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ALMOST PERIODIC AND PERIODIC SOLUTIONS OF

DIFFERENTIAL EQUATIONS DRIVEN BY THE FRACTIONAL

BROWNIAN MOTION WITH STATISTICAL APPLICATION

NICOLAS MARIE* AND PAUL RAYNAUD DE FITTE†

Abstract. We show that the unique solution to a semilinear stochastic differ-
ential equation with almost periodic coefficients driven by a fractional Brown-

ian motion is almost periodic in a sense related to random dynamical systems.
This type of almost periodicity allows for the construction of a consistent es-

timator of the drift parameter in the almost periodic and periodic cases.
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1. Introduction

Since its introduction by Harald Bohr in the 1920s, the notion of almost period-
icity has found many applications in the qualitative study of ordinary differential
equations and dynamical systems, and many generalisations have been proposed
and applied: almost periodicity in the sense of Stepanov, or Weyl, or Besicovitch,
almost automorphy, asymptotic almost periodicity, etc. See Andres et al. [1] for a
survey and a comparison of some of these notions.

The application of almost periodicity to stochastic differential equations in the
framework of Itô calculus seems to start in the 1980s with the Romanian school,
in a series of papers by Constantin Tudor and his collaborators: [8, 11, 20, 24, 25],
to cite but a few. Each known notion of almost periodicity for deterministic func-
tions forks into several possible definitions for stochastic processes, mainly: almost
periodicity in distribution (in various senses), in probability, or in square mean, see
the surveys by Tudor [26] and Bedouhene et al. [5]. However, almost periodicity in
probability or in square mean appeared to be inapplicable to stochastic differential
equations, see [4, 18]. Recently, a new definition of almost periodicity for stochastic
processes has been introduced in Zhang and Zheng [28] and Raynaud de Fitte [23],
namely θ-almost periodicity, where θ is the Wiener shift. One motivation of [23]
was to circumvent the limitations of “plain” almost periodicity in square mean by
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introducing the action of a group θ of measure preserving transformations on the
underlying probality space.

This paper is devoted to θ-almost periodicity (in Bohr’s sense) in square mean
and statistical estimation for solutions to stochastic differential equations driven
by a fractional Brownina motion with Hurst index greater than 1/2. The paper is
organized as follows.

We present θ-almost periodicity in Section 2, along with some preliminaries on
stochastic integration with respect to fractional Brownian motion.

In Section 3, we prove the existence and uniqueness of a θ-almost periodic in
square mean (resp. θ-periodic) solution to

(1) dX(t) = (AX(t) + b(t,X(t)))dt+ σ(t)dB(t) ; t ∈ R

where A ∈ Md(R) with d ∈ N∗, b : R × Rd → Rd and σ : R → Md(R) are
continuous functions, B is a d-dimensional two-sided fractional Brownian motion
(fBm) of Hurst index H ∈]1/2, 1[, and the functions t 7→ b(t, x), x ∈ Rd and σ are
assumed to be almost periodic (resp. periodic). We also show, in Remark 3.4, that
“plain” almost periodicity in square mean is inapplicable to stochastic equations
driven by fractional Brownian motion, despite some papers claiming the existence
of nontrivial almost periodic solutions in square mean.

Section 4 is devoted to parametric estimation, using some features of θ-almost
periodicity. Along the last two decades, many authors investigated statistical in-
ference in differential equations driven by fractional Brownian motion (fDE). Most
references on the estimation of the trend component in fDE deal with parametric es-
timators under a dissipativity condition on the drift function ensuring the existence
and uniqueness of a stationary solution (see Kleptsyna and Le Breton [15], Tudor
and Viens [27], Hu and Nualart [12], Neuenkirch and Tindel [21], Hu et al. [13],
etc.). Some recent papers deal with parametric estimators of the drift parameter
in the fractional Langevin equation with periodic mean (see Dehling et al. [9] and
Bajja et al. [3]). Having in mind these two research fields, for d = 1, Section 4 deals
with the consistency of a Skorokhod’s integral based least-square type estimator,
similar to those of Hu et al. [13], of the parameter ϑ > 0 in

(2) dX(t) = −ϑ(X(t)− b0(t,X(t)))dt+ σ(t)dB(t) ; t ∈ R,

where the function b0 : R2 → R is continuous and t 7→ b0(t, x) is almost periodic
for every x ∈ R. As with stationarity in Hu et al. [13], the periodicity or almost
periodicity of the solution to Equation (2) under the conditions of Section 4 allows
to prove the consistency of the mentioned least-square type estimator of ϑ. To our
knowledge, this problem has not yet been investigated, even for periodic diffusion
processes.

Notations and basic properties:

(1) For every s, t ∈ R such that s < t, ∆s,t := {(u, v) ∈ [s, t]2 : u < v}.
(2) For every function f from R into Rd and (s, t) ∈ R2, f(s, t) := f(t)− f(s).
(3) Consider a real interval I. The vector space of continuous functions from

I into Rd is denoted by C0(I,Rd) and equipped with the uniform norm
‖.‖∞,I defined by

‖f‖∞,I := sup
u∈I
‖f(u)‖ ; ∀f ∈ C0(I,Rd).

