Ai Za Zhi*. 2006;9:109-112.
- Ding H, Cheng X, Ding N, et al. Association between LAPTM4B gene polymorphism and susceptibility to and prognosis of diffuse large B-cell lymphoma. *Oncology Letters*. 2018;15:264-270.

⁶⁴⁰⁰ WILEY

- 11. Chen D, Chang Y, Xu J, Zhang Q. Relationship between LAPTM4B gene polymorphism and susceptibility of renal cell carcinoma and bladder cancer. *Int J Clin Exp Med.* 2016;9:14507-14514.
- Chen D, Chang Y, Xu J, Zhang Q. Association between LAPTM4B gene polymorphism and susceptibility to and prognosis of diffuse large B-cell lymphoma. *Int J Clin Exp Med.* 2016;9:14507-14514.
- Deng LJ, Zhang QY, Liu B, Zhou RL. [Relationship between LAPTM4B gene polymorphism and susceptibility of lung cancer]. *Beijing Da Xue Xue Bao Yi Xue Ban.* 2005;37:302-305.
- Meng F, Li H, Zhou R, Luo C, Hu Y, Lou G. LAPTM4B gene polymorphism and endometrial carcinoma risk and prognosis. *Biomarkers*. 2013;18:136-143.
- Meng F, Song H, Luo C, et al. Correlation of LAPTM4B polymorphisms with cervical carcinoma. *Cancer*. 2011;117:2652-2658.
- Meng Y, Zhou R, Xu J, Zhang Q. LAPTM4B*2 allele is associated with the development of papillary thyroid carcinoma in Chinese women. Oncol Lett. 2017;14:3421-3428.
- Tang H, Tian H, Yue W, et al. LAPTM4B polymorphism is associated with nonsmall cell lung cancer susceptibility and prognosis. *Oncol Rep.* 2014;31:2454-2460.
- Wang B, Wang S, Liang G, Xu J, Zhou R, Zhang Q. Association of lysosomal protein transmembrane 4 beta gene polymorphism with pancreatic carcinoma susceptibility in the Chinese population. *Tumour Biol.* 2017;39:1010428317705518.
- Wang S, Zhang QY, Zhou RL. Relationship between LAPTM4B gene polymorphism and susceptibility of primary liver cancer. Ann Oncol. 2012;23:1864-1869.
- Xia LZ, Yin ZH, Ren YW, et al. The relationship between LAPTM4B polymorphisms and cancer risk in Chinese Han population: a metaanalysis. *Springerplus*. 2015;4:179.

- 21. Zhai G, Yang H, Ji X, et al. Correlation of LAPTM4B polymorphisms with hepatocellular carcinoma in Chinese patients. *Med Oncol.* 2012;29:2744-2749.
- 22. Zhang M, Zhou R, Xu J, Zhang Q. Relationship between LAPTM4B Gene polymorphism and susceptibility of malignant melanoma in Chinese patients. *Transl Oncol.* 2014;7:638-643.
- Hashemi M, Rezaei M, Narouie B, et al. Association between LAPTM4B gene polymorphism and prostate cancer susceptibility in an Iranian population. *Mol Cell Oncol.* 2016;3:e1169342.
- Sun G, Li Z, Hao W, Niu J, Yin J, Yan Y. Relationship between lysosome-associated protein transmembrane 4 beta polymorphism and susceptibility to liver cancer. World Chin J Digestology. 2008;16:908-911.
- Sun L, Zhang Q, Liu Y, Qian N. Relationship between Human Novel Gene LAPTM4B gene polymorphism and susceptibility of Lymphoma. *Cancer Res Prev Treat*. 2007;34:245-248.
- Qi R, Shi X. LAPTM4B gene polymorphism and liver cancer susceptibility. (postgraduate's thesis). 2010.

How to cite this article: Hashemi M, Bahari G, Tabasi F, et al. LAPTM4B gene polymorphism augments the risk of cancer: Evidence from an updated meta-analysis. *J Cell Mol Med*. 2018:22:6396–6400. https://doi.org/10.1111/jcmm.13896