In particular, ‖.‖∞,s,t := ‖.‖∞,[s,t] for every s, t ∈ R such that s < t.
(4) Consider s, t ∈ R such that s < t. The set of all dissections of [s, t] is

denoted by D[s,t].
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(5) Consider n ∈ N∗. The vector space of infinitely continuously differentiable
maps f : Rn → R such that f and all its partial derivatives have polynomial
growth is denoted by C∞p (Rn;R).

(6) Consider a probability space (Ω,A,P). Let L0(Ω;Rd) be the space of equiv-
alence classes, for the almost everywhere equality, of measurable mappings
from Ω into Rd. For every p > 1, the usual distance on Lp(Ω;Rd) is denoted
by dp.

2. Preliminaries

This section provodes some preliminary material on almost periodicity and on
stochastic integrals with respect to fractional Brownian motion.

2.1. Almost periodic functions and θ-almost periodic processes. This sub-
section deals with almost periodic functions and almost periodic processes with
respect to a metric dynamical system.

Definition 2.1. (1) A set A ⊂ R is relatively dense if, for every ε > 0, there
exists l > 0 such that every interval of length l has a nonempty intersection
with A.

(2) Let f : R → Rd be a continuous function. For any ε > 0, τ > 0 is an
ε-almost period of f if

∀t ∈ R, ‖f(t+ τ)− f(t)‖ 6 ε.
(3) A continuous function f : R → Rd is almost periodic (in Bohr’s sense) if,

for every ε > 0, the set of its ε-almost periods is relatively dense.
(4) A continuous function f : R × Rd → Rd is almost periodic uniformly with

respect to compact subsets of Rd if, for every compact subset K of Rd, the
map

t ∈ R 7−→ f(t, .)|K
is almost periodic.

Now, let us state the mean value theorem and Parseval’s equality for almost periodic
functions. These results are proved in Levitan and Zhikov [16], Chapter 2. The
reader can also refer to Corduneanu [7].

Proposition 2.2. For every almost periodic function f : R→ C, its mean value

M(f) := lim
t→∞

1

t

∫ t

0

f(s)ds

exists.

Proposition 2.3. For every almost periodic function f : R→ C, its spectrum

S(f) := {λ ∈ R :M(feiλ.) 6= 0}
is at least countable and, for every sequence (λn)n∈N of elements of S(f),

∞∑
n=1

|M(feiλn.)|2 =M(|f |2).

Let (Ω,A,P, θ) be a metric dynamical system (in the sense of Arnold [2]), that is,
(Ω,A,P) is a probability space, and θ = (θt)t∈R is a group of measure preserving
transformations on Ω.

Definition 2.4. The translation of a continuous process Y is the C0(R,L0(Ω;Rd))-
valued map TY defined by

TτY (t, ω) := Y (t+ τ, θ−τω)

for every ω ∈ Ω and t, τ ∈ R.
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Definition 2.5. Let Y be a continuous process such that Y (t) ∈ Lp(Ω;Rd) for
every t ∈ R.

(1) For any ε > 0, τ > 0 is a θ-ε-almost period in p-mean of Y if

sup
t∈R

dp(TτY (t), Y (t)) 6 ε.

(2) The continuous process Y is θ-almost periodic in p-mean if (t, τ) 7→ TτY (t)
is continuous for the distance dp and, for every ε > 0, the set of its θ-ε-
almost periods is relatively dense.

(3) The continuous process Y is θ-τ -periodic with τ > 0 if TτY = Y .

The following proposition provides a compactness result which is crucial in the first
step of the proof of Proposition 3.3.

Proposition 2.6. Consider a continuous process Y and a compact interval J ⊂ R.
Assume that Y is θ-almost periodic in p-mean. Then,

(1) The set {TτY (t) ; t ∈ J , τ ∈ R} is relatively compact in Lp(Ω;Rd).
(2) For every ε > 0, there exists a compact subset K of Rd such that

sup
t∈R

P(Y (t) 6∈ K) 6 ε.

See [23, Proposition 3.10 and Subsection 3.3] for a proof.

2.2. Wiener and Skorokhod integrals with respect to the fBm. This sub-
section deals with the definitions and basic properties of Wiener’s integral and of
Skorokhod’s integral with respect to the fractional Brownian motion of Hurst index
greater than 1/2.

Definition 2.7. Let y (resp. w) be a continuous function from R intoMd(R) (resp.
Rd). Consider a dissection D = (t0, . . . , tm) of [s, t] with m ∈ N∗ and s, t ∈ R such
that s < t. The Riemann sum of y with respect to w on [s, t] for the dissection D
is

Jy,w,D(s, t) :=

m−1∑
k=0

y(tk)(w(tk+1)− w(tk)).

Notation. With the notations of Definition 2.7, the mesh of the dissection D is

δ(D) := max
k∈J0,m−1K

|tk+1 − tk|.

In the sequel, (Ω,A,P) is the canonical probability space associated to B.

On the one hand, consider the reproducing kernel Hilbert space

H := {h ∈ L0(R) : 〈h, h〉H <∞}

of Bj , j = 1, . . . , d, where 〈., .〉H is the inner product defined by

〈h, η〉H := H(2H − 1)

∫ ∞
−∞

∫ ∞
−∞
|t− s|2H−2h(s)η(s)dsdt

for every h, η ∈ L0(R).

Theorem 2.8. Consider s, t ∈ R such that s < t, j ∈ {1, . . . , d} and h ∈ L0(R)
such that h1[s,t] ∈ H. There exists Jh,Bj (s, t) ∈ L2(Ω;R) such that for every
sequence (Dn)n∈N of dissections of [s, t] satisfying δ(Dn)→ 0 as n→∞,

lim
n→∞

E(|Jh,Bj (s, t)− Jh,Bj ,Dn(s, t)|2) = 0.
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The random variable Jh,Bj (s, t) is the Wiener integral of h with respect to Bj on
[s, t] and it is denoted by ∫ t

s

h(u)dBj(u).

See Huang and Cambanis [14, Section 3] for a proof.

Corollary 2.9. For every j ∈ {1, . . . , d} and h ∈ H, there exists Jh,Bj ∈ L2(Ω;R)
such that

lim
s,t→∞

E

(∣∣∣∣Jh,Bj − ∫ t

−s
h(u)dBj(u)

∣∣∣∣2
)

= 0.

The random variable Jh,Bj is the Wiener integral of h with respect to Bj on R and
it is denoted by ∫ ∞

−∞
h(u)dBj(u).

Consider

Hd := {h ∈ L0(R;Md(R)) : ∀i, j = 1, . . . , d, hi,j ∈ H}.
For every h ∈ L0(R;Md(R)) and s, t ∈ R such that s < t and h1[s,t] ∈ Hd, the
Wiener integral of h with respect to B on [s, t] is the random vector∫ t

s

h(u)dB(u) :=

 d∑
j=1

∫ t

s

hi,j(u)dBj(u)


i=1,...,d

.

The following inequality is a straightforward consequence of Memin et al. [19, The-
orem 1.1].

Proposition 2.10. There exists a deterministic constant cd,H > 0, depending only
on d and H, such that

E

(∥∥∥∥∫ t

s

h(u)dB(u)

∥∥∥∥2
)
6 cd,H

(∫ t

s

‖h(u)‖1/Hop du

)2H

for every s < t and h ∈ L0(R;Md(R)) satisfying h1[s,t] ∈ Hd.

On the other hand, let (B(h))h∈H be the isonormal Gaussian process defined by

B(h) :=

∫ .

−∞
h(s)dB(s) ; ∀h ∈ H.

Definition 2.11. The Malliavin derivative of a smooth functional

F = f(B(h1), . . . ,B(hn))

where n ∈ N∗, f ∈ C∞p (Rn;R) and h1, . . . , hn ∈ H, is the H-valued random variable

DF :=

n∑
k=1

∂kf(B(h1), . . . ,B(hn))hk.

Proposition 2.12. The map D is closable from L2(Ω,A,P) into L2(Ω;H). Its
domain in L2(Ω,A,P), denoted by D1,2, is the closure of the smooth functionals
space for the seminorm ‖.‖1,2 defined by

‖F‖21,2 := E(|F |2) + E(‖DF‖2H) <∞

for every F ∈ L2(Ω,A,P).

For a proof, see Nualart [22, Proposition 1.2.1].
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Definition 2.13. The adjoint δ of the Malliavin derivative D is the divergence
operator. The domain of δ is denoted by dom(δ), and u ∈ dom(δ) if and only if
there exists a deterministic constant cu > 0 such that for every F ∈ D1,2,

|E(〈DF, u〉H)| 6 cuE(|F |2)1/2.

For any process Y := (Y (s))s∈R+
and every t > 0, if Y 1[0,t] ∈ dom(δ), its Skorokhod

integral with respect to B is defined on [0, t] by∫ t

0

Y (s)δB(s) := δ(Y 1[0,t]).

3. Almost periodic and periodic solutions to Equation (1)

Throughout this section, A, b and σ fulfill the following assumption.

Assumption 3.1. The functions S : t ∈ R 7→ exp(At), b and σ satisfy the four
following conditions:

(1) There exist cS ,mS > 0 such that for every t ∈ R, ‖S(t)‖op 6 cSe
−mSt.

(2) There exist cb,mb > 0 such that for every t ∈ R and x, y ∈ Rd,

‖b(t, x)− b(t, y)‖ 6 cb‖x− y‖ and ‖b(t, x)‖ 6 mb(1 + ‖x‖).
(3) For every t ∈ R, S(t− ·)σ(·)1]−∞,t](·) ∈ Hd.
(4) b (resp. σ) is almost periodic uniformly with respect to the compact subsets

of Rd (resp. almost periodic).

A d-dimensional continuous process X is a solution to Equation (1) if and only if

X(t) =

∫ t

−∞
S(t− s)b(s,X(s))ds+

∫ t

−∞
S(t− s)σ(s)dB(s) ; ∀t ∈ R.

In order to investigate the question of the existence of almost periodic solutions to
Equation (1), let θ = (θt)t∈R be the dynamical system on (Ω,A), called Wiener
shift, such that

θtω := ω(t+ ·)− ω(t)

for every ω ∈ Ω and t ∈ R. By Maslowski and Schmalfuss [17], (Ω,A,P, θ) is an
ergodic metric dynamical system.

Remark 3.2. For any t, τ ∈ R and ω ∈ Ω,

B(t+ τ, θ−τω) = B(t, ω)−B(−τ, ω).

Then, for every s ∈ R,

Tτ (B(·+ s)−B(·))(t, ω) = B(t+ s, ω)−B(t, ω).

For p > 1, let APp(Ω;Rd) denote the space of continuous, uniformly bounded and
θ-almost periodic in p-mean processes. Consider also the operator Γ defined on
AP2(Ω;Rd) by

ΓX(t) :=

∫ t

−∞
S(t− s)b(s,X(s))ds+

∫ t

−∞
S(t− s)σ(s)dB(s)

for every X ∈ AP2(Ω;Rd).

Theorem 3.3. Under Assumption 3.1, Γ maps AP2(Ω;Rd) into itself. Moreover,
if

cScb
mS

< 1,

then Equation (1) has a unique continuous, uniformly bounded and θ-almost peri-
odic in square mean solution.
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Proof. Consider X ∈ AP2(Ω;Rd) and ε0 > 0. The conditions on S, b and σ to-
gether with well known inequalities on Riemman’s integral and Proposition 2.10
give immediately that ΓX is a continuous and uniformly bounded process. It re-
mains to prove, in three steps, that ΓX is θ-almost periodic in square mean. A
fourth step deals with the existence and uniqueness of the solution to Equation (1).

Step 1. This is a preliminary step which provides useful controls for Steps 2 and
3. Consider X ∈ AP2(Ω;Rd). For any s ∈ R, the set {X(s + τ, θ−τ .) ; τ ∈
R} is relatively compact in L2(Ω;Rd) by Proposition 2.6.(1). Then, the process
(X(s + τ, θ−τ .))τ∈R is uniformly square integrable. By Assumption 3.1.(2), the
process (b(s+ τ,X(s+ τ, θ−τ .)))τ∈R is also uniformly square integrable. Therefore,
for any α > 0, there exists η ∈]0, α ∧ 1[ such that for any A ∈ A,

(3) ∀s, τ ∈ R, P(A) < η =⇒
{

E(‖X(s+ τ, θ−τ .)‖21A) < α
E(‖b(s+ τ,X(s+ τ, θ−τ .))‖21A) < α

.

Moreover, by Proposition 2.6.(2), there exists a compact subset Kα of Rd such that

(4) ∀s, τ ∈ R, P(X(s+ τ, θ−τ .) ∈ Kα) > 1− η.

Finally, by Assumption 3.1.(4), b (resp. σ) is uniformly continuous on R × Kα

(resp. R) and then, one can choose η such that in addition to (3), for every s, τ ∈ R
satisfying |τ − s| < η,

(5)


‖σ(τ)− σ(s)‖2 < α and sup

x∈Kα
‖b(τ, x)− b(s, x)‖2 < α

sup
u∈R

E(‖X(u+ τ, θ−τ .)−X(u+ s, θ−s.)‖2) < α
.

Step 2. Let us establish in this step that for any ε0 > 0, the set of θ-ε0-almost
periods of ΓX is relatively dense. By Assumption 3.1.(4), [23, Corollary 3.4] on the
almost periodicity in product spaces, and by [23, Proposition 3.17], ensuring that
a continuous process is θ-almost periodic if and only if its translation is an almost
periodic map,

t ∈ R 7−→ (b(t, x), σ(t), X(t, .))

is θ-almost periodic uniformly with respect to x in compact subsets of Rd (see Def-
inition 2.1.(4)).

Consider ε > 0 and let Tε be the relatively dense set of common ε-almost peri-
ods of X, b(., x) and σ for every x ∈ Kα. Let us show that for an appropriate
choice of ε and α, the set Tε is contained in the set of ε0-almost periods in square
mean of ΓX.

Consider τ ∈ Tε and, without loss of generality, assume that τ > 0. By the
definition of ΓX together with Remark 3.2, for any t ∈ R,

TτΓX(t, .) =

∫ t+τ

−∞
S(t+ τ − s)b(s,X(s, θ−τ .))ds

+

∫ t+τ

−∞
S(t+ τ − s)σ(s)dB(s, θ−τ .)

=

∫ t

−∞
S(t− s)b(s+ τ,X(s+ τ, θ−τ .))ds

+

∫ t

−∞
S(t− s)σ(s+ τ)dB(s, .).
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So,

(6) E(‖TτΓX(t, .)− ΓX(t, .)‖2) 6 3(E(I1
τ (t)2) + E(I2

τ (t)2) + E(I3
τ (t)2))

where

I1
τ (t) :=

∥∥∥∥∫ t

−∞
S(t− s)(b(s+ τ,X(s+ τ, θ−τ .))− b(s,X(s+ τ, θ−τ .)))ds

∥∥∥∥ ,
I2
τ (t) :=

∥∥∥∥∫ t

−∞
S(t− s)(b(s,X(s+ τ, θ−τ .))− b(s,X(s, .)))ds

∥∥∥∥ and

I3
τ (t) :=

∥∥∥∥∫ t

−∞
S(t− s)(σ(s+ τ)− σ(s))dB(s, .)

∥∥∥∥ .
Let us find suitable bounds for E(I1

τ (t)2), E(I2
τ (t)2) and E(I3

τ (t)2).

(1) For every s ∈ R, consider

Aα(τ, s) := {ω ∈ Ω : X(s+ τ, θ−τω) ∈ Kα}

and

bτ (s, .) := b(s+ τ,X(s+ τ, θ−τ .))− b(s,X(s+ τ, θ−τ .)).

On the one hand, since τ is an ε-almost period of b(., x) uniformly with
respect to x ∈ Kα, for any s ∈ R,

(7) ‖bτ (s, .)‖1Aα(τ,s) 6 ε.

On the other hand, by (4),

P(Aα(τ, s)) > 1− η > 1− α

and then by (3),

E(‖bτ (s, .)‖21Ω\Aα(τ,s)) 6 2E(‖b(s+ τ,X(s+ τ, θ−τ .))‖21Ω\Aα(τ,s))

+2E(‖b(s,X(s+ τ, θ−τ .))‖21Ω\Aα(τ,s))

6 4α.(8)

So, by Jensen’s inequality, Assumption 3.1.(1), and Inequalities (7) and (8),

E(I1
τ (t)2) 6 c2SE

(∣∣∣∣∫ t

−∞
e−mS(t−s)‖bτ (s, .)‖ds

∣∣∣∣2
)

6
c2S
mS

∫ t

−∞
e−mS(t−s)E(‖bτ (s, .)‖2)ds 6 c1(ε2 + 4α)

with

c1 :=

(
cS
mS

)2

.

(2) By Assumption 3.1.(1,2,4) and since τ is a θ-ε-almost period of X,

E(I2
τ (t)2) 6 c2S

(∫ t

−∞
e−mS(t−s)ds

)2

sup
s∈R

E(‖b(s,X(s+ τ, θ−τ .))− b(s,X(s, .))‖2)

6 c2ε
2

with

c2 :=

(
cScb
mS

)2

.
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(3) By Proposition 2.10 and Assumption 3.1.(1,3,4),

E(I3
τ (t)2) 6 cd,H

(∫ t

−∞
‖S(t− s)(σ(s+ τ)− σ(s))‖1/Hop ds

)2H

6 cd,Hc2S

(∫ t

−∞
e−mS(t−s)/Hds

)2H

ε2 = c3ε
2

with

c3 := cd,Hc2S

(
H

mS

)2H

.

Therefore, by Inequality (6),

E(‖TτΓX(t, .)− ΓX(t, .)‖2) 6 3(c1 + c2 + c3)(ε2 + 4α).

Since one can take ε and α such that the right hand side of the previous inequality
is lower than ε0, Tε is contained in the set of θ-ε0-almost periods in square mean
of ΓX as expected. In conclusion, this last set is relatively dense.

Step 3. Let us establish in this step that the map (t, τ) 7→ TτΓX(t) is continu-
ous for the distance d2. Thanks to [23, Proposition 3.9], it is sufficient to prove the
continuity, for the distance d2, of the map τ 7→ TτΓX(0). Consider τ0, τ ∈ R such
that |τ − τ0| < η and, without loss of generality, assume that τ0, τ > 0. By the
definition of ΓX together with Remark 3.2,

TτΓX(0, .)− Tτ0ΓX(0, .) =

∫ 0

−∞
S(−s)(b(s+ τ,X(s+ τ, θ−τ .))

−b(s+ τ0, X(s+ τ0, θ−τ0 .)))ds

+

∫ 0

−∞
S(−s)(σ(s+ τ)− σ(s+ τ0))dB(s, .).

So,

(9) E(‖TτΓX(0, .)− Tτ0ΓX(0, .)‖2) 6 3(E(|I1
τ,τ0 |

2) + E(|I2
τ,τ0 |

2) + E(|I3
τ,τ0 |

2))

where

I1
τ,τ0 :=

∥∥∥∥∫ 0

−∞
S(−s)(b(s+ τ,X(s+ τ0, θ−τ0 .))− b(s+ τ0, X(s+ τ0, θ−τ0 .)))ds

∥∥∥∥ ,
I2
τ,τ0 :=

∥∥∥∥∫ 0

−∞
S(−s)(b(s+ τ,X(s+ τ, θ−τ .))− b(s+ τ,X(s+ τ0, θ−τ0 .)))ds

∥∥∥∥ and

I3
τ,τ0 :=

∥∥∥∥∫ 0

−∞
S(−s)(σ(s+ τ)− σ(s+ τ0))dB(s, .)

∥∥∥∥ .
Let us find suitable bounds for E(|I1

τ,τ0 |
2), E(|I2

τ,τ0 |
2) and E(|I3

τ,τ0 |
2).

(1) For every s ∈ R, consider

bτ,τ0(s, .) := b(s+ τ,X(s+ τ0, θ−τ0 .))− b(s+ τ0, X(s+ τ0, θ−τ0 .)).

On the one hand, by (5), for any s ∈ R,

(10) ‖bτ,τ0(s, .)‖1Aα(τ0,s) 6 sup
x∈Kα

‖b(s+ τ, x)− b(s+ τ0, x)‖2 < α.

On the other hand, by (4),

P(Aα(τ0, s)) > 1− η > 1− α

and then by (3),

(11) E(‖bτ,τ0(s, .)‖21Ω\Aα(τ0,s)) 6 4α.
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So, by Jensen’s inequality, Assumption 3.1.(1), and Inequalities (10) and
(11),

E(|I1
τ,τ0 |

2) 6
c2S
mS

∫ 0

−∞
emSsE(‖bτ,τ0(s, .)‖2)ds 6 5c1α.

(2) By Assumption 3.1.(1,2) and (5),

E(|I2
τ,τ0 |

2) 6 c2S

(∫ 0

−∞
emSsds

)2

× sup
s∈R

E(‖b(s,X(s+ τ, θ−τ .))− b(s,X(s+ τ0, θ−τ0 .))‖2)

6 c2α.

(3) By Proposition 2.10, Assumption 3.1.(1,3) and (5),

E(|I3
τ,τ0 |

2) 6 cd,H

(∫ 0

−∞
‖S(−s)(σ(s+ τ)− σ(s+ τ0))‖1/Hop ds

)2H

6 cd,Hc2S

(∫ 0

−∞
emSs/Hds

)2H

α = c3α.

Therefore, by Inequality (9),

E(‖TτΓX(0, .)− Tτ0ΓX(0, .)‖2) 6 15(c1 + c2 + c3)α.

Since α has been chosen arbitrarily close to 0, the map τ 7→ TτΓX(0) is continuous
at time τ0 for the distance d2.

Step 4. For every X,X∗ ∈ AP2(Ω;Rd) and t ∈ R, by Jensen’s inequality and
Assumption 3.1.(1,2),

E(‖ΓX(t)− ΓX∗(t)‖2) 6 c2SE

(∣∣∣∣∫ t

−∞
e−mS(t−s)‖b(s,X(s))− b(s,X∗(s))‖ds

∣∣∣∣2
)

6
c2S
mS

∫ t

−∞
e−mS(t−s)E(‖b(s,X(s))− b(s,X∗(s))‖2)ds

6
c2Sc

2
b

mS

(∫ t

−∞
e−mS(t−s)ds

)
× sup
s∈R

E(‖X(s)−X∗(s)‖2) = c2 sup
s∈R

E(‖X(s)−X∗(s)‖2).

Since c2 < 1, Γ has a unique fixed point by Picard’s theorem. �

Remark 3.4 (Square mean almost periodicity and fractional Ornstein-Uhlenbeck
process). The simplest case of Equation (1), with d = 1, b = 0 and where σ
is a constant (fractional Ornstein-Uhlenbeck process) shows that “plain” almost
periodicity in square mean (that is, with θt = IdΩ for all t ∈ R) is inapplicable
for equations driven by fractional Brownian motion. Indeed, by Cheridito et al. [6,
Theorem 2.3], the autocovariance function of the fractional Ornstein-Uhlenbeck
process decays to 0. However, this process is stationary, thus it has a constant
variance. By [18, Lemma 2.3] this shows that no nontrivial fractional Ornstein-
Uhlenbeck process is almost periodic in square mean. However, Theorem 3.3 shows
that it is always θ-almost periodic in square mean.

Now, S, b and σ fulfill the following assumption which is stronger than Assumption
3.1.

Assumption 3.5. The functions S : t ∈ R 7→ exp(At), b and σ satisfy the four
following conditions:
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(1) There exist cS ,mS > 0 such that for every t ∈ R, ‖S(t)‖op 6 cSe
−mSt.

(2) There exist cb,mb > 0 such that for every t ∈ R and x, y ∈ Rd,
‖b(t, x)− b(t, y)‖ 6 cb‖x− y‖ and ‖b(t, x)‖ 6 mb(1 + ‖x‖).

(3) For every t ∈ R, S(t− ·)σ(·)1]−∞,t](·) ∈ Hd.
(4) There exists τ > 0 such that b(., x) (resp. σ) is τ -periodic for every x ∈ Rd

(resp. τ -periodic).

Under Assumption 3.5, the proof of the following proposition remains the same
than for Theorem 3.3 by taking ε0 = 0.

Proposition 3.6. Under Assumption 3.5, if
cScb
mS

< 1,

then Equation (1) has a unique continuous, uniformly bounded and θ-τ -periodic
solution.

4. Consistency of an estimator of the parameter ϑ in Equation (2)

Throughout this section, the parameter ϑ involved in Equation (2) belongs to
[ϑ,∞[ with ϑ > 0. Moreover, the function b0 fulfills the following assumption.

Assumption 4.1. The functions b0(t, .), t ∈ R+ belong to C1(R;R)\{IdR} and
there exists mb0 ,mb0 ∈]0, 1[ such that

−mb0 6 ∂2b0(t, x) 6 1−mb0

for every (t, x) ∈ R+ × R.

For instance, if

b0(t, x) :=
1

2
(cos(t) + sin(

√
2 · t))x ; ∀(t, x) ∈ R2,

then b = −ϑb0 (resp. b0) fulfils Assumption 3.1.(2,4) (resp. 4.1), and if

b0(t, x) :=
1

2
cos(t)x ; ∀(t, x) ∈ R2,

then b = −ϑb0 (resp. b0) fulfils Assumption 3.5.(2,4) (resp. 4.1).

Note that under Assumption 4.1, cb = ϑ[(1 − mb0) ∨ mb0 ]. So, under Assumption
3.1 (resp. 3.5), since cS = 1 and mS = ϑ,

cScb
mS

= (1−mb0) ∨mb0 < 1,

and then Equation (2) has a unique almost periodic (resp. periodic) solution by
Theorem 3.3 (resp. Proposition 3.6).

Under Assumptions 3.1 or 3.5, and Assumption 4.1, the purpose of this section
is to establish the consistency of the least-square type estimator

ϑ̂T := −

∫ T

0

(X(s)− b0(s,X(s)))δX(s)∫ T

0

(X(s)− b0(s,X(s)))2ds

; T > 0

of ϑ, where the Skorokhod integral with respect to the solution X to Equation (2)
is defined by∫ t

0

Y (s)δX(s) := −ϑ
∫ t

0

Y (s)(X(s)− b0(s,X(s)))ds+

∫ t

0

Y (s)σ(s)δB(s)
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for any continuous process Y and every t > 0 such that Y σ1[0,t] ∈ dom(δ).

Let C1
b(R+×R,R) be the subspace of C0(R+×R,R) such that ϕ ∈ C1

b(R+×R,R)
if and only if, for every t ∈ R+, ϕ(t, .) belongs to C1(R;R) and ∂2ϕ is bounded.

The following lemma is similar to Hu et al. [13, Proposition 4.4].

Lemma 4.2. Under Assumptions 3.1 and 4.1, there exists a deterministic constant
cH,σ,ϑ > 0, only depending on H, ‖σ‖∞ and ϑ, such that for every ϕ ∈ C1

b(R+ ×
R,R) and t ∈ R+,

E

(∣∣∣∣∫ t

0

ϕ(s,X(s))δB(s)

∣∣∣∣2
)
6 cH,σ,ϑ

[(∫ t

0

E(|ϕ(s,X(s))|1/H)ds

)2H

+

(∫ t

0

E(|∂2ϕ(s,X(s))|2)1/(2H)ds

)2H
]
<∞.

Proof. On the one hand, for any s, t ∈ R+, by the chain rule for Malliavin’s deriv-
ative,

DsX(t) = σ(s)1[0,t](s)− ϑ
∫ t

0

(1− ∂2b0(u,X(u)))DsX(u)du.

Then,

DsX(t) = σ(s)1[0,t](s) exp

(
−ϑ
∫ t

s

(1− ∂2b0(u,X(u)))du

)
and, by Assumption 4.1,

(12) |DsX(t)| 6 ‖σ‖∞1[0,t](s)e
−ϑ·mb0 (t−s).

On the other hand, by Hu et al. [13, Theorem 3.6.(2)], there exists a deterministic
constant cH > 0, depending only on H, such that for any ϕ ∈ C1

b(R+ × R,R),

E

(∣∣∣∣∫ t

0

ϕ(u,X(u))δB(u)

∣∣∣∣2
)
6 cH

[(∫ t

0

E(|ϕ(u,X(u))|1/H)du

)2H

+ E
(∫ t

0

∫ u

0

|Dv[ϕ(u,X(u))]|1/Hdvdu
)2H

]
.(13)

As in the proof of Hu et al. [13, Proposition 4.4], Inequalities (12) and (13) allow
to conclude. �

Now, let us establish the consistency of the estimator ϑ̂T under Assumption 3.5
(periodic case), and then under Assumption 3.1 (almost periodic case). Lemma 4.3
is a little bit stronger than Lemma 4.5, and to investigate the periodic case first
helps to understand the almost periodic one.

4.1. Consistency of ϑ̂T : periodic case. For every τ > 0, consider

Perτ (Ω;R) := {Y ∈ AP1(Ω;R) : Y is θ-τ -periodic}.

The following lemma is a mean value theorem for the elements of Perτ (Ω;R).

Lemma 4.3. For every τ > 0 and Y ∈ Perτ (Ω;R),

1

t

∫ t

0

Y (s)ds
a.s./L2

−−−−→
t→∞

1

τ

∫ τ

0

E(Y (s))ds.
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Proof. Consider τ > 0 and Y ∈ Perτ (Ω;R). Without loss of generality, by taking
t = nτ with n ∈ N∗,

1

t

∫ t

0

Y (s, .)ds =
1

t

n−1∑
k=0

∫ (k+1)τ

kτ

Y (s, .)ds

=
1

nτ

n−1∑
k=0

∫ τ

0

Y (s+ kτ, θ−kτ (θkτ .))ds =
1

τ

∫ τ

0

Mτ
n(s, .)ds

where

Mτ
n(s, .) :=

1

n

n−1∑
k=0

Y (s, θkτ .) ; ∀s ∈ R+.

Since (Ω,A,P, θ) is an ergodic metric dynamical system (see Maslowski and Schmal-
fuss [17]), by Birkhoff’s ergodic theorem,

Mτ
n(s)

a.s./L2

−−−−→
n→∞

E(Y (s)) ; ∀s ∈ R+.

Moreover, since it belongs to Perτ (Ω;R), the process Y is bounded. So, by Lebesgue’s
theorem,

1

τ

∫ τ

0

Mτ
n(s)ds

a.s./L2

−−−−→
n→∞

1

τ

∫ τ

0

E(Y (s))ds.

This concludes the proof. �

Note that the preceding lemma obviously holds if Y is a finite sum of θ-periodic
processes.

Proposition 4.4. Under Assumptions 3.5 and 4.1, ϑ̂T is a consistent estimator
of ϑ.

Proof. First of all, note that ϑ̂T = ϑ− UT /VT , where

UT :=
1

T

∫ T

0

(X(s)− b0(s,X(s)))σ(s)δB(s)

and

VT :=
1

T

∫ T

0

(X(s)− b0(s,X(s)))2ds.

On the one hand, let us show that E(U2
T )→ 0 as T →∞. By Lemma 4.2,

E(U2
T ) 6

cH,σ,ϑ
T 2

(∫ T

0

E(|(X(s)− b0(s,X(s)))σ(s)|1/H)ds

)2H

+

(∫ T

0

E(|(1− ∂2b0(s,X(s)))σ(s)|2)1/(2H)ds

)2H
 .

Then, since b0, ∂2b0, σ and X are bounded under Assumptions 3.5 and 4.1, there
exists a deterministic constant c1 > 0, not depending on T , such that

E(U2
T ) 6 c1T

2H−2 −−−−→
T→∞

0.

On the other hand, by Lemma 4.3,

VT
L2

−−−−→
T→∞

1

τ

∫ τ

0

E((X(s)− b0(s,X(s)))2)ds > 0.

Therefore, by Slutsky’s lemma,

ϑ̂T
P−−−−→

T→∞
ϑ.



14 NICOLAS MARIE* AND PAUL RAYNAUD DE FITTE†

�

4.2. Consistency of ϑ̂T : almost periodic case. The following lemma is a mean
value theorem for the elements of AP1(Ω;R). This result is slightly weaker than
Lemma 4.3.

Lemma 4.5. For every Y ∈ AP1(Ω;R), the mean value M(mY ) of its mean
function mY : s 7→ E(Y (s)) exists and

1

t

∫ t

0

Y (s, .)ds
L1

−−−→
t→∞

M(mY ).

Proof. Let Y ∈ AP1(Ω;R). Since mY is an almost periodic function, its mean
value M(mY ) exists by Proposition 2.2. Let ε > 0, and let Tε/3 denote the set of
θ- ε3 -periods of Y . Since Tε/3 is relatively dense, we can choose τ ∈ Tε/3 such that

(14)

∣∣∣∣1τ
∫ τ

0

E(Y (s))ds−M(mY )

∣∣∣∣ 6 ε

3
.

Let us denote, for n ∈ N∗ and s ∈ R+,

Mτ
n(s, .) =

1

n

n−1∑
k=0

Y (s, θkτ .).

Since (Ω,A,P, θ) is an ergodic metric dynamical system (see Maslowski and Schmal-
fuss [17]), we deduce by Birkhoff’s theorem

Mτ
n(s)

a.s./L1

−−−−→
n→∞

E(Y (s)) ; ∀s ∈ R+.

Using the uniform continuity on [0, τ ] of s 7→Mn(s) in L1, we deduce∣∣∣∣1τ
∫ τ

0

Mn(s)ds− 1

τ

∫ τ

0

E(Y (s))ds

∣∣∣∣ L1

−−−−→
n→∞

0.

In particular, there exists N ∈ N large enough such that

(15) E
(∣∣∣∣1τ

∫ τ

0

Mn(s)ds− 1

τ

∫ τ

0

E(Y (s))ds

∣∣∣∣) 6 ε

3
; ∀n > N.

On the other hand, we have

(16) E
(∣∣∣∣ 1

nτ

∫ nτ

0

Y (s, .)ds− 1

τ

∫ τ

0

Mn(s, .)ds

∣∣∣∣)
=

1

nτ
E

(∣∣∣∣∣
n−1∑
k=0

∫ (k+1)τ

kτ

Y (s)ds−
n−1∑
k=0

∫ τ

0

Y (s, θkτ .)

∣∣∣∣∣
)

6
1

nτ

n−1∑
k=0

∫ τ

0

E(|Y (s+ kτ, .)− Y (s, θkτ .)|)ds 6
ε

3
.

From (14)-(15)-(16), we deduce that

E
(∣∣∣∣ 1

nτ

∫ nτ

0

Y (s)ds−M(mY )

∣∣∣∣) 6 ε; ∀n > N.
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To conclude the proof, we only need to notice that, for t = nτ + r, with 0 6 r < τ ,
we have, since s 7→ E(Y (s, .)) is bounded,

E
(∣∣∣∣1t

∫ t

0

Y (s)ds− 1

nτ

∫ nτ

0

Y (s)ds

∣∣∣∣)
6

(
1− nτ

nτ + r

)
E
(∣∣∣∣ 1

nτ

∫ nτ

0

Y (s)ds

∣∣∣∣)+
1

nτ + r

∫ τ

0

E(|Y (nτ + s)|)ds

−−−−→
n→∞

0 uniformly with respect to r.

�

Proposition 4.6. Under Assumptions 3.1 and 4.1, ϑ̂T is a consistent estimator
of ϑ.

Proof. As established in the proof of Proposition 4.4, ϑ̂T = ϑ− UT /VT where

UT =
1

T

∫ T

0

(X(s)− b0(s,X(s)))σ(s)δB(s)
L2

−−−−→
T→∞

0,

and

VT =
1

T

∫ T

0

Y (s)ds

with

Y (s) := (X(s)− b0(s,X(s)))2 ; ∀s ∈ R.
Since X ∈ AP2(Ω;R) by Theorem 3.3 and the functions b0(., x), x ∈ R are almost
periodic, Y ∈ AP1(Ω;R) by Bochner’s double sequence criterion (see [23, Theorem
3.12]). Then, by Lemma 4.5,

VT
L1

−−−−→
T→∞

M(µ2
Y )

where µY is the square root of the mean function mY of Y . Since mY is almost
periodic, µY is also this is also the case, by Bochner’s double sequence criterion.
Then, by Parseval’s equality (see Proposition 2.3), for any sequence (λn)n∈N∗ of
elements of S(µY ),

M(µ2
Y ) =

∞∑
n=1

|M(µY e
iλn.)|2.

So, M(µ2
Y ) > 0 because if M(µ2

Y ) = 0, then X(.) = b0(., X(.)) almost everywhere.
Therefore, by Slutsky’s lemma,

ϑ̂T
P−−−−→

T→∞
ϑ.

�
